
Resource Sharing Using the Rollback Mechanism in
Hierarchically Scheduled Real-Time Open Systems

Mikael Åsberg, Thomas Nolte and Moris Behnam
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden
{mikael.asberg, thomas.nolte, moris.behnam}@mdh.se

Abstract—In this paper we present a new synchronization
protocol called RRP (Rollback Resource Policy) which is
compatible with hierarchically scheduled open systems and
specialized for resources that can be aborted and rolled back. We
conduct an extensive event-based simulation and compare RRP
against all equivalent existing protocols in hierarchical fixed
priority preemptive scheduling; SIRAP (Subsystem Integration
and Resource Allocation Policy), OPEN-HSRPnP (open systems
version of Hierarchical Stack Resource Policy no Payback)
and OPEN-HSRPwP (open systems version of Hierarchical
Stack Resource Policy with Payback). Our simulation study
shows that RRP has better average-case response-times than
the state-of-the-art protocol in open systems, i.e., SIRAP, and
that it performs better than OPEN-HSRPnP/OPEN-HSRPwP
in terms of schedulability of randomly generated systems.
The simulations consider both resources that are compatible
with rollback as well as resources incompatible with rollback
(only abort), such that the resource-rollback overhead can be
evaluated. We also measure CPU overhead costs (in VxWorks)
related to the rollback mechanism of tasks and resources. We
use the eXtremeDB (embedded real-time) database to measure
the resource-rollback overhead.

Index Terms—real-time systems, hierarchical scheduling,
open systems, resource sharing, synchronization protocol

I. INTRODUCTION

The hierarchical scheduling technique [1], [2], [3] has been
introduced in order to simplify parallel development of real-
time systems. It simplifies the integration of complex real-
time systems by providing a mechanism for temporal isolation
between subsystems. A typical system (an end-product, a piece
of software etc.) can consist of a number of smaller parts, i.e.,
subsystems, and these may constitute a function/feature of the
system itself. When finalizing the development of a system,
these subsystems will be integrated. Systems that are built
upon smaller systems (compositional systems) are common in
industries such as automotive [4], aerospace [5] and consumer
electronics [6].

The idea with open systems is that it should be possible
to independently develop and validate (using schedulability
analysis) subsystems, and then execute them concurrently on
a shared execution platform without violating any validated
properties (e.g., requirements, behavior etc.).

Although the hierarchical scheduling technique solves much
of the integration related problems, it can not manage isolation
between subsystems when they share resources other than

the CPU. The remedy for this shortcoming is to introduce
a synchronization protocol which can handle resource sharing
between subsystems. The existing protocols for fixed-priority
hierarchical scheduling in open systems are called OPEN-
HSRP [7] and SIRAP [8]. A note to the reader is that we use
the term OPEN-HSRP when we mean both OPEN-HSRPwP
and OPEN-HSRPnP, which are the two versions of HSRP with
and without payback respectively.

The analysis of SIRAP is tighter than that of OPEN-HSRP
since it uses more detailed information [9], hence, it gives
better results and resource utilization. However, some of this
information is also required during runtime, which makes
SIRAP more difficult to use in practice. In addition, the
response times of tasks under SIRAP are in general longer
than the corresponding response times under OPEN-HSRP
(see Section VI).

In this paper we present a new synchronization protocol,
called RRP, that can handle resource sharing in a hierarchically
scheduled open system. It can use the tight analysis of SIRAP
but does not need the detailed information during runtime,
i.e., the implementation of the protocol is easier. Hence,
RRP can improve the average-case response-time significantly
compared to SIRAP, and it can perform better than OPEN-
HSRP (Section VI). RRP is primarily focused on (and limited
to) resources that can be aborted and, if necessary, rolled
back. In this paper we focus on real-time databases [10],
[11] which is a good example of a resource with rollback
support. Real-time database management systems (RTDBMS)
have been extensively studied in many industrial systems such
as telecommunication [10], [12] and heavy vehicle control-
systems [11]. RTDBMS can also be found in avionics appli-
cations, for example, the Boeing AH-64D Apache Longbow
Helicopter1. We also consider resources that can be aborted
without the requirement of rollbacks. Hence, in this paper,
we deal with both types of resources; the simulations in
Section VI-B and Section VI-C include resources that do not
require rollbacks while we in Section VI-D add the overhead
of resource rollbacks in the simulations by using measured val-
ues of database rollbacks which are derived from experiments.
The task-rollback overhead is evaluated in Section V-A and the
database-rollback overhead is presented in Section V-B. The

1McObject, press release: http://www.mcobject.com/January19/2004



contributions of this paper are:
1) The main contribution is the introduction of a new syn-

chronization protocol RRP (Rollback Resource Policy).
We elaborate on its theoretical strengths and weaknesses.

2) The second contribution is a comparison of two protocol
mechanisms, i.e., rollback (RRP) and skipping (SIRAP),
implemented in the operating system VxWorks 6.6.

3) The third contribution is the overhead measurements of
an industrial RTDBMS (eXtremeDB) in VxWorks 6.6.

4) The fourth contribution is an extensive event-based
simulation evaluation of RRP, SIRAP, OPEN-HSRPnP
and OPEN-HSRPwP. To the best of our knowledge, this
is the first detailed study of the performance differences
of the implemented synchronization protocols in the
context of hierarchical fixed-priority scheduling (FPS).
Previous studies [7], [8], [9], [13], [14], [15], [16], [17],
[18] are either limited to analysis or they show limited
evaluation results. Our simulation shows real execution
values since it simulates a real execution platform while
previous work, which is based on analysis, only show
calculated worst-case values. We emphasize that we do
not perform schedulability-analysis simulations (which
has been done in previous work), but instead we execute
the implementation of the protocols.

A. Organization of the paper

The outline of this paper is as follows: in Section II we
outline the preliminaries on hierarchical scheduling, the system
model, local resource sharing and global resource sharing. We
present the related work in the area of hierarchical scheduling
and resource sharing in Section III and in Section IV we intro-
duce the protocol and elaborate on its theoretical properties.
Section V presents overhead measurements of the mechanisms
of RRP and SIRAP as well as measurements of database
rollback-overhead. Section VI shows the results of the event-
based simulations. Finally, in Section VII, we conclude our
results.

II. PRELIMINARIES

A. Hierarchical scheduling

The lower part of Figure 1 illustrates the scheduling mech-
anism in two-level hierarchical scheduling. The Global sched-
uler (in this case running FPS) is responsible for distributing
the CPU resource to the servers (the schedulable entity of a
subsystem). The servers have a defined time (budget) reserved
at every time interval of length period [19] and the execu-
tion order is based on the servers priority. The servers are
scheduled with respect to the scheduling policy of the global
scheduler and its parameters (budget, period and priority),
hence, they can be interpreted as ”virtual tasks”. A server
can consist of a Local scheduler which schedules the content
inside (its tasks) during the time when the server is selected to
consume its budget (which is decided by the global scheduler).
The tasks are described by their release period [20], execution
time and priority.

Subsystem 1 Subsystem 2 Subsystem n

SRP
Local FPS Scheduler

RRP/SIRAP/HSRP

Global FPS Scheduler

Task Set

Local Shared 
Resources SRP

Local FPS SchedulerTask Set

Local Shared 
Resources SRP

Local FPS SchedulerTask Set

Local Shared 
Resources

CPU

Global Shared Resources

Fig. 1. HSF with shared resources

B. System model

A system consists of several subsystems that are scheduled
periodically by a global scheduler on a single CPU. In
this paper we assume that the global scheduler implements
fixed-priority preemptive scheduling, i.e., FPPS. It is further
assumed that tasks from different subsystems share mutually
exclusive resources with each other, so there is a need for
a synchronization protocol to resolve potential conflicts. The
protocol should only be dependent on information from the
subsystem under analysis and it may not alter parameters
of other subsystems within the system. The resources are
assumed to have the property that they can be locked and
later aborted (and if necessary rolled back) while keeping a
consistent state. The longest possible time between locking
and unlocking a resource (not including task preemptions) is
defined as the critical section execution time (CSET).

C. Resource sharing

Resource sharing in hierarchical scheduling can be divided
in two parts: when resources are shared by tasks within the
same subsystem (local resource sharing) and when tasks resid-
ing in different subsystems share the same resources (global
resource sharing). Local resource sharing can be handled by
using classical resource sharing protocols such as the Priority
Inheritance Protocol (PIP) [21], the Priority Ceiling Protocol
(PCP) [21] or the Stack Resource Policy (SRP) [22], within
each subsystem. When it comes to globally shared resources
(and we also assume that tasks in the same subsystem may
share the same global resources) then there is a need to protect
the resource access at the local level (i.e., using SRP or similar)
as well as at the level of subsystems. In this sense, a task
locking a global resource will cause its subsystem (server) to
also lock a resource, hence, the same rules apply for servers
when it comes to resource access (following the rules of the
global resource protocol). The global resource access protocol
may be similar as in the local level, e.g., SRP may also be
used at the level of subsystems.

One additional challenge when sharing global resources is



what action to be taken in the case when a task is currently
holding a global resource and its corresponding server budget
is depleted. We will elaborate on this in Section II-C2.

1) Local resource access: When a task attempts to access
a local resource then it performs a lock action, similarly, it
unlocks the resource when it has finished its access.

Note that most of the global synchronization protocols
(OPEN-HSRP, SIRAP, RRP, BROE etc.) are based on SRP
(both locally and globally). Hence, we devote the rest of this
subsection to describe the SRP protocol. SRP blocks a task if
there is a potential risk that it might access a resource that is
already in use by another task. The same mechanism is used
for bounding the priority inversion. Priority inversion happens
when higher priority tasks are blocked by lower priority tasks.
Each resource has a defined resource ceiling which is the
highest priority value of all tasks that will access the resource
(assuming FPS). The mechanism checks at the time when
releasing a task that it has higher priority than the resource
ceiling of the currently (and most recently) locked resource
(if any). A task is only allowed to be released if it has higher
priority than the highest resource ceiling among all currently
locked resources – this ceiling value is defined as the system
ceiling. When a task locks a resource, the system ceiling is
automatically updated with the resource ceiling of the locked
resource. When the task unlocks, the system ceiling is reset to
its previous value that it had before the resource was locked,
which can be either another resource ceiling or empty. In this
way, the system ceiling can be easily tracked using a stack.

0 50 100 150

Task 1

Task 2

Task 3

Legend:

active

holding mutex

preempted

arrived

Fig. 2. SRP example

Figure 2 illustrates how SRP enables mutual exclusive
access to resources (time 95) and prevents priority inver-
sion (time 105). In this figure, the priority ordering is
Prio(Task3) > Prio(Task2) > Prio(Task1), and
Task1 and Task3 share the same local resource.

2) Global resource access: When a task locks a global
resource (which can be locked by tasks in the same or other
subsystems) then there is a need for a protocol that can
preserve mutual exclusive access to resources that are shared
with tasks from the same or other subsystems. In this case, the
protocol needs to control the execution (time reservations) of
servers in the same way as resource access protocols controls
the execution of tasks. Hence, each subsystem will have a
local protocol controlling local resource accesses (as well as
global accesses). In addition, a global resource access protocol
will block servers in the case of global resources. Finally,
there is a separate mechanism that prevents server budget-

depletion in the case when a global resource is locked by a
task. This is needed to prevent excessive access times of global
resources. Figure 3 illustrates the problem with long blocking
times (illustrated as waiting time) when resources are shared
globally.

Try to lock R1
Subsystem i TkTs Tm

lock R1 release R1
Subsystem n

lock R1
Waiting time

Budget expire

timeTs TsTs Ts Tm Tm Ts
release R1

Fig. 3. Global resource locking problem

a) SIRAP: There exists several protocols that have all
of these mentioned functionalities, and one of them is the
SIRAP protocol. SIRAP uses the SRP protocol for sharing
both local and global resources, hence, there is a global SRP
that controls server execution and one local SRP for each
subsystem which controls tasks. When a task wants to access
a global resource, the SIRAP protocol checks if there is
sufficient budget left for the task to execute its critical section
and release it before budget depletion. The maximum time
that a task can lock a global resource (including preemptions
of other tasks in the same subsystem) is called Resource
Holding Time [14] (RHT). If there is sufficient budget then the
task locks the resource and continues. If not, the task raises
the system ceiling level (within the subsystem) according to
the priorities of the (subsystem) tasks accessing the global
resource, and continues to execute (busy waiting) without
actually locking the global resource. This is referred to as
self-blocking. So locally, the task behaves like it is accessing
a global resource. However, the global resource is actually free
and the CPU budget will be idled away unless another task
is released with higher priority than the system ceiling of the
subsystem. The task will wait for the next subsystem period
and lock the global resource at that time. Figure 4 illustrates
the self-blocking scenario. The server priority ordering is
Prio(Server3) > Prio(Server2) > Prio(Server1) (left
side), and their corresponding tasks (right side) are mapped by
names, i.e., task S3Task1 belongs to Server3 etc. Server1
and Server3 share the same global resource. Server3 is
released at time 30, and its task is released 10 time-units
later. The task attempts to lock a global resource at time 45
(requiring 10 time-units for its RHT), but there is only 5 units
remaining of the budget so the task self-blocks between time
45 and 50. Its server is released again at time 60 and due to
the global system ceiling it is granted the CPU at time 85. At
this time the task has sufficient budget to complete its RHT.
Note that one task blocks (60) and another one preempts (65)
when S1Task1 is holding the global resource (55-85). This is
dependent on the system ceiling of the subsystem. HSRP [13]
does not allow this type of preemption so it raises the system



ceiling such that it is equal to the highest priority task. In
SIRAP and RRP (as well as in the newer version of HSRP,
i.e., OPEN-HSRP [7]) however, this is optional. The final
observation is that Server2 is blocked at time 75 due to that
the global system ceiling is equal to the priority of Server3
(this prevents priority inversion at the level of subsystems).

Fig. 4. SIRAP example

b) OPEN-HSRP: OPEN-HSRP [7] (as well as the origi-
nal HSRP [13]) uses SRP at both levels. The main difference
from SIRAP is the mechanism that is used in case of a budget
depletion during the CSET of a task. Instead of checking
and preventing a task from locking a resource, OPEN-HSRP
will prolong the budget (overrun) of a server until the task
unlocks the resource. The difference between OPEN-HSRPnP
and OPEN-HSRPwP is that OPEN-HSRPwP will decrease the
next upcoming budget with the same amount of time that was
spent in the overrun section.

Fig. 5. OPEN-HSRP example

This overrun section is animated in Figure 5. S1Task1
locks a resource at time 35 and the budget depletes at time
40. Server1 has an overrun from time 40-60 and 80-90
(not including the suspended time due to server preemption
between time 60 and 80). We can also see local interference
between time 45 and 55 which can happen if the preempting
task has higher priority than the local system ceiling (both
SRP levels will behave exactly the same as in SIRAP). If the
example in Figure 5 was illustrated with OPEN-HSRPwP, then
the budget of Server1 would decrease with 30 time units at
its next budget replenishment (the local task interference at
time 45-55 is included in this payback).

III. RELATED WORK

Hierarchical scheduling theory A lot of work on hier-
archical scheduling and its schedulability analysis [23], [24],
[25], [26], [27], [28] has been presented previously, which
has originated from open systems [2] in the late 1990’s.
[25] proposed analysis which support open systems, i.e., it

does not require knowledge of other subsystems in order
to analyze a particular subsystem. SIRAP [8] and OPEN-
HSRP [7] extended the analysis to support resource sharing.

Hierarchical scheduling with resource sharing Starting
with the HSRP [13] protocol in 2006, which was later extended
in 2010: OPEN-HSRP [7], the problem of resource sharing
in a hierarchically scheduled environment was solved by
overrunning the allocated CPU time for subsystems, when
a subsystem was unable to finish its resource access before
its budget depleted. We call this mechanism overrun [29],
[30]. However, since HSRP is not suitable for open systems,
SIRAP [8] was introduced in 2007, as well as BROE [14]
which was developed for dynamic-priority scheduling.

Recent published work include a preliminary comparison
of SIRAP, HSRP and BROE [15], as well as implementation
comparisons [16] in the OS µC/OS-II. In [31], the authors
present a similar mechanism as RRP named HSTP (Hierarchi-
cal Synchronization with Temporal Protection). The difference
from RRP is that HSTP continues to execute with the help
of donations while RRP instead executes rollbacks. Another
difference is that the authors focus on the analysis while we
devote our work to simulations. Other studies [9] have also
compared SIRAP and HSRP. [17] shows the differences in
the amount of interactions that SIRAP and HSRP have with
semaphores and the scheduler in VxWorks. Another imple-
mentation of SIRAP and HSRP in µC/OS-II [18] presents
overhead measurements.

Rollback This is a well studied technique, within the
research of fault tolerance, and can be traced back to the early
1970’s [32]. The idea is to save the state of a program (known
as checkpointing) such that it can later be restarted (rollback)
from the most recent checkpoint in case of program error.
There has also been more recent studies on the impact of
schedulability when rollback is used [33]. Rollback can also
be used to resolve concurrent access at the time of unlocking
a shared resource instead of blocking a task when a resource
is locked. This is presented in [34] but it is limited to 1-level
scheduling. Two protocols called rollback (RP) and skip (SP)
[35] has been developed for Pfair scheduling on multi-core
platforms. In Pfair, tasks execute in so called quanta time
slots. In order to avoid tasks from having locked resources
at the end of a quanta, a freeze signal is issued which disables
tasks from locking a resource. This initiates a frozen interval
which does not allow any resources to be locked by any tasks
(thus it resembles the skipping technique used in SIRAP).
Each lock has its own FIFO queue which is used to grant
tasks the resource in first-in-first-out (FIFO) fashion in case
the resource is already locked. The main difference between
the RP and SP protocol is how they handle these FIFO queues
during the frozen interval. The SP protocol leaves pending
requests in the queue and ignores them up until the requesting
tasks are scheduled again. RP however discards any pending
request, forcing the requesting tasks to re-issue the lock later
when they are scheduled again. Hence, the requesting tasks
will be inserted into the FIFO queue later in their next quanta.



Compared to RRP and SIRAP, both RP and SP resemble the
SIRAP protocol since all of them implement some form of skip
mechanism. RRP does not have any type of check at the end
of a time slot (unlike RP, SP and SIRAP), it simply grants the
lock no matter if the time slot expires during the tasks CSET.
If concurrency is detected then RRP will simply rollback (the
resource) and restart the task execution. Just to clarify, RRP
does not resemble RP since RP resembles SIRAP due to that
the frozen interval prohibit tasks from locking resources (SP
has the same resemblance to SIRAP).

IV. ROLLBACK RESOURCE POLICY (RRP)

Comparing SIRAP and HSRP, looking from a global per-
spective of the CPU resource, SIRAP punishes the subsystem
itself by not using CPU cycles of other subsystems, and
wasting the subsystems own CPU cycles, in benefit of having
independent subsystems. HSRP does the opposite, it pun-
ishes other subsystems, i.e., delaying them while overrunning.
Hence, HSRP is utilizing the slack time in the system (if any)
and giving it to the overrunning subsystem. RRP represents the
next step in this evolvement: to make more efficient use of the
CPU cycles, i.e., more than SIRAP and less than HSRP. This
is done without the risk of temporarily overloading the CPU
(which is one of the drawbacks with HSRP) while keeping
the property of allowing independently developed subsystems.
We do so by identifying resources that can be aborted during
its access (and rolled back to a consistent state if necessary),
and taking advantage of this property in order to save CPU
cycles. The complete description of RRP is presented in the
following section.

A. Protocol description

The RRP protocol is based on a 2-level SRP mecha-
nism, similar to SIRAP [8] and OPEN-HSRP [7]. The main
difference with RRP is how it handles the situation when
the subsystem budget depletes during a tasks CSET, this is
illustrated in Figure 6. A task is always granted access to a
global resource, no matter if the CSET length is less than
the remaining subsystem budget or not. If the CSET is larger
than the remaining budget then the system ceiling will be
decreased at the time of budget depletion (while the task is still
accessing the global resource). If no other subsystem (i.e., task
in a subsystem) wants to access the same global resource up
until the next subsystem instance, then, once the subsystem is
scheduled again, the system ceiling is raised and the task can
simply continue to execute its critical section. In the case when
another subsystem wants to access the same global resource,
while the previous task is still accessing this resource, then it
performs a rollback on the resource and accesses it. This will
cause the previous task (Ts in the figure) to be rolled back to a
state, just before it locked the resource. The task will roll back
to the checkpoint at its next subsystem instance and restart its
critical section execution.

We will compare RRP with SIRAP in this section since
their mechanisms resemble eachother most. The limitation of
RRP is that it can only handle resources that can be either

Already locked,
trigger a Rollback

Subsystem i

lock R1,
perform checkpoint release R1

Subsystemn

lock R1
Budget expire

timeTs TsTs Tm Tm Ts
release R1

Rollback the task,
go to checkpoint

Fig. 6. The rollback mechanism

aborted, or aborted and rolled back (during its use). However,
for this subset of resources, RRP shows good performance as
we will see in Section VI.

In the worst case, a rollback can happen at each subsystem
period which is equivalent to selfblocking in SIRAP. Hence,
the analysis in SIRAP [8] is also applicable for RRP. However,
RRP has the potential to improve the average case performance
as shown in Figure 7. RRP is more robust since it always
conducts a rollback if there is a concurrent access while SIRAP
does not have a similar safety mechanism. SIRAP must rely
on that the worst-case RHT is a safe upper estimate, hence,
it typically has a safety margin added to every RHT. This
means that there will be a higher risk that SIRAP will perform
selfblockings even though the tasks could have entered their
critical sections and finished before budget depletion. RRP will
perform better in these cases since it always allows a task to
access a global resource irrespective of how much remaining
budget that is left. Hence, RRP will waste less CPU cycles.

In theory, and in practice as our event-based simulations
will show, RRP has good performance even in the case when
tasks in the same subsystem are allowed to preempt other tasks
during their global resource accesses. SIRAP tends to degrade
its performance excessively when global resource accesses
are preemptive (locally). The checking of RHT against the
remaining budget (when a task wants to access a global
resource) is at greater risk of failing since the RHT must
include the WCET of tasks that might preempt.

Looking from the perspective of the user of the SIRAP
protocol, the RHTs are both technically hard to estimate and it
puts an extra load on the user, making it more complicated to
use (implementation wise, not the analysis). RRP is easier to
use since it does not require this information during runtime,
i.e., this makes the implementation easier and more safe.

Ts TsTs Tm Tm TsTm
TsTs Ts

SI
RA

P

Ts TsTs TsTm
TsTs Ts

RR
P TsTs

TsWorst case Potential improvement Best case

improvement
Ts

normal
critical section
self-blocking

Fig. 7. RRP and SIRAP have the same worst and best case behavior, however,
RRP can potentially improve the performance in the average case

Note that it is unlikely that systems have resources that are



all compatible with abortion and rollback. In these cases, a
mixture of RRP and SIRAP/OPEN-HSRP could be used, i.e.,
use SIRAP/OPEN-HSRP for resources that cannot be aborted.
This could improve the average-case performance.

V. ROLLBACK OVERHEAD

In this section we present the overhead measurements
of task rollback (Section V-A) and database rollback (Sec-
tion V-B). The experiments were conducted on the real-time
OS VxWorks 6.6 running on an Intel P4 1.6 GHz platform.

A. Task-rollback overhead

Central to comparing protocols is the overhead inherent
in their implementations. Assessing this we ran experiments
to estimate the overhead of the task-rollback and skipping
operations. In order to get checkpoint and task-rollback func-
tionality we used the primitives taskRegsGet/taskRegsSet
to store and load the register (program counter) of a task.
The taskRegsSet operation will restart a task job from the
beginning of its task body. In order to create a checkpoint
just prior to the lock operation, we use the setjmp function.
Having setjmp prior to the lock and longjmp at the start of
the task enables the restart of a task to jump directly to the
lock function. SIRAP requires the tickGet function in order
to estimate the remaining budget. Table I shows the best- and
worst-case execution time of the mentioned primitives as well
as context-switch time and the total overhead of a rollback.
The rollback includes the context switch to the start of a task
(body) and jump (using longjmp) to the code section prior to
the lock primitive (the cost of the primitive taskRegsSet is
not included). The execution time of setjmp is very small so
we consider this overhead to be negligible.

Operation Description Exec.
time µs

taskRegsSet Load program counter (start of task body) ≤ 1
taskRegsGet Save program counter (start of task body) 2-3

Rollback Context switch to saved program counter 2-3
tickGet Read system tick 1-2

Context switch Regular context switch 2-3
setjmp Save exec. context (from within a task) -
longjmp Load exec. context (from within a task) -

TABLE I
OPERATION OVERHEADS IN VXWORKS

taskRegsGet is the most costly operation in a task roll-
back. However, it is sufficient if it is executed once prior to the
first job of a task and saved. Executing taskRegsGet prior
to the first job of each task saves the current registers, i.e.,
the start of the task, and it is not required to execute this
primitive again during the life-span of a task since we assume
that the program-counter value of the beginning of a task will
not change. A task rollback (not including the overhead of the
operation taskRegsSet) has a similar cost as a regular task
context switch and in this overhead we also include the cost
of longjmp.

Figure 8 shows the sources of overhead in the two protocols.
taskRegsGet is required once prior to the first job so we do

Subsystem i

Subsystemn
timeTs TsTs Tm Tm Ts

taskRegsSet

Tm Rollback (context 
switch+longjmp)

setjmp

taskRegsGet

Subsystem i
timeTsTs Ts

SIRAP
RRP

tickGet Context switchTs Ts

Fig. 8. Overhead sources for SIRAP and RRP

not include it. setjmp is negligible as mentioned previously
and a rollback (which includes a task context-switch and
a longjmp call) has equal overhead as a context switch
so none of these two values affect our comparison. The
difference between the two protocols is tickGet for SIRAP,
and taskRegsSet for RRP. Looking at only skip/rollback
overhead, then the difference between the protocols (in case
that both protocols fail to lock/unlock) is 1 µs (taskRegsSet)
for RRP and 1-2 µs (tickGet) for SIRAP. In case the protocols
succeed to lock/unlock before the budget deplete then RRP has
0 µs overhead and SIRAP 1-2 µs (tickGet). Hence, in either
case, RRP does not cost more than SIRAP in terms of CPU.
However, rollback may of course be more costly in terms of
memory management compared to SIRAP.

These experiments focus only on the rollback mechanism
and overhead for tasks. There might of course also be overhead
when rolling back a resource, i.e., re-balancing a data structure
such as a red-black tree for example. We compensate for this
by emulating resource-rollback overhead in our simulations
for RRP (Section VI-D).

In this paper we skip the overhead comparison of RRP and
OPEN-HSRP since previous work [17] has already studied the
overhead differences between overrun and skipping (OPEN-
HSRP and SIRAP). This study concluded that SIRAP had less
overhead than OPEN-HSRP in terms of expensive calls to the
global scheduler.

B. Resource-rollback overhead

The resource-rollback overhead presented in this section
relates to the context of heavy vehicle control-systems. The
targeted resource (which we use in our experiments) is an
industrial RTDBMS called eXtremeDB2 version 4.1 for Vx-
Works 6.6/6.7 PENTIUMdiab. According to a case study at
Volvo Construction Equipment [11], hard real-time tasks in
their systems access one, or at most, a few data elements.
Hence, we assume that database transactions have a maximum
of 20 data elements. Figure 9 shows the measured overhead
of 20 different database transactions operating on 1−20 data
elements. We can observe that the overhead of Rollback and
Commit operations are low compared to the actual manipula-
tion of database items (Insert). A rollback of a transaction with
1 to 20 data elements take 20−40 µs. An overestimation of this

2eXtremeDB: http://www.mcobject.com/



parameter will be used in Section VI-D when the performance
of RRP (including this overhead) is evaluated.

Fig. 9. Database-operation overhead for transaction sizes of 1−20 elements

VI. SIMULATION RESULTS

The simulations were conducted using a timed-automata
(with tasks) model of a two-level FPPS scheduling frame-
work [36] of periodic servers [19] and tasks [20]. The model
was implemented using the TIMES tool and we extended
this model with an implementation of RRP, SIRAP, OPEN-
HSRPnP and OPEN-HSRPwP. The model (schedulers and
protocols) was verified using model-checking. We carefully
selected example systems that generated all possible protocol
scenarios in order to verify certain properties, similar tech-
niques were used to verify the two-level scheduler [36]. These
systems were used to verify that the model was free from
deadlock/livelock, that a resource was never locked by more
than one user at a time, and that two consecutive unlocks were
never performed on a resource. Having our simulator model-
checked and verified makes our simulation results solid, at the
cost of longer simulation time since automatically generated
code of timed automata in general has slow performance.
Thus, this massive simulation study was calculated to take
about 2672 days (a bit more than 7 years) on a single core
platform. However, thanks to the Ericsson Research Labora-
tory (at Mälardalen University) we were privileged to use their
experimental 128 core platform (AMD Opteron) utilizing 64
of the cores for our simulations. This decreased the simulation
time substantially. In order to perform an efficient simulation,
we generated C-code from our extended model, and executed
the simulation framework without the use of the modeling tool.

A. Simulation settings

We ran in total 256500 simulation runs for approximately 15
minutes each (the time limit is required since the simulations
can take several years to complete otherwise). The parameters
we use are randomly selected, although their characteristics are
inspired by a vehicle (wheel-loader) application from Volvo
Construction Equipment [37]. We define a system as a set of
servers where each server has a set of tasks. Each task will
access either one global resource or it will not access any
resource at all, i.e., there is no nested resource accesses. The
number of global resources per system is randomly selected

between 1/3 of the number of tasks and the number of tasks in a
subsystem (the number of tasks per subsystem is equal among
all subsystems in a system). Server periods are randomly
selected in the range from 500 to 2000 time units and task
periods are randomly selected in the range 5000 to 15000
time units. Half of the systems were generated with server
budgets calculated using the analysis from SIRAP [8] and the
other half had budgets which were calculated using OPEN-
HSRPwP [7]. The main difference between these two budget
calculations is that SIRAP requires a larger budget than OPEN-
HSRP in order for the RHT to fit in the local analysis. The
reason for running half of the systems with each approach is
because we want to be fair to all protocols since the OPEN-
HSRPwP budget calculation is optimized for the OPEN-HSRP
protocols and the SIRAP budget calculation is optimized for
SIRAP and RRP.

Half of systems have a CSET of 3-9% (3, 6 and 9%) of the
task execution time and the other half has 5-25% (5, 10, 15,
20 and 25%). All systems have a range of different settings
wrt the number of servers, number of tasks, taskset utilization
and resource ceilings. We have chosen to have systems with
2, 4, 6, 8 or 10 servers, 3, 5 or 7 tasks per subsystem,
30, 50 or 70% total task-set utilization and highest priority
setting for resource ceilings on half of the systems, while
the other half has ceilings calculated using the SRP protocol.
For each combination of the number of servers and tasks,
taskset utilization, CSET and ceiling we generated 25 different
systems which differ in period, budget, execution-time, priority
and the number of resources. In total, all systems are equally
divided with 6 different settings (which we just described), i.e.,
the systems have all possible combinations of settings. We do
this with the intention that none of the protocols (RRP, SIRAP
or OPEN-HSRP) should benefit from a particular setting.

The RHT values do not include task interference, hence,
they only represent the CSET (i.e., RHT = CSET). Half
of our simulation systems (128250) have SRP calculated
ceilings which allow task preemptions during the CSET (thus
increasing the actual runtime value of the RHT). We do
not compensate for these high RHT values in the calculated
budgets. Hence, we intentionally want to stress the protocols
to see how sensitive they are to larger RHT values at runtime
which are not present in the analysis.

The simulations presented in Section VI-B and VI-C assume
that resources do not require rollbacks [10]. The simulation
results presented in Section VI-D assumes that there is an
overhead of 1 time unit every time a resource is rolled back,
i.e., RRP will pay a penalty every time a rollback occurs.

B. Schedulability

Table II shows the percentage of systems (out of the 36000
systems) that each protocol managed to schedule without any
task or server deadline-violation. As can be seen, SIRAP
suffers a lot from the SRP-based ceilings as we mentioned
previously (this is even more clear in the right figure of
Figure 10).



Protocol Schedulable systems (%)
RRP 67.4

OPEN-HSRPwP 66.9
OPEN-HSRPnP 65.9

SIRAP 32.8

TABLE II
SCHEDULABLE SYSTEMS BY EACH PROTOCOL OUT OF 36000 SYSTEMS.

RRP has the largest amount of schedulable systems of all
protocols. This is not surprising since SIRAP and OPEN-
HSRP both have an Achilles’ heel, while RRP can avoid
them both. SIRAP tends to reduce the CPU resource to a
subsystem when a resource cannot be locked (due to a too
small remaining budget), hence, this can cause a task deadline
violation when the CPU time is decreased. OPEN-HSRP on
the other hand has a different problem. It tends to overload
the CPU when a resource access exceeds the budget. During
overruns, there is not always enough CPU time for both the
overrunning subsystem and the subsystem that was originally
scheduled to run. If both subsystems want more than 100%
CPU at this point in time then this will cause a server deadline
violation. In the best case, RRP does not reduce the CPU share
of a subsystem (like SIRAP), nor does it ever overload the
CPU (like OPEN-HSRP). Hence, RRP utilizes the CPU better
in most cases compared to SIRAP and OPEN-HSRP and that
is why it has the highest rate of schedulable systems.

Protocol rollback/selfblock/overrun
RRP 5840456

SIRAP 6078920
OPEN-HSRPnP 17068697
OPEN-HSRPwP 17528265

TABLE III
NR OF MECHANISM OPERATIONS, I.E., ROLLBACKS, SELFBLOCKINGS OR

OVERRUNS IN THE SCHEDULABLE SYSTEMS.

Table III shows the number of times that each protocol
had to activate its protection mechanism that avoids budget
depletion before a resource gets unlocked. The mechanism
activations are only counted from the systems that were
schedulable. Take into consideration that SIRAP only has half
as many schedulable systems as the others, hence, its number
should at least be the double. RRP has the lowest number of
mechanism activations (rollback in the case of RRP) which
is natural since the number of rollbacks are dependent on the
risk of resource conflicts in between server activations rather
than the number of resource accesses that exceeds the budget
(which is the case for the other protocols). The low number
of rollbacks is the reason why RRP has a high success rate of
schedulable systems (Table II).

Figure 10 shows the number of local and global deadline vi-
olations per protocol wrt the ceiling settings. RRP and SIRAP
have more local scheduling errors than OPEN-HSRP while
OPEN-HSRP has more global scheduling errors than RRP
and SIRAP. The reason for this is because RRP and SIRAP
decreases CPU time for subsystem tasks when resources
cannot be locked, while OPEN-HSRP delays other servers in

Fig. 10. Nr of unschedulable systems wrt the ceiling settings.

this case. SIRAP has a high number of local scheduling errors
since it selfblocks a lot due to the SRP-based ceilings. What
is also interesting to note (but which is difficult to observe in
Figure 10) is that SIRAP has about 1% less global scheduling
errors than RRP in total. The reason is because rollbacks are
in general a little more costly in terms of server level blocking
since tasks lock global resources prior to the rollback while
SIRAP avoids it. Looking at the ceiling setting, SIRAP is most
sensitive to the increased RHT (which is caused by the SRP-
based ceiling setting) but we can also note that OPEN-HSRP
increases the number of scheduling errors substantially with
the SRP-based ceiling setting. RRP is the most robust protocol
when RHT is larger at runtime than what was assumed in the
analysis.

C. Response time

Fig. 11. Pair-wise comparison of response times: percentage of commonly
schedulable systems with lower response-time.

Figure 11 shows comparisons of measured task response-
times (RT). We have compared the protocols two-by-two by
identifying the subset of systems that they both managed to
schedule successfully. We compare them two-by-two instead
of all four since we get more common schedulable systems.
We check how many of these common schedulable systems
that each protocol had the lowest mean or max RT in. For
each system we calculate the mean measured RT for each
task and normalize them with the task period, then we take
the mean value of all tasks mean values. Similarly, we take
the maximum RT of each task and normalize it to the period,
then we calculate one mean value for all of these values. On
the left hand side of Figure 11 we show the mean RTs and
on the right side are the max RT values. We see that RRP
has more systems with lower mean RT than SIRAP, while
SIRAP has more systems with lower max RTs. Also, RRP has
a higher rate of systems with lower max RT when compared



to OPEN-HSRPnP and OPEN-HSRPwP (as opposed to mean
RTs). OPEN-HSRPwP clearly increases RT due to its payback
mechanism, while OPEN-HSRPnP gains a lot on taking global
slack-time (and not paying it back) which we can see on the
mean and max RT values. RRP has low average RT values,
but the occasional rollbacks generates a few but very long
RTs for some tasks. The same reasoning can be applied when
comparing RRP with OPEN-HSRPnP and OPEN-HSRPwP.
The reason why SIRAP is better than RRP when it comes
to max RTs is because RRP keeps a global resource lock (in
the cases where SIRAP selfblocks instead) and this causes
blocking of other subsystems. This could potentially cause
a higher rate of max RTs. Note that SIRAP has better max
RTs than RRP in less than 32.8% of all the systems (since
SIRAP only managed to schedule 32.8%). RRP has 34.6%
more schedulable systems compared to SIRAP which means
that RRP had in total much better max and mean RTs.

Fig. 12. LEFT: Mean response time difference between RRP and OPEN-
HSRPwP wrt the taskset utilization. RIGHT: Mean response time difference
between RRP and SIRAP wrt CSET.

Left sub-figure in Figure 12 shows that OPEN-HSRPwP
has an almost equal amount of systems with better mean RT
when taskset utilization is high, when compared to RRP. The
reason for this is because the overrun time increases (more
task interference) which causes larger paybacks which in turn
affects the budgets a lot and thereby increases task RTs. It
is also interesting to note that SIRAP has a larger amount of
systems with lower mean RTs when CSET is low (3%), this
can be seen in Figure 12 (right sub-figure). This is natural
since RRP and SIRAP should have similar performance when
CSET is low and RRP should be better when it is high. When
CSET is high, more scenarios happen where CSET exceeds
budget, thus causing more selfblocks but a smaller amount of
rollbacks.

Fig. 13. LEFT: Mean response time difference between RRP and SIRAP
wrt the number of servers. RIGHT: Max response time difference between
RRP and SIRAP wrt the number of servers.

Figure 13 shows that an increasing number of servers cause
more conflicts in between server activations for RRP which

increases the amount of rollbacks. What can also be noted is
that RRP has higher max RT values than SIRAP. This relates
to RRPs global resource locking prior to a rollback, which
does not happen in the case of SIRAP during selfblocking.

D. Resource rollback overhead

We conducted 22500 simulation runs (for each protocol)
with a CSET length of 10, 20, 30, 40 and 50% of the
corresponding server budget (the rest of the parameters were
the same as presented in section VI-A). In this setting we also
simulated RRP with a penalty overhead of 1 time unit for each
rollback, denoted RRPwRO (RRP with resource overhead).
This overhead corresponds to the extra time it takes for a
resource to rollback to a consistent state. We have measured
this overhead and the result is at most 40 µs for a RTDBMS
in a heavy vehicle application context (Section V-B). Hence, a
scheduling tick of 1 should be sufficient to cover this overhead
if we assume 40 µs between ticks. This is immoderate since
100 µs is the minimum time between ticks that we could
achieve in our platform (VxWorks/P4) without saturating the
system with interrupts. Table IV shows that RRP (with/without
resource overhead) manages to schedule most systems success-
fully. The overhead penalty (RRPwRO) decreases the number
of schedulable systems marginally (only 0.2%). This result is
of course dependent on the number of rollbacks etc.

Protocol Schedulable systems (%)
RRP 71.2

RRPwRO 71.0
OPEN-HSRPwP 64.0
OPEN-HSRPnP 62.9

SIRAP 32.0

TABLE IV
SCHEDULABLE SYSTEMS BY EACH PROTOCOL OUT OF 22500 SYSTEMS.

Fig. 14. Pair-wise comparison of response times: percentage of commonly
schedulable systems with lower response-time.

Figure 14 shows the RT differences between the protocols.
The two upper sub-figures show similar results as in Figure 11.
The two lower sub-figures show the results with RRPwRO.
The overhead penalty (RRPwRO) does not increase the mean
or max RT (i.e., they are the same), compared to RRP
without overhead, in approximately half of all the systems.



For example, the lower left sub-figure shows that RRP has
lower mean RT in 49% of all of the systems that both RRP
and RRPwRO managed to schedule successfully. Hence, since
RRPwRO has 0% systems with lower mean RTs, the rest of
the systems (51%) had the same mean RT values. The lower
right sub-figure shows that RRP has lower max RT in 42.7%
of the systems. The reason for this lower percentage value
(compared to 49%) is because the resource overhead does
not always affect the maximum RT. For example, it might
increase the second highest measured RT, thereby not affecting
the maximum measured value.

VII. CONCLUSION

In this paper we have presented a new synchronization
protocol called Rollback Resource Policy (RRP). Our event-
based simulations compared RRP to SIRAP [8], OPEN-
HSRPnP [7] and OPEN-HSRPwP [7]. These results show
that RRP improves the average case response times of tasks
compared to SIRAP. Also, RRP managed to schedule more
systems than OPEN-HSRPnP and OPEN-HSRPwP and it
handles highly stressed systems best compared to the other
protocols. Our results indicate that neither task- nor resource-
rollback overhead have a significant effect on the performance
of RRP. It has deadline misses in 0.2% more systems when
emulating overhead for resource rollbacks. The good perfor-
mance is not the only positive aspect of RRP. It supports the
tight analysis of SIRAP and it uses less analysis information
at runtime making it easier and more safe to use than SIRAP.

Future work includes investigating the combination of RRP
with SIRAP and/or OPEN-HSRP. This is interesting since
RRP can improve the performance of SIRAP and OPEN-
HSRP by using it for resources that can be rolled back. We
will also look into the implementation of RRP in VxWorks.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to the lab man-
ager Daniel Flemström at the Ericsson Research Laboratory
for letting us use their equipment. It would not have been
possible to conduct a simulation study of this magnitude
without their hardware.

REFERENCES

[1] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” in OSDI’96.

[2] Z. Deng and J. W.-S. Liu, “Scheduling Real-time Applications in an
Open Environment,” in RTSS’97.

[3] J. Regehr and J. A. Stankovic, “HLS: A Framework for Composing Soft
Real-Time Schedulers,” in RTSS’01.

[4] T. Scharnhorst, H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi,
L. Lundh, P. Heitkämper, J. Leflour, J.-L. Mate, and K. Nishikawa,
“AUTOSAR - Challenges and Achievements,” in 12th International VDI
Congress Electronic Systems for Vehicles, 2005.

[5] ARINC/RTCA-SC-182/EUROCAE-WG-48, “Minimal operational per-
formance standard for avionics computer resources.” RTCA, Incorpo-
rated, 1828 L Street, NW, Suite 805, Washington D.C. 20036, 1999.

[6] D. Andrews, I. Bate, T. Nolte, C. M. O. Pérez, and S. M. Petters,
“Impact of Embedded Systems Evolution on RTOS Use and Design,”
in OSPERT’05.

[7] M. Behnam, T. Nolte, M. Sjödin, and I. Shin, “Overrun Methods
and Resource Holding Times for Hierarchical Scheduling of Semi-
Independent Real-Time Systems,” IEEE Transactions on Industrial
Informatics, vol. 6, pp. 93–104, 2010.

[8] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A Synchronization
Protocol for Hierarchical Resource Sharing in Real-Time Open Sys-
tems,” in EMSOFT’07.

[9] M. Heuvel, M. Behnam, R. J. Bril, J. J. Lukkien, and T. Nolte, “Opaque
Analysis for Resource Sharing in Compositional Real-Time Systems,”
in CRTS’11.

[10] S. F. Andler, J. Hansson, J. Eriksson, J. Mellin, M. Berndtsson, and
B. Eftring, “DeeDS Towards a Distributed And Active Real-Time
Database System,” SIGMOD Record, vol. 25, pp. 38–51, 1996.

[11] D. Nyström, “Data Management in Vehicle Control-Systems,” Ph.D.
dissertation, Mälardalen University, 2005. [Online]. Available: http:
//www.mrtc.mdh.se/index.php?choice=publications&id=1040

[12] J. Taina and K. Raatikainen, “RODAIN: A Real-Time Object-Oriented
Database System for Telecommunications,” in CIKM’96.

[13] R. I. Davis and A. Burns, “Resource Sharing in Hierarchical Fixed
Priority Pre-emptive Systems,” in RTSS’06.

[14] N. Fisher, M. Bertogna, and S. Baruah, “The Design of an EDF-
Scheduled Resource-Sharing Open Environment,” in RTSS’07.

[15] M. Behnam, T. Nolte, M. Åsberg, and I. Shin, “Synchronization Proto-
cols for Hierarchical Real-Time Scheduling Frameworks,” in CRTS’08.

[16] M. Heuvel, R. J. Bril, and J. J. Lukkien, “Protocol-Transparent Resource
Sharing in Hierarchically Scheduled Real-time Systems,” in ETFA’10.

[17] M. Åsberg, M. Behnam, T. Nolte, and R. J. Bril, “Implementation of
Overrun and Skipping in VxWorks,” in OSPERT’10.

[18] M. Heuvel, J. J. Lukkien, R. J. Bril, and M. Behnam, “Extending a
HSF-enabled Open-Source Real-Time Operating System with Resource
Sharing,” in OSPERT’10.

[19] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some Practical
Problems in Prioritized Preemptive Scheduling,” in RTSS’86.

[20] C. Liu and J. Layland, “Scheduling Algorithms for Multi-programming
in a Hard Real-Time Environment,” ACM, vol. 20, pp. 46–61, 1973.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans. Comput.,
vol. 39, pp. 1175–1185, 1990.

[22] T. P. Baker, “Stack-Based Scheduling of Real-time Processes,” Real-
Time Systems, vol. 3, pp. 67–99, 1991.

[23] R. I. Davis and A. Burns, “Hierarchical Fixed Priority Pre-emptive
Scheduling,” in RTSS’05.

[24] T.-W. Kuo and C.-H. Li, “A Fixed-Priority-Driven Open Environment
for Real-Time Applications,” in RTSS’99.

[25] I. Shin and I. Lee, “Periodic Resource Model for Compositional Real-
Time Guarantees,” in RTSS’03.

[26] X. Feng and A. Mok, “A Model of Hierarchical Real-Time Virtual
Resources,” in RTSS’02.

[27] G. Lipari and S. K. Baruah, “Efficient Scheduling of Real-Time Multi-
Task Applications in Dynamic Systems,” in RTAS’00.

[28] G. Lipari and E. Bini, “Resource Partitioning Among Real-Time Appli-
cations,” in ECRTS’03.

[29] T. M. Ghazalie and T. P. Baker, “Aperiodic Servers in a Deadline
Scheduling Environment,” Real-Time Systems, vol. 9, pp. 31–67, 1995.

[30] L. Abeni and G. Buttazzo, “Resource Reservation in Dynamic Real-
Time Systems,” Real-Time Systems, vol. 27, pp. 123–167, 2004.

[31] M. Heuvel, R. J. Bril, and J. J. Lukkien, “Dependable Resource Sharing
for Compositional Real-Time Systems,” in RTCSA’11, 2011.

[32] K. M. Chandy and C. V. Ramamoorthy, “Rollback and Recovery
Strategies for Computer Programs,” IEEE Transactions on Computers,
vol. C-21, pp. 546 –556, 1972.

[33] S. Punnekkat, A. Burns, and R. Davis, “Analysis of Checkpointing for
Real-Time Systems,” Real-Time Systems, vol. 20, pp. 83–102, 2001.

[34] T. Johnson, “Interruptible Critical Sections for Real-Time Systems,”
Department of Computer and Information Science, University of Florida,
Technical Report, 1993.

[35] P. Holman and J. H. Anderson, “Locking in Pfair-Scheduled Multipro-
cessor Systems,” in RTSS’02.

[36] M. Åsberg, P. Pettersson, and T. Nolte, “Modelling, Verification and
Synthesis of Two-Tier Hierarchical Fixed-Priority Preemptive Schedul-
ing,” in ECRTS’11.

[37] T. Nolte, I. Shin, M. Behnam, and M. Sjödin, “A Synchronization
Protocol for Temporal Isolation of Software Components in Vehicular
Systems,” IEEE Transactions on Industrial Informatics, vol. 5, pp. 375–
387, 2009.


