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Abstract—Designing and developing mission-critical embedded
systems is challenging, especially due to additional platform
constraints regarding timing and computational resources. The
development process of embedded systems should include veri-
fication techniques already at the architecture design phase, to
provide evidence that a system’s architecture fulfills its require-
ments. The Architecture Analysis and Design Language (AADL)
is used to model the system’s architecture. Among others, the
language contains a Behavior Annex, for describing the behavior
of an AADL model, at an abstract level.

In this paper, we present a verification tool, called ABV,
tailored for AADL models with a behavioral annex. Given an
architecture defined in AADL and its behavior specified in the
associated language, our tool model-checks the latter against the
requirements specified in Computation Tree Logic (CTL). ABV
is based on AADL’s formal denotational semantics implemented
in Standard ML, and is encapsulated into an Eclipse plug-in
based on the OSATE platform. The tool has been applied on
the Production Cell case study, which is briefly described inthe
paper.

Index Terms—Model Checking, Verification, AADL, Behavior
Annex, CTL, OSATE, Denotational Semantics.

I. I NTRODUCTION

Mission-critical embedded systems play a vital role in
aerospace applications, air traffic control, and railway sig-
naling, to mention a few. Design and development of such
systems is challenging because, e.g., the fulfillment of real
time requirements and resource constraints need to be proven
in the development process. Of high practical interest is the
architecture design phase, since the timing behavior and re-
source consumption of systems depend heavily on the chosen
system architecture. Consequently, the development process
for embedded systems should include verification techniques
in the architecture design phase, to provide evidence that a
system architecture fulfills its requirements.

We have chosen to study the Architecture Analysis and
Design Language (AADL) [1] and its Behavior Annex [2],
[3], [4], due to AADL’s rich specification language and its
industrial use for the development of embedded systems in,
e.g., the automotive and avionics area. AADL is a large
language intended for designing both system software and
hardware. The architectural language is a standard of the
Society of Automotive Engineers (SAE1), and it is based on
MetaH [5] and the Unified Modeling Language (UML) [6].

1The Society of Automotive Engineers is presented at http://www.sae.org.

In this paper, we introduce and describe a novel system
architecture verifier, called ABV2 (AADL and the Behavior
AnnexVerifier), which performs model checking of embedded
system models defined in AADL and its Behavior Annex. The
model checking is carried out against requirements formulated
in Computation Tree Logic (CTL) [7]. ABV is an Eclipse
plug-in based on the Open Source AADL Tool Environment
(OSATE3) platform, which guarantees seamless interaction
with the Eclipse environment. Moreover, ABV is based on an
ML implementation of the formal denotational semantics that
unambiguously defines a subset of AADL and its Behavior
Annex [8], [9].

The intended users of ABV are engineers working with
system design; more specifically, engineers modeling AADL
systems in the Eclipse environment, who want to check
different system properties about the system. By employing
our tool, it should be possible that engineers find flaws already
in the early design phase, and by that avoid not finding flaws
until later development phases.

ABV accepts a subset of AADL includingsystem, system
implementation, features, subcomponents, andconnectionsas
well as the Behavior Annex. The chosen subset contains all
necessary constructs needed for generic modeling.

Although several tools for analyzing AADL have been
developed (see Section VI), they do not integrate a model
checker for AADL and its Behavior Annex based on a sound
underlying semantics within the OSATE platform.

In our approach, we combine powerful model-checking
techniques with an underlying formal denotational semantics
and a user-friendly graphical interface. We also describe how
ABV has been applied on the Production Cell case study.

The salient features of ABV are:

● An underlying formal denotational semantics for AADL
and its Behavior Annex [8], [9].

● An implementation of the denotational semantics in Stan-
dard ML.

● An Eclipse plug-in based on the OSATE platform, offer-
ing an intuitive and user-friendly graphical interface, well
integrated with other OSATE-based products.

● A trace file generator, listing a shortest path from the

2ABV is available at http://www.idt.mdh.se/~sbr02/ABV.
3The OSATE platform is described and available for downloading at http://-

www.aadl.info/aadl/currentsite/tool/osate.html.
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Figure 1: The architecture of the ABV Kernel.

initial state of the model to a state satisfying the condition
of the CTL requirement.

The rest of this paper is organized as follows. Section II
gives an overview of ABV. Section III describes ABV’s input,
whereas Section IV describes the graphical interface. We apply
ABV on the Production Cell case study in Section V. In
Section VI we discuss related work, before concluding the
paper in Section VII.

II. ABV T OOL OVERVIEW

The main purpose of ABV is to perform model checking by
verifying CTL properties of system models defined in AADL
and its Behavior Annex. ABV provides an intuitive and user-
friendly graphical environment. The user inputs the source
code of the model, as well as the CTL property specification,
and the verifier displays the yes/no analysis result.

Denotational semantics is an approach to formalize the
meaning of programming languages by constructing mathe-
matical objects (called denotations), which describe the mean-
ing of expressions from the languages. The main benefit
with denotational semantics is that it is based on a rigorous
mathematical foundation and is built on the same principles
as functional programming languages, such as Standard ML.

Such benefits determined us to define an underlying deno-
tational semantics for AADL and its Behavior Annex [2], [3],
[4], and consequently implement the verifier in Standard ML.

The ABV tool consists of the following modules (see Figure
1): the Parser, Initializer, Generator and PropertyEvalua-
tor. The Parser module parses, type checks and stores the
model. TheInitializer module initializes the model; that is,
the initializations of state variables and output signals are
executed. TheGenerator module generates the state space
that is later evaluated against the CTL property specification.
Finally, thePropertyEvaluatormodule traverses the state space
and eventually decides on the truth value of the property.

The root node of the generated state space represents the
initial state of the system (see Listing 1). For each possible
transition, a child node representing the new system state (after
the transition has been taken) is added to the node. If several
transitions are possible, several child nodes are added. Each
child node represents the system state after some transition has
been taken, respectively. ABV keeps track of all states, such
that, if one state is repeated, the state space generation along

Listing 1 The State Space Generation Function (pseudo code).

function generatespace subcomplist conn list
logg set mainspace

for each subcompin subcomplist
for each trans in subcomp.translist

(boolean guardvalue, symbol table2) ←
evaluateexpression trans.quard

subcomp.symboltable
if (subcomp.state= trans.sourcestate) and

guard value then
subcomp.state← subcomp.targetstate
subcomp.symboltable← executeactions

trans.action list subcomp.symboltable2
if not (logg set.exists subcomplist) then

logg set.add subcomplist
subcomplist ← executeconnections connlist

subcomplist
sub space← spacecreate subcomplist
generatespace subcomplist conn list

logg set subspace
main space.addchild sub space

return main space

Listing 2 The ABV Parser Output.
val PropSpec = (tree (all, global, (single
(node (not (node (and ((node (ident
("subSystem1", "Critical"))), (node (ident
("subSystem2", "Critical")))))))))));

that path is aborted. After the state space has been generated,
it is next evaluated against the CTL property specification.

Since the kernel of ABV is written in ML, its input needs
to be translated from AADL and its Behavior Annex, as
well as CTL, into Standard ML format. The ABV Parser
performs the transformation task. It is written in Standard
Java, the CUP Parser Generator for Java, and the JLex Lexical
Analyzer Generator for Java. For instance, the following
safety property specification is translated into the Standard
ML code of Listing 2:

all global not (subsystem1.Critical and
subsystem2.Critical)

III. T OOL INPUT

ABV takes two inputs: the AADL and its Behavior Annex
model, as well as the CTL property specification.

A. The AADL and its Behavior Annex Model

In AADL, there are two types of systems: thesystemthat
defines the port interface and an optional behavioral annex,and
thesystem implementationthat defines the subcomponents and
the port connections between them. The chosen AADL subset
allows at least one system and exactly one system implemen-
tation. The subcomponents of the system implementation are
instances of earlier defined systems (equivalent to objectsand
classes in object-oriented languages) and the connectionsare



Listing 3 Subsystem1 from Figure 2.

1 system Subsystem1
2 f e a t u r e s
3 C r i t i c a l E n t e r : i n event por t ;
4 C r i t i c a l L e a v e : out event por t ;
5 annex SubSystemAnnex1
6 {**
7 i n i t i a l i z a t i o n s
8 C r i t i c a l L e a v e ! ;
9 s t a t e s

10 Wai t ing : i n i t i a l s t a t e ;
11 C r i t i c a l : s t a t e ;
12 t r a n s i t i o n s
13 Wai t ing −[ C r i t i c a l E n t e r ?]−> C r i t i c a l ;
14 C r i t i c a l −[ t rue ]−> Wai t ing
15 {C r i t i c a l L e a v e ! ;} ** } ;
16 end SubSystem1 ;

made between input and output ports of the subcomponents,
rather than the systems.

The Behavior Annex is based on the Abstract State Machine
[10] language. It models the following: (i) states, among which
one is the initial state, and state variables, which can be ini-
tialized; (ii) input and output signals that are connected to the
ports of the surrounding system, together with initializations
of the output signals, and (iii) the set of state transitions[3],
where each transition is equipped with a guard, that is, a
boolean expression that has to evaluate to true for the transition
to be fired.

Example 1:Figure 2 illustrates a main system holding two
subsystems with one critical section each, modeled in AADL
and its Behavior Annex. The subsystems communicate
through port signalsCriticalLeave and CriticalEnter in
order to ensure that they cannot access the critical sections
simultaneously; the code is given in Listings 3 and 4. The
first subsystem is initialized to trigger theCriticalLeave
signal, which means that the second subsystem is free to
enter its critical section. The second subsystem is similarto
the first one, except that theinitializations part is omitted.
Each subsystem starts in the initial stateWaiting. As soon as
it receives theCriticalEnter signal from the other subsystem,
it enters its critical section. When it leaves the latter, itsends
the CriticalLeave signal to the other subsystem, in order
to allow it to enter its critical section in turn. The main
system instantiates the two subcomponents,subsystem1and
subsystem2, and connects them to each other by using the
CriticalLeave and CriticalEnter ports. In Section III-B, we
define a CTL property specification for such system.

B. The CTL Property Specification

CTL [7] is a branching-time temporal logic, that is, it
models time as a tree structure with a non-determined future.
There are different paths into the future, and any one of
them may be the realized one. There are several quantifiers
available in CTL, among them the universalall and existential
existsquantifiers over paths. There are also the path-specific
operatorsglobal andeventually. See Table I for their informal
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Figure 2: Main System.

Listing 4 The Main System.

1 system implementa t ion MainSystem . imp l
2 subcomponents
3 subsys tem1 : system Subsystem1 ;
4 subsys tem2 : system Subsystem2 ;
5 c onne c t i ons
6 event por t subsys tem1 . C r i t i c a l L e a v e−>
7 subsys tem2 . C r i t i c a l E n t e r ;
8 event por t subsys tem2 . C r i t i c a l L e a v e−>
9 subsys tem1 . C r i t i c a l E n t e r ;

10 end MainSystem . imp l ;

definitions.
Syntactically, a property specification includes a path quan-

tification (all or exists), followed by path-specific operators
(global or eventually), or a regular expression. However, these
kinds of expressions can also hold a state or a state variable.

For example 1 described in Section III-A, we formulate
below the CTL property that, provided that it holds for the
model, guarantees that the two subsystems never reach their
critical section simultaneously:

all global not (subsystem1.Critical and
subsystem2.Critical)



Figure 3: The Graphical Interface.

Figure 4: The CTL Property Specification.

IV. T HE GRAPHICAL INTERFACE

ABV is encapsulated in an Eclipse plug-in on top of the
OSATE platform. The plug-in adds the ABV menu with the
SettingsandProperty Specificationitems (see Figure 3). The
Settingsitem displays an input dialog divided into two parts,
where the first part specifies a set of paths needed for ABV to
work properly while the second part specifies optional output
to be displayed.

The result of model checking a property specification
against a model of AADL and its Behavior Annex is a boolean
value. ABV also reports the size of the generated state space
and the execution time, depending on the user settings in
the second part of the dialog. ABV can also be instructed
to generate a log file, listing a sequence of states from the
initial state to a state satisfying the condition of the property
specification (if no state is satisfying the condition, an empty
file is generated). See Appendix B for an excerpt.

The Property Specificationitem displays an input dialog
in which the user inputs the CTL property specification (see
Figure 4).

Table I: CTL.

all φ φ must be satisfied for every path.
existsφ φ must be satisfied for at least one path.
global φ φ must be satisfied for each node on the path from root

to leaf.
eventuallyφ φ must be satisfied for at least one node on the path from

root to leaf.

Figure 5: The Production Cell System as presented by Ouimet
[12].

V. CASE STUDY

In order to validate ABV, we have performed a case study
in which a Production Cell system is modeled in AADL and
its Behavior Annex. For the complete source code of the
system, we refer the reader to Björnander et al. [8], [9]. Also,
see Appendix A for an excerpt. The case study is based on
an automated manufacturing system that is modeled on an
industrial plant in Karlsruhe, Germany. It was first described
by Lewerentz [11]. Ouimet [12] presented it as depicted in
Figure 5.

The system is not controlled by a central unit. Instead,
the components communicate with each other through port
connections. The components work concurrently; when a
component is ready to accept a new block, it notifies the
preceding component, which in turn acknowledges that is has
loaded the block. It also sends a signal acknowledging that
the loading location of the component is free.

The Production Cell System is composed of the robot arms
Loader, ArmA, and ArmB, the conveyer beltsFeedBeltand
DepositBelt, as well as thePress. The purpose of the system is
to transport blocks through the production cell. They arrive in
a crate and the same blocks with bolts attached to them finally
become delivered by the deposit belt for further processing.
Once a block has been loaded, it is moved through the system.
See Figure 6 for a schematic illustration of the system.

In the DepositBelt subsystem, we have added the state
variableStoredBlocksthat counts the number of blocks that
become transported through the final deposit belt. In the main
system of the Production Cell, theDepositBeltsystem has
been instantiated into thedepositBeltsubcomponent. In order
to make sure that a loaded block always becomes transported
through the system, we require that the state variablestored-
Blocks in the depositBeltsubcomponent is always eventually
assigned the value one. This means that a block has gone
through the whole system. The requirement can be formally
stated in CTL as follows:

all eventually depositBelt.StoredBlocks = 1
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Figure 6: Schematic Description of the Production Cell Sys-
tem.

Figure 7: Property Specification.

As evident from Figure 8, all paths finally lead to a state
wherestoredBlocksis equals to one, meaning that the block
is always moved through the Production Cell system.

As ABV and also the underlying denotational semantics also
support verification of architectural properties, the following
CTL specification is an example of such property, which
ensures that theInBlockLoadedinput signal in thedeposit-
Belt subcomponent is never written twice without being read
between the writings:

all global depositBelt.InBlockLoaded_count <= 1

For each input port, a state variable with the same name
and the suffix ” count” is stored. It is an integer that becomes
incremented each time a signal is sent to the port, and
decremented each time it is read. If the variable never exceeds
one, we can be sure that once a signal is sent to the port, it is
always read before the next signal is sent.

VI. RELATED WORK

Several tools have been developed for simulation and analy-
sis of AADL and its annexes. ADeS4 (Architecture Description
Simula) is a software tool intended for simulation of the
behavior of system architectures described with AADL. It
is implemented as an Eclipse plug-in based on the OSATE
platform, with seamless interaction with other OSATE based
tools. It can perform simulation and scheduling of models
defined in AADL. However, unlike ABV, it does not perform
model checking, and it also lacks a formal underlying analysis.

4The AdeS tool is available at http://www.axlog.fr/aadl/ades en.html.

Figure 8: Result of Evaluation.

BIP (Behavior Interaction Priority) [13] is a language for
description and composition of components, as well as for
analysis and code generation of models. Chkouri et al. [14]
describe a general methodology and an associated tool for
translating AADL and its Behavior Annex specifications into
BIP. This allows simulation of systems specified in AADL
and application of formal verification techniques developed
for BIP. The input language of the tool includes the Behavior
Annex. Even though BIP supports model checking of com-
ponent interaction, it does not support model checking at the
system level, as ABV does.

The COMPASS5 project (Correctness, Modeling, and Per-
formance of Aerospace Systems) is an ambitious attempt
to fully capture the system under development by applying
model-checking techniques. The COMPASS toolset has been
developed by Bozzano et al. [15], [16] and is based on a
formal semantics. It is a tool that models both the nominal
and faulty behavior of AADL, and it has been validated in
several case studies. However, in contrast to ABV, it focuses
on the error behavior. Moreover, the tool is equipped with a
graphical interface that, unlike ABV, is not OSATE-based and
hence not integrated with tools based on Eclipse or OSATE.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have presented ABV, which is a novel
tool designed to perform model checking on systems modeled
in AADL and its Behavior Annex, with properties specified
in CTL. Our tool comes with a graphical interface as an
Eclipse plug-in on top of the OSATE platform, and it has
been successfully applied on the Production Cell case study.

The next step on the work of this paper would be to optimize
the algorithms of ABV, e.g., the state space generation and
the property specification evaluation. It should be possible
to evaluate the state space ”on-the-fly”; that is, to perform
evaluation during the tree state space generation. In that way,
the state space generation can be terminated as soon as the
value of the property specification has been determined.

Another possible future work is to extend the semantics
with timing annotations, to enable modeling of timing and
verification of the form, e.g., minimum and maximum time
for a property specification to be satisfied.

5The COMPASS project is presented at http://compass.informatik.rwth-
aachen.de.
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APPENDIX

A. The Case Study Source Code (excerpt)
system Loader

features
InFeedBeltReady: in event port;
OutBlockReady: out event port;

annex Loader {**
state variables
LoadedBlocks :integer;

initializations
LoadedBlocks := 0;

states
Waiting :initial state;
Loading :state;

transitions
Waiting -[(LoadedBlocks < 1) and

(InFeedBeltReady?)]-> Loading;
Loading -[true]-> Waiting {OutBlockReady!;

LoadedBlocks := LoadedBlocks + 1;}
**};

end Loader;

...

system implementation ProductionCell.impl
subcomponents

loader: system Loader;
feedBelt: system FeedBelt;
beltToPress: system BeltToPress;
press: system Press;
pressToBelt: system PressToBelt;
depositBelt: system DepositBelt;
storer: system Storer;

connections
event port feedBelt.InFeedBeltReady ->

loader.InFeedBeltReady;
event port loader.OutBlockReady ->

feedBelt.InBlockReady;
event port beltToPress.InArmReady ->

feedBelt.InArmReady;
event port feedBelt.OutBlockReady ->

beltToPress.InBlockReady;
event port press.PressReady ->

beltToPress.PressReady;
event port beltToPress.OutBlockReady ->

press.InBlockReady;
event port pressToBelt.OutArmReady ->

press.OutArmReady;
event port press.OutBlockReady ->

pressToBelt.InBlockReady;
event port depositBelt.OutFeedBeltReady ->

pressToBelt.OutFeedBeltReady;
event port pressToBelt.OutBlockReady ->

depositBelt.InBlockReady;
event port storer.StorerReady ->

depositBelt.StorerReady;
event port depositBelt.OutBlockReady ->

storer.InStorerBlockReady;
end ProductionCell.impl;

B. The Generated Log File (excerpt)
0:
Transition: loader.Waiting -> loader.Loading
State: loader = Loading, LoadedBlocks = 0

feedBelt = NoBlock_MotorOff
beltToPress = MagnetOff_AtBelt_Retracted
press = Waiting
pressToBelt = MagnetOff_AtPress_Retracted
depositBelt = NoBlock_MotorOff
storer = Waiting, StoredBlocks = 0

...

24:
Transition: storer.Storing -> storer.Waiting
State: loader = Waiting, LoadedBlocks = 1

feedBelt = BlockAtEnd_MotorOff
beltToPress = MagnetOff_AtBelt_Retracted
press = Waiting
pressToBelt = MagnetOff_AtPress_Retracted
depositBelt = BlockAtEnd_MotorOff
storer = Waiting, StoredBlocks = 1


