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ABSTRACT
As software complexity increases in embedded systems do-
main, component-based development becomes increasingly
attractive. A main challenge in this approach is however
to analyze the system’s extra-functional properties (such as
timing properties, or resource requirements), an important
step in a development of embedded systems. Analysis of
such properties are computational and time consuming, and
often difficult. For this reason reuse of the results of the
analysis is as important as the reuse of the component itself,
especially in case of modifications of the context in which
the component is used. This paper presents concepts and
mechanisms that allow to automatically discover whether a
property value is still valid when related components evolve:
a value context language is proposed to formally define the
validity conditions and identify possible threats.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Design, Measurement, Theory

Keywords
Evolution management, Component Based Software Engi-
neering, Model Driven Engineering, Context, Extra-functional
properties, Impact analysis

1. INTRODUCTION
Nowadays, the majority of computer systems are embed-

ded in a variety of products, such as aircrafts, cars, consumer
electronics, etc., to control their main functionality or to pro-
vide additional functionality. As expected, embedded sys-
tems face the general trend of an ever increasing complexity
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which tends to make their design, development, and main-
tenance more and more intricate. This issue is even more
evident when particular extra-functional properties have to
be guaranteed, like for instance in embedded real-time sys-
tems (ERTS) [10], that require tasks to be executed within
a given amount of time.

Model-Driven Engineering (MDE) and Component-Based
Software Engineering (CBSE) can be considered as two or-
thogonal ways of reducing development complexity: the for-
mer shifts the focus of application development from source
code to models in order to bring system reasoning closer to
domain-specific concepts; the latter breaks down the set of
desired features and their intricacy into smaller sub-modules,
called components, starting from which the application can
be built-up and incrementally enhanced [17].

Despite the raising of the abstraction level at which the
problem is faced and/or its decomposition into sub-issues,
several aspects of such complex systems development remain
still open research questions. Notably, quality attributes
are typically crosscutting the functional definition of the
application, making compositionality of analysis results for
each component to hold only under particular conditions [6].
Moreover, each system’s property demands for correspond-
ing theories precisely defining how such a property can be
specified, the kind of values it can assume, the manipula-
tions it can undergo, and the impact a particular class of
changes entails to the system. Such issues are critically rele-
vant when considering evolution and maintenance activities,
since changes operated on the current version of the applica-
tion should preserve (or possibly improve) its characteristics.

In this paper we exploit the interplay between MDE and
CBSE techniques to alleviate the issues related to quality
attributes and their evolution. In particular, we introduce a
new language for the description of the computational con-
text in which a given property is provided and/or computed
by some analysis. Then, whenever such context is modified
we detect the operated revisions and, based on a precise rep-
resentation of differences between old and new versions we
analyze the impact caused on the attribute values. In this
way, it is possible to provide a development environment
with a validation feature, able to detect evolution issues as
early as possible in the system lifecycle. The approach has
been plugged-in in an existing framework that enables the
definition of quality attributes for components. In this way,
the framework has been provided with attribute evolution
management capabilities including validation features, and
allowed to validate this proposal against a case study.

The paper is organized as follows: Section 2 discusses the
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motivations underlying this proposal together with existing
approaches in related research areas; moreover, Section 3
introduces a running example to illustrate the current sup-
port to quality attributes specification and the correspond-
ing impacts due to their evolutions on the system. Sec-
tion 4 provides an overall view of our approach to deal with
extra-functional properties evolution; then, Section 5 and
Section 6 detail the relevant technical aspects enabling im-
pact analysis support. The validation is described in Sec-
tion 7, while Section 8 concludes the paper and presents our
future works.

2. MOTIVATION & RELATED WORKS
One of the main challenges still open in CBSE is quality

attributes management [6]; this is a two-fold issue: (i) how
to express the properties (in which language and where),
and (ii) how to perform their computation. In general, static
analysis computes composite component properties from the
ones owned by its subcomponents. The related computation
cost is usually high, thus leading to perform analysis not
in a systematic manner but rather only whether unavoid-
able. However, real-time requirements, severe resource lim-
itations, and safety concerns, make a mere reuse of compo-
nents from their functional perspective not applicable. Sys-
tem developers must also be able to predict, at an early
stage, the impact of using a component on extra-functional
system properties, e.g., timing and resource usage. When a
component is reused, information stored along with it should
be general enough to be reused in several different contexts,
while at the same time providing as detailed information as
possible in each specific case.

An active research field is devoted to analysis and de-
tection of possible problems caused by revisions of a sys-
tem, typically known as change impact analysis. The book
in [1] offers a survey on available solutions related to change
impact analysis at source code level. However, as noticed
in [18] the increasing complexity of software systems requires
the analysis and detection of possible problems triggered by
a given evolution to be at the same level of abstraction of
system design. In fact, in that way it is possible to ease the
impact analysis task and in the meantime anticipate it at
the early stages of the development, when modifications are
more cost-effective.

In [7, 18] the authors discuss similar techniques to de-
tect problems related to system architecture revisions: each
time a modification is performed at architectural level, the
designer can exploit slicing and chopping methods to syn-
thesize the corresponding effects on the current code of the
specification. Impact analysis support is extended to the de-
velopment environment in [8], where design documents are
considered as first class artifacts: whenever a modification
is operated on them, corresponding impact on the existing
implementation is automatically derived. In [12] the author
proposes a framework to validate user’s functional require-
ments by animating the available architectural description
of the system. Finally, in [16] the authors describes an ap-
proach for assisting the software maintainer during an evo-
lution activity on his/her demand based on the definition of
bindings between formal descriptions of architectural deci-
sions and their targeted quality attributes.

Another field of research is devoted to modeling and an-
alyzing adaptations of a system at runtime due to environ-
mental context variations. In [9] the authors introduce the

concept of modes, that is structural constraints that drive
a (sub)system configuration at runtime, impacting on its
architectural arrangement. Modes are related to scenar-
ios that abstract contexts of usage, entailing that system
reconfigurations are induced by scenario variations. Such
work is extended and improved by [2], where an approach is
proposed for performance modeling and analysis of context
knowledgeable mobile software systems. In particular, run-
time reconfigurations are also interconnected to positioning
and users.

The main distinction of our goal with respect to impact
analysis approaches is the purpose of the analysis itself: we
aim at synthesizing system evolution side effects as early
as possible, by providing the developer with a validation
tool showing the impact of the ongoing adaptation to the
current application, hence before the changes themselves are
committed. Whereas, usual impact analysis methodologies
consider the revision phase as completed, thus presenting
to the user the propagation of the completed adaptation to
the existing system. As a consequence, the process itself is
moved from the file repository back to the IDE supporting
the system design; in this way, modification analysis can be
performed at higher levels of abstraction and are no longer
limited to file- or text-based reasoning.

On the other hand, we do not deal with adaptations at
runtime, or in other words we cope with different kinds of
adaptations: in the former case a system is provided with
different operational modes and corresponding configura-
tions to make it self-adaptable to different operating con-
ditions. Whereas, in our case one or more components have
to be reused in different scenarios, i.e. other systems and/or
architectural arrangements that could affect and invalidate
the preconditions by which component attributes have been
asserted.

Our approach is based on the specification of component
attributes as context sensitive, that is, each property value is
specified together with a set of preconditions that must hold
in order to keep the assertion valid. In this way, whenever
a component is put in a different context it is possible to
check if its attributes can be considered still reliable and
hence usable to update the overall system properties.

In the following, our proposal is detailed by illustrating
how we made it possible to describe components quality at-
tributes and their validity conditions. Then, we discuss how
to exploit such information to detect conditions by which
assertions on components are no more valid in new system
composition scenarios.

3. A CASE-STUDY: THE ACC SYSTEM
In order to illustrate our approach, we use the Advanced

Cruise Controller (ACC) system. Such system extends the
basic cruise control functionality of keeping a constant speed
of the vehicle with the following features:

∙ Automatically adjusting the vehicle’s speed to keep a
constant distance with the car in front;

∙ Adjusting the vehicle’s speed to the speed limit pro-
vided by the traffic signs;

∙ Providing emergency brake assistance to avoid colli-
sions.

Following the component-based approach, the ACC sys-
tem is developed as an assembly of components complying
to a specific component model. Let us consider that an ACC
system contains: a Speed Limit component to compute the
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maximal authorized speed with regards to road signs and
user’s desired speed, an Object Recognition component that
evaluates the distance to an obstacle in function of the ve-
hicle’s current speed, a Brake Controller to detect whether
slowing the vehicle down is required, a Controller in charge
of computing the necessary acceleration or braking forces
that must be applied and Logger HMI Output to keep a
trace of the events.

3.1 The ProCom Component Model
We have previously developed a domain-specific compo-

nent model [15], called ProCom, especially designed to sup-
port the specific development concerns of distributed em-
bedded real-time systems. The ACC example is a typical
illustration of such category of systems. One of the main ob-
jectives behind ProCom is to facilitate analysis of the extra-
functional properties typically found in embedded systems
such as resource usage, timing and dependability — in par-
ticular for early analysis. In ProCom, components are rich
design units that aggregate functional interfaces, modeling,
analysis and implementation artifacts.

To comply with ProCom, the ACC system introduced
above can be modelled as a ProCom composite component
as illustrated in Figure 1. This type of component follows a
pipes-and-filters architectural style that separates data and
control flows. Data input and output ports are denoted by
small rectangles whereas trigger ports are denoted by tri-
angles. For more information about ProCom, refer to [3].
PRIDE1 tool supports development of systems using Pro-
Com component models. We take the hypothesis that both
designers and developers use this tool to develop their sys-
tem.

Figure 1: ProCom Architectural Description of the
ACC

3.2 The Attribute Framework
As stated before, our objective is to provide a way to eval-

uate whether a system evolution preserves the validity of
extra-functional properties or not. However, ProCom does
not per se manage extra-functional properties specification.
This is done through the attribute framework [14] that is part
of the PRIDE tool, which enables annotating any ProCom
element (from coarse grain such as composite component to
fine grain such as a data port or a connection) with multi-
ple context-aware values of quality attributes. The attribute

1The approach presented in this paper has been integrated
in Pride (ProCom IDE) available from: http://www.idt.
mdh.se/pride

semantics is formally defined through several properties in-
cluding the types of element that can be annotated and the
data type for the value.

Figure 2: Attribute Framework Metamodel

As depicted in the metamodel in Figure 2, each attribute
can have multiple values depending on the considered con-
text (e.g., a specific target platform). Each value can be
considered as a possible alternative (variant). Different val-
ues of a same attribute constitute versions of each other.
While it is interesting to have several alternative values, we
must be able to distinguish them. Without meta informa-
tion, analyses would not able to select the right value to be
used. Therefore values are annotated with typed Metadata.
The semantic of the metadata types is formally defined in
a similar way as it is for the attribute types. This includes
the attribute to which this metadata can be associated with
and the data type for the metadata value. This means that,
as for attributes, metadata can have different formats.

During the development, the system developer is respon-
sible for ensuring extra-functional properties such as worst
case execution time (WCET), which can be computed by
analysis. For example, when the implementation of the
Speed Limit component changes, the developer performs a
source code analysis to compute a new WCET estimation for
this component; let us suppose it to be greater than the pre-
vious value. The developer wants to know if this change has
an impact on the overall system properties. This requires
to track the system evolution focusing on the differences
between the old system (used to compute the system prop-
erties) and the new one. In the ACC example, the WCET
of the Speed Limit component is used to compute the over-
all WCET of the system. Hence, this evolution may have
a significant impact on the system properties. The impact
analysis needs to be aware of this relationship to compute
the overall WCET validity. This means that the values used
for this computation must be known. In general, the de-
veloper does not have the expertise on how extra-functional
properties are calculated. This implies, for example, that
s/he may not know how to derive the impact of a change as
for the WCET of the Speed Limit component. The WCET
analysis expert is the only capable to determine the depen-
dencies between attributes values, and possibly the impact
of a change on a overall system property.

In this context, our approach aims at formally specifying
the dependencies for such type attributes. As a consequence,
a context is attached to every attribute value. Figure 3
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Figure 3: WCET Analysis example

presents the WCET analysis. It computes the WCET of
a composite component from the WCETs of its subcompo-
nents for a specified targeted platform. In the example, the
WCET attribute value of the ACC Subsystem is derived
from the WCET values of Speed Limit, Object recognition,
ACC Controller, Selection, Logger HMI Output and Brake
Controller components.

4. PROPOSED APPROACH
In order to be able to reuse components in the embed-

ded real-time systems world, the developer should follow an
approach which allows to predict, early in the development
process, the impact of a component on extra-functional sys-
tem properties. Therefore a component should store its in-
formation in a manner general enough to make it reusable in
other different contexts, while at the same time providing as
detailed information as possible in each specific case. One
way to accomplish this is to use parametric attributes, i.e.,
attributes specified as a function over context parameters
rather than as a single value. The context may include tar-
geted platform, precision, information about how the value
has been computed. Attribute values become complex for-
mulae with many context parameters. Unfortunately, com-
putation of such formulae is complex thus preventing their
usage in common practice [4]. As a consequence, generally
attribute values are valid for a specific context and they
cannot be reused in a different context without precise in-
formation about it.

As clarified above, a context is characterized by a set of
attributes related to system components, each of them per-
taining to a particular aspect of the system, such as timing,
fault tolerance, behavior, power consumption, and so forth.
By following the MDE vision, which encourages to use a spe-
cific language for each concern, attribute values would define
the system’s characteristics using different models expressed
in different languages. However, it is worth noting that such
an approach would demand consistency across the different
models to be preserved; consequently, we provide a corre-
sponding solution to keep the coherence across the different
artifacts involved in the process.

The proposed approach aims at allowing safe, fast and au-
tomatic property value validity evaluation. We take the hy-
pothesis that multiple values are available for extra-functional
properties. The main goal is to provide checking of attribute
values validity when the system evolves and the followings
are the evolution scenarios we have identified:

∙ [Scenario 1] The targeted platform changes;

∙ [Scenario 2] An estimated value is validated by mea-
surements;

∙ [Scenario 3] The architecture of the system changes.
It may include addition, removal of components, mod-
ification of their interface, connection changes;

∙ [Scenario 4] The component implementation is mod-
ified. For example, corresponding source code is im-
proved;

∙ [Scenario 5] The functional specification of a compo-
nent is modified;

∙ [Scenario 6] The extra-functional specification changes.
The approach workflow is depicted in Figure 4: our so-

lution gives the possibility to model and store the context
of each extra-functional property, while the evolution of the
system is tracked by means of effects to the context. In par-
ticular, two or more context models representing the em-
bedded system in different points in time, are given as in-
put to the differences calculation engine which outputs the
detected manipulations to an appropriate difference repre-
sentation approach. Starting from this result, the context
evolution management technique is able to check the valid-
ity of existing property values and in case of invalid values,
to produce possible impacts estimations. To summarize, the

Figure 4: Impact Analysis Workflow

different steps to be performed to evaluate derived property
validity are:

∙ [Step 1] The attribute value evolution is tracked and
the attribute modifications are recorded;

∙ [Step 2] The attribute value context is automatically
defined during analysis time. It includes the values
taken into account during the related value computa-
tion;

∙ [Step 3] The system model which has been used to
perform the considered attribute value computation is
retrieved from the repository or from a saved snapshot
(from the local history);

∙ [Step 4] The differences between the old system model
and the new one are computed;

∙ [Step 5] The validity conditions are evaluated. An
error report is associated to the attribute value in case
of no more valid value.

The prerequisites for our approach are:
∙ [Requirement 1] The attribute value evolution must

be tracked;
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∙ [Requirement 2] The attribute value computation con-
text should be defined;

∙ [Requirement 3] System models are versioned in a
local and a shared repository;

∙ [Requirement 4] The attribute validity conditions must
be defined as precise as possible to be able to compute
accurate impact of changes;

∙ [Requirement 5] A specific algorithm for differences
calculation must be defined for complex attributes.

With regards to the different evolution scenarios we aim
at supporting, the following changes occurs in the attribute
values (see Figure 2). When an existing value comes from
a new target platform (1), the platform metadata of this
value changes. When an attribute value moves from estima-
tion source to measurement source (2), the source metadata
changes. If the value is different then a new AttributeValue
is added with the corresponding metadata. InterfaceCon-
tent, compositeContent and primitiveContent predefined at-
tributes represent respectively the service and port defini-
tion of the component, the composite component architec-
tural model and the component implementation source code.
An architectural modification (3) generates a more recent
lastChangeTS for the compositeContent attribute value. An
implementation modification (4) is represented as a more re-
cent lastChangeTS for the primitiveContent attribute value.
A functional specification modification (5) leads to a more
recent lastChangeTS for the interfaceContent attribute value.
Finally, any extra-functional specification modification is
represented as value data change.

5. EXTENDING THE ATTRIBUTE FRAME-
WORK WITH CONTEXT MODELING

5.1 Computation Context
To provide support for the aforementioned approach, the

attribute framework metamodel needs to be modified to en-
able context modeling and context evaluation. Figure 5
presents the changes performed in the attribute framework
metamodel.

Figure 5: Context Metamodel

First, each model element is identified by a global unique
identifier to facilitate model element evolution tracking. Then,
since the attribute framework should be able to track the

evolution of each attribute value (Requirement 1), it is nec-
essary that every modification to a value is done through
the attribute framework and tagged with a last modifica-
tion time-stamp lastChangeTS. In case of attributes whose
values refer to files, the value is considered to be changed
when the related file is modified or when the value refer-
ences a new file.

As a value may have been computed from different anal-
yses and/or can be valid for multiple contexts, we represent
the different computations by means of the Computation-
Context concept. When possible, the computation context
defines the attribute values used to compute this value (Re-
quirement 2).

As mentioned before, this definition is usually not decided
by the user. We propose to automate the computation of
used values when analysis is performed. For this purpose,
we provide an analysis framework which allows to integrate
new analyses to PRIDE. As attributes, analysis are par-
tially modeled (Figure 6). Their definition includes the types
on which they can be performed and a function computing
the result validity conditions. Thanks to this integration,

Figure 6: Analysis Metamodel

PRIDE is able to trace any read and written attribute value
during the analysis. A computation context is automatically
created for each new attribute value which defines all the
corresponding read values as they are used. Each performed
analysis is recorded and a snapshot of the current ProCom
model is attached to it (Requirement 3). Hence, the context
of each derived attribute value coming from analysis is au-
tomatically computed. However, the context of user defined
attribute values must be manually specified. A Computa-
tionContext is created by default for user defined values and
it may specify, through the usedValuesUnknown property,
that the used values are unknown.

5.2 Computation Context Language: Express-
ing the Validity Conditions

Validity conditions are attached to the computation con-
text (Requirement 4). They formally define when the corre-
sponding value is valid. In general validity conditions con-
sidering only the current system version can not be defined
in a simple way. That is why we consider validity conditions
which define what the modifications that invalidate a value
are. They are expressed as an Epsilon Validation Language
(EVL) [11] expression, which is similar to Object Constraint
Language (OCL) [13]. Our objective is to have enough in-
formation within the context to be able to evaluate whether
a value is still valid or not after an evolution. We identified
the following condition categories:

∙ Value validity: Derived value validity depends on no
data changes of used values.
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∙ Metadata validity: Derived value metadata can de-
pend on used value metadata.

Looking at our example, ACC Subsystem WCET is com-
puted from the other subcomponents’ WCET (e.g. Speed
Limit’s WCET), so for instance a modification of Speed
Limit changes the ACC Subsystem WCET. The computed
WCET is still valid only if a subcomponent WCET has been
reduced. In this case, the overall WCET should be recom-
puted but it can be considered still valid since it represents
an upper bound. Figure 7 shows how to define this va-
lidity condition. As in OCL, EVL constraints are related

Figure 7: WCET Value validity Conditions

to a context. The analysis framework allows the analysis
provider to define the validity conditions of the automati-
cally created computation context and its related metadata.
The element on which the analysis provider specifies valid-
ity conditions defines the EVL constraint context. A library
which provides operations to consult the differences between
the computation time and the current moment is automat-
ically imported. For example, hasIncreased operation re-
turns true if the corresponding attribute integer value has
been increased. A default value validity condition is de-
fined by PRIDE and it specifies that a value becomes in-
valid when one of the used values changes. It allows to
benefit from the validity evaluation without defining valid-
ity conditions. It is convenient when no analysis expert is
available. Even if the ACC Subsystem WCET computation
is the same, the platform metadata may be no longer cor-
rect if a sub-component’s WCET has been measured for a
different platform. Figure 8 presents the expression used to
specify this validity condition. We can observe that meta-

Figure 8: WCET Platform validity Conditions

data validity is part of the value validity. Thus, the Plat-
form validity condition IsStillValid is checked only if the
WCET value validity conditions have been checked. It is
self.getComputationContext().satisfies(”ValueIsStillValid”)

statement that defines this dependency. The metadata are
as important as the value itself. They define precisely in
which context the value can be used, that is to say when
it is valid. As for values, a default validity condition is de-
fined. It specifies that a metadata becomes invalid when any
metadata of used value is modified.

In specific cases of newly invalid value, it is possible to re-
solve it by a fast computation. If one of the sub-components’
WCET moves from 10 to 20 ms, the overall WCET is lower
than or equal to the previous value with an addition of 10
ms. Since the static WCET analysis is heavily time and
resource consuming, when the developer reuses an existing
component without the corresponding WCET analysis tool,
it could be useful to use this approximative WCET. We reuse
the EVL quick fix feature to provide such functionality. Fix
statements can be added to the value validity condition to
quickly resolve invalid values. Figure 9 shows fix statement
to add to the UsedValuesHaveNotChanged constraint in or-
der to provide an invalid WCET resolution.

Figure 9: WCET Value validity fix

6. MODIFICATION IMPACT ANALYSIS
In this section we describe our approach to the evolu-

tion management together with the evaluation of quality
attributes value validity, computed by analysis, when the
information used to perform it evolves. The computation of
the evolution of a context model is calculated in terms of
model differencing between an initial context model and its
modified version (Step 4 in the approach presented in Sec-
tion 4). The first step of calculating the differences is fol-
lowed by their representation which gives a structured result
of the calculation to be reused for further validity evaluation
of the context evolution.

6.1 Difference Computation
As previously mentioned, each system’s property demands

to precisely define the impact a particular class of changes
entails to the system. This issue is crucial when considering
evolution activities, since changes operated on the current
version of the application should preserve (or possibly im-
prove) its characteristics. In order to define such evolution
impact, a differences calculation task has to be performed;
this is carried out by applying a set of rules defined us-
ing the Epsilon Comparison Language (ECL) [11] to the
two models (i.e. initial and modified). These rules aim at
identifying matching elements between the two models by
comparing the elements unique identifiers; correctness by
construction is ensured by the use of such identifiers, which
also remarkably simplify the matching task. Using identi-
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fiers allows to correctly find the two corresponding elements
between initial and modified version of the model and ex-
plore their properties to detect possible changes. Once two
matching elements (e.g. ComputationContext in Figure 10)
are identified, further matching conditions are defined within
the ECL rules body in terms of Epsilon Object Language
(EOL) expressions and applied to the properties of interest
(e.g. validityExpression in Figure 10) of the matching ele-
ments in order to catch possible changes. In the case of a
changed property, its name and the corresponding element
identifier are stored in an apposite structure called match-
Trace and provided by ECL in order to be reused for rep-
resentation issues (Figure 10). Modified elements are not

Figure 10: ECL rule for ComputationContext ele-
ments comparison

the only differences we want to catch; deleted and added
elements have also to be identified in order to produce a
complete view of the evolution which involved the initial
context model. In other words, in order to automatically
generate the difference model starting from the computa-
tion carried out by our defined set of ECL rules, the follow-
ing two tasks are needed: (1) generation of changed/original
element pairs which represent the modifications to the ini-
tial model elements and (2) generation of elements added
in the modified version of the model and elements deleted
from the initial version. Once the differences have been
computed, they need to be stored for further analysis and
re-use. For this purpose we use difference models which
conform to a difference metamodel automatically derived
from the initial ECORE context metamodel (see Figure 5)
through the ATL transformation described in [5]. The trans-
formation takes the input metamodel and enriches it with
the constructs able to express the modifications that are
performed on the initial version of a given model in or-
der to obtain the modified version: additions, deletions and
changes. These constructs are defined in terms of meta-
classes which specialize the corresponding original metaclass
(e.g. AddedComputationContext, DeletedComputationCon-
text, ChangedComputationContext for the metaclass Con-
text). For instance, an added or deleted ComputationCon-
text is represented by respectively creating an AddedCom-
putationContext or DeletedComputationContext while, in
order to represent a changed context, the creation of a Changed-
ComputationContext element is not enough. In fact a Com-

putationContext element has also to be created for rep-
resenting the ComputationContext element in the initial
model which has been affected by changes in the modified
model. As previously mentioned, the differences representa-

Figure 11: EML rule for ComputationContext

tion results in a difference model conforming to the differ-
ence metamodel. This model represents the computed dif-
ferences in terms of added, deleted and changed elements.
These elements are generated by using two different lan-
guages provided by Epsilon which are, respectively, Epsilon
Merging Language (EML) for the creation of changed ele-
ments and Epsilon Transformation Language (ETL) for the
generation of added and deleted elements. Defining EML
rules allows to transparently take the ECL result structure
from the differences computation and use it for the gener-
ation of changed/original element pairs (Figure 11). If the

Figure 12: ETL rules for ComputationContext

ECL result structure contains information about a modifi-
cation which affected the element, the changed element is
created and linked to the original within the rule’s body by
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using EOL expressions. Once the first task is completed, a
set of ETL rules are in charge of creating added and deleted
elements (Figure 12); after the completion of the process,
the difference model (Figure 13) will show the results in a
structured manner, ready to be used for the validity evalua-
tion. Among the others, a changed/original pair of Compu-
tationContext is highlighted in the center of the picture. In

Figure 13: An excerpt of the difference model re-
lated to the ACC example

Figure 14, we can see the properties of the original Compu-
tationContext element and its changed version respectively
on the top and bottom of the figure. The elements have the
same unique identifier since they represent the evolution of
the same object, while the different value of the property
UsedValuesUnknown represents the change which made the
original element to evolve. Moreover, the link between origi-
nal and changed elements is maintained by the property up-
datedElement in the ChangedComputationContext element.

Figure 14: Evolution of the ComputationContext
properties

6.2 Validity Evaluation
The objective of the proposed approach is to evaluate the

validity of components’ extra-functional properties conse-
quently to a context evolution. Figure 15 shows PRIDE
with its component explorer (a), architectural editor (b),
attribute view with all the defined attributes (d), paramet-
ric WCET value editor (c) and analysis record view (e) with
all the performed analysis and respective results.

The analysis menu provides all the analysis related actions
which can be performed on selected elements; analysis report

and results are available on the created analysis record. The
validity evaluation is implemented as a specific analysis that
can be applied on any element (Step 5 in the approach pre-
sented in Section 4). Firstly, it generates a snapshot of the
current ProCom models; in order to lighten the size of such
snapshot, no attribute values representing files are included.
Moreover, a further optimization consists in avoiding the
inclusion of components which are not related to the val-
ues to be validated. For instance, an enclosing component
does not have influence on subcomponents extra-functional
properties while they are usually not independent from the
enclosing composite component.

Then, for each computation context of considered attribute
values, we launch the difference computation between the
snapshot stored with the computation context and the cur-
rent snapshot. We transform and merge the related EVL
expressions to obtain an EVL file to be applied to both the
difference model and the two snapshots. The transformation
adds context to the EVL expression and adds an instance
filter to apply the constraints only to the expected elements.
Eventually, results are collected and merged to compute the
analysis report. It is worth noting that the underlying mech-
anism to deal with difference detection and encoding is com-
pletely transparent to the PRIDE user (i.e. the system de-
veloper); as aforementioned, new quality attributes would
require corresponding value specifications, evolution forms,
and validity impacts. In turn, such addition would entail
a refinement of the current detection/representation mech-
anism that, once realized, would be provided through the
PRIDE tool as a new analysis.

In Figure 16, a validity evaluation which has resulted in
an error is presented. PRIDE uses the fix defined in the
validity conditions and allows the developer to apply them.
In the example, the WCET value can be fixed by invoking
”Increase WCET as the sub-component’s WCET have been
increased” action. As previously claimed, the validity eval-
uation analysis cost is negligible. During our experiments,
the analysis execution time has never been greater than 3
seconds to check validity of three extra-functional properties
for the ACC Subsystem which is constituted of more than
400 model elements for the functional definition and more
than 800 model elements for the extra-functional properties.
In comparison, measurement based WCET analysis needs to
produce system code, compile it, deploy it and monitor its
execution; even disregarding time costs issues, these tasks
may also require a certain degree of expertise.

7. APPROACH VALIDATION
On a dual core CPU with 2,79 GHz and a memory space

of 3,48 GB of RAM, depending on the complexity of a com-
posite component (number of components and parallel con-
trol paths), parametric WCET computation can range from
2 minutes to 30 minutes. This analysis has been used to
compare time needed for our validity checking analysis and
WCET computation on the ACC example (see Figure 1).
The experiments consisted of performing the whole WCET
computation and comparing it to our validity checking anal-
ysis. This comparison has been performed for each evolu-
tion scenario testing two cases: the first one invalidates the
previous WCET value, while the second one preserves the
validity of the related value. The local repository has been
used for all these experiments, thus avoiding delays due to
checkout time to retrieve old versions. Table 1 shows the
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Figure 15: Attribute Management in PRIDE

Figure 16: Validity Management in PRIDE
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tested cases, the WCET computation average time, and the
WCET value validity analysis computation time for each of
the defined scenarios. First of all, the language used to define

Scenario Checked Cases WCET Value Validity
1 Valid and Invalid 13,62 min 1,73 s
2 Valid 13,78 min 1,87 s
3 Valid and Invalid 13,06 min 2,56 s
4 Invalid 16,63 min 2,12 s
5 Invalid 15,36 min 2,45 s
6 Valid and Invalid 14,55 min 1,62 s

Table 1: ACC System Analysis Computation Time

validity conditions is expressive enough to allow detection of
cases where value validity is preserved and where not. If the
platform is preserved, the value validity checking is very fast
(about 5s), especially if compared to the WCET computa-
tion (13 minutes). The precision of the impact estimates
is limited by information precision defined by attribute and
analysis provider including validity expressions and complex
attribute differentiation algorithms.

It is worth noting that, even if quality attributes not al-
ways demand for such heavy analysis to be performed, they
usually need external tools and complex environment setups.
By adopting the approach illustrated in this work, such steps
can be avoided whenever a value is checked and confirmed
as still valid after an evolution of the considered system.

8. CONCLUSIONS
Management of extra-functional requirements in embedded
systems development presents intrinsic difficulties due to dis-
tribution and componentization factors. This paper pro-
poses a possible solution to alleviate the issues arising when
managing extra-functional properties in evolving scenarios
by exploiting the interplay of MDE and CBSE techniques.
In particular, we aim at anticipating the impact analysis of
the changes operated on the application as early as possible,
that is by detecting modifications at the modeling level and
providing corresponding validation responses.

Since we applied generic MDE methods, the proposed ap-
proach can be considered as generic and reused for other
component models. Moreover, additional validation con-
straints and corresponding analysis can be plugged-in the de-
velopment environment given the abstraction level at which
the computational context and its evolutions are represented.

We are currently investigating the possibility to extend
our solution with change propagation features. As noticed
in [8], complex systems usually rely on relationships and de-
pendencies between their main sub-systems; therefore, im-
pact analysis should also foresee the side-effects caused by
the propagation of changes to interrelated artifacts. Conse-
quently, further improvements of our solution should include
the estimation of new values (or ranges of values), able to
re-establish a valid condition whenever it is violated.
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