
Modelling, Verification and Synthesis of Two-Tier
Hierarchical Fixed-Priority Preemptive Scheduling

Mikael Åsberg, Paul Pettersson and Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden
{mikael.asberg, paul.pettersson, thomas.nolte}@mdh.se

Abstract—Hierarchical scheduling has major benefits when it
comes to integrating hard real-time applications. One of those
benefits is that it gives a clear runtime separation of applications
in the time domain. This in turn gives a protection against
timing error propagation in between applications. However,
these benefits rely on the assumption that the scheduler itself
schedules applications correctly according to the scheduling
parameters and the chosen scheduling policy. A faulty scheduler
can affect all applications in a negative way. Hence, being able
to guarantee that the scheduler is correct is of great importance.
Therefore, in this paper, we study how properties of hierarchical
scheduling can be verified. We model a hierarchically scheduled
system using task automata, and we conduct verification with
model checking using the Times tool. Further, we generate
C-code from the model and we execute the hierarchical scheduler
in the VxWorks kernel. The CPU and memory overhead of
the modelled scheduler is compared against an equivalent
manually coded two-level hierarchical scheduler. We show that
the worst-case memory consumption is similar and that there is
a considerable difference in CPU overhead.

Index Terms—real-time systems, hierarchical scheduling,
modelling, formal verification, code-synthesis

I. INTRODUCTION

Hierarchical scheduling [1], [2], [3] has been introduced as a
means to simplify parallel development of embedded systems.
It facilitates the integration of such systems by providing
mechanisms for temporal isolation between software parts,
called subsystems. The schedulable entity manifested by a
subsystem is referred to as a Server. A system (a product,
a large piece of software etc.) can be composed of a number
of subsystems, where each of these typically implement a par-
ticular function or feature of the whole system. For example, a
car has a number of features/subsystems, and two examples of
these are the engine control system and the anti-lock braking
system. These features/subsystems should ideally be developed
in parallel and integrated smoothly [4]. Integration related
problems include having to cope with different scheduling
policies among subsystems, sharing the CPU resource among
subsystems according to their need (and keeping that share
during runtime), and ensuring that timing faults do not prop-
agate from one subsystem to another. An example of such a
fault is a piece of software that requires more time to execute
than originally intended (exceeding its analysed worst-case
execution time), and thereby causing unforseen interference
with the rest of the system. Yet another integration problem

is the introduction of new software functions, not apparent at
early design.

Hierarchical scheduling allows for timing analysis of an
entire system, as well as for subsystems in isolation, before
they are integrated. It supports multiple scheduling policies
and it has a runtime mechanism that multiplexes the CPU
resource among subsystems, hence, making sure that no un-
predictable interference between subsystems will occur in the
time domain. Also, the size of the CPU share can easily
be re-configured, allowing for ”last minute” changes when
introducing new software late in the development process.

One important property of hierarchical scheduling, when
it comes to hard real-time applications, is the safe execution
environment for a subsystem. The scheduling entity of a
subsystem, i.e., a server, should ensure (together with the
scheduler) that the subsystem will get the exact CPU share
that it was promised. Even though a subsystem is executed
together with other (potentially faulty) subsystems, it should
still get the CPU share that it is entitled to. In practice,
hierarchical scheduling can prevent faulty subsystems from
propagating timing faults to other subsystems. However, hier-
archical scheduling cannot deal with timing faults propagating
from itself, i.e., a faulty scheduler causing incorrect scheduling
events, and thereby violating the contracted CPU shares that
belong to the subsystems. This is of course not acceptable in
applications with hard real-time constraints.

We have experience in the implementation of two-level
hierarchical scheduling frameworks in operating systems such
as VxWorks [5] and Linux [6]. Our implemented frameworks
operate in two levels using periodic/polling servers (PS)
[7] and, inside these, fixed priority preemptive scheduling
(FPPS) of periodic tasks. Even though the setup of these
frameworks are quite simple (two-level, PS and FPPS), it
gives rise to a large implementation complexity, since we are
dealing with multiple schedulers (multiple scheduling-related
timing events). From our experience, debugging/tracing of
this kind of scheduling [6] is very time consuming. Also,
debugging/tracing does not guarantee 100% correctness, since
it can be difficult to determine wheather the schedule is correct
or not. Due to this, in this paper we look at modelling, formal
verification and code-synthesis of hierarchical scheduling with
FPPS.

The motivation for modelling hierarchical FPPS is inherent
in its wide support for schedulability analysis [8], [9], [10],

as well as the evolving research in synchronisation protocols
[11], [12], which need hierarchical scheduling implementa-
tions/models for its development and evaluation.

Recently, automata based approaches have been proposed to
describe/analyse a broad set of real-time scheduling policies.
One of the advantages of these approaches is the ability to
generate generic task release patterns. In task automata models
[13], task release patterns are modelled using timed automata
[14]. It has been shown that the schedulability analysis prob-
lem is resolvable for both FPPS and dynamic scheduling
policies such as earliest deadline first (EDF). Other benefits
of such approaches are that simulation, formal verification of
timing/functional safety properties, as well as code-synthesis
[15] is possible. The Times tool [16] supports modelling with
the task automata model, and it can perform simulation, verifi-
cation, code-synthesis etc. However, hierarchically scheduled
systems cannot be verified using existing solutions.

In this paper our overall goal is to model, verify and
synthesise a two-level hierarchical scheduling framework. The
main contributions of this paper are:

1) We have modelled two-level hierarchical scheduling,
with FPPS and PS at the global level with support for an
arbitrary number of servers with FPPS and periodic tasks
at the local level. We have used the modelling language
task automata and implemented the model using the
Times tool. To the best of our knowledge, this is the
first task-automata model of two-tier FPPS with PS.

2) We have extended the model with support for verifi-
cation (using what we call observers), allowing us to
verify that the model matches the scheduler behavior
(properties) that we have specified. Note that we are
NOT verifying schedulability analysis, but the scheduler
itself (two-level FPPS with periodic tasks/servers). The
contribution to the state-of-the-art is the verification of
the schedulers (scheduling policies) in a hierarchically
scheduled system.

3) We have used the built-in code generator in Times to
synthesise our model. However, the manual work needed
includes adapting the code for our large model (which
has 370 edges and 155 locations), since the Times code-
generator currently supports a limited size. This work
also includes removing platform (Linux simulator) de-
pendent code, and inserting VxWorks related code. This
gives us the possibility to get real overhead estimates of
the modelled scheduler when executing it. The results
presented are the actual execution traces of the scheduler
executed in the VxWorks kernel, as well as a comparison
of CPU- and memory-overhead against an equivalent
manually-coded hierarchical scheduler. To the best of
our knowledge, there is no prior work on synthesis (from
model) for this type of scheduling.

The outline of this paper is as follows: in Section II we
outline preliminaries on hierarchical scheduling, task automata
and Times. In Section III we present the model of two-level
hierarchical scheduling, in Section IV we show how we have
verified the behavior of the modelled scheduler, and finally in

Section V, we show the result of the synthesis. Section VI
presents related work, and finally, Section VII concludes.

II. PRELIMINARIES

A. Hierarchical scheduling

Hierarchical scheduling has been introduced to support
CPU multiplexing in combination with different scheduling
policies. It can generally be represented as a tree of nodes
with arbitrary size, where each node represents a subsystem
with its own local scheduler for scheduling internal workloads
(tasks). Looking at the tree-structure representation, the CPU
resource is allocated from a parent node to its children nodes.
One of the main advantages of hierarchical scheduling is that it
provides means for decomposing a complex system into well-
defined parts (subsystems). In essence, hierarchical scheduling
gives rise to time-predictable composition of coarse-grained
subsystems. This means that subsystems can be developed
and tested independently, and at a later stage assembled
without introducing unwanted temporal behavior. Hierarchical
scheduling also facilitates reusability of subsystems, since their
computational requirements are characterised by well defined
interfaces.

Figure 1 illustrates two-level hierarchical scheduling. The
left side illustrates the structure: the top node is defined as
the Global scheduler and it is responsible for distributing
the CPU capacity to the servers (the schedulable entity of
a subsystem). Servers are allocated a defined time (budget)
every predefined period [17] and they are executed based on
their priority. They are scheduled according to the scheduling
policy of the global scheduler (for example FPPS or EDF) and
the parameters just mentioned, hence, they can be viewed as
”virtual tasks”. Each server can comprise a Local scheduler
which schedules the workload inside it, i.e. its tasks, when its
server is selected for execution by the global scheduler. Note
that the local scheduling policy may differ from the global
policy. The interfaces (T,C,Pr) for tasks and servers shows
the allocated CPU capacity. It includes the release period,
execution time (or budget in the case for a server) and priority
(lower value corresponds to higher priority). The right side of
the figure corresponds to the runtime behavior of the structure.

Global
scheduler

Local scheduler

S1Task1

Server1

Local scheduler Local scheduler

S3Task1

Server2 Server3

S2Task1 S2Task2

T:4, C:1, Pr:0 T:5, C:2, Pr:1 T:9, C:2, Pr:2

T:4,C:1,Pr:0 T:5,C:1,Pr:0T:10,C:1,Pr:1T:5,C:1,Pr:0 0 5 10

se
rv
er
1

se
rv
er
2

se
rv
er
3

S1task1 S2task2S2task1 S3task1
Legend

Fig. 1. Example hierarchical FPPS

B. Task automata and Times

Timed automata [14] is a widely used modelling language
for formal modelling and analysis of real-time systems. A

timed automaton is essentially a finite state automaton ex-
tended with real-valued clocks that can be tested and reset.
The formalism has shown to be suitable for a wide range of
real-time systems.

The timed automata model has been extended with an
explicit notion of tasks, with parameters such as periods,
priorities, execution times etc. The model, referred to as
task automata (of timed automata with tasks), associates
asynchronous tasks with the locations (states) of a timed
automaton, and assumes that the tasks are executed using
static/dynamic priorities with a preemptive or non-preemptive
scheduling policy. This model is supported by the Times tool.
One of the main benefits of using this tool (in the context of
this paper) is that it supports task automata, which is suitable
for modelling schedulers. Secondly, it can verify properties of
a modelled system. Last but not least, the tool has a code-
generator which gives the possibility for synthesis.

In case that tasks are released periodically (with or without
offsets), or aperiodically, the input to the Times tool is merely
a task table in which the following parameters are defined for a
task: name, execution time, (relative) deadline, priority (in case
of static priority scheduling), offset and period (if applicable),
interface, semaphore usage, and its C-code. Alternatively, a
task can be of type controlled, meaning that the release pattern
of a task is defined by a given task automata. All tasks in our
modelled hierarchical scheduler are of type controlled.Location_1time <= 10Location_2 Location_3Location_4task1Utime == 10channel!time == 11time:=0 channel?a:=a+1 This is a

comment

Fig. 2. Example task automata

Figure 2 shows an example of a task automata that releases
a (controlled) task for execution, at minimum, every 10 time
units. The arrows (with a dot) to state Location 1 and Loca-
tion 3 defines that they are the start locations. The invariant
time <= 10 defines that control can only be at this state up
until time 10, then a transition has to be made. The condition
time==10 defines that a transition may take place if this holds.
The channel channel! defines that when this transition is
made, the corresponding channel channel? must be activated,
i.e., there has to be a transition between state Location 3 and
Location 4. The latter location has a task release statement
(task1), and this means that upon arrival at this state, task
task1 is released for execution. State Location 4 is flagged
as urgent (U), which defines that no time will pass when
computing a:=a+1 or before the transition to state Location 3.
A transition from state Location 2 to Location 1 may take
place when time==11, if so, the clock time will be reset to
zero.

III. MODEL

This section will describe the hierarchical scheduler, mod-
elled in Times. The modelling language of task automata is

used for modelling the framework. This language allows task
releasing, and transitions/actions can be controlled with clock
constraints (as shown in Figure 2). However in general, in
order to implement hierarchical scheduling, one either need
to be able to release tasks and suspend them, or, release
tasks and change task priorities dynamically during runtime
(in order to perform a server context switch). Unfortunately,
task suspension and dynamic priority (of controlled tasks) is
not supported by the Times tool. In order to solve this issue,
we model an executing task as a series of task releases, where
each task release will execute the task 1 time unit. Hence,
the minimum task execution time is 1 time unit, and the
execution time is discrete, i.e., it has to be divisible by 1
(without generating a remainder). What this means in practice,
is that when there is a task executing within a server and its
budget depletes, then we simply stop releasing the task (and
take a note of the amount of time executed so far). This is
illustrated in Figure 3 where a task is supposed to execute 5
time units, within 2 budget instances of its server. This results
in 3 task releases at the first server instance and 2 releases in
the second instance. This fragmentation does not affect the task
model, schedulability analysis or verification, it just makes the
task automata model more complicated to implement. A more
practical approach is to only model task releases and no actual
task execution (hence there will be no task suspension in the
model). The downside of such a non-fragmented approach is
restricted verification capabilities as well as no possibilities
of graphical representation during simulation (Figure 8). We
will show verification using the fragmented task model, and
we will show code-synthesis for both the fragmented and the
non-fragmented model (Section V).

Fig. 3. Discrete task execution

The model structure is illustrated in Figure 4. The global
scheduler activates the servers with channels, through the
EventHandler automata. The global scheduler is unchanged
when adding/deleting servers, only the EventHandler is af-
fected. Servers are activated periodically and they run accord-
ing to their budget and priority, i.e., PS with FPPS. In our
model, Server 3 has a local scheduler, scheduling periodic
tasks with FPPS. Server 1 has no scheduler, i.e., it just releases
a task upon activation and lets it run until budget depletion.

Each scheduler (global or local) has a ready- and a release-
queue. The ready-queue contains the servers/tasks, ordered by
priority. The release-queue stores the release times (in absolute
time) of the servers/tasks, ordered with the earliest time first.
The queues are implemented as arrays and insertion is based
on a binary search algorithm.

As mentioned previously, a server is activated/deactivated
through channels (where the global scheduler is the initiator).
This means that a server must always be prepared to be
activated/deactivated, i.e., all of its states which are not marked

as urgent must have an activation/deactivation channel. If this
is fulfilled, then the server will be in total control by the global
scheduler, hence, scheduling errors will not propagate from
local to global level. Also, if the global scheduler is verified,
then the local scheduler can assume that it is getting its correct
timeslots (according to its interface), making verification at the
local level easier (the power of compositional verification).
The local scheduler releases its tasks according to the model
illustrated in Figure 3, which will prevent the tasks from
executing outside of its servers budget (the Times simulation
in Figure 8 illustrates this).

GlobalScheduler

EventHandler

Server1

Observer1

Observer2

Server3

Legend:
Synchronisation with
channels (!,?) are
represented with an arrow
from the initiating (sending)
state to the receiver.

sender receiver

Fig. 4. Structure of the model

Observer1 and Observer2 (Figure 4) will get notifications
of scheduling events through channels. We define scheduling
events as being task/server releases, server budget depletion
and task suspension (due to the task finishing its current
execution). The observers themselves do not initiate these
synchronisations and they do not affect the clocks, hence, they
do not affect the behavior of the model. The observers are
mainly used for the purpose of verifying the schedulers [18],
this will be elaborated in more detail in Section IV.

A. Global scheduler

Figure 5 illustrates a simplified version of the global
scheduler. The excluded parts include initialisation, queue
management etc. Basically, whenever there are no scheduling
events, the automata waits in the main state, i.e., the one
without the urgent symbol (U). This is the only state where
time is allowed to pass. From the main state, there are in
total three transitions possible: server budget deplete, server
release and allowing for a task-event (i.e., task release etc.)
that belongs to the current active server. As can be seen,
the depletion transition has highest priority, followed by the
release and task-event transitions. The latter is necessary since
the global scheduler needs precedence over local scheduling
events when they occur at the same time. As with the priority
of the other two, it is simply more convenient to handle a
budget-deplete event before a release event (when they occur
at the same time).
As can be seen by the model, we model that scheduling events
do not consume any time (hence the urgent symbols). The
reason for this is to reduce the complexity of the model.
This means that during simulation, the scheduler produces
no overhead. However, running experiments would of course
yield some scheduler overhead, these details will be shown in
Section V.

Observer1 is notified about server budget-deplete
(DepleteObs1!) and server release events (ReleaseObs1!),
this is shown in Figure 5.

S_Main

US_BudgetDepletion

U S_Release

US_ContextSwitch

Clock < S_ReleaseEvent, Preemption==FALSE

Update queues
Update queues

Clock < S_BudgetEvent
, Clock < S_ReleaseEvent
AllowServerToRun?

Clock < S_ReleaseEvent
, Preemption==TRUE

ReleaseObs1!

EventHandlerStart!
DepleteObs1!

Clock == S_BudgetEvent
, S_BudgetEvent <= S_ReleaseEvent
, S_BudgetEvent <= NextTaskEvent

Clock == S_ReleaseEvent
, S_ReleaseEvent < S_BudgetEvent
, S_ReleaseEvent <= NextTaskEvent

Fig. 5. Model of the global scheduler (simplified)

B. Event handler

Figure 6 shows the model of the event handler. The motiva-
tion for its existence is that it abstracts the number of servers
from the global scheduler, i.e., adding/removing servers only
affects the number of states in the event handler and not in the
global scheduler. Since channels cannot be declared as arrays,
every server requires 2 states (activation and deactivation) in
this model. As can be seen in this model, the global scheduler
observer (Observer1) is notified if there is a server scheduling
event, and which servers that are activated/deactivated.

HandlerInit

U HandlerStart
S1activate!S3activate!

U S1ActivateEventU S3ActivateEvent
S1ActivateObs1!S3ActivateObs1!

U NotifyObserver1

U S3DeactivateEventU S1DeactivateEvent

EventObs1!

S3deactivate!S1deactivate!

EventHandlerStart?

S1DeActiveObs1!

S3DeActiveObs1!

Fig. 6. Model of the event handler (simplified)

C. Local scheduler

The local scheduler model (Figure 7) is similar to the global
scheduler. Discretising the time is important for keeping track
of events, hence the added time pass state that increments
time (clocks are not allowed be read in timed automata). The
time-pass state is crucial since the local scheduler has more
scheduling events to keep track of, compared to the global
scheduler.
Whenever the server is deactivated, it stays in the sleep state.
In active mode, the server can release, stop and increment
a tasks execution. The latter goes back to the statement that
a tasks execution is discrete with sections of 1 time unit of
execution.
Observer2 is notified of events by getting triggered by the
local scheduler through a number of channels.
Each upcoming task scheduling-event must be passed to the
global scheduler so that it does not schedule a server event
(such as deactivating the server) without letting the local
scheduler handle task scheduling events that are earlier in
time. The upcoming task scheduling event is calculated in
the CalcNextEvent state and stored in the NextTaskEvent
variable, which is visible in the global scheduler.

All models (including schedulers, observers etc.) can be
viewed in our technical report [19].

IV. VERIFICATION

We have specified 5 respectively 4 properties for each
scheduler level (global/local) that should be satisfied by our
modelled schedulers. We use two so called observer automata
that will implement the behavior (properties) that we have

US3_Main

S3_Timepass
S3clock<=1

S3_Sleep

S3_Deactivate?
S3clock==1
t ime:=t ime+1
S3clock:=0

UNotifyObserver1
S3_Deactivate?

US3_Release

U S3_TaskExec

U S3_TaskExecEnd U S3_ContextSwitch

U CalcNextEvent

AllowServerToRun!

TaskSwitch==FALSE

TaskSwitch==TRUE

TaskExecEndObs2!
AllowServerToRun!

U S3_T1
task1

U S3_T2
task2

Preemption==TRUE

Update queues

UNotifyObserver2

ActivateObs2!

DeactivateObs2!

Preemption==FALSE

NextTaskEvent:=...

S3_Activate?

ReleaseObs2!
AllowServerToRun!

EventObs2!

Fig. 7. Model of the local scheduler (simplified)

specified. The next step is to use the built in verifier in
Times, and simply construct logic statements (TCTL) that
checks if certain states are reached in the observers. The
observers will reach these states if they detect a scheduling
fault that contradicts our proposed properties. Observer1 is
used to verify the global scheduler, and Observer2 is used
for the verification of the local scheduler. The reason for using
observers, instead of only using logic statements in Times, is
that the verifier cannot determine the amount of time elapsed
from one location to another, which we need in order to
conduct our verification. Naturally, all automata have been
checked for the absence of deadlock before proceeding with
the verification.

A. Task/server systems used in the verification

It is well known that model checking requires a finite model,
and thus, it might cause problems when verifying schedulers
[20], [21] since the tasks give rise to unknown factors such as
number of tasks, task parameters etc. In essence, different task
sets will give rise to different automata transitions (behavior),
so the scheduler will behave different depending on task
sets. Due to this, we explore the fact that the modelled
scheduler has a small set of scheduling events (task/server
release, task/server suspension, context switch etc.), even when
including the combinations of these events (as we will see).
We identify all of these events, which represents the entire
behavior of the scheduler. Then we run the scheduler together
with selected task/server sets that will generate all of these
(combinations of) scheduling events, during the verification.
Alternatively (just to be safe), since the process from mod-
elling/verification down to synthesis is short, once the model
is finished (the verification of models in this size takes just a
few minutes on a standard PC), a system can be verified with
scheduler and load (task/server) together before deployment.

Name T Budget D Prio Tasks
Server1 19 2 19 Low {server1}
Server3 5 3 5 High {s3task1,s3task2}

TABLE I
SERVER SET (USED IN SYSTEM 1 AND 2)

We ran three different task/server systems (system 1, 2
and 3) during the verification of our scheduler properties.

Name T Budget D Prio Tasks
Server1 19 2 19 Low {server1}
Server3 10 6 10 High {s3task1,s3task2}

TABLE II
SERVER SET (USED IN SYSTEM 3)

The three systems are presented in Table III, IV and V. The
corresponding execution traces can be found in Figure 9, 10
and 11. The server parameters used for systems 1 and 2
(Figure 9 and 10) are listed Table I, and the server parameters
for system 3 (Figure 11) is shown in Table II. Figure 8 shows
a simulation trace (in Times) of system 1, i.e., Figure 9.

Name T C D Prio
server1 - - - -
s3task1 10 3 10 Low
s3task2 11 1 11 High

TABLE III
TASK SET OF SYSTEM 1

Name T C D Prio
server1 - - - -
s3task1 16 4 16 Low
s3task2 11 2 11 High

TABLE IV
TASK SET OF SYSTEM 2

Name T C D Prio
server1 - - - -
s3task1 10 3 10 High
s3task2 11 1 11 Low

TABLE V
TASK SET OF SYSTEM 3

Table VI list all possible scheduling events at the global
level. A release or suspension of a task/server can lead to a
context switch (c.s.). If not (in case of suspension), then there
will be a switch to an idle task/server, which is not part of
our model, hence we define a context switch only when the
model switches between tasks/servers that are defined in the
model. A simultaneous suspension/release will always lead to
a context switch. We do not differentiate if the task/server that
is released is to be switched in, or, if there is another higher
priority task/server ready to be switched in. We differentiate
in that local scheduling events can occur when its server is
active, the time when its server activates and the time when its
server deactivates. Local scheduling events happen only during
the time when its server is active (according to the model).
Related to the undefined events in Table VII, a task suspension
cannot happen during a server release since it cannot finish
its execution at the same time as its server activates. The
local scheduler does not differentiate the cause of its servers
activation/deactivation, e.g., there is no differentiation if the
server activation is due to a release, or suspension of a higher
priority server. Hence, we do not need to consider all possible

Server event Example
Release (c.s.) Fig. 9, time=20

Release (no c.s.) Fig. 9, time=57
Suspend (c.s.) Fig. 9, time=03

Suspend (no c.s.) Fig. 9, time=08
Suspend/Release (c.s.) Fig. 9, time=38

TABLE VI
SERVER SCHEDULING EVENTS

cases/combinations of local and global scheduling events. All
scheduling events in Table VI and VII are referred to the
execution traces presented in systems 1, 2 and 3. These
scheduling events will occur during the verification of the
global (section IV-B) and local scheduler (section IV-C).

Task event Server event
Active Activate Deactivate

Release (c.s.) Fig. 9, t=11 Fig. 10, t=55 Fig. 10, t=33
Release (no c.s.) Fig. 11, t=22 Fig. 10, t=00 Fig. 11, t=66

Suspend (c.s.) Fig. 11, t=13 - Fig. 9, t=23
Suspend (no c.s.) Fig. 9, t=06 - Fig. 10, t=08

Suspend/Release (c.s.) Fig. 11, t=33 - Fig. 9, t=33

TABLE VII
TASK SCHEDULING EVENTS

Fig. 8. TIMES simulator (simulating system 1)

0 10

Server1Server3
20 30 40 50 60

S3task1S3task2
server1

Fig. 9. System 1

B. Global level verification

In the verification of the global scheduler, we use the
server parameters shown in Table I, which will generate all
server scheduling events (shown in Table VI). The following
properties are defined (and later verified):

Property1 : A server Si (with index i) should never get
more than Ci budget at any discrete interval (non sliding) of
length Pi, where the first interval starts at time 0.

Property2 : A server Si (with index i) should never get
less than Ci budget at any discrete interval (non sliding) of
length Pi, where the first interval starts at time 0, if there is
unused time within this interval.

Property3 : A server Si (with index i) should always be
released (inserted in the server ready-queue) according to its
specified period Pi.

0 10

Server1Server3
20 30 40 50 60

S3task1S3task2
server1

Fig. 10. System 2

20

Server1Server3
30 40 50 60 70

S3task1S3task2
server1

10

Fig. 11. System 3

Property4 : A server should always be removed from the
server ready-queue upon server budget depletion.

Property5 : The highest priority server in the server ready-
queue should always be the current running server in the
system.

We have modelled a task automata called Observer1 (Fig-
ure 13 and 14) that will check that each of the 5 properties
are fulfilled.

D
B
A

S1

S2
0 P1 2*P1ADB

C
B B B

C
BA

Fig. 12. Observer1 events

Figure 12 shows at which server scheduling events the
observer executes, the following list explains each event:
• Event A represents a release event.
• Event B represents the start/stop of a budget (not neces-

sarily the beginning and end of a budget).
• Event C represents the end of a budget.
• Event D represents the the beginning of a budget in case

it was idle previously.

StartU CheckExecution
EventObs1?

IncorrectRunning

EventFlag == RESET

U Server_Event

U ServerDeplete

DepleteObs1?
IncorrectDeplete

S_ReadyQ[i] == ActiveServer

U ServerCS1

EventFlag:=FINISHED
,CSflag1++

S_ReadyQ[i] != ActiveServer
,i == S_ReadyLen
DeplTstamp:=budgetCalc. spend budget etc.

S_ReadyQ[i] != ActiveServer
,i < S_ReadyLen
i + +

EventFlag := RESET

EventFlag == RELEASED
,AbsClock==RelTstamp
CSflag2−−

EventFlag == FINISHED
,AbsClock==DeplTstamp
CSflag1−−

Fig. 13. Observer1: Server context-switch and depletion

Property1 and Property2 are checked by the observer by
measuring the server budget, event B (Figure 12) illustrates

Start

IncorrectRelease2AbsClock < S_ReleaseQ[0]
ReleaseObs1?

U ServerRelease

AbsClock==S_ReleaseQ[0]
,RelTstamp:=S_ReleaseQ[0]
ReleaseObs1?, ID:=...

IncorrectRelease1

MoreBudget

LessBudget

SpendBudget[ID] < S_Budget[ID]
,SlackTstamp > LastPeriod[ID]

SpendBudget[ID] > S_Budget[ID] IncorrectQueue

UCheckQueueContent

RelTstamp != AbsPeriod[ID]

U ServerCS2

i < S_ReadyLen
i + +

found == 1,i == S_ReadyLen
,S_ReadyQ[0]==ID,CSflag2++ S_ReadyQ[i] == ID

found :=1

ID:=S_ReleaseQIndex[0]
ReleaseMore?

UCheckSlackNoMoreRelease? U CheckQueueOrder
EventFlag:= RELEASED i == S_ReadyLen

S_ReadyQ[0]!=ID,found==1
,i == S_ReadyLen,ReleaseMore?
ID:=S_ReleaseQIndex[0]

AbsClock > S_ReleaseQ[0]
ReleaseObs1?

S_ReadyQ[i] > S_ReadyQ[i+1]
S_ReadyQ[0] != ID,found == 1
,i == S_ReadyLen,NoMoreRelease?S_ReadyLen == 0

SlackTstamp:=RelTstamp

i == S_ReadyLen, found == 0

S_ReadyQ[i]<=S_ReadyQ[i+1]
,i < S_ReadyLen
i + +

SpendBudget[ID]==S_Budget[ID]

Fig. 14. Observer1: Server release

these events. Property2 is not valid if there is no unused
budget within the period, since that indicates a schedulability
problem. At event D, a server is activated, and the observer
timestamps this point if no previous server was running.
This timestamp value is checked at event A together with
the measured budget. If the timestamp is within the period,
then there was unused time. At each event A, Property1
and Property2 are checked. In Figure 14, either a transition
to state LessBudget or MoreBudget is made if the budget
has been underused or exceeded. Event D corresponds to
CheckSlack (Figure 14). The logical expressions (1) and (2)
in Figure 15 checks that there is no path leading to the error
states, i.e., for all paths (∀), on every state along the path (¤),
a state is never (¬) visited. The transition to these error states
contradicts the requirements of Property1 and Property2.
For more details on the modelling of the error states, we direct
the reader to our technical report [19].

Fig. 15. TCTL expressions

Property3 is checked at event A (Figure 12). State Incor-
rectRelease2 (Figure 14) is active if the global scheduler tries
to release a server at an incorrect time. A transition to state
IncorrectRelease1 (Figure 14) is done if there should be an
incorrect value in the server release queue, which does not
match the calculated release time of the observer. We have
used the logical expressions (3) and (4) in Figure 15 to check
Property3 in Times.

Property4 is checked at event C, Figure 12. When-
ever there is a server deplete event, the observer checks
that the server is no longer in the server ready-queue
(IncorrectDeplete, Figure 13). The logical expression (5)

(Figure 15) verifies this property.
Property5 is checked at event A by checking the server

ready-queue content and order, the logical expression used
is (6) (Figure 15). We check that a server is in the ready
queue after its release (CheckQueueContent) and that the
queue is ordered correctly (CheckQueueOrder), both states
are found in Figure 14. Server Event is entered whenever
there is a server context switch (Figure 13). It is not possible
to enter this automata part if no budget depletion or server
release has occurred (CheckExecution, Figure 13), this refers
to expression (7) (Figure 15). Yet two more expressions are
important to check, (8) and (9) (Figure 15), in order to verify
Property5. Whenever there is a server release that affects the
server ready-queue in such a way that it ends up as the head
node (ServerCS2, Figure 14), then it implies that a server
context switch should occur (Server Event, Figure 13). This
is checked in expression (8) (Figure 15), for all paths and
states (∀ ¤), whenever state ServerCS2 is reached, it implies
(=⇒) that at some state in all the upcoming paths (∀ ♦),
state Server Event is reached and (∧), at the same time the
condition CSflag2 = 0 holds. The condition is that it should
happen directly, i.e., no time should pass. This is a condition in
the model where the transitions between CheckExecution and
Server Event checks the elapsed time (Figure 13). Also, there
should not be any nesting, i.e., two server releases (where both
imply server context switch) followed by one context switch
(hence the check CSflag2 = 0 in the expression). The same
check is made for budget depletion, expression (9) (Figure 15).

C. Local level verification

During the verification of the local level we use all three
task systems presented in section IV-A, and we use another
observer called Observer2 (due to space restrictions we direct
the reader to the technical report [19] for this figure) to verify
the following 4 properties.

Property6 : A task ti (with index i) should always be
released (inserted in the task ready-queue) according to its
specified period Pi, OR if later, directly when its server is
activated.

Property7 : A task should always be removed from the
task ready-queue upon finishing its execution.

Property8 : The highest priority task in the task ready-
queue (in each server) should always be the current running
task in the server, when it is active.

Property9 : All tasks should run within their respective
server.

The only properties that are different in the local level
compared to the global level are Property6 and Property9,
we will explain these two briefly.

Property6 is checked with the same expressions as in the
global level, but the local level observer will also allow task
releases that coincide with its server releases.

Regarding Property9, Observer2 assumes that all context
switches that happen during its observation are within the
server under observation. Hence, it is only required to check
that no task context switch (where the next running task

belongs to the observed server) will occur during server
deactivation. The property is checked by timestamping all task
context switches. A transition is made to an error state if a task
context switch occur at the same time as a server deactivation.

V. CODE SYNTHESIS

We have synthesised the model into two different kernel-
level implementations; the original model which has frag-
mented task executions and that is fully verified (Section IV),
and the more simple model (without fragmentation) where
only the global level is fully verified, and the local level is
partially verified (only Property6 is fulfilled). In the simple
model we don’t use any internal task ready-queue (tasks are
just released according to the release-queue), hence, the local
level cannot be fully verified. We synthesised these two models
for the sake of comparing the CPU overhead, further, we also
included our previously manually coded hierarchical scheduler
HSF [5] (as a reference point) in the comparison. The frag-
mented model is of course not practical, in terms of synthesis
(real applications cannot have this kind of fragmentation),
but still we show that it is possible to synthesise a fully
verified hierarchical scheduler. Removing the fragmentation
(and keeping the full verification) is just a matter of adding
dynamic priority support (or the ability to suspend tasks) in
the Times tool.

We measured the CPU overhead of all 3 schedulers as
well as the memory consumption. The platform used for the
experiments is VxWorks 6.6, running on an Intel Pentium4
(1,66 GHz, uni-core) desktop machine. The CPU overhead was
measured with the sysTimestamp facility and the dynamic
memory consumption was analysed with the Wind River
Workbench Memory Analyzer. The tasks used in the experi-
ments were executing empty for-loops and the execution times
were estimated using the VxWorks Timex facility. During the
experiments, the tick resolution was set to 1000 Hz. We let 1
time unit in the system represent 1 scheduler tick.

Scheduler CPU (%)
Times (fragmented) 1.78

Times (non-fragmented) 1.36
HSF 0.08

TABLE VIII
CPU OVERHEAD

Scheduler Dynamic memory Static memory
Max Average

Times (fragmented) 1646 1646 10874
Times (non-fragmented) 1646 1646 10874

HSF 11456 1692 24

TABLE IX
MEMORY OVERHEAD (BYTES)

Table VIII shows the measured CPU overhead of the
schedulers. The measurements were done in the first 2090
scheduler ticks, i.e., the least common multiple (LCM) of all
task and server periods of system 1. The CPU overhead (%)
represents the LCM of all task and server periods divided by
the measured execution time of each scheduler. As can be
observed, the non-fragmented version has less overhead than
the fragmented, which is due to less automaton transitions

and task releases. Both generated schedulers has substantial
more overhead than the manually coded scheduler, i.e., 17
respectively 22 times more CPU overhead. We experimented
on the generated code with an optimisation which reduced
the amount of scheduler invocations by 50% (1045 instead of
2090 scheduler invocations), however, the total CPU overhead
was reduced by only 5%. We have identified more ways to
optimise the code, but we defer this to future work.

Table IX shows the amount of dynamic/static memory
used by the schedulers. During the actual scheduling (after
initialisation), the memory allocation of HSF drops down to
1692 bytes. The total memory used (during the scheduling) by
HSF is 1716 bytes, and for the generated schedulers it counts
up to 12520 bytes in total. The conclusion is that there is a
similar worst-case memory usage (11480 vs. 12520 bytes), but
less CPU overhead by HSF (0.08% vs. 1.36%).

0 10 20 30 40 50

server1

S3task1

S3task2

IdleTask

0

1

2

Server1

0

2

3

Server3

0

250

500

Idle

Fig. 16. Execution trace of HSF, running system1

0 10 20 30 40 50

server1

S3task1

S3task2

IdleTask

0

1

2

Server1

0

2

3

Server3

0

250

500

Idle

Fig. 17. Execution trace of TIMES scheduler (non-fragmented), running
system1

Figure 16, 17 and 18 shows the actual runtime execution
recording of the tasks and servers. As can be seen, our
generated schedulers (Figure 17 and 18) gives the same trace
as the manually coded scheduler (Figure 16). What can also be

0 10 20 30 40 50

server1

S3task1

S3task2

IdleTask

0

1

2

Server1

0

2

3

Server2

0

250

500

IdleServer

Fig. 18. Execution trace of TIMES scheduler (fragmented), running system1

noted is how the fragmented model gives a slightly different
execution trace than the non-fragmented since there are more
task releases due to the fact that the task execution is divided
into several one-time-unit sections of execution.

Our execution recorder uses the VxWorks taskHookLib
and we use the visualisation tool Grasp [22] to display the
recordings.

VI. RELATED WORK

a) Hierarchical scheduling theory: There is a growing
attention in that little prior work has been done on verification
of hierarchical scheduling implementations [23], as compared
to the great amount of work on schedulability analysis [8], [9],
[10], [24], [25], [26], [27], [28] (where there is an assumption
that the scheduling policy is correctly implemented), which
has originated from open systems [2] in the late 1990’s.

b) Hierarchical scheduling implementation: Among the
implementation work, Kim et al. [29] propose the SPIRIT uK-
ernel that is based on a two-level FPPS hierarchical scheduling
framework, simplifying integration of real-time applications.
A mix of theory and practice is presented in [3] where the
authors reason about general scheduling trees with arbitrary
scheduling policies and scheduling depths. They also present
an implementation in Windows 2000. More recently, [5] and
[30] implemented a two-level FPPS HSF in the commercial
real-time operating systems VxWorks and µC/OS-II.

c) Scheduler modelling: There are two main categories
of scheduler modelling, either the scheduler already exists as
an implementation and it is modelled (and verified) after code
analysis or other techniques [31], [32], [33], [34], [35], [36],
or (as in our paper) the scheduler is modelled and later verified
(and perhaps also synthesised) [37], [38], [39], [40], [41].

In the area of modelling hierarchical scheduling, the authors
in [42] show how modelling and schedulability analysis of
two-level hierarchical scheduling, with timed automata, can be
accomplished in the simulation tool Cheddar. Ha et al. [43]
describes the verification, using theorem-proving, to verify the
IMA scheduler DEOS, used for safety critical domains such
as aerospace and space. The scheduler assigns a period and

budget to each thread, the scheduling policy used is RMA.
The work of Muller et al. [44], [45] is most similar to our
work. They use a domain specific language (DSL) to model
schedulers (including hierarchical schedulers). The difference
is that they verify that the scheduler is correct with respect to
the kernel interface, and not the actual scheduling policy. Their
framework support synthesis for early Linux kernel versions.
Zerzelidis et al. [46] model a system with multiple schedulers,
including resource sharing with SRP. The modelling tool
UPPAAL is used, and the model is compatible with RTSJ.
Each partition (local scheduler) has a priority level, but no
release time or budget. The verification shows the absence of
livelock/deadlock and the correctness of SRP.

Few papers touch upon the area of code-synthesis in the
context of scheduler modelling. Hsiung et al. [47] presents
a framework (VERTAF) for developing real-time embedded
software. The application, as well as the scheduler is specified
as UML diagrams. The framework does a transformation
to extended timed automata (ETA) and model checking is
used to verify properties such as livelock and deadlock. The
framework supports code-synthesis for the OS’s MontaVista
Linux, µC/OS, Embedded Linux, and eCOS. Li et al. [48] in-
troduce a meta-scheduler framework, compliant with POSIX-
supported OS’s. Basically, the framework is a middleware
layer which uses OS primitives, and it exports an interface
to schedulers, which in turn are implemented by the users.
The correctness of the framework is verified using UPPAAL.
They implement several flat-schedulers in various platforms
(VxWorks for example), and they measure the overhead of
the schedulers.

To sum up, modelling of hierarchical scheduling has been
done, but not specifically for two-tier FPPS with PS. To the
best of our knowledge, there is no prior work on verification
of hierarchical scheduling policies, nor code-synthesis (from
model) for this type of scheduling.

VII. CONCLUSION

In this paper we deal with modelling, verification and
synthesis of hierarchically scheduled real-time systems. We
have looked at two-level hierarchical scheduling, with fixed
priority preemptive scheduling of periodic tasks/servers. The
scheduler has been modelled using the task-automata language
and the model was implemented in the Times tool. However,
the Times tool does not support dynamic change of priorities,
nor task suspension, which are two fundamental properties
required when implementing hierarchical scheduling. In the
paper we show how to get around this problem through an
innovative approach for how the system is modelled.

In addition we modelled observers which monitored the
behavior of the schedulers. We implemented rules for the
observers, based on the criteria that we have specified as
properties. These properties are appropriate behaviors that
comply with hierarchical fixed priority preemptive scheduling
of periodic tasks and servers. The observers are then modelled
to enter error states if they detect a contradiction to any of our
properties. We check that the observers do not enter these error

states through the use of model checking. We use task/server
systems that stress the schedulers to generate all combinations
of scheduling events, so that we can verify the entire behavior
of the hierarchical scheduler.

The code synthesis results showed a considerable difference
in CPU between the generated schedulers and an equivalent
manually coded scheduler. However, the worst-case memory
consumption showed to be similar to each other.

To sum up, this paper presents a proof of concept, showing
that we can model, verify, and generate source-code that
executes a hierarchical scheduler on an industrial platform.

As future work, we plan to optimise the synthesis of the
model by implementing a new (optimised) code generator.
This will make the synthesis fully automated, which will open
up the possibility to generate systems in a larger scale.

REFERENCES

[1] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” in OSDI’96.

[2] Z. Deng and J. W.-S. Liu, “Scheduling Real-time Applications in an
Open Environment,” in RTSS’97.

[3] J. Regehr and J. A. Stankovic, “HLS: A Framework for Composing Soft
Real-Time Schedulers,” in RTSS’01.

[4] M. Åsberg, M. Behnam, F. Nemati, and T. Nolte, “Towards Hierarchical
Scheduling in AUTOSAR,” in ETFA’09.

[5] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
Hierarchical Scheduling on top of VxWorks,” in OSPERT’08.

[6] M. Åsberg, T. Nolte, and S. Kato, “A Loadable Task Execution
Recorder for Hierarchical Scheduling in Linux,” Mälardalen
University, Technical Report 2377, 2010. [Online]. Available:
http://www.mrtc.mdh.se/publications/2377.pdf, [Accessed:2011-01-05]

[7] L. Sha, J. P. Lehoczky, and R. Rajkumar, “Solutions for some Practical
Problems in Prioritized Preemptive Scheduling,” in RTSS’86.

[8] R. I. Davis and A. Burns, “Hierarchical Fixed Priority Pre-emptive
Scheduling,” in RTSS’05.

[9] T.-W. Kuo and C.-H. Li, “A Fixed-Priority-Driven Open Environment
for Real-Time Applications,” in RTSS’99.

[10] I. Shin and I. Lee, “Periodic Resource Model for Compositional Real-
Time Guarantees,” in RTSS’03.

[11] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A Synchronization
Protocol for Hierarchical Resource Sharing in Real-Time Open Sys-
tems,” in EMSOFT’07.

[12] R. I. Davis and A. Burns, “Resource Sharing in Hierarchical Fixed
Priority Pre-emptive Systems,” in RTSS’06.

[13] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task Automata:
Schedulability, Decidability and Undecidability,” International Journal
of Information and Computation, vol. 205, no. 8, pp. 1149–1172, 2007.

[14] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[15] T. Amnell, E. Fersman, P. Pettersson, W. Yi, and H. Sun, “Code
Synthesis for Timed Automata,” Nordic Journal of Computing, vol. 9,
no. 4, pp. 269–300, 2002.

[16] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “TIMES:
A Tool for Modelling and Implementation of Embedded Systems,” in
TACAS’02.

[17] C. Liu and J. Layland, “Scheduling Algorithms for Multi-programming
in a Hard Real-Time Environment,” ACM, vol. 20, no. 1, pp. 46–61,
1973.

[18] L. Andriantsiferana, J.-P. Courtiat, R. C. d. Oliveira, and L. Picci,
“An Experiment in using RT-LOTOS for the Formal Specification and
Verification of a Distributed Scheduling Algorithm in a Nuclear Power
Plant Monitoring System,” in FORTE’97.

[19] M. Åsberg, “Model of Two-Tier Hierarchical Fixed-Priority Preemptive
Scheduling,” Mälardalen University, Technical Report 2379, 2011.
[Online]. Available: http://www.mrtc.mdh.se/publications/2379.pdf,
[Accessed:2011-01-05]

[20] L. Lensink, S. Smetsers, and M. Van Eekelen, “Machine Checked
Formal Proof of a Scheduling Protocol for Smartcard Personalization,”
in FMICS’07.

[21] G. Grov, G. Michaelson, and A. Ireland, “Formal Verification of Con-
current Scheduling Strategies using TLA,” in ICPADS’07.

[22] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in WATERS’10.

[23] R. Glaubius, T. Tidwell, W. D. Smart, and C. Gill, “Scheduling Design
and Verification for Open Soft Real-Time Systems,” in RTSS’08.

[24] X. Feng and A. Mok, “A Model of Hierarchical Real-Time Virtual
Resources,” in RTSS’02.

[25] G. Lipari and S. K. Baruah, “Efficient Scheduling of Real-Time Multi-
Task Applications in Dynamic Systems,” in RTAS’00.

[26] G. Lipari and E. Bini, “Resource Partitioning Among Real-Time Appli-
cations,” in ECRTS’03.

[27] J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, “Evolving
Real-time Systems Using Hierarchical Scheduling and Concurrency
Analysis,” in RTSS’03.

[28] S. Matic and T. A. Henzinger, “Trading End-to-End Latency for Com-
posability,” in RTSS’05.

[29] D. Kim, Y. Lee, and M. Younis, “SPIRIT-uKernel for Strongly Parti-
tioned Real-Time Systems,” in RTCSA’00.

[30] M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and
J. J. Lukkien, “Virtual Timers in Hierarchical Real-time Systems,” Proc.
WiP session of the RTSS’09.

[31] J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger, “Verifi-
cation of Time Partitioning in the DEOS Scheduler Kernel,” in ICSE’00.

[32] D. Cofer, E. Engstrom, and N. Weininger, “Using Model Checking for
Verification of Partitioning Properties in Integrated Modular Avionics,”
in DASC’00.

[33] T. K. Iversen, K. J. Kristoffersen, K. G. Larsen, M. Laursen, R. G.
Madsen, S. K. Mortensen, P. Pettersson, and C. B. Thomasen, “Model-
Checking Real-Time Control Programs - Verifying LEGO MIND-
STORMS Systems Using UPPAAL,” in ECRTS’00.

[34] M. Daum, J. Drrenbcher, and B. Wolff, “Proving Fairness and Implemen-
tation Correctness of a Microkernel Scheduler,” Journal of Automated
Reasoning, vol. 42, pp. 349–388, 2009.

[35] N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Ve-
muri, “Theorem Proving Guided Development of Formal Assertions in
a Resource-Constrained Scheduler for High-Level Synthesis,” Formal
Methods in System Design, vol. 19, pp. 237–273, 2001.

[36] M. Kleine, B. Bartels, T. Gothel, and S. Glesner, “Verifying the
Implementation of an Operating System Scheduler,” in TASE’09.

[37] L. Didier and O. H. Roux, “Formal Verification of Real-Time Systems
with Preemptive Scheduling,” The International Journal of Time-Critical
Computing Systems, vol. 41, pp. 118–151, 2009.

[38] P.-A. Hsiung and S.-W. Lin, “Model Checking Timed Systems with
Priorities,” in RTCSA’05.

[39] C. Shu and W.-G. Qing, “Modeling and Formal Analysis of Real-Time
System via CCS,” ISCSCT’08.

[40] L. Durante, R. Sisto, and A. Valenzano, “Formal Specification and
Verification of the Real-Time Scheduler In FIP,” in WFCS’95.

[41] O. Nasr, J.-P. Bodeveix, M. Filali, and M. R. Irit, “Verification of a
Scheduler in B Through a Timed Automata Specification,” in SAC’06.

[42] F. Singhoff and A. Plantec, “AADL Modeling and Analysis of Hierar-
chical Schedulers,” in SIGAda’07.

[43] V. Ha, M. Rangarajan, D. Cofer, H. Rues, and B. Dutertre, “Feature-
Based Decomposition of Inductive Proofs Applied to Real-Time Avion-
ics Software: An Experience Report,” in ICSE’04.

[44] L. P. Barreto and G. Muller, “Bossa: A Language-Based Approach to
the Design of Real-Time Schedulers,” in RTS’02.

[45] J. L. Lawall, G. Muller, and H. Duchesne, “Invited Application Paper:
Language Design For Implementing Process Scheduling Hierarchies,”
in PEPM’04.

[46] A. Zerzelidis and A. Wellings, “Model-based Verification of a Frame-
work for Flexible Scheduling in the Real-Time Specification for Java,”
in JTRES’06.

[47] P.-A. Hsiung, S.-W. Lin, and C.-S. Lin, “Real-Time Embedded Soft-
ware Design for Mobile and Ubiquitous Systems,” Journal of Signal
Processing Systems, vol. 59, pp. 13–32, 2010.

[48] P. Li, B. Ravindran, S. Suhaib, and S. Feizabadi, “A Formally Verified
Application-Level Framework for Real-Time Scheduling on POSIX
Real-Time Operating Systems,” IEEE Transactions on Software Engi-
neering, vol. 30, pp. 613–629, 2004.

