
��������	�
�����	�����������
�������������
���	
���	���������������	���

Henrik Thane and Hans Hansson
Mälardalen Real-Time Research Centre, Department of Computer Engineering

Mälardalen University, Västerås, Sweden, hte@mdh.se

���	
��	

Cyclic debugging is one of the most important and
most commonly used activities in program development.
During cyclic debugging, the program is repeatedly re-
executed to track down errors when a failure has been
observed. This process necessitates reproducible program
executions. Applying classical debugging techniques such
using breakpoints or single stepping in real-time systems
change the temporal behavior and make reproduction of
the observed failure during debugging less likely, if not
impossible. Consequently, these techniques are not
directly applicable for cyclic debugging of real-time
systems.

In this paper we present a novel software-based
approach for cyclic debugging of distributed real-time
systems. By on-line recording significant system events,
and off-line deterministically replaying them, we can
inspect the real-time system in great detail while still
preserving its real-time behavior.

�����
��: Determinism, debugging, monitoring,
probe-effect, testing, distributed real-time systems, replay.

�� ��	
����	���

Testing is the process of revealing failures by exploring
the runtime behavior of the system for violations of the
specifications. Debugging on the other hand is concerned
with revealing the errors that cause the failures. The
execution of an error infects the state of the system, e.g.,
by infecting variables, memory, etc, and finally the
infected state propagates to outputs. The process of
debugging is thus to follow the trace of the failure back to
the error. In order to reveal the error it is imperative that
we can reproduce the failure repeatedly. This requires
knowledge of the start conditions and a deterministic
execution. For sequential software with no real-time
requirements it is sufficient to apply the same input and
the same internal state in order to reproduce a failure. For

distributed real-time software the situation gets more
complicated due to timing and ordering issues.

There are several problems to be solved in moving
from debugging of sequential programs (as handled by
standard commercial debuggers) to debugging of
distributed real-time programs. We will briefly discuss the
main issues by making the transition in three steps:

����������������	����
����	�����
��
���

In moving from debugging sequential non real-time
programs to debugging sequential real-time programs
temporal constraints on interactions with the external
process have to be met. This means that classical
debugging with breakpoints and single-stepping cannot be
directly applied since it would make timely reproduction
of outputs to the external process impossible. Likewise,
using a debugger we cannot directly reproduce inputs to
the system that depend on the time when the program is
executed, e.g., readings of sensors and the local real-time
clock. A mechanism, which during debugging faithfully
and deterministically reproduces these interactions, is
required.

�������������	��	�� ����
����	�����
��
���

In moving from debugging sequential real-time programs
to debugging multitasking real-time programs executing
on a single processor we must in addition have
mechanisms for reproducing task interleavings. We need
for example, to keep track of preemptions, interrupts, and
accesses to critical regions. That is, we must have
mechanisms for reproducing the interactions and
synchronizations between the executing tasks.

Reproducing rendezvous between tasks have been covered
by Tai et al. [14], as have reproduction of interrupts and
task-switches using special hardware, Tsai et al. [17].
Reproducing interrupts and task switches using both
special hardware and software has been covered by Dodd
et al. [1]. However, since both the two latter approaches
are relying on special hardware and profiling tools they

are not very useful in practice. They also lack support for
debugging of distributed real-time systems, even though
Dodd et al. claim they do.

����������������	
���	���
����	�������	���

The transition from debugging single node real-time
systems to debugging distributed real-time programs
introduces the additional problems of correlating
observations on different nodes and break-pointing tasks
on different nodes at exactly the same time.

To implement distributed breakpointing we either need to
send ���� or �������	
messages from one node to a set of
other nodes with the problem of nonzero communication
latencies, or we need �
������ agreed upon times when the
executions should be halted or resumed. The latter is
complicated by the lack of perfectly synchronized clocks,
meaning that we cannot ensure that tasks halt or resume
their execution at exactly the same time. Consequently, a
different approach is needed.

���������������	�
�����	���
�����

We will in this paper present a software based
debugging technique based on deterministic replay [8][9],
which is a technique that records significant events at run-
time and then uses the recording off-line to reproduce and
examine the system behavior. The examinations can be of
finer detail than the events recorded. For example, by
recording the actual inputs to tasks we can off-line re-
execute the tasks using a debugger and examine the
internal behavior to a finer degree of detail than recorded.

Deterministic replay is useful for tracking down errors
that have caused a detected failure, but is not appropriate
for speculative explorations of program behaviors, since
only recorded executions can be replayed.

We have adopted deterministic replay to single tasking,
multi-tasking, and distributed real-time systems. By
recording all synchronization, scheduling and
communication events, including interactions with the
external process, we can off-line examine the actual real-
time behavior without having to run the system in real-
time, and without using intrusive observations, potentially
leading to probe-effects [3]. Probe-effects occur when the
relative timing in the system is perturbed by observations,
e.g., by breakpoints put there solely for facilitating
observations. We can thus deterministically replay the task
executions, the task switches, interrupt interference and
the system behavior repeatedly. This also scales to
distributed real-time systems with globally synchronized
time bases. If we record all interactions between the nodes
we can locally on each node deterministically reproduce
them and globally correlate them with corresponding
events recorded on other nodes.

!��	
���	���

The contribution of this paper is a method for debugging
real-time systems, which to our knowledge is

• �	
 �����
 	����	��
 �������	
 ���	�
 �	����
 ���
�	�	���������
�	�������
��
 �����	
 �������
 ���
������
�������
�	������	
����	���

• �	
 �����
 �	����
 ���
 �	�	���������
 �	�������
 ��
���������	�
�	������	
����	���

"���
���	����# �	�����
�
presents our system model and
�	�����
 �
 our method for real-time systems debugging.
�	�����
 � provides a small example to illustrate the
method. �	�����
� discusses some general issues related to
deterministic replay, and �	�����
 gives an overview of
related work. Finally, in �	�����
!, we conclude and give
some hints on future work.

$� �%�����	���&����

We assume a distributed system consisting of a set of
nodes. Each node is a self sufficient computing element
with CPU, memory, network access, a local clock and I/O
units for sampling and actuation of an external process.
We further assume the existence of a global synchronized
time base [2][4] with a known precision δ, meaning that
no two nodes in the system have local clocks differing by
more than δ.

The software that runs on the distributed system
consists of a set of concurrent tasks and interrupt routines,
communicating by message passing or via shared memory.
Tasks and interrupts may have functional and temporal
side effects due to preemption, message passing and
shared memory.

We assume a run-time real-time kernel that supports
preemptive scheduling, and require that the kernel has a
recording mechanism such that significant system events
like task starts, preemptions, resumptions, terminations
and access to the real-time clock can be recorded, as
illustrated in Figure 1. The detail of the monitoring should
penetrate to such a level that the exact occurrence of

TASK
Recorder

Time stamps

External process

I/O

Activation
System calls
Preemptions
Termination
Interrupt hits

RT-kernel
monitor

)LJXUH���.HUQHO�ZLWK�PRQLWRULQJ�DQG�UHFRUGLQJ�

preemptions and interrupt interference can be determined,
i.e., it should record the program counter values where the
events occurred. All events should also be time-stamped
according to the local real-time clock.

We further require that the recording mechanism
governed by the run-time kernel supports programmer
defined recordings. That is, there should be system calls
for recording I/O operations, local state, access to the real-
time clock, received messages, and access to shared data.

All these monitoring mechanisms, whether they reside
in the real-time kernel or inside the tasks, will give rise to
probe-effects [3][9] if they are removed from the target
system. That is, removing the monitoring probes will
affect the execution, thereby potentially leading to new
and untested behaviors. The probes should therefore
remain in the target system. It is consequently essential to
consider monitoring early in the design process and
allocate resources for it.

We further assume that we have an off-line version of
the real-time kernel (shown in Figure 2), where the real-
time clock and the scheduling have been disabled. The
off-line kernel with support by a regular debugger is
capable of replaying all significant system events
recorded. This includes starting tasks in the order
recorded, and making task-switches and repeating
interrupt interference at the recorded program counter
values. The replay scheme also reproduces accesses to the
local clock, writing and reading of I/O, communications
and accesses to shared data by providing recorded values.

'� ����	�������	�������������

We will now in further detail discuss and describe our
method for achieving deterministic replay. We follow the
structure in the introduction and start by giving our
solution to handling sequential software with real-time
constraints, and then continue with multitasking real-time
systems, and distributed multitasking real-time systems.

'(�������������������	�� �
����	�������	���

Debugging of sequential software with real-time
constraints, requires that the debugging is performed such
that the temporal requirements imposed by the
environment are still fulfilled. This means, as pointed out
in the introduction, that classical debugging with
breakpoints and single-stepping cannot be directly
applied, since it would invalidate timely reproduction of
inputs and outputs.

However, if we identify and record significant events in
the execution of the sequential program, such as reading
values from an external process, accesses to the local
clock, and outputs to external processes, we can order
them. By ordering all events according to the local clock,
and recording the content of the events (e.g., the values
read) together with the time when they occurred we can
off-line reproduce them in a timely fashion. That is, during
debugging we “short-circuit” all events corresponding to
the ones recorded by substituting readings of actual values
with recorded values.

An alternative to our approach is to use a simulator of
the external process, and synchronize the time of the
simulator with the debugged system. However, simulation
is not required if we already have identified the outputs
that caused the failure.

'($��������������	�	�� ����
����	�������	���

To debug multitasking real-time systems we need, in
addition to what is recorded for single task real-time
systems, to record task interleavings. That is, we should
record the transfers of control. To identify the time and
location of the transfers we must for each transferring
event assign a time stamp, and record the program counter
(PC).

To reproduce the run-time behavior during debugging
we replace all inputs and outputs with recorded values,
and instrument all tasks by inserting trap calls at the PC
values where control transfers have been recorded. These
trap calls then execute the off-line kernel, which has all the
functionality of a real-time kernel, but all transfer of
control, all accesses to critical regions, all releases of
higher priority tasks, and all preemptions by interrupts are
dictated by the recording. Inter-process communication is
however handled as in the run-time kernel, since it can be
deterministically reproduced by reexecuting the program
code.

Figure 3 depicts a schedule with the three tasks ", #,
and $. We can see that task " is being preempted by task
and $. During debugging this scenario can be
reproduced by instrumenting task " with calls to the kernel
at "’s PC=% and PC=�.

)LJXUH���2IIOLQH�NHUQHO�ZLWK�GHEXJJHU

TASK

Recorder

I/O

Activation
System calls
Preemptions
Termination
Interrupts

 RT-kernel
off-line

DEBUGGER

The above reasoning is a bit simplistic when we have
program control structures like loops and recursive calls,
since in such structures the same PC value will be
executed several times, and hence the PC value does not
define a unique program state. This can be alleviated if the
target processor supports instruction or cycle counters.
The PC will together with any of these counters define a
unique state. However, since these hardware features are
not very common in commercial embedded micro-
controllers, we will use the following alternative approach:

Instead of just saving the PC, we will save all
information stored by the kernel in context-switches,
including CPU registers (address and data), as well as
stack and program counter registers pertaining to the task
that is preempted. The entire saved context can be used as
a unique marker for the preempted program. The program
counter and the contents of the stack register would for
example be sufficient for differentiating between recursive
calls.

For loops, this approach is not guaranteed to uniquely
identify states, since (at least theoretically) a loop may
leave the registers unchanged. However, for most realistic
programs the context together with the PC will define a
unique state. Anyhow, in the unlikely situation, during
replay, of having the wrong iteration of a loop preempted
due to indistinguishable contexts, the functional behavior
of the replay will be different from the one recorded – and
therefore detectable; or if the behaviors are identical, then
it is of no consequence.

Any multitasking kernel must save the contexts of
suspended tasks in order to resume them, and in the
process of making the recording for replay we must store
contexts an additional time. To eliminate this overhead we
can make the kernel store and retrieve all contexts for
suspended tasks from the recording instead, i.e., we need
only store the contexts once.

Our approach eliminates the need for special hardware
instruction counters since it requires no extra support other
than a recording mechanism in the real-time kernel. If we
nonetheless have a target processor with instruction
counters or cycle counters, we can easily include these
counters into the recorded contexts, and thus guarantee
unique states.

To enable replay of the recorded event history we insert
trap calls to the off-line kernel at all recorded PC values.
During replay we consequently get plenty of calls to the
kernel for recorded PC values that are within loops, but
the kernel will not take any action for contexts that are
different from the recorded one.

An alternative approach to keep track of loop executions
is to make use of software instruction counters [10] that
count backward branches and subroutine calls in the
assembly code. However, this technique requires special
target specific tools that scan through the assembly code
and instrument all backward branches. The approach also
affects the performance, since it usually dedicates one or
more CPU registers to the instruction counter, and
therefore reduces the possibility of compiler
optimizations.

'('��������������	
���	���
����	�������	���

We will now show how local recordings can be used in
achieving deterministic distributed replay. The basic idea
is to correlate the local time stamps up to the precision of
the clock synchronization. This will allow us to correlate
the recordings on the different nodes. As we by design can
record significant events like I/O sampling and inter-
process communication, we can on each node record the
contents and arrival time of messages from other nodes.
The recording of the messages therefore makes it possible
to locally replay, one node at a time, the exchange with
other nodes in the system without having to replay the
entire system concurrently. Time stamps of all events
make it possible to debug the entire distributed real-time
system, and enables visualizations of all recorded and
recalculated events in the system. Alternatively, to reduce
the amount of information recorded we can off-line re-
execute the communication between the nodes. However,
this requires that we order-wise synchronize all
communication between the nodes, meaning that a fast
node waits up until the slow node(s) catch up. This can be
done truly concurrently using several nodes, or emulated
on a single node for a set of homogenous nodes.

)�������	�	��

In order to correlate observations in the system we need
to know their orderings, i.e., determine which observations
are concurrent, and which precede and succeed a
particular event. In single node systems or tightly coupled

2 4 6 8 10

A A A

B
C

)LJXUH���7DVN�$�LV�SUHHPSWHG�WZLFH�E\�WDVN�%�DQG�&�

Save: PC=x

Restore: PC=x
Save: PC=y

Restore: PC=y

multiprocessor systems with a common clock this is not a
problem, but for distributed systems where there is no
common clock this is a significant problem. An ordering
on each node can be established using the local clocks, but
how can observations between nodes be correlated?

One approach is to establish a causal ordering between
observed events, using for example logical clocks [7]
derived from the messages passed between the nodes.
However, this is not a viable solution if tasks on different
nodes work on a common external process, without
exchanging messages, or when the duration between
observed events is of significance. In such cases we need
to establish a total ordering of the observed events in the
system. This can be achieved by forming a synchronized
global time base [2][4]. That is, we keep all local clocks
synchronized to a specified precision δ� meaning that no
two nodes in the system have local clocks differing by
more than δ.

 Figure 4 illustrates the local ticks in a distributed
system with three nodes, all with tick rate ∏&
 and
synchronized to the precision δ�
 There is no point in
having ∏
≤
δ*�because the precision δ�dictates the margin
of error of clock readings, and thus a ∏
≤
δ
would result
in overlaps of the δ intervals during which the
synchronized local ticks may occur [6]�

Consider Figure 5, illustrating two external events that
all three nodes can observe, and which they all timestamp.
Due to the sparse time base [5] and the precision δ,
we
end up with timestamps of the same event that differ by 1
time unit (i.e., ∏) while still complying with the precision
of the global time base. This means that some nodes will
consider events to be concurrent (i.e., having identical
time stamps), while other nodes will assign distinct time
stamps to the same events. This is illustrated in Figure 5,
where node 2 will give the events e1 and e2 identical time
stamps, while they will have difference 2 and 1 on nodes 1
and 3, respectively. That is, only events separated by more
than 2∏ can be globally ordered.

+� ���������,�����

We are now going to give an example of how the entire
recording and replay procedure can be performed. The
considered system has four tasks ", #, $, and '
 (Figure
6). The tasks ", #, and ' are functionally related and
exchange information. Task " samples an external process
via an analog to digital converter (A/D), task # performs
some calculation based on previous messages from task ',
and task ' receives both the processed A/D value and a
message from #; subsequently ' sends a new message to
#.

Task $ has no functional relation to the other tasks, but
preempts # at certain rare occasions, e.g., when # is
subject to interrupt interference, as depicted in Figure 7.

2

#
$

4 6 8 10

" '

� 14 16

)LJXUH���7KH�UHFRUGHG�H[HFXWLRQ�RUGHU�VFHQDULR

(

)LJXUH����7KH�HIIHFWV�RI�D�VSDUVH�WLPH�EDVH�

δ δ

����������������

�����

�����

�����

δ δ

δ δ

� ����

� ����

� ����

	
�	

	
�

	
�

	

	

∏

)LJXUH���7KH�RFFXUUHQFH�RI�ORFDO�WLFNV�RQ�WKUHH�QRGHV

A
Read A/D

&

%

'

)LJXUH���7KH�GDWD�IORZ�EHWZHHQ�WKH�WDVNV

However, task $ and # both uses a function that by a
programming mistake is made non re-entrant. This
function causes a failure in #, which subsequently sends
an erroneous message to ', which in turn actuates an
erroneous command to an external process, which fails.
The interrupt (hits #, and postpones #’s completion
time. (causes in this case # to be preempted by $ and
therefore becomes infected by the erroneous non-reentrant
function. This rare scenario causes the failure. Now,
assume that we have detected this failure and want to track
down the error.

We have the following control transfer recording for time
0 -16:

Together with the following data recording:

During debugging all tasks are instrumented with calls to
the off-line kernel at their termination, and preempted
tasks # and $ are instrumented with calls to the off-line
kernel at their recorded PC values. Task "’s access to the
read_ad() function is short circuited and feed with the
recorded value instead. Task # gets at its start a message
from ', which is recorded before time 0.

The message transfers from " and # to $ is performed by
the off-line kernel in the same way as the on-line kernel.

The programmer/analyst can breakpoint, single step and
inspect the control and data flow of the tasks as he or she
see fit in pursuit of finding the error. Since the replay

mechanism reproduces all significant events pertaining to
the real-time behavior of the system the debugging will
not cause any probe-effects.

As can be gathered from the example it is fairly
straightforward to replay a recorded execution. The error
can be tracked down because we can reproduce the exact
interleavings of the tasks and interrupts repeatedly.
Experience has shown that reproducing failures of the
exemplified kind is very difficult in practice. A
deterministic replay mechanism is thus an invaluable tool.

-� ����������

Schütz [12] has made three claims about deterministic
replay in general, which we briefly comment below:

!������#�)�	
���
����
 �	����
����
���
��	*������
�		�
���	�*	�&
���
��
�������		�
����
	*	��
�����������
����	�
�	��*���
 ����
 �	
 ���	�*	�
 �������	��
 ���
 �	
 ���*��	��
����	
 �	����
 ���	�
 ����	
 ��
 ��	
 ������	
 ���	
 �	*	�
 ��	
������
 ��
 �����������
 �	+���	�
 ��
 �������
 ����	�
 "��
������
 ���
 ���	��	����	
 	*	���&
 	���
 �	����	�&
 ����
 �	
�	���

The amount and the necessary information required is of
course a design issue, and it is not true that all inputs and
intermediate messages must be recorded. The replay can
as we have shown actually re-execute the tasks in the
recorded event history. Only those inputs and messages
which are not re-calculated, or re-sent, during the replay
must be kept. This is specifically the case for RTS with
periodic tasks, where we can make use of the knowledge
of the schedule (precedence relations) and the duration
before the schedule repeats it self (the LCM – the Least
Common Multiple of the task period times.) In systems
where deterministic replay has previously been employed,
e.g., distributed systems [11] and concurrent programming
(ADA) [14] this has not been the case. The restrictions,
and predictability, inherent to scheduled RTS do therefore
give us the great advantage of only recording the data that
is not recalculated during replay.

!�����$#�,�
�
�������
���
�		�
������	�
-	���&
����	��	�.
��	�	
��	
��
�������		�
 ����
 ��	
���
	*	��
�������
 ��
 �����
*�����

If a program has been modified, the relative timing
between racing tasks can change and thus the recorded
history will not be valid. The timing differences can stem
from a changed data flow, or that the actual execution time
of the modified task has changed. In such cases it is likely
that a new recording must be made. However, the
probability of actually recording the sequence of events
that pertain to the modification may be very low. As
explained earlier, debugging in general and deterministic
replay especially is not suited for speculative

1. Task " starts at time 0

2. Task " stops at time 2

3. Task # starts at time 4

4. Interrupt (starts at time 6, and preempts task
at PC=%

5. Interrupt (stops at time 6,5

6. Task # resumes at time 6,5, at PC=%

7. Task $ starts at time 8, and preempts task #
at PC=�

8. Task $ stops at time 10

9. Task # resumes at time 10, at PC=�

10. Task # stops at time 10,3

11. Task ' starts at time 14

12. Task ' stops at time 16

1. Task " at time 1, read_ad() = 234

2. Task # at time 4, message from ' = 78

investigations of the system behavior. This is an issue for
regression testing, as explained in [15][16].

!�����'# �	
�	�������
���
����
�	
�	����	�
��
��	
���	
�������	
��
��	
�	�������
���
���	
���

The event history can only be replayed on the target
hardware. This is true to some extent, but should not be a
problem if remote debugging is used. The replay could
also be performed on the host computer if we have a
hardware simulator, which could run the native instruction
set of the target CPU. Another possibility would be to
identify the actual high-level language statements where
task switches or interrupts occurred, rather than try to
replay the exact machine code instructions, which of
course is machine dependent. In the latter case however,
we run into the problem of defining a unique state when
differentiating between iterations in loops.

.� ���	�����

There are a few descriptions of deterministic replay
mechanisms (related to real-time systems) in the literature:

• A deterministic replay method for concurrent Ada
programs is presented by Tai et al [14]. They log the
synchronization sequence (rendezvous) for a
concurrent program / with input 0. The source code
is then modified to facilitate replay; forcing certain
rendezvous so that / follows the same
synchronization sequence for 0. This approach can
reproduce the synchronization orderings for
concurrent Ada programs, but not the duration
between significant events, because the enforcement
(changing the code) of specific synchronization
sequences introduces gross temporal probe-effects.
The replay scheme is thus not suited for real-time
systems, neither are issues like unwanted side-effects
caused by preempting tasks considered. The
granularity of the enforced rendezvous does not allow
preemptions, or interrupts for that matter, to be
replayed. It is unclear how the method can be
extended to handle interrupts, and how it can be used
in a distributed environment.

• Tsai et al present a hardware monitoring and replay
mechanism for real-time uniprocessors [17]. Their
approach can replay significant events with respect to
order, access to time, and asynchronous interrupts.
The motivation for the hardware monitoring
mechanism is to minimize the probe-effect, and thus
make it suitable for real-time systems. Although it
does minimizes the probe-effect, its overhead is not
predictable, because their dual monitoring processing
unit causes unpredictable interference on the target
system by generating an interrupt for every event
monitored [1]. They also record excessive details of

the target processors execution, e.g., a 6 byte
immediate AND instruction on a Motorola 68000
processor generates 265 bytes of recorded data. Their
approach can reproduce asynchronous interrupts only
if the target CPU has a dedicated hardware instruction
counter. The used hardware approach is inherently
target specific, and hard to adapt to other systems.
The system is designed for single processor systems
and has no support for distributed real-time systems.

• The software-based approach 12)3 [1] is designed
for the HARTS distributed (real-time) system
multiprocessor architecture [13]. A general-purpose
processor is dedicated to monitoring on each
multiprocessor. The monitor can observe the target
processors via shared memory. The target systems
software is instrumented with monitoring routines, by
means of modifying system service calls, interrupt
service routines, and making use of a feature in the
pSOS real-time kernel for monitoring task-switches.
Shared variable references can also be monitored, as
can programmer defined application specific events.
The recorded events can then be replayed off-line in a
debugger. In contrast to the hardware supported
instruction counter as used by Tsai et al., they make
use of a software based instructions counter, as
introduced by [10]. In conjunction with the program
counter, the software instruction counter can be used
to reproduce interrupt interferences on the tasks. The
paper does not elaborate on this issue. Using the
recorded event history, off-line debugging can be
performed while still having interrupts and task
switches occurring at the same machine code
instruction as during run-time. Interrupt occurrences
are guaranteed off-line by inserting trap instructions at
the recorded program counter value. The paper lacks
information on how they achieve a consistent global
state, i.e., how the recorded events on different nodes
can consistently be related to each other. As they
claim that their approach is suitable for distributed
real-time systems, the lack of a discussion concerning
global time, clock synchronization, and the ordering
of events, diminish an otherwise interesting approach.
Their basic assumption about having a distributed
system consisting of multiprocessor nodes makes their
�������	 approach less general. In fact, it makes it a
hardware approach, because their target architecture
is a shared memory multiprocessor, and their basic
assumptions of non-interference are based on this
shared memory and thus not applicable to distributed
uniprocessors.

/� !����������

We have presented a method for deterministic debugging
of distributed real-time systems. The method relies on an
instrumented kernel to on-line record the occurrences and
timings of major system events. The recording can then,
using a special debug kernel, be replayed off-line to
faithfully reproduce the functional and temporal behavior
of the recorded execution, while allowing standard
debugging using break points etc. to be applied.

The cost for this dramatically increased debugging
capability is the overhead induced by the kernel
instrumentation and by instrumentation of the application
code. To eliminate probe-effects, these instrumentations
should remain in the deployed system. We are however
convinced that this is a justifiable penalty for many
applications.

We are currently implementing an experimental real-time
kernel for evaluation of the presented debugging method,
but also investigate modifications of existing real-time
kernels to support deterministic replay.

0� ���
�����
[1] Dodd P. S., Ravishankar C. V. Monitoring and debugging

distributed real-time programs. Software-practice and
experience. Vol. 22(10): 863-877, October 1992.

[2] Eriksson C., Thane H. and Gustafsson M. A
Communication Protocol for Hard and Soft Real-Time
Systems. In the proceedings of the 8th Euromicro Real-Time
Workshop, L’Aquila Italy, June, 1996.

[3] Gait J. A Probe Effect in Concurrent Programs. Software –
Practice and Experience, 16(3):225-233, March, 1986.

[4] Kopetz H and Ochsenreiter W. Clock Synchronisation in
Distributed Real-Time Systems. IEEE Transactions on
Computers, August 1987.

[5] Kopetz H. Sparse time versus dense time in distributed
real-time systems. In the proceedings of the 12th

International Conference on Distributed Computing
Systems, pp. 460-467, 1992.

[6] Kopetz, H. and Kim, K. Real-time temporal uncertainties
in interactions among real-time objects. Proceedings of the
9th IEEE Symposium on Reliable Distributed Systems,
Huntsville, AL, 1990.

[7] Lamport L. Time, clock, and the ordering of events in a
distributed systems. Communications of ACM, (21):558-
565: July 1978.

[8] LeBlanc T. J. and Mellor-Crummey J. M. Debugging
parallel programs with instant replay. IEEE Transactions
on Computers,36(4):471-482, April 1987.

[9] McDowell C.E. and Hembold D.P. Debugging concurrent
programs. ACM Computing Surveys, 21(4):593-622,
December 1989.

[10] Mellor-Crummey J. M. and LeBlanc T. J. A software
instruction counter. In Proc. of 3d International Conference
on Architectural Support for Programming Languages and
Operating Systerns, Boston, pp. 78-86, April 1989.

[11] Netzer R.H.B. and Xu Y. Replaying Distributed Programs
Without Message Logging. In proc. 6th IEEE Int.
Symposium on High Performance Distributed Computing.
Pp. 137-147. August 1997.

[12] Schütz W. Fundamental Issues in Testing Distributed
Real-Time Systems. Real-Time Systems journal, Kluwer
A.P., vol. 7(2):129-157, 1994

[13] Shin K. G. HARTS: A distributed real-time architecture.
IEEE Computer, 24(5):25-35, May, 1991.

[14] Tai K.C, Carver R.H., and Obaid E.E. Debugging
concurrent Ada programs by deterministic execution. IEEE
Transactions on Software Engineering. Vol. 17(1):45-63,
January 1991.

[15] Thane H. and Hansson H. Handling Interrupts in Testing
of Distributed Real-Time Systems. In proc. Real-Time
Computing Systems and Applications conference
(RTCSA’99), Hong Kong, December, 1999.

[16] Thane H. and Hansson H. Towards Systematic Testing of
Distributed Real-Time Systems. Proc. 20th IEEE Real-
Time Systems Symposium (RTSS’99), Phoenix, Arizona,
December 1999.

[17] Tsai J.P., Fang K.-Y., Chen H.-Y., and Bi Y.-D. A
Noninterference Monitoring and Replay Mechanism for
Real-Time Software Testing and Debugging. IEEE
Transactions on Software Engineering, 16: 897 - 916,
1990.

