
Prototyping and Code Synthesis of Hierarchically
Scheduled Systems using TIMES

Mikael Åsberg*, Thomas Nolte and Paul Pettersson
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden
{mikael.asberg, thomas.nolte, paul.pettersson}@mdh.se

Abstract—In hierarchical scheduling a system is organized as
a tree of nodes, where each node schedules its child nodes.
A node contains tasks and/or subsystems, where a subsystem
is typically developed by a development team. Given a system
where each part is subcontracted to different developers, they can
benefit from hierarchical scheduling by parallel development and
simplified integration of subsystems. Each team should have the
possibility to test their system before integration. Hence, we show
how a node, in a hierarchical scheduling tree, can be analyzed
in the Times tool by replacing all interference from nodes with
a small set of higher priority tasks. We show an algorithm that
can generate these tasks, including their parameters. Further,
we use the Times code-generator, in combination with operating
system extensions, to generate source code that emulates the
scheduling environment for a subsystem, in an arbitrary level
in the tree. Our experiments include two example systems. In
the first case we generate source code for an industrial oriented
platform (VxWorks) and conduct a performance evaluation. In
the second example we generate source code that emulates the
scheduling environment for a video application, running in Linux,
and we perform a frame-rate evaluation.

I. INTRODUCTION

The increase in global competitiveness and requirement
of shorter time-to-market has increased the need for rapid
development of embedded software systems. A crucial char-
acteristic, in being fast and reliable in the development of
embedded software systems, is to do analysis and prototyping
early in the development process, in order to decrease the load,
complexity and cost in the integration phase.

Sy
ste

m

CPU

Global scheduler

Subsystem Task Subsystem

Local
scheduler

Local
scheduler

Interface Interface Interface

.

… … … …

Fig. 1. Hierarchical scheduling

Recently, the technique of hierarchical scheduling (HS) has
been introduced in order to simplify parallel development of
embedded systems. HS facilitates integration of such systems,
by providing mechanisms for temporal isolation of system
parts, called subsystems. Essentially, a system consists of a
number of subsystems that typically represents a particular
function/feature of the whole system. For example, a car could
have one subsystem implementing a engine control system,
and another being the anti-lock braking system. These two
subsystems should ideally be developed in parallel, and at the
integration phase, no integration related problems should occur
[1]. One such integration related problem is software that turn
out to require more time to execute than originally intended,
and therefore causing unforseen interference with the rest of
the system. Another integration problem is the introduction
of new subsystems, not apparent at early design. Integration
of unforseen subsystems should not cause too much inter-
ference, i.e., the entire system should not be required to
be verified/validated again. HS insures that no unpredictable
interference will occur, related to timing, hence by allowing
for timing analysis of subsystems in isolation before the
integration. Figure 1 illustrates HS. The top node is defined
as the Global scheduler. It is responsible for multiplexing the
entire CPU resource to the second layer of the scheduling tree.
A node can be either a Subsystem, or a Task (except for the
top node which is a scheduler). In this way, a node schedules
its child nodes with its Local scheduler. All nodes have an
Interface (set of scheduling parameters) which specifies the
amount of CPU that the node may access. The schedulers
uses these interfaces to schedule its nodes.

It is desirable to be able to conduct analysis of a subsys-
tem’s functional and non-functional properties in isolation, i.e.,
without requiring details of the rest of the system. It is hard
to get access to all details of other subsystems, especially at
an early stage in the construction of a system. Our proposed
technique makes it possible to perform schedulability analysis
of tasks, with respect to its subsystem interface. Also, the
subsystem can be realized by generating source code (for our
target platforms VxWorks and Linux) that will emulate the
subsystem (under development) executing together with other
subsystems/tasks. The subsystem’s schedule will look like it is
executing together with the other subsystems in the tree (early
prototyping). What is required are the interfaces of the other
subsystems/tasks, i.e., no subsystem internal data such as task

source code, execution time, period etc. are needed. Also, there
is no need to implement any scheduler. The internal scheduler
of the Times tool is responsible for the schedulability analysis,
and the generated source code will emulate the scheduler(s)
in the system.

Recently, automata based techniques have been proposed
as a generic way to describe and analyze a broad variety of
real-time scheduling algorithms. One of the strengths of these
techniques is the possibility to encode general release patterns
of tasks. In the task automata model [2], release patterns are
modeled using timed automata [3]. The schedulability analysis
problem has shown to be decidable for both fixed and dynamic
priority scheduling algorithms. Further, this approach has the
possibility to perform simulation and formal verification of
timing and functional safety properties, as well as code-
synthesis [4]. For the model of task automata, the Times tool
provides this support [5].

In this paper our overall goal is to provide a technique for
analysis and synthesis of hierarchically scheduled real-time
systems, at an early stage in the development process. Our
main contributions are1:

1) We have enabled timing analysis of hierarchically sched-
uled, fixed-priority preemptive systems, in the Times
tool.

2) We have transformed and made extensions to the gener-
ated source code (from Times) for VxWorks and Linux,
allowing for early prototyping/testing of hierarchically
scheduled, fixed-priority, preemptive systems.

3) Related to the above contribution (2), we have conducted
experiments on the generated code (for both VxWorks
and Linux). We have included response time measure-
ments, overhead measurements of both the generated
scheduler, and a manually coded scheduler, and we have
compared these. Also, we have been running a video
processing application (VLC) in Linux, and conducted
frame-rate performance comparisons using a 2-level
hierarchical scheduler, as well as task tracing.

The outline of the paper is as follows: in Section II we
outline preliminaries on hierarchical scheduling, task automata
and Times. In Section III we outline the problem statement
including its limitations, and in Section IV we show our
solution. Section V shows two case-studies, including an ex-
ample system, code generation and a performance evaluation.
Section VI presents related work, and finally, Section VII
concludes.

II. PRELIMINARIES

A. Hierarchical scheduling

Hierarchical scheduling has been introduced to facilitate
resource sharing among applications under different schedul-
ing policies. Hierarchical scheduling can be represented as a
tree of nodes (Figure 1), where each node corresponds to an
application, equipped with a scheduler that schedules internal
workloads. Looking at the tree-structure representation of HS,

1This work is an extension of our previous work [6]

CPU resources are reserved from a parent node to its children
nodes (Shin and Lee [7]). One of the advantages of HS is that
it provides a way to decompose a complex system into well-
defined parts (subsystems). HS provides the mechanism for
predictable composition (in the time domain) of coarse-grained
subsystems. This makes it possible for subsystems to be devel-
oped independently and later integrated, without introducing
timing errors. Also, HS makes it easy to reuse subsystems,
since their computational demands are characterized by well
defined interfaces.

Subsystems and tasks are scheduled according to the
scheduling scheme of the above scheduler and the parameters
in the interface of the subsystem. In this paper, we assume that
the schedulers follow the fixed-priority preemptive scheduling
policy. Subsystems can be viewed as ”virtual tasks”, where
the interface parameters corresponds to those in the periodic
task model [8]. At runtime, subsystems reserve a defined time
(budget) at every period and the execution order is based
on their priority. This is similar to a traditional periodic
task, scheduled preemptively with a fixed-priority scheduler.
When a subsystem is selected for execution by the overlaying
scheduler, the subsystem’s tasks are executed and scheduled
according to the scheduling policy of the subsystem local
scheduler. In the general case, the schedulers in HS may all
have different scheduling schemes.

B. Task automata and Times

Timed automata [3] is a modeling language that is widely
used for formal modeling and analysis of real-time systems.
Essentially, a timed automaton is a finite state automaton to
which clocks, that can be tested and reset, are added. Timed
automata has shown to be suitable for a wide range of real-
time systems.

More recently, the model of timed automata has been
extended with a notion of real-time tasks. Task automata (of
timed automata with tasks), associates asynchronous tasks with
the states of a timed automaton. It assumes that tasks are
executed with static or dynamic priorities by a preemptive
or non-preemptive scheduling algorithm. Task automata is
supported by the Times tool [5]2, it facilitates schedulability
analysis, formal verification by model-checking and code
synthesis.

An input system to the Times tool can consist of a task table
in which the following parameters are defined for each task:
name, computation time, (relative) deadline, priority (in case
of static priority scheduling), offset and period (if applicable),
interface, semaphore usage, and its C-code. Alternatively, a
task can be of type controlled which means that its release
pattern is defined by a user defined timed automata.

III. PROBLEM STATEMENT

The aim of this paper is to consider a subsystem (poten-
tially with tasks and a fixed-priority scheduler), residing in
a scheduling tree, and to perform schedulability analysis of

2For more information about Times, see
http://www.times-tool.com/.

it. The analysis is done by the Times tool, although it does
not support schedulability analysis of hierarchically scheduled
systems. The solution to this is to map the rest of the tasks
and subsystems in the tree to a small amount of interference
tasks. Also, for the sake of prototyping, we generate executable
code (that emulates the scheduling of a scheduling tree) of
hierarchically scheduled systems. In this section, we first
outline the system model used, followed by some limitations
and a description of our approach.

A. System model

A system S consists of a root S0 and n subsystems
S1, ..., Sn. We assume independent tasks, i.e., there is no
synchronization between tasks in the scheduling tree. Each
subsystem Si is defined as a tuple 〈Pi, Qi, Ti, pi, pri〉, where
Pi is the subsystem period, Qi is the amount of CPU (or
computation time) provided to the subsystem in each Pi, Ti is
the set of subsystems (S) and tasks (τ) residing in subsystem
Si, pi ∈ [0..n] is the index of the parent of Si, and pri is the
fixed priority of Si (higher value means higher priority). Each
task τj is defined as a tuple 〈Tj , Cj , Dj , prj〉, where Tj is the
task period, Cj is the task worst case execution time, Dj is
the relative deadline and prj is the task priority (higher value
means higher priority). The root S0 is defined by the tuple
〈T0〉, i.e., just a set of subsystems and tasks.

An example system with root S0, subsystems S1 and S2

(of S0), and subsubsystems S3 and S4 (subsystems of S2), is
illustrated in Figure 2.

a) Limitations:: We assume that the whole system and
all subsystems are scheduled by fully preemptive fixed-priority
schedulers. Generalizing the considered scheduling policy is
deferred to future work. Given the system model defined
above, we also impose the following two limitations on the
relationship between task and subsystem periods:
• {∀ Si,i∈[1,n] : Pi ≥ Ppi}, i.e., all subsystem periods are

greater or equal to their respective parent’s subsystem
period and

• {∀ Si,i∈[1,n], ∀ τk ∈ Ti : Tk ≥ Ppi}, i.e., all task periods
are greater or equal to its corresponding subsystem’s
period.

The main reasons for these assumptions are twofold: (1)
the inequalities are recommended in order to have a resource
efficient system, (2) analysis of the system is simplified given
the fulfillment of the above 2 inequalities.

B. Approach

The objective is to perform schedulability analysis of the
contents (tasks/subsystems resident in Ti) of a subsystem Si,
with respect to its interface and the interference from the rest
of the tree. This analysis is intended to assist engineers in the
development of a subsystem. In doing the analysis, we create
a set of interference tasks Ii, representing (and consuming
the computation time of) the rest of the system, i.e., the
whole system excluding the subsystem under analysis. Hence,
the interference from Ii represents the interference from the
whole tree (excluding the subsystem under analysis). Each

interference task is described by period a T , an offset O, and
a computation time C. Given the interference tasks and the
contents of the subsystem under analysis (i.e. the subsystem
tasks), the Times tool is used to calculate timing properties
(worst case response time) of the task set in Si. Moreover,
the Times tool is used for code synthesis, allowing for early
prototyping of hierarchically scheduled subsystems.

In order to perform analysis of a complete system, i.e., for
each subsystems in a system, the approach outlined above can
be repeated for each subsystem in the system. If the analysis
shows that the scheduling of each subsystem is successful,
then we can conclude that the whole system is schedulable.
Traversing the system tree and analysing each subproblem can
be performed automatically, either encoded as an automata
in Times, or using an external script program. In this paper
however, we leave the details of how to analyze a whole
system, and focus on the analysis of one subsystem.

IV. ANALYSIS OF HIERARCHICAL SYSTEMS

In order to analyze the tasks and subsystems, residing inside
a subsystem (i.e., the subsystem under analysis), we create a
set of interference tasks Ii. Tasks and subsystems residing
in the subsystem under analysis are then, together with the
interference tasks Ii, used as input to a tool for timing analysis.
In this paper, we use the Times tool because it supports
analysis of several properties, as well as code synthesis (see
Section V).

In the following, we outline how to obtain the set Ii, a
procedure with the following three main steps:

b) Step 1:: First we create a partial schedule si, i.e.,
execution sequence (an example can be found in Figure 3).
This schedule includes all subsystems and tasks interfering
with the subsystem under analysis, including the subsystem
itself (Si). The set of subsystems and tasks influencing the
execution of a given subsystem is computed by the function
HEP .

We define the recursive function HEP (Si) for a given
system S in the following way. HEP (Si) is the set of
subsystems (including Si itself), on the same level of the
scheduling tree as Si (with the same parent as Si), that have
higher priority than subsystem Si. The recursiveness is defined
in that HEP must also be calculated for the parent of Si

(Eq. 1). However, the HEP set of the root node is empty
(Eq. 2).

HEP (Si) = HEP (Spi) ∪ {∀ Sk ∈ Tpi : prk ≥ pri} ∪ Si (1)

HEP (S0) = {} (2)

For the set of tasks HEP (Si), we compute the schedule si

for the time interval [0, li], where

li = LCM({∀ k ∈ HEP (Si) : Pk})

,i.e., upto the least common multiple of the periods in the
set HEP (Si).

S1 S2S0
S3 S4

)(3SHEP

Fig. 2. Example hierarchical system.

c) Example:: To show how the procedure works, we use
a simple example of a hierarchical scheduled system consisting
of 4 subsystems with the following parameters:

S1 = 〈4, 1, T1, 0, 3〉
S2 = 〈3, 2, T2, 0, 4〉
S3 = 〈5, 1, T3, 2, 2〉
S4 = 〈6, 2, T4, 2, 1〉

The example system is outlined in Figure 2. Suppose that
subsystem S3 is the subsystem that we are analyzing. Looking
at S3, HEP(S3) = {S2, S3} (highlighted in Figure 2) and l3 =
LCM(HEP(S3)) = 15.

Scheduling the example system, for the interval 0 to l3 =
15, gives the schedule s3, depicted in Figure 3.

0 5 10 15S2 S2 S2 S2 S2S3 S3 S3
Fig. 3. Schedule s3 given S3 and l3 = 15.

d) Step 2:: In this step, we take schedule si as input
and create an ordered set of time points φi. The first element
is 0, the last is li = LCM({∀ k ∈ HEP (Si) : Pk}), and
the intermediate are the time-points when subsystem Si is
scheduled for execution, and is started, preempted or finished,
in the time interval [0, li].

e) Example (continued):: Given the example system
above, φ3 is as follows:

φ3 = {0, 0, 1, 6, 7, 10, 11, 15}
representing a schedule starting at time 0, where the subsystem
under analysis is scheduled initially at time 0, finished at time
1, scheduled again at time 6, finished at time 7, scheduled
again at time 10, finished at time 11, and LCM is 15.

f) Step 3:: In this step, given φi as input, we create a
set of interference tasks Ii. Let |φi| denote the number of
elements in φi. We have to create m = |φi|

2 interference tasks,
∂0, ..., ∂m−1. The task parameters are ∂j = 〈Tj , Oj , Cj , prj〉,
where Tj is the period of the task (set to Tj = LCM({∀ k ∈
HEP (Si) : Pk}) for all interference tasks), Oj is the offset of
the interference tasks given by Oj = φi[j ∗2], given that φi[x]
returns the value stored in φi at position x (given that positions
are indexed starting with 0 and finishing with |φi| − 1), Cj =

φi[1 + j ∗ 2] − φi[j ∗ 2], and for prj the following holds:
prj > prk, where index k is defined by the set ∀ (τk∧Sk) ∈ Ti.

g) Example (continued):: Looking at the example system
again, m = |φ3|

2 = 4, hence I3 hosting the set of 4 interference
tasks is I3 = {∂0, ∂1, ∂2, ∂3} with

∂0 = 〈15, 0 , 0, pr0〉
∂1 = 〈15, 1 , 5, pr1〉
∂2 = 〈15, 7 , 3, pr2〉
∂3 = 〈15, 11, 4, pr3〉

Once the above three steps are finished, all interference tasks
stored in Ii, together with the tasks and subsystems (Ti) in the
subsystem under analysis, are taken as input to Times, giving
detailed analysis of all tasks in Ti.

V. MODELING EXAMPLE

In order to illustrate our solution, we have modeled an
example system consisting of 4 subsystems, arranged in a
hierarchical tree, depicted in Figure 4. The engineering chal-
lenge, highlighted in this example, is how a development
team (given a scheduling tree and a dedicated subsystem
within it) can develop an application, consisting of real-
time tasks, and be able to perform schedulability analysis of
these tasks, in order to verify whether or not they meet their
respective deadlines. Such a verification should be possible
when specifying and allocating task parameters, preferably
early during the development and testing phase, allowing for
early prototyping. The latter requires a way to execute the
tasks, on a given platform, within their corresponding time
slots, determined by the actual scheduling of the whole system
(of subsystems). This will be shown in section V-B2 and V-C2.

Recall, in this paper it is assumed that tasks within one
subsystem do not need to synchronize/communicate with tasks
residing in other subsystems. Given this assumption, we do
not need to consider detailed scheduling of tasks in other
subsystems, since their exact scheduling does not affect the
scheduling of the subsystem under analysis.

To summarize the above, in this example, we want to:
1) conduct schedulability analysis of a subsystems content

(subsystem A and C’s content in this example), with
respect to the interface(s) of subsystem A, respectively
C, and the rest of the subsystems, and

2) generate executable code, a scheduler to be precise, that
execute subsystem A and C’s content, within its precise
time slots, as if the whole system of subsystems was
executing (even though we only have source code and
task parameters of subsystem A and C).

An assumption is that the subsystems in the tree are
schedulable (for which they are in this example) and that the
scheduling tree is pre-determined by the system description
or similar. As a development team, you are given the timing
parameters of your subsystem (i.e., subsystem A or C in this
case), which is the period and capacity of these subsystems.
The responsibility of the development team is to develop an
application consisting of a set of tasks that are schedulable
given the timing parameters of their subsystem. The issue

for the development team to solve, is to assure that their
application is schedulable considering that their application
will (in the future and final system) be scheduled together with
other subsystems in the hierarchical scheduling tree. Hence,
the development team cannot assume that their subsystem,
C for example, will get 1 time slot exactly every 10 time
units because subsystems, at the same or higher level in the
scheduling tree, might interfere (as they may have higher
priority than subsystem C). The timing analysis of a subsystem
(and its tasks) must consider all subsystem (of the same or
higher level and with higher priority) parameters, including
its own.

The first step is to analyze whether the chosen task parame-
ters are sufficient in order for the tasks to meet their deadlines.
What should be done is to add these tasks to the scheduling
tree, like the one in Figure 4, under their subsystem, and check
if they are schedulable with relation to the interfaces of the
subsystems in the tree. This can be done with a schedulability
test such as Response Time Analysis (RTA) [9] for hierarchical
systems [10]. However, we want to show how this can be done
in Times, by generating interference tasks (called dummy tasks
in this section). These tasks emulate correct execution of the
subsystem under analysis by blocking out time representing
higher priority subsystem execution time, as well as time
when the system should be idle. By laying out the schedule
of all subsystems, one can identify the time-slots when the
subsystem under analysis should be executed, and thereby
also the inverse of this time. This inverse time represents
the time that should be ”blocked out” in order to simulate
interference from higher priority subsystems, as well as idle
time. We achieve this ”blocking out” (interference) by creating
dummy tasks with higher priority than that of the tasks in the
subsystem under analysis (as described in Section IV). Once
the dummy tasks are generated (which can be done following
the steps in Section IV), they can be inserted into the Times
tool. The dummy tasks’ release pattern can either be described
(in Times) in a task-parameter table (e.g. by setting offset,
priority, period etc.) or by constructing an automata. The latter
has an advantage when generating code (this will be covered
in more detail in Section V-B2). However, for schedulability
analysis of tasks in Times, the easier approach is to specify
the dummy tasks in the task-parameter table. After entering
the dummy task parameters together with the subsystem tasks
in Times, it can simulate the system and do response-time
analysis as shown in Figure 6 and 14. Times will output
whether or not the system is schedulable, and if schedulable,
it will also give the Worst Case Response Time (WCRT) of
all tasks.

In conclusion, the schedulability analysis performed in
Times, is a simulation which will produce the WCRT of
each task. So we have actually simplified the problem into a
response time analysis of a set of periodic tasks (belonging to
the subsystem under analysis), together with a set of periodic
tasks with offsets (the dummy tasks). The WCRT value will
include the interference from subsystems (that can reside at
different levels of the scheduling tree), which is actually

modeled as interference from higher priority tasks, as well
as the execution time of the task itself. Hence, for the sake
of timing analysis, timing analysis tools other than Times
can be used. However, we are not only interested in timing
analysis, but also in generating code for early prototyping of
the subsystem under analysis.

A. Code synthesis
The Times tool is equipped with an automatic code gen-

erator which can generate C-code of the modeled system to
the platform brickOS3, as well as a simulator for Linux. We
have used this code generator to generate code of our example
system. We show two examples, where we synthesize code
for a scheduler for VxWorks (section V-B2) and Linux (sec-
tion V-C2). The generated code is then transformed (extended)
to fit the new software platform, i.e., VxWorks or Linux. This
transformation was done manually but could also be done
automatically.

The reason for choosing VxWorks is that we are well
familiar with task scheduling, execution tracing etc. in this
platform, it provides an industry standard task scheduler, and
it is a preferred platform of several of our industrial partners.
Having knowledge of scheduling is specially important since
we need to map brickOS scheduling to VxWorks (since the
code generator generates brickOS code).

For Linux, we generate the Linux simulator code from
Times, then we remove the simulator code manually (could be
done automatically). What is left is the actual automata code
(i.e., the scheduler). The automata code in turn is extended to
fit in the Linux kernel, such that it can schedule tasks. This is
a manual step (which can be automated).

B. Subsystem C
In this example, the global scheduler and all local sched-

ulers (i.e. the internal scheduler of each subsystem) schedule
their tasks/subsystems according to fixed-priority preemptive
scheduling. The priority assignment is done according to
Rate Monotonic [8], i.e, the shorter the period, the higher
the priority. Subsystem C resides in the tree represented in
Figure 4.

Global
Scheduler

A B

C D

(1,5) (2,3)

(1,10) (3,6)

Fig. 4. Subsystem C

In doing schedulability and response-time calculations, we
need a detailed description of the task set resident in subsystem
C; these details are represented in Table I.

3http://brickos.sourceforge.net/

Name T C D pr
task1 (τ1) 40 1 40 5
task2 (τ2) 50 1 50 4
task3 (τ3) 80 1 80 3
task4 (τ4) 90 1 90 2
task5 (τ5) 250 7 250 1

TABLE I
TASK SET OF SUBSYSTEM C

1) Schedulability analysis: The corresponding schedule for
sC , executing in the example system, is illustrated in Figure 5.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A

B

D

C

C’s tasks

Dummy tasks

5 11 23

4 5 11 7

30

0

task1 task2 task3

dummy1 dummy2 dummy3 dummy4

Fig. 5. Schedule for subsystem C

From this schedule we can conclude which dummy tasks
that we need (∂1-∂4), as shown in Table II.

Name T O C pr
dummy1 (∂1) 30 0 4 6
dummy2 (∂2) 30 5 5 6
dummy3 (∂3) 30 11 11 6
dummy4 (∂4) 30 23 7 6

TABLE II
GENERATED DUMMY TASKS FOR SUBSYSTEM C

The last step is to input all tasks in the Times tool and let
it perform a simulation. Figure 6 shows that subsystem C’s
tasks are schedulable with the 4 dummy tasks, i.e., the other
three subsystems in the system.

Fig. 6. Times schedulability analysis (for subsystem C)

2) Code synthesis to VxWorks (kernel version 6.6): In the
analysis part (Section V-B1), we analyzed the system based
on dummy tasks (with offsets). We created periodic tasks and
assigned the offsets through the task parameter table (all other
tasks were also created in this manner). Creating tasks with
offsets can also be done by creating an automata. This has
the advantage that we can specify that only one dummy task
is released at all offset instances and thereby replacing all
dummy tasks with only one. This is good when generating
code, since most RTOSs have an upper limit on the amount
of tasks. At code level, the execution time of this dummy
task must be set to be dynamic, since it is replacing tasks
which most probably have different execution times. The two
automata in Figure 7 models the releasing of dummy tasks (a
similar automata, but with other release times, is used for the
example in section V-C2).

Start

ReleaseDummy1
dummy1

offsetTime<=5

ReleaseDummy4
dummy1

offsetTime<=24

ReleaseDummy2
dummy1

offsetTime<=11

ReleaseDummy3
dummy1

offsetTime<=23

MainLoop
time<=30

RunOffsetTasks?
offsetTime:=0

offsetTime==5
offsetTime==11

offsetTime==23

offsetTime==24

U
Init

RunOffsetTasks!

time==30
RunOffsetTasks!
time:=0

a) b)
Fig. 7. Task automata

The automata in Figure 7b), releases the second automata
(Figure 7a)) every 30 time units by calling a synchronization
function RunOffsetTasks! which starts a transition in the
edge where RunOffsetTasks? is located. The second automata
releases the dummy tasks according to the calculated offsets
(with relation to the period). time and offsetTime are two
clocks that progresses in discrete time. An invariant such
as offsetTime<=5 (located inside a state) means that the
automata may only be in that state until this condition does not
hold. A condition at an edge such as offsetTime==5 means
that the transition can be made only when this condition holds.
A statement such as time:=0 means that the variable (in this
case a clock) is assigned a value. Whenever there is a transition
to a state with a task name, such as dummy1, this task is
released for execution.

1: task() {
2. while(TRUE) {
3. wait event(task release, release flag)
4. // Task code here
5. }
6. }
7: controller() {
8: wait event(check trans, 0)
9: }

Fig. 8. Function task() and controller()

1. Register check_trans

4.
Run check_trans
Run task_release

2. Register task_release

3.
Run check_trans
Run task_release

5. Register task_release

Fig. 9. brickOS scheduling

3.
Run check_trans
Run task_release

2.
Run check_trans
Run task_release

1.
Run check_trans
Run task_release

Fig. 10. VxWorks scheduling

The mapping from the C-code (generated by Times) to
VxWorks consists mostly of changing the way the task is
suspended and released. In the brickOS generated code, an
initializer task called controller (Figure 8, lines 7-9) calls
wait event in order to register a function check trans that
will be executed at every system tick by an interrupt routine.
This will stop when the function returns a non-zero value
(which is not the case for check trans). This function tra-
verses the automata (both user defined automata and Times
default generated automata) and sets a flag whenever there
should be a task release. Each task (Figure 8, lines 1-6) regis-
ters a function task release at the beginning of its execution,
before it suspends. This function checks whether the flag is
set, if so, it will return a non-zero value that in turn will release
the corresponding task. Figure 9 illustrates how the scheduling
is done in the generated code for brickOS. The mapping of
this scheduling to VxWorks is illustrated in Figure 10. We
create an interrupt routine that is executed at every system
tick. This routine executes both the check trans function and
each tasks task release function. Whenever check trans sets
the task flag, i.e. that is when task release returns a non-zero
value, the corresponding task is inserted into the VxWorks
ready queue.

We have successfully generated C-code for the example
system in Figure 4, that is comprised of the tasks in Table I
and Table II. We transformed the generated code and ran
the system in VxWorks 6.6 on a Intel Pentium4 platform.
Further, we recorded and visualized the execution trace with
the Tracealyzer tool4.

Figure 11 shows the graphical representation of the running
tasks (note that tasks ’dummy1’ etc. from Figure 6 are named
’idle1’ etc. in Figure 11) at critical instant and the recorded
data is shown in Table III. Figure 6 shows the WCRT of
the simulation, corresponding to Max. Response time in
Table III, note that the time-base is 1000 times bigger in
Table III. The maximum response times in Table III are

4http://www.tracealyzer.se/.

Fig. 11. Tracealyzer screenshot

Task Execution time (µs) Response time (µs)
Avg. Max. Avg. Max.

task1 996 999 11999 14003
task2 996 999 16998 24000
task3 995 997 27994 33996
task4 995 997 32042 63982
task5 6267 6973 228643 291888
idle1 3995 4004 3995 4004
idle2 5000 5001 5000 5001
idle3 11000 11001 11000 11001
idle4 6999 7007 10994 11004

TABLE III
TRACEALYZER RESULT

significantly higher than the simulation values because of
overhead (scheduling, context switches etc.). This prolonged
response time is illustrated in Figure 11. task2 does not finish
its entire execution before idle3 starts, leading to that task2
has to wait for it to finish (which will take 11 time units),
and then execute the final part (it is a very small amount so
it does not show in this resolution). This kind of execution
scenario is valuable for a development team and can only be
discovered in time, in the development process, through early
prototyping/testing.
Table IV shows the scheduling overhead (from running the
tasks in Table I and II) from the generated scheduler (Times)
and a manually coded scheduler; the Hierarchical Scheduling
Framework (HSF) [11]. We measured the schedulers execution
times with micro-second resolution, 10 times each (Table IV
shows the average values), between time zero (when the
system started) and LCM of all tasks (18000000 µs). The
HSF scheduler only executes at task release and task deadline
(in the latter case it checks if the task has finished), while
the Times scheduler executes at every system tick (i.e. every

milli-second), and releases tasks if necessary. VxWorks itself
handles task switching due to that a task has finished. The
conclusion is that even though Times runs more frequently
(and the fact that it is automatically generated code) than HSF,
HSF still produces more overhead (the majority of it comes
from queue-management [11]).

Scheduler Avg. overhead/Duration (µs) Avg. overhead (%)
Times 1952/18000000 0.01084
HSF 3283/18000000 0.01824

TABLE IV
SCHEDULING OVERHEAD

C. Subsystem A
This example also assumes fixed-priority preemptive

scheduling of periodic tasks/subsystems, as well as rate mono-
tonic priority assignment.

Global
Scheduler

A B

(1,5) (2,3)

Fig. 12. Subsystem A

The content of subsystem A is one task (Table V), which
correspond to the parameters of its subsystem. Subsystem A’s
position in the scheduling tree is shown in Figure 12.

Name T C D pr
taskA 5 1 5 1

TABLE V
TASK SET OF SUBSYSTEM A

0 2 4 6 8 10 12 14

A

B

Dummy tasks

3 6 12

2 2 5 3

15

0dummy1 dummy2 dummy3 dummy4

Fig. 13. Schedule for subsystem A

1) Schedulability analysis: By laying out the schedule for
subsystem A (Figure 13), we have generated the necessary
dummy tasks (Table VI).

By inserting all tasks (Table V and VI) into Times and
running its simulation, we can get the schedulability analysis
for subsystem A’s task. This is shown in Figure 14, the tool
will output the worst case response times of all tasks if the
system is schedulable.

Name T O C pr
dummy1 (∂1) 15 0 2 2
dummy2 (∂2) 15 3 2 2
dummy3 (∂3) 15 6 5 2
dummy4 (∂4) 15 12 3 2

TABLE VI
GENERATED DUMMY TASKS FOR SUBSYSTEM A

Fig. 14. Times schedulability analysis (for subsystem A)

2) Code synthesis to Linux (kernel version 2.6.31-9): The
subsystem (A) execution trace is illustrated in Figure 13, as
illustrated, the four dummy tasks replace subsystem B. We let
a video processing application (VLC5) replace task taskA in
subsystem A in our experiments. The release of subsystem A
and dummy tasks 1-4 is done with two automata similar to
the ones in Figure 7. We generate code, using the Times code
generator for generating a Linux simulator. The simulator will
run the automata, which is also generated by Times. We then
replace the simulator with Linux kernel scheduling functions,
which are exported by the scheduling framework Resch [12].
Resch is unique in that it does not require the user to make any
changes in the Linux kernel, when implementing a scheduler
in Resch. It runs as a kernel module, and the user implemented
scheduler will act as a plugin kernel module to Resch (hence
no kernel patches are required). The automata code generated
from Times, is wrapped with Resch scheduling primitives, and
it is executed as a kernel module in Linux. In the experiments,
all tasks, i.e., the VLC application and the dummy tasks, are
running as Linux real-time tasks.

We also ran the VLC application in a 2-level hierarchical
scheduling framework, which is able to run a global scheduler,
scheduling an arbitrary number of subsystems in one level.
The subsystems themselves may have their own local sched-
uler. All schedulers (local and global) schedule with fixed-
priority preemptive scheduling of periodic tasks/subsystems.
The framework is implemented by the authors of the paper,
and it runs as a plugin scheduler in Resch, i.e., as a kernel
module. We executed subsystem A and B (Figure 12) with
corresponding parameters, including rate monotonic priorities,
in the hierarchical scheduling framework. Subsystem B corre-
sponds to B in Figure 15 and subsystem A maps to A (Idle
is the idle subsystem). The VLC application (referred to as
vlc A in Figure 15) was running in subsystem A, the dummy

5VLC http://www.videolan.org/vlc

task task B was running in B and dummy task idle was
running in subsystem Idle (which has lowest priority among
the subsystems). Task linux is the Linux idle task which will
run whenever task B, vlc A or idle does not run.

0 50 100 150 200 250

linux

vlc_A

idle

task_B

0

10

19

B

0

5

10

A

0

25

50

Idle

Fig. 15. Execution recording from the HSF scheduler

0 50 100 150 200 250

linux

vlc

dummy1

dummy2

dummy3

dummy4

Fig. 16. Execution recording from the Times scheduler

Figure 16 shows the execution trace when running the Times
automata in Resch, as a plugin scheduler. The dummy tasks
(dummy1, dummy2, dummy3 and dummy4) in Figure 16
corresponds to our generated dummy tasks in Figure 13 (these
tasks have highest priority). The VLC application was running
as task vlc (intermediate priority) and the Linux idle task
linux was running with lowest task priority.

We ran all the experiments on an Intel Pentium Dual-
Core (E5300 2,6GHz) platform, equipped with a Linux kernel
version 2.6.31.9, running with load balancing disabled (no
automatic task migration) for simplicity. The task execution
recording was done with the tool Ftrace [13], and the record-
ing of subsystem scheduling events were done by our own
recorder [14] (which is integrated in HSF). The recordings
were visualized (Figure 15 and 16) with the tool Grasp [15].

We measured the execution time of the VLC application,
while it processed a 91 frame long video, with correspond-
ing audio. The measurements were done 10 times for each
scheduler, and the data presented (Table VII) represents the
average values. The resulting data is presented as the number
of frames displayed per second (Table VII). The measurements

Scheduler fps (average)
Times scheduler 25.3174938
HSF scheduler 25.3582266

Linux scheduler 30

TABLE VII
FRAMES PER SECOND (FPS) MEASUREMENTS OF VLC

were done while scheduling the VLC application with the
HSF scheduler, and the Times scheduler. When running VLC
with only the native Linux scheduler, the video processing
reached approximately 30 fps. The presented fps values shows
that both schedulers (HSF and Times) gives almost the same
amount of CPU power (approximately 20%) to the VLC
application. However, VLC does not use all of its allocated
CPU time (Figure 15 and 16) because its internal clock will
decide when to process and display frames, which is dependant
on the intended frame-rate of the application (which is 30 fps).

The time points when the Times scheduler allocates CPU
time to VLC (Figure 16), matches the points that are generated
by the scheduling framework HSF (Figure 15), which imple-
ments the scheduler that is intended to be used in the final
system. However, HSF “leaks“ CPU time, as can be seen in
Figure 15. This is due to that we set the budget of subsystem B
to less than 20, so that the budget does not deplete at the same
time as the other subsystem is released (which may cause our
scheduler to execute the scheduling events in wrong order).

VI. RELATED WORK

Related work in the area of hierarchical scheduling orig-
inated in open systems [16] in the late 1990’s, and it has
been receiving an increasing research attention ever since.
Since Deng and Liu [16] introduced a two-level hierarchical
scheduling framework, its schedulability has been analyzed
under fixed-priority global scheduling [17] and under EDF-
based global scheduling [18], [19]. Mok et al. [20] proposed
the bounded-delay resource model so as to achieve a clean
separation in a multi-level hierarchical scheduling framework,
and schedulability analysis techniques [21], [22] have been in-
troduced for this resource model. In addition, Shin and Lee [7]
introduced the periodic resource model (to characterize the
periodic resource allocation behavior), and many studies have
been proposed on schedulability analysis with this resource
model under fixed-priority scheduling [10], [23], [24] and
under EDF scheduling [7].

Looking at the kind of analysis possible with these hi-
erarchical scheduling approaches, typically only timing is
considered. In this paper, we are also interested in code
synthesis, as well as analysis using task automata. This is
similar to [25], where the authors show how modeling and
schedulability analysis of two-level hierarchical scheduling,
with timed automata, can be accomplished in the simulation
tool Cheddar. Lime et al. [26] model fixed and dynamic
priority scheduling using time petri nets, which is similar to
the work in [27]. Scheduler modeling is showed in [28] using
the controller paradigm.

VII. CONCLUSION

We have shown how to perform schedulability analysis in
the Times tool, where a subsystem within fixed-priority pre-
emptive hierarchical scheduling is the system under analysis.
The concept we present simplifies the analysis of the whole
system by analysing one subsystem and abstracting the rest of
the system (black-boxing). Iterating through all subsystems in
this manner results in analysing the whole system. In each step,
the black-boxing is done by replacing interfering subsystems
with a small set of high priority tasks (which we refer to as
dummy tasks). The procedure is described with an algorithm
in the paper, and the output of the algorithm is a set of dummy
tasks that are periodic with offsets. These tasks, and the tasks
of the subsystem to be analyzed, are then modeled in the
Times tool (with a task-table or timed automata). The last
step is to run a simulation in Times which will generate the
worst case response time of each task, thereby deciding if the
subsystem is schedulable or not. The Times tool could traverse
the scheduling tree and analyze each subsystem, resulting in
a complete analysis of the whole tree. The simulation itself is
essentially a response time analysis of tasks that are periodic,
whereas some of them will also have offsets (the dummy
tasks).

We have used the Times code synthesis and shown how to
generate C-code of two example systems. The code has been
extended to execute on an industrial platform (i.e. VxWorks),
and also on a PC desktop platform (Linux). Hence, our
proposed method has shown to be practical. After the code
generation, a subsystem can be executed as if it would be
running within a hierarchically scheduled system. Hence, our
proposed approach supports early prototyping of hierarchically
scheduled systems, by using our dummy-task algorithm to-
gether with our code synthesis for VxWorks and Linux.

Our example in VxWorks shows that response times can
vary significantly when moved from simulation to a real
platform, even though a very small amount of overhead is in-
troduced. The overhead measurements show that the scheduler,
generated from Times, produces less overhead compared to a
manually coded scheduler. Our other example in Linux shows
how a video processing application (VLC) is affected when
running it in a prototyped subsystem. We have measured the
frame-rate and compared the results from the same example
system running in a 2-level hierarchical scheduling framework.

As future work, we plan to optimize the code synthesis (in
order to minimize scheduler overhead) as well as to model
and generate code for hierarchical scheduling frameworks.
This is interesting in the context of proving the correctness
of scheduling, since model checking could be used to verify
the schedulers. As a last step of the contribution of this
paper we plan to implement the concept in a tool, which will
provide graphical modeling of systems, automatic generation
of dummy tasks as well as automatic synthesis for various
platforms (such as VxWorks, Linux and FreeRTOS).

REFERENCES

[1] M. Åsberg, M. Behnam, F. Nemati, and T. Nolte, “Towards Hierarchical
Scheduling in AUTOSAR,” in ETFA’09.

[2] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata:
Schedulability, decidability and undecidability,” International Journal of
Information and Computation, vol. 205, no. 8, pp. 1149–1172, August
2007.

[3] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994. [Online].
Available: citeseer.nj.nec.com/alur94theory.html

[4] T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun, “Code synthesis
for timed automata,” Nordic J. of Computing, vol. 9, no. 4, pp. 269–300,
2002.

[5] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times:
A tool for modelling and implementation of embedded systems,” in
TACAS’02, 2002.

[6] M. Åsberg, T. Nolte, and P. Pettersson, “Prototyping Hierarchically
Scheduled Systems using Task Automata and TIMES,” in Proc. of the
5th International Conference on Embedded and Multimedia Computing,
August 2010.

[7] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS’03, Dec. 2003.

[8] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” ACM, vol. 20, no. 1, pp. 46–61, 1973.

[9] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Engineering Journal, vol. 8, pp. 284–292, 1993.

[10] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in RTSS’05, December 2005.

[11] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
hierarchical scheduling on top of VxWorks,” in OSPERT’08, July 2008.

[12] S. Kato, R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time
Scheduler Suite for Multicore Platforms,” Technical Report CMU-
ECE-TR09-12, 2009. [Online]. Available: http://www.contrib.andrew.
cmu.edu/∼shinpei/papers/techrep09.pdf

[13] T. Bird, “Measuring Function Duration with Ftrace,” in Proc. of the
Japan Linux Symposium, 2009.

[14] M. Åsberg, T. Nolte, and S. Kato, “A Loadable Task Execution Recorder
for Hierarchical Scheduling in Linux,” School of Innovation Design and
Engineering (Mälardalen University), Tech. Rep., 2010.

[15] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in Proc. of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems,
July 2010.

[16] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an open
environment,” in RTSS’97, Dec. 1997.

[17] T.-W. Kuo and C. Li, “A fixed-priority-driven open environment for
real-time applications,” in RTSS’99, Dec. 1999.

[18] G. Lipari and S. Baruah, “Efficient scheduling of real-time multi-task
applications in dynamic systems,” in RTAS’00, May 2000.

[19] G. Lipari, J. Carpenter, and S. Baruah, “A framework for achieving inter-
application isolation in multiprogrammed hard-real-time environments,”
in RTSS’00, Dec. 2000.

[20] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in RTAS’01, May 2001.

[21] X. Feng and A. Mok, “A model of hierarchical real-time virtual
resources,” in RTSS’02, Dec. 2002.

[22] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in
RTSS’04, Dec. 2004.

[23] G. Lipari and E. Bini, “Resource partitioning among real-time applica-
tions,” in ECRTS’03, July 2003.

[24] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein, “Analysis
of hierarchical fixed-priority scheduling,” in ECRTS’02, June 2002.

[25] F. Singhoff and A. Plantec, “AADL modeling and analysis of hierarchi-
cal schedulers,” in SIGAda’07, 2007.

[26] D. Lime and O. H. Roux, “Formal verification of real-time systems with
preemptive scheduling,” Real-Time Syst., vol. 41, no. 2, pp. 118–151,
2009.

[27] K. Altisen, G. Gosler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine,
“A framework for scheduler synthesis,” in RTSS ’99: Proceedings of
the 20th IEEE Real-Time Systems Symposium. Washington, DC, USA:
IEEE Computer Society, 1999, p. 154.

[28] J. Sifakis, “Scheduler modeling based on the controller synthesis
paradigm,” in FTRTFT ’02: Proceedings of the 7th International Sym-
posium on Formal Techniques in Real-Time and Fault-Tolerant Systems.
London, UK: Springer-Verlag, 2002, pp. 107–110.

