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Abstract—Designing and developing mission-critical embedded
systems is challenging, especially due to additional platfm
constraints regarding timing and computational resources The
development process of embedded systems should include iver
fication techniques already at the architecture design phas to
provide evidence that a system’s architecture fulfills its equire-
ments. The Architecture Analysis and Design Language (AADL
is used to model the system’s architecture. Among others, &
language contains a Behavior Annex, for describing the behéor
of an AADL model, at an abstract level.

In this paper, we present a verification tool, called ABV,
tailored for AADL models with a behavioral annex. Given an
architecture defined in AADL and its behavior specified in the
associated language, our tool model-checks the latter agait the
requirements specified in Computation Tree Logic (CTL). ABV
is based on AADL's formal denotational semantics implemered
in Standard ML, and is encapsulated into an Eclipse plug-in
based on the OSATE platform. The tool has been applied on
the Production Cell case study, which is briefly described irthe
paper.

Index Terms—Model Checking, Verification, AADL, Behavior
Annex, CTL, OSATE, Denotational Semantics.

|. INTRODUCTION

Mission-critical embedded systems play a vital role i
aerospace applications, air traffic control, and railwagy- si

nu, kristina.lursigpaul.petterssg@mdh.se

In this paper, we introduce and describe a novel system
architecture verifier, called AB¥(AADL and the Behavior
AnnexVerifier), which performs model checking of embedded
system models defined in AADL and its Behavior Annex. The
model checking is carried out against requirements fortadla
in Computation Tree Logic (CTL) [7]. ABV is an Eclipse
plug-in based on the Open Source AADL Tool Environment
(OSATE®) platform, which guarantees seamless interaction
with the Eclipse environment. Moreover, ABV is based on an
ML implementation of the formal denotational semanticd tha
unambiguously defines a subset of AADL and its Behavior
Annex [8], [9].

The intended users of ABV are engineers working with
system design; more specifically, engineers modeling AADL
systems in the Eclipse environment, who want to check
different system properties about the system. By employing
our tool, it should be possible that engineers find flaws diyea
in the early design phase, and by that avoid not finding flaws
until later development phases.

ABV accepts a subset of AADL includingystem system
implementationfeatures subcomponent@and connectionsas
well as the Behavior Annex. The chosen subset contains all
necessary constructs needed for generic modeling.

naling, to mention a few. Design and development of suchAlthough several tools for analyzing AADL have been
systems is challenging because, e.g., the fulfillment of redeveloped (see Section VI), they do not integrate a model
time requirements and resource constraints need to berprowhecker for AADL and its Behavior Annex based on a sound
in the development process. Of high practical interest & tlinderlying semantics within the OSATE platform.
architecture design phase, since the timing behavior and rein our approach, we combine powerful model-checking
source consumption of systems depend heavily on the chosethniques with an underlying formal denotational sencanti
system architecture. Consequently, the development ggocand a user-friendly graphical interface. We also describe h
for embedded systems should include verification techsiquaBV has been applied on the Production Cell case study.
in the architecture design phase, to provide evidence that arhe salient features of ABV are:
system architecture fulfills its requirements. .
We have chosen to study the Architecture Analysis and
Design Language (AADL) [1] and its Behavior Annex [2],
[3], [4], due to AADL's rich specification language and its
industrial use for the development of embedded systems in,

e.g., the automotive and avionics area. AADL is a large g an intuitive and user-friendly graphical interface Jwe
language intended for designing both system software and integrated with other OSATE-based products.
hardware. The architectural language is a standard of the A trace file generator, listing a shortest path from the
Society of Automotive Engineers (SAE and it is based on

MetaH [5] and the Unified Modeling Language (UML) [6].

An underlying formal denotational semantics for AADL
and its Behavior Annex [8], [9].

« An implementation of the denotational semantics in Stan-
dard ML.

An Eclipse plug-in based on the OSATE platform, offer-

2ABV is available at http://www.idt.mdh.se/~sbr02/ABV.
3The OSATE platform is described and available for downlogdit http://-

1The Society of Automotive Engineers is presented at hitpi.sae.org.  www.aadl.info/aadl/currentsite/tool/osate.html.
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Figure 1: The architecture of the ABV Kernel.

Listing 1 The State Space Generation Function (pseudo code).

function generatespace subcomtist conn list
logg_set mainspace
for each subcompn subcomplist
for each transin subcomp.trandist
(boolean guardvalug symbaoltable,) <
evaluateexpression trans.quard
subcomp.symbdiable
if (subcomp.state trans.sourcestate and

guard valuethen
subcomp.state- subcomp.targestate
subcomp.symbdiable < executeactions
trans.actionlist subcomp.symbdiable,
if not (logg_set.exists subcomlist) then
logg set.add subcomjfist
subcomplist < executeconnections conrist
subcomplist
suh space< spacecreate subcompist
generatespace subcomflist conn list
logg_set subspace
main_space.addchild sub space
return main space

initial state of the model to a state satisfying the conditio
of the CTL requirement.

The rest of this paper is organized as follows. Section Il
gives an overview of ABV. Section Il describes ABV'’s input,
whereas Section IV describes the graphical interface. \[lyap
ABV on the Production Cell case study in Section V. In
Section VI we discuss related work, before concluding the
paper in Section VII.

II. ABV T ooL OVERVIEW

The main purpose of ABV is to perform model checking by-—
verifying CTL properties of system models defined in AADLLIStiNg 2 The ABV Parser Output.
and its Behavior Annex. ABV provides an intuitive and user-va& PropSpec = (tree (all, global, (single

. . . . (node (not (node (and ((node (ident
friendly graphical environment. The user inputs the sourcg sypsystemt”, "Critical"))), (node (ident
code of the model, as well as the CTL property specification("subSysten2", “Critical")))))))))));
and the verifier displays the yes/no analysis result.

Denotational semantics is an approach to formalize the
meaning of programming languages by constructing mathat path is aborted. After the state space has been getierate
matical objects (called denotations), which describe tkama it is next evaluated against the CTL property specification.
ing of expressions from the languages. The main benefitSince the kernel of ABV is written in ML, its input needs
with denotational semantics is that it is based on a rigorotes be translated from AADL and its Behavior Annex, as
mathematical foundation and is built on the same principlegll as CTL, into Standard ML format. The ABV Parser
as functional programming languages, such as Standard Mierforms the transformation task. It is written in Standard

Such benefits determined us to define an underlying derlava, the CUP Parser Generator for Java, and the JLex Lexical
tational semantics for AADL and its Behavior Annex [2], [3],Analyzer Generator for Java. For instance, the following
[4], and consequently implement the verifier in Standard Mlisafety property specification is translated into the Steshda

The ABV tool consists of the following modules (see Figur$IL code of Listing 2:
1): the Parser, Initializer, Generator and PropertyEvalua-
tor. The Parser module parses, type checks and stores the
model. Thelnitializer module initializes the model; that is,
the initializations of state variables and output signais a Il TooL INPUT
executed. TheGenerator module generates the state space ABV takes two inputs: the AADL and its Behavior Annex
that is later evaluated against the CTL property speciticati model, as well as the CTL property specification.
Finally, thePropertyEvaluatomodule traverses the state space _ )
and eventually decides on the truth value of the property. A- The AADL and its Behavior Annex Model

The root node of the generated state space represents tHa AADL, there are two types of systems: tgstemthat
initial state of the system (see Listing 1). For each possibdiefines the port interface and an optional behavioral ararek,
transition, a child node representing the new system safier ( the system implementatiaghat defines the subcomponents and
the transition has been taken) is added to the node. If devdlee port connections between them. The chosen AADL subset
transitions are possible, several child nodes are addeth Eallows at least one system and exactly one system implemen-
child node represents the system state after some tranki® tation. The subcomponents of the system implementation are
been taken, respectively. ABV keeps track of all statesh suimstances of earlier defined systems (equivalent to obrads
that, if one state is repeated, the state space generating alclasses in object-oriented languages) and the connedi@ns

al | global not (subsysteni.Critical and
subsystenR. Critical)



Listing 3 Subsysteml from Figure 2.

:Main System ’

1 system Subsystem1l
2 features
3 CriticalEnter: in event port; .
4 CriticalLeave: out event port; -SUbSyStem
g annex SubSystemAnnex1 CriticalEnter?
{**
7 initializations
8 CriticalLeave !;
9 states
10 Waiting :initial state;
11 Critical :state;
12 transitions
13 Waiting —[CriticalEnter?}> Critical;
14 Critical —[true]-> Waiting \ true
15 {CriticalLeave !} **};
16 end SubSystem1; CriticalLeave!
CriticalLeave CriticalEnter
made between input and output ports of the subcomponents,
rather than the systems. . .
The Behavior Annex is based on the Abstract State Machipe CriticalEnter Criticall eave

[10] language. It models the following: (i) states, amondakh :subSystem
one is the initial state, and state variables, which can be in
tialized; (ii) input and output signals that are connectethe
ports of the surrounding system, together with initializas
of the output signals, and (iii) the set of state transitif8ls
where each transition is equipped with a guard, that is,|a
boolean expression that has to evaluate to true for theiti@ans
to be fired.

Example 1:Figure 2 illustrates a main system holding twa
subsystems with one critical section each, modeled in AADL
and its Behavior Annex. The subsystems communicate
through port signalsCriticalLeave and CriticaIE_r_1ter in _ Figure 2: Main System.
order to ensure that they cannot access the critical section
simultaneously; the code is given in Listings 3 and 4. The
first subsystem is initialized to trigger th€riticalLeave Listing 4 The Main System.
signal, which means that the second subsystem is free 10
enter its critical section. The second subsystem is similar 5 SYstem implementation MainSystem. impl

CriticalEnter?

oy

true

CriticalLeave!

. Attt . > 2 subcomponents
the first one, except that thiaitializations part is omitted. 3 subsystem1:system Subsystem1;
Each subsystem starts in the initial stit@iting As soon as 4 subsystem2:system Subsystem2;
. . L. . 5 connections
it receives theCriticalEnter signal from the other subsystem, g event port subsysteml.CriticalLeaves>
it enters its critical section. When it leaves the latteséhds 7 subsystem2. CriticalEnter;

the CriticalLeave signal to the other subsystem, in orderg event port gﬂggzzﬁggigj',i'liaa',;eni;?

to allow it to enter its critical section in turn. The mainl0 end MainSystem.impl;
system instantiates the two subcomponestg)systemknd
subsystem2and connects them to each other by using the
CriticalLeave and CriticalEnter ports. In Section 1lI-B, we

define a CTL property specification for such system. definitions.
Syntactically, a property specification includes a pathngua

tification (all or exist3, followed by path-specific operators
B. The CTL Property Specification (global or eventually, or a regular expression. However, these
CTL [7] is a branching-time temporal logic, that is, itinds of expressions can also hold a state or a state variable

models time as a tree structure with a non-determined future FOr €xample 1 described in Section Ill-A, we formulate
There are different paths into the future, and any one Bflow the CTL property that, provided that it holds for the
them may be the realized one. There are several quantififigdel, guarantees that the two subsystems never reach their
available in CTL, among them the universdil and existential C'itical section simultaneously:

existsquantifiers over paths. There are also the.p.ath—speuflc all global not (subsystent. Critical and
operatorglobal andeventually See Table | for their informal subsysten2. Critical)
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Figure 3: The Graphical Interface.

Property Specification
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Figure 4: The CTL Property Specification.

ABV is encapsulated in an Eclipse plug-in on top of thﬁ1
OSATE platform. The plug-in adds the ABV menu with the
Settingsand Property Specificatioitems (see Figure 3). The
Settingsitem displays an input dialog divided into two parts
where the first part specifies a set of paths needed for ABV
work properly while the second part specifies optional outp

IV. THE GRAPHICAL INTERFACE

to be displayed.

The result of model checking a property specificatio
against a model of AADL and its Behavior Annex is a boole
value. ABV also reports the size of the generated state sp Ce?o
and the execution time, depending on the user settings U
the second part of the dialog. ABV can also be instructed
to generate a log file, listing a sequence of states from %
initial state to a state satisfying the condition of the pmdp S
specification (if no state is satisfying the condition, anpgm

file is generated). See Appendix B for an excerpt.

The Property Specificatioritem displays an input dialog
in which the user inputs the CTL property specification (see
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Figure 5: The Production Cell System as presented by Ouimet
[12].

V. CASE STUDY

In order to validate ABV, we have performed a case study

in which a Production Cell system is modeled in AADL and
its Behavior Annex. For the complete source code of the
system, we refer the reader to Bjornander et al. [8], [950Al
see Appendix A for an excerpt. The case study is based on
an automated manufacturing system that is modeled on an
industrial plant in Karlsruhe, Germany. It was first desedb
by Lewerentz [11]. Ouimet [12] presented it as depicted in
Figure 5.
The system is not controlled by a central unit. Instead,
e components communicate with each other through port
connections. The components work concurrently; when a
component is ready to accept a new block, it notifies the
(r)eceding component, which in turn acknowledges that is has
loaded the block. It also sends a signal acknowledging that
the loading location of the component is free.

The Production Cell System is composed of the robot arms

oader, ArmA and ArmB, the conveyer belt§-eedBeltand
ositBeltas well as théress The purpose of the system is
ansport blocks through the production cell. They a&riiv
crate and the same blocks with bolts attached to them finally
gcome delivered by the deposit belt for further processing
nce a block has been loaded, it is moved through the system.
ee Figure 6 for a schematic illustration of the system.

In the DepositBelt subsystem, we have added the state
variable StoredBlockghat counts the number of blocks that
become transported through the final deposit belt. In thexmai

a

system of the Production Cell, theepositBeltsystem has
been instantiated into thdepositBeltsubcomponent. In order

to make sure that a loaded block always becomes transported
through the system, we require that the state variatdesd-

Blocksin the depositBeltsubcomponent is always eventually

assigned the value one. This means that a block has gone

botthrough the whole system. The requirement can be formally
stated in CTL as follows:

Figure 4).
Table I: CTL.

all ¢ ¢ must be satisfied for every path.

exists ¢ ¢ must be satisfied for at least one path.

global ¢ ¢ must be satisfied for each node on the path from r|
to leaf.

eventuallyg | ¢ must be satisfied for at least one node on the path f
root to leaf.

om

all eventually depositBelt. StoredBl ocks = 1




:ProductionCell J Result of, Evaluation
Loader FeedBelt ArmA i Property Specification: "all eventually storer, SkoredBlocks = 1",
Result: T
InBlockReady €—— InBlockReady OutBlockReady [¢ InBlockReady \\J) Sii;uof G;uneerated Tree: 845 nades.
InBlockLoaded —| InBlockLoaded OutBlockLoaded »| InBlockLoaded Time: 2844 milliseconds.
InBlockPicked €—— InBlockPicked OutBlockPicked [« InBlockPicked Path varitten to file "C:AOutpukiLogg. txt",
OutBlockReady [ InBlockReady OutBlockReady
OutBlockLoaded — InBlockLoaded OutBlockLoaded
OutBlockPicked [— InBlockPicked OutBlockPicked
DepositBelt ArmB Pross Figure 8: Result of Evaluation.
InBlockReady [~ OutBlockReady InBlockReady
InBlockLoaded [¢—— OutBlockLoaded InBlockLoaded
InBlockPicked [—— OutBlockPicked InBlockPicked
OutBlockReady ——» OutBlockReady InBlockReady P OutBlockReady . . PR .
OutBlockLoaded €—— OutBlockLoaded InBlockLoaded [ OutBlockLoaded BIP (BehaVIOr InteraCt_IO.n Pr|0r|ty) [13] IS a Ianguage for
OutlockPicked ——#] OutBlockPicked InBlockPicked [——{ OutBlockPicked description and composition of components, as well as for
analysis and code generation of models. Chkouri et al. [14]

Figure 6: Schematic Description of the Production Cell Sy§escribe a general methodology and an associated tool for
tem. translating AADL and its Behavior Annex specifications into

BIP. This allows simulation of systems specified in AADL

and application of formal verification techniques devetbpe
Property Specification %] for BIP. The input language of the tool includes the Behavior
Annex. Even though BIP supports model checking of com-
ponent interaction, it does not support model checking at th

Properky Specification: | all eventually storer, StoredBlocks = 1 |

system level, as ABV does.
The COMPASS project (Correctness, Modeling, and Per-
Figure 7: Property Specification. formance of Aerospace Systems) is an ambitious attempt

to fully capture the system under development by applying
model-checking techniques. The COMPASS toolset has been

As evident from Figure 8, all paths finally lead to a stat eveloped by _Bozza_no et al. [15], [16] and is based on a
ormal semantics. It is a tool that models both the nominal

h toredBlocks Is t , ing that the block ) . : .
}Z aehr;asy:r?n ov:c(i: tﬁfoﬁgﬁatr? e %g:ﬁj C?oenaggﬁ] syzt o me OCand faulty behavior of AADL, and it has been validated in

As ABV and also the underlying denotational semantics alggveral case studies. However, in contrast to ABV, it fosuse

e . . on the error behavior. Moreover, the tool is equipped with a
support verification of architectural properties, the dualing S ; ;
CTL specification is an example of such property, whicﬁraph'cal interface that, unlike ABV, is not OSATE-based an

ensures that thénBlockLoadedinput signal in thedeposit- ence not integrated with tools based on Eclipse or OSATE.

Belt subcomponent is never written twice without being read
between the writings: VII. CONCLUSION AND FUTURE WORK

all gl obal depositBelt.InBlockLoaded_count <= 1 In this paper, we have presented ABV, which is a novel

. : . ol designed to perform model checking on systems modeled
F h t t, tat bl th th . . . . -
or each INput port, a stae varianie Wi © same nar%%AADL and its Behavior Annex, with properties specified

and the suffix ” count” is stored. It is an integer that becomeX! . ' )
- 9 CTL. Our tool comes with a graphical interface as an

incremented each time a signal is sent to the port, a i luGg-i ) f the OSATE platf dith
decremented each time it is read. If the variable never eceg C PS¢ PlUg-in on top otthe platiorm, and it has
one, we can be sure that once a signal is sent to the port, i gen successfully applied on the Production Cell case study
always read before the next signal is sent. The next step on the work of this paper would be to optimize
the algorithms of ABV, e.g., the state space generation and
VI. RELATED WORK the property specification evaluation. It should be possibl

Several tools have been developed for simulation and andi§-€valuate the state space "on-the-fly”; that is, to perform
sis of AADL and its annexes. ADé%Architecture Description €valuation during the tree state space generation. In thgt w
Simula) is a software tool intended for simulation of thé&he state space generation can be terminated as soon as the
behavior of system architectures described with AADL. ialue of the property specification has been determined.
is implemented as an Eclipse plug-in based on the OSATEANOther possible future work is to extend the semantics
platform, with seamless interaction with other OSATE basa#ith timing annotations, to enable modeling of timing and
tools. It can perform simulation and scheduling of modelgrification of the form, e.g., minimum and maximum time
defined in AADL. However, unlike ABV, it does not performfor a property specification to be satisfied.
model checking, and it also lacks a formal underlying analys

5The COMPASS project is presented at http://compass.irgtiknnwth-
4The AdeS tool is available at http://www.axlog.fr/aadéaden.html. aachen.de.
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