
On Adaptive Hierarchical Scheduling of Real-time
Systems Using a Feedback Controller
Nima Moghaddami Khalilzad, Moris Behnam, Thomas Nolte and Mikael Åsberg

MRTC/Mälardalen University
P.O. Box 883, SE-721 23 Västerås, Sweden

nmi09001@student.mdh.se

Abstract—Hierarchical scheduling provides predictable timing
and temporal isolation; two properties desirable in real-time em-
bedded systems. In hierarchically scheduled systems, subsystems
should receive a sufficient amount of CPU resources in order
to be able to guarantee timing constraints of its internal parts
(tasks). In static systems, an exact amount of CPU resource
can be allocated to a subsystem. However, in dynamic systems,
where execution times of tasks vary considerably during run-
time, it is desirable to give a dynamic portion of the CPU given
the current load situation. In this paper we present a feedback
control approach for adapting the amount of CPU resource that is
allocated to subsystems during run-time such that each subsystem
receives sufficient resources while keeping the number of deadline
violations to a minimum. We also show an example simulation
where the controller adapts the budget of a subsystem.

I. INTRODUCTION

Embedded real-time systems become increasingly more
complex, making it difficult to combine hard real-time guar-
antees with efficient use of system resources. When run-
time behavior of tasks in a complex real-time system is
difficult to predict, the feedback scheduling concept can be
used as a powerful tool for adapting scheduling to the task’s
requirements. Scheduling parameters can be adapted during
run-time such that tasks get a better service in response to
their request for the shared resources. Although a variety
of techniques are available based on feedback scheduling, a
suitable technique should be designed given the context of our
Hierarchical Scheduling Framework (HSF) [1].

The HSF provides a modular way for scheduling and
guarantying timing constraints of real-time tasks [2], [3]. The
HSF can be illustrated using a tree structure in which each
node is responsible for scheduling its children using resources
received from its corresponding parent node. Each child pro-
vides the parent with parameters such as period and budget
(the subsystem interface), and parents schedule their children
according to the subsystem interface parameters. Resource
efficient interface variables can be found, for example, by
assuming a fixed period for subsystems and trying to find a
minimum possible value for the budget in which the system
is schedulable [4]. In this paper, a feedback mechanism is
introduced for online control of the interface parameters in a
HSF. The goal of the presented approach is to adapt the budget
of subsystems during run-time to achieve an efficient CPU
utilization in comparison with systems having pre-assigned
fixed interface parameters, especially when tasks within a

subsystem experience a considerable change in their execution
time. Given a particular subsystem period, the subsystem
budget should be kept to a minimum while at the same time
minimizing the number of potential deadline misses within a
predetermined time-interval. The contributions of this paper
are the design of the feedback control system for dynamic
adaptation of resource parameters in the HSF, and a simulation
study investigating the performance of our solution.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief information about our HSF. Section III
describes the mathematical model of the plant as well as the
designed controller. Section IV shows one example simulation
of our HSF with feedback control. Related works are presented
in Section V. Finally, conclusion is presented in Section VI.

II. THE HIERARCHICAL SCHEDULING FRAMEWORK

In this paper we investigate feedback scheduling in a single
CPU where each CPU is modeled as a system S. Each system
consists of a set of subsystems SS ∈ S. The system is scheduled
using a two level HSF. During run-time, the global scheduler
chooses one of the subsystems and allocates CPU to that
subsystem. Then, the subsystem’s local scheduler shares this
allocated CPU among its tasks according to its scheduling
algorithm.

A. Subsystem Model

Each subsystem SS is represented by its timing interface
parameters (PS,BS) where PS and BS are subsystem period
and budget respectively. Each subsystem SS also consists of a
set of tasks τS and a local scheduler.

B. Task Model

We assume the periodic soft real-time task model
τi(Ti,Pi,Ci,Di), where Ti, Pi, Ci and Di are task period, priority,
worst-case execution time and relative deadline respectively.

III. CONTROLLER

The objective of this section is to provide detailed in-
formation about how control theory is applied to our HSF.
The controller changes the manipulated variables based on
the input, which is the controller error, and the controller
algorithm. The controller error is defined as the difference
between controlled variable and the reference input. The first
step in designing a controller is to define the controlled and



manipulated variables, which are explained in this section. In
the design of the controller we have used a similar approach
as the one presented in [5]. The significance of our work is
that we apply feedback control to the context of hierarchical
scheduling. We use two feedback loops to control the plant.
The first loop is responsible for controlling the number of
deadline misses and the second loop tries to reduce amount
of idle time in the subsystems. To simplify the analyses, these
feedback loops are considered to be independent from each
other. Therefore, for each loop a set of controlled variables as
well as analyses are presented seperately. It is important to no-
tice that in both design and simulation phases we assume there
are enough resources for all subsystems such that increasing
budget of one subsystem does not affect timing guarantees of
other subsystems.

A. Controlled Variables

The first controlled variable is MS(t) which is defined as
the total number of missed deadline jobs of all tasks inside
the subsystem τi ∈ SS, within one specified time window (twm)
prior to the current time t. The control loop which uses MS(t)
as its controlled variable is called ”M-loop” in the rest of the
paper. The next controlled variable is US(t) that is defined by
the following formula

US(t) =
BS(t)
ES(t)

where BS(t) and ES(t) represent total budget of the subsystem
and total measured time of CPU usage by all tasks of the
subsystem SS in the time window twu respectively. Similar to
the M-loop, we call the second control loop ”U-loop” in the
rest of the paper.

B. Manipulated Variables

The budget of subsystem BS(t) is considered as the manip-
ulated variable. The budget should be adjusted based on the
error between the controlled variable and the reference input.
In each sampling period, the controller adds budget change
value DBS(t) to the previous value of the subsystem budget.

BS(t) = BS(t−1)+DBS(t)

C. Model of Plant

In this section an approximate analytical model of the
controlled system is presented. This model is useful when we
are looking for optimal values of the tunable parameters in
the controller. Based on the model and some analyses we find
boundaries for tunable variables. Relation between the control
output (DBS(t)) and controlled variables (US(t) and MS(t)) is
of interest in the plant model. For the controlled variable US(t),
from the definition we have

US(t) =
BS(t)
ES(t)

.

In order to continue analysis we use WCETS = max(ES(t)).
Hence

US(t) =
BS(t)

WCETS

where WCETS is a total worst case execution time of all tasks
in subsystem SS. After transfering to the z domain, from the
control input DB(z) to U(z) the transfer function is: U(z) =
PU (z)DB(z) and PU (z) = GU/(z−1) where GU = 1

WCETS
.

We can define MSS(t) based on USS and derive a similar
model for MSS(t):

MSS(t) = MSS(t−1)+Gm(USS(t)−USS(t−1))

where Gm is deadline miss factor and can be found by plotting
the MSS(t) curve as a function of USS(t). For continuing the
analysis we use GM as the maximum value of Gm. Similar to
USS(t) we can derive the transfer function PM(z)=GU GM/(z−
1).

D. Model of Controller

A PI controller is used to control the plant. As it is men-
tioned in [5] the rationale behind not using the derivative term
(D) is that this term might amplify noise when system load
experiences significant changes. The PI controller function is

DBS(t) = KPErorrS(t)+KI ∑tw ErrorS(t)

where KP, KI , ErorrS(t) and tw are proportional gain, integral
gain, error value of the subsystem SS at time t and time
window respectively. Each control loop has its own controller.
Therefore, introduced parameters are specific to each loop.
These variables are tunable parameters of the controller and
should be tuned to get a desirable performance. After applying
the z-transform we have

DBS(z) = KP +
KI

(z−1) .

E. Closed-Loop System Model

If we consider G = GU GM for the M-loop and G = GU for
the U-loop, we can derive the following closed-loop system
model for both loops:

HS(z) =
C(z)P(z)

1+C(z)P(z)
=

GKP(z−1)+KIG
(z−1)2 +G(KP(z−1)+KI)

(1)

F. Stability Analysis

From (1) the characteristic equation is:

(z−1)2 +G(KP(z−1)+KI) = z2 +α1z+α2

where α1 = GKP−2 and α2 = 1−GKP +GKI . According to
Jury’s scheme [6, p. 82] the stability conditions are:

α2 < 1, α2 >−1+α1 and α2 >−1−α1.

These conditions give us boundaries on tunable variables of
the system.

IV. SIMULATION RESULTS

The simulation environment is prepared by modeling the
HSF in the Times1 tool and generating a C++ file from
the model [8]. The generated code is extended so that it

1Times is a tool for modeling and implementation of embedded systems
[7]. Since Times supports task automata (timed automata with tasks), it is
used for modeling, verification and code synthesis purposes.



contains the designed PI controller function. In addition, some
functions are added for calculating the controlled variables
in the scheduler body. Among all simulations conducted on
the prepared scheduler, due to the space limitation in this
paper, we present an example scenario that shows budget
adaptation in situations which the execution time of a task
in one subsystem varies from low to high and vice versa. We
show how the budget is changed in response to the new load
condition of the subsystem.

There are totally two subsystems in the system. In both
global and local levels we use the fixed priority algorithm
for scheduling subsystems and tasks. When a deadline miss
happens, the task continues executing until it finishes. Spec-
ifications of subsystems are shown in Table I. We assume
that tasks which are inside S1 have a fixed execution time
and that using the pre-assigned budget they can meet their
deadlines. In subsystem S2 there are two tasks, and their
specifications are shown in Table II. We also assume that
task one (τ1) experiences some changes in its execution
time during run-time. Execution time changes are shown in
Table III. The execution time variation is done using a function
which is responsible for changing execution time of tasks to
a predefined value at a specific clock cycle. In the presented
simulation, execution time is changed in a range such that it
does not violate the whole system schedulability condition.

Name PS BS Priority
S1 19 2 1
S2 5 3 0

TABLE I
SUBSYSTEMS SPECIFICATIONS

Name Ti Di Pi Ci
τ1 10 6 1 3
τ2 11 8 0 1

TABLE II
TASKS SPECIFICATIONS OF S1

Time 0 50 200 400
Ci 3 2 3 0

TABLE III
EXECUTION TIME CHANGES OF τ1

The tw and controller period are considered to be 15 in this
example. Hence, every 15 ticks the controller measures the
controlled variables, and based on their value takes action by
changing the budget of the subsystem one S1. The controller
period is experimentally tuned by taking into consideration
the trade-off between calculation overhead and the controller
response speed. In order to have a faster reaction to the
environment changes, we can decrease the controller period.
Consequently, it can sample and actuate more frequently which
however increases the run-time overhead. After changing the
controller period, tunable variables of the controller should be
tuned to acquire a better controller performance. The controller
is implemented inside the scheduler such that the scheduler
runs the controller function (periodically) before other parts
of the code.

The system is executed for 600 ticks, and the controlled
variables as well as the budget are sampled in each controller

execution, and the result is illustrated in Figure 1. As it is
shown in Figure 1, 15 ticks after the system starts execution,
the controller observes one deadline miss. It means that the
pre-assigned budget is not enough for the tasks of S1 to
meet their deadlines. After observing the deadline miss, the
controller increases the budget and after that all subsystem
tasks are able to finish execution before their corresponding
deadline. At time 50, when the execution time of τ1 is reduced
from three to two, the controller reduces the budget from four
to two in two steps. At time 200, the execution time of τ1 is
increased to three and it causes some deadline misses. After
which the controller observes the deadline misses, it increases
the budget. Finally, the last change happens at time 400, when
the execution time of τ1 is reduced to zero. In this case the
U-loop experiences a huge error value which is conducive to a
sudden change of the budget from four to three and eventually
to one.

The important point to highlight here is that when we move
from low to high execution time, the M-loop plays an essential
role in adapting the budget. On the other hand, when the
execution time is decreased, the U-loop adapts the budget
according to the current requirements of the system.

In order to illustrate the difference between having an
adaptive budget and having a pre-assigned fixed budget, we
have conducted a set of simulations using a fixed budget and
we have measured the amount of idle time and the number
of deadline misses of S1 during first 600 ticks. Table IV
shows a comparison between using different budgets and using
our adaptive approach. Since the scheduler does not support
execution of a task after its period, we couldn’t measure values
for the budget equal to one.

Budget 3 2 1 adaptive
Deadline misses 12 33 - 4
Idle time 197 77 - 185

TABLE IV
IDLE TIME AND DEADLINE MISSES USING DIFFERENT BUDGETS

V. RELATED WORKS

Feedback scheduling has been used in scheduling of control
tasks for acquiring predictable performance when execution
time of tasks are subjected to sudden changes [9]. Model
Predictive Controllers (MPC) are scheduled using a feedback
loop [10]. In [11] feedback-based scheduling is used in the
real-time memory garbage collector.

Feedback scheduling applied to reservation-based algo-
rithms and a complete mathematical analysis is presented
in [12]. In [13] a two level controller is proposed to share
resources among a pipeline of tasks and satisfy Quality of
Service (QoS) requirements. Scheduling of tasks was inves-
tigated in the stochastic domain and a two block controller
was suggested [14]. In [15] a two-level feedback controller
in the context of a reservation technique is introduced, where
application level and system level QoS are improved based on
bandwidth adaptation.

In [16] optimizing techniques are used for controlling
the CPU utilization in multiprocessor systems. Stankovic et



Fig. 1. Execution times, budget and controlled variables change over time

al. have applied feedback control techniques in distributed
systems [17] and they have proposed local and global level
feedback controllers. Lu et al. introduced a Proportional Inte-
gral Derivative (PID) controller which controls CPU utilization
requests based on miss ratio feedback [18]. They continued
their work and presented a two-feedback loop system [5].
None of the aforementioned techniques have been applied in
the context of HSF.

VI. SUMMARY AND CONCLUSIONS

In this paper we have used feedback control techniques in
the context of a hierarchical scheduling framework for adapt-
ing the budgets of subsystems during run-time. Simulation
results show that the controller is able to adapt the budget
when execution times of tasks are changed. When the system
is not overloaded, manipulating the budget of one subsystem
either lets more subsystem tasks to meet their deadlines or it
decreases the response time of the tasks that are inside the
other subsystems in the same node.

Our next step is to investigate multi-mode realtime systems
[19] and integrate hierarchical scheduling with the mode shift
concept. The budget value in different modes can be adapted
using the introduced feedback loops. In addition, we will look
into situations when by changing the budget of a subsystem,
the system becomes not schedulable. In this paper we have
investigated budget change in a single subsystem; however, in
the future we will study more complicated systems in which
two or more subsystems are subjected to the budget change.
Besides, we will conduct some experiments on a real system
to study performance of our adaptive framework. Finally,
investigating and applying feedback techniques in multicore
HSFs is another trend of our work.

REFERENCES

[1] T. Nolte, M. Behnam, M. Åsberg, R. J. Bril, and I. Shin, “Hierarchical
scheduling of complex embedded real-time systems,” in Ecole d’Ete
Temps-Reel (ETR’09), August 2009, pp. 129–142.

[2] Z. Deng and J. W.-S. Liu, “Scheduling real-time applications in an
open environment,” in Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS ’97), 1997, pp. 308–.

[3] G. Lipari and S. Baruah, “A hierarchical extension to the constant
bandwidth server framework,” in Proceedings of the Seventh IEEE Real-
Time Technology and Applications Symposium, 2001, pp. 26 –35.

[4] I. Shin and I. Lee, “Periodic resource model for compositional real-
time guarantees,” in Proceedings of the 24th IEEE Real-Time Systems
Symposium, RTSS, 2003, pp. 2 – 13.

[5] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control real-
time scheduling: Framework, modeling, and algorithms*,” Real-Time
Systems, vol. 23, pp. 85–126, 2002.

[6] B. W. Karl Johan Astrom, Computer-Controlled Systems: Theory and
Design (3rd Edition). Prentice Hall, 1996.

[7] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Times
- a tool for modelling and implementation of embedded systems,” in
Proceedings of 8th International Conference, TACAS 2002, (ETAPS
2002), April 2002, pp. 460–464.

[8] M. Åsberg, P. Pettersson, and T. Nolte, “Modelling, verification and
synthesis of two-tier hierarchical fixed-priority preemptive scheduling,”
Mälardalen University, Technical Report, March 2011.

[9] A. Cervin and J. Eker, “Feedback scheduling of control tasks,” in
Proceedings of the 39th IEEE Conference on Decision and Control,
2000, pp. 4871 –4876 vol.5.

[10] D. Henriksson, A. Cervin, J. Akesson, and K.-E. Arzen, “Feedback
scheduling of model predictive controllers,” in Proceedings of the
Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium, 2002, pp. 207 – 216.

[11] S. Robertz, D. Henriksson, and A. Cervin, “Memory-aware feedback
scheduling of control tasks,” in Proceedings of the IEEE Conference on
Emerging Technologies and Factory Automation (ETFA ’06), 2006, pp.
70 –77.

[12] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
reservation-based feedback scheduler,” in Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS ’02), 2002, pp. 71–.

[13] T. Cucinotta and L. Palopoli, “Feedback scheduling for pipelines of
tasks,” in Proceedings of the 10th international conference on Hybrid
systems: computation and control (HSCC’07), 2007, pp. 131–144.

[14] T. Cucinotta, L. Palopoli, and L. Marzario, “Stochastic feedback-based
control of qos in soft real-time systems,” in Proceedings of the 43rd
IEEE Conference on Decision and Control, 2004, pp. 3533 – 3538 Vol.4.

[15] L. Abeni and G. Buttazzo, “Hierarchical qos management for time sen-
sitive applications,” in Proceedings of the Seventh Real-Time Technology
and Applications Symposium (RTAS ’01), 2001, pp. 63–.

[16] J. Yao, X. Liu, Z. Gu, X. Wang, and J. Li, “Online adaptive utilization
control for real-time embedded multiprocessor systems,” Journal of
Systems Architecture, vol. 56, no. 9, pp. 463 – 473, 2010.

[17] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and
C. Lu, “Feedback control scheduling in distributed real-time systems,”
in Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS
’01), 2001, pp. 59–.

[18] C. Lu, J. Stankovic, G. Tao, and S. Son, “Design and evaluation of a
feedback control edf scheduling algorithm,” in Proceedings of the 20th
IEEE Real-Time Systems Symposium, 1999, pp. 56 –67.

[19] L. T. X. Phan, I. Lee, and O. Sokolsky, “Compositional analysis of multi-
mode systems,” in Proceedings of the 22nd Euromicro Conference on
Real-Time Systems (ECRTS ’10), 2010, pp. 197–206.


