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Abstract. In many industries, embedded software plays an increasingly 
important role in defining the characteristics of the products. Often, a product 
line approach is used, and the system architecture is developed through 
evolution rather than being redone from scratch for each product. In this paper, 
we present a model of such an evolutionary process based on architecture 
transformations. The model attempts to give an accurate description of how real 
architects actually work. Key elements of the approach are how the 
transformations interact with consistency constraints and with feasibility in 
terms of resource limitations. The work is based on findings from previous case 
studies in the automotive industry. The model can be used to enhance our 
understanding of the architecting process, and to find ways to improve it.  
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1 Introduction 

The increasing complexity of embedded systems leads to soaring development costs, 
and many companies strive to curb this trend by reusing software and hardware 
between products through a product line approach. This makes architecture very 
important, and we have previously done in-depth studies of the architecting practices 
at a some companies (see e.g. [6]), showing that instead of following a well-defined 
process and method, the architects base their work on experience and gut feeling. 
Academic literature on architecting is mostly concerned with developing a new 
system from scratch, something that rarely occurs in the organizations mentioned 
above. We term this traditional approach revolutionary architecting, and we have 
previously argued based on another case study that the focus should instead be on the 
evolutionary architecting where a new version of an existing product is developed [1]. 
To systematically attack the problem of lacking processes and methods for 
architecting, there is a need to provide a description of how architects work today. 
The research question of this paper is therefore: What is a suitable model for 
capturing how evolutionary architecting is performed in organizations developing 
complex embedded system? The contribution of the paper is to propose such a model, 
which is based on transformations of an architectural description and related analyses. 
Using this model, it becomes possible to reason about aspects of the architect's work 
and to describe phenomena encountered during empirical research on architecting. 



2 Evolutionary architecting and architecture descriptions 

In the evolutionary process, architecting is triggered by a product change request. The 
architects get input in terms of requirements primarily from the function developers. 
The architects then try to design a high-level technical solution, focusing on the 
distribution of functionality onto different systems, and on the interfaces between 
systems. When designing the high-level solution and evaluating alternatives, they take 
into account not only the requirements, but also architectural quality attributes, which 
are properties of the architecture itself which they strive to maintain. Throughout the 
work, the architects create descriptions of the architecture. The descriptions are used 
to define pre-requisites for the system developers.  

The architect primarily focuses on resolving issues that go across several 
subsystems, and this entails dealing with the following concerns: 

• Feasibility, i.e. possibility to implement the functionality by the available 
computational resources. 

• Consistency, i.e. that all interfaces between parts are well defined. 

• Optimality, in terms of important quality attributes (including cost).  

• Modifiability, to enable future evolution. 

The model presented here attempts to describe what information the architects deal 
with in their work. That information might appear in many forms: formal models, 
sketches, texts, or just as mental models inside the architect's head. Our model tries to 
capture the essence of that information, and disregard its representation. 

For modeling the architecture descriptions for embedded systems, it suffices with a 
metamodel (M2 level) that is essentially an annotated graph, containing elements of 
different kinds; relations between pairs of elements or between pairs of relations; and 
attributes describing properties of elements and of relations. 

For distributed, embedded systems, a model (M1 level) for describing the 
architecture can be grouped into several levels of abstraction. In this paper, we will 
use four different views, whose elements and relations are shown in Table 1. (The 
description is similar to that provided in [2], except that the cluster level is implicitly 
captured through the allocation relations. Also, the physical packaging level is added 
in this paper, and the task level is excluded since it is internal to an ECU.) There are 
also relations between entities in different views, indicating which modules realize 
each function, how modules are allocated to ECU:s, where hardware elements and 
external entities are positioned, and how communication is routed.  

The metamodel allows attributes on elements and relations describing their 
properties. For architects, the primary properties have to do with desired qualities and 
limited resources present. The desired qualities are those properties that the architect 
tries to optimize when selecting among alternative feasible solutions. One of the most 
important ones is cost, which can be further divided into product cost and 
development cost.  The product cost is essentially the cost of hardware, so we add a 
product cost attribute to each element of the hardware view. Important resources are 
present in ECUs (processing capacity, memory size, I/O pins), communication 
channels (bandwidth), and spaces and routing channels (volume). 

 



Table 1. Views, elements, and relations in architecture descriptions. 
 

View Element Relations within view 

Functional Function 
External entity 

Functional dependency 

Logical Module Data flow 

Hardware ECU 
Sensor 
Actuator 
Comm. channel 

Signal flow 

Positioning Space 
Routing channel 

Connection 

 
Architects do usually not make complete models of the entire architecture, but 

rather only describe those parts which are relevant to resolve a certain change request. 
Therefore, we should not assume that we are dealing with complete information. 
However, among those elements related to the change request, consistency must be 
reached so that for instance all necessary relations are present. As an example, if the 
change is to add a new function, which is realized by a certain set of modules, all 
those modules must be allocated to ECUs, and none can be left dangling. 

3 Transformations and analyses 

We believe that the essence of the architect's work can be captured as a sequence of 
transformations of the architectural description (on the instance, or M0, level), 
together with analyses to see that the solution is feasible, cost efficient, and future 
proof. Just as the architecture descriptions can take many forms, including mental 
models, the transformations can in reality be explicit or very implicit. 

There are two basic transformations on the metamodel level: add entity and remove 
entity. Since the entities are either elements or relations, the possible transformations 
become add element, remove element, add relation, and remove relation. At the 
model level, these abstract transformations can be made concrete, resulting in, e.g., 
add module, remove ECU. 

Sometimes architects also use composite transformations. A good example is 
change relation, which basically consists of add relation1 followed by remove 

relation2. A concrete example is when a module that used to be allocated to one ECU 
is moved to another ECU by a change allocation transformation. Other composites 
are change element (e.g. change ECU to, e.g., an upgraded processor); split element 
(e.g., split module when a software module is divided to allow distribution); and the 
reciprocal merge element. Through the composite relations, we end up with a formal 
language which is very close to the natural language used by architects during their 
daily work. 

As described in Section 2, the architect's work is triggered by a change request to 
an existing architecture, which is consistent and feasible. This change request can be 



described as an initial set of transformations. A typical change request is to integrate a 
new function, i.e., the transformation add function. At this point, the architecture 
description has become largely inconsistent. 

The first step of the architect is usually to try to get more details about the 
functionality in the requirements analysis phase. This involves identifying external 
entities involved (using the transformations add external entity, add functional 

dependency). Also, it is important in this phase to identify placement limitations. 
After the requirements analysis is completed, there is usually a complete and 
consistent description of the functional view. 

Next, the architect starts to generate possible solutions. This is done by filling in 
the details at the logical level through transformations such as add module, add 

dataflow, but also change module since a consequence of an added functional 
dependency may be that an existing module needs to be updated. Also, the hardware 
view is detailed, possibly by add ECU, add sensor, add actuator or add network 
transformations. The relations between the logical and hardware views also need to be 
figured out, by add allocation transformations. In this step, it is common that the 
logical view needs to be revisited to perform split module transformations in order to 
find a good allocation. Finally, the hardware and positioning views must be connected 
by add positioning and add routing transformations. According to our observations, 
there is usually not a clear step-by-step process through the views, but the architects 
appear to work with all views in parallel or iterate between them. Figure 1 illustrates 
the search process performed by architects when dealing with a change request. 

 

Fig. 1. Evolutionary architecting as a sequence of transformations.  

If consistency is what drives the architecting forward, analysis of feasibility and 
quality is what guides it. The most important analyses correspond to the concerns of 
the architect described in Section 2 above. Usually, the analyses are qualitative rather 
than quantitative, and often relative rather than absolute. Difficult trade-offs between 
the concerns are often needed. 

For each resource, a set of users can be derived to see that the solution is feasible, 
i.e. that the resources are not exhausted. Whenever a relation is added to the model, 
which entails that one element will use resources of another, the feasibility should be 
checked. An example is when a module is allocated to an ECU. Then the architect 
must evaluate if it will fit in terms of ECU memory and CPU footprint.  

The product cost is simply the sum of the cost of all components, which can be 
calculated by adding the cost attributes of all entities in the hardware view. 
Development cost is more complex to assess. In [3], it is described how to reason 
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about the cost for software changes. The approach is to first identify which modules 
change, and then either simply count how many modules are touched, or try to 
perform a more refined analysis or initiated guess of the magnitude of change. 

The architects also try to keep in mind that the architecture should be modifiable. 
However, as pointed out in [5], it is not meaningful to reason about modifiability as 
such, but only how modifiable the architecture is with respect to a certain class of 
changes. For embedded systems, a common barrier to modification is lack of 
hardware resources. The architects try to strike a balance between adding surplus 
resources to the hardware for future growth, and optimizing the resources in order to 
reduce product cost. This kind of reasoning can be thought of as a real options 
analysis [4]. In such an analysis, the main difficulty is to estimate the likelihood of 
certain types of changes. If architects keep track of how frequent certain 
transformations are, they can extrapolate more reliable figures. The transformation 
model thus gives the architect a language for capturing knowledge about changes. 

4 Conclusions 

In this paper, we have outlined a Transformation-based Evolutionary Architecting 
Model (TEAM), which attempts to describe essential knowledge about how real 
architects go about developing embedded system product lines. The basis is data 
collected from observing real architecting work, and we have attempted to construct a 
model with a high fidelity in the sense that the language the architects use to describe 
their own process should be possible to map to the model. 

Although the model presented in the paper is largely based on experiences from the 
automotive domain, the fundamental ideas are captured in the metamodel which is 
much more general and allows many different views and elements to be included. 
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