
Implementation of a Software Engineering Course for Computer
Science Students

Ivica Crnkovic Magnus Larsson, Frank Lüders
Department of Computer Engineering Research and Development

Mälardalen University ABB Automation Products AB
Box 883, 721 23 Västerås, Sweden 721 59 Västerås, Sweden

+46 21 103183 +46 21 342666
Ivica.Crnkovic@mdh.se {Magnus.Larsson | Frank.Luders}@mdh.se

http://www.idt.mdh.se/personal/icc http://www.idt.mdh.se/personal/{mlo | fls}

ABSTRACT

Experience from industry shows that graduates in computer
science generally lack many of the skills required in
software development projects. This presents a challenge to
academic institutions. This paper describes our experiences
in implementing a course in software engineering at a
Swedish university. A set of challenges is presented and it
is described how these were met using a combination of
lectures and project work. The results of the projects, the
lessons we have learned, and the feedback from the
students are discussed.

Keywords
Software engineering, Education.

1 INTRODUCTION

The need for software engineers is growing and it is more
important than ever to educate qualified personnel for the
software industry. Reports from industry show that,
although graduates in computer science are generally very
knowledgeable, they often lack many of the skills needed in
software development projects. This presents a challenge to
academic institutions to incorporate training in such skills
in their curricula.

This paper describes our experiences in implementing a
one-semester course in software engineering for computer
science students at Mälardalen University in Sweden.

2 EXPERIENCE FROM INDUSTRY

During many years of working with Swedish industry, we
have observed on almost regular pattern of capability
exhibited by graduates in computer science or software
engineering, and we have noticed the same in students
working in industry as part of their thesis projects or in
summer employment. Newly graduated engineers and
students usually have knowledge of different programming
techniques. They learn new languages quickly, and are
soon familiar with new technologies. They solve problems
quickly, they can take initiative and soon actively
participate in working teams. However, they show
significantly less of the understanding, motivation and
ability called for by the software engineering disciplines.
The students generally have:

− difficulty in with writing good technical documents;
− no feeling for long-term goals;
− difficulty in designing systems and writing code for

reusability;
− insufficient awareness of the product maintainability;
− no feeling at all for (or even total ignorance of)

questions relating to configuration management;
− little experience of work in large, complex, and

especially long projects.

In general, students finishing their studies are much better
trained in computer science disciplines than in software
engineering. Our experience is that the process of educating
good software engineers is too cumbersome, too long, and
very often unsuccessful. We claim that the students can be
better prepared by having a better understanding of the
software engineering disciplines if a balance between
realistic examples and appropriate theory is achieved.

3 CHALLENGES IN SOFTWARE ENGINEERING
EDUCATION

During the last decades there have been many discussions
about education in software engineering [4][5]. Mary Shaw
describes a software engineering road map [5], pointing out
the main challenges that software education has to meet. In
this paper we identify the challenges we have experienced
when developing the course.

Challenge 1 Striking a balance between theoretical
knowledge and practical experience.

The main challenge is to prepare students for the real
world, which is inconsistent and unpredictable. The
academic world is often an ”ideal” world in which students
learn about problems and their solutions in a simplified
form without all details. A very common solution to this
problem is to execute projects in software engineering
courses, based on real examples from industry [6][7]. This
approach gives a more realistic working atmosphere;
similar to the one the students will meet in industry. At the
same time it is important that theory aspects are sufficiently
discussed.

The first dilemma is how much to weight the theoretical
parts in relation to the practical part. Is it better to give the

students a solid theoretical background, which they can
utilize later in the “real life”, or to “throw them into the
water and let them learn how to swim”?

The second dilemma is about timing. Should the students
first go through the main body of the theory, and then begin
with project work or should they implement the theory
directly as they learn it? In the first case, there is a risk that
students will find the theory part too abstract and their
motivation will decrease, while in the second case there is a
risk that students will not acquire the holistic view of the
software engineering disciplines. To avoid these risks, a
balanced timing approach between theory and practice must
be found, for example to gradually increase the practical
portion.

Challenge 2 Covering all disciplines vs. concentration on
particular disciplines.

Software engineering is an extremely large area covering
many disciplines. Teaching at least the most important
disciplines requires a complete academic program, not just
a course. However, even when running “a short variant” of
a program, in the form of a course for computer science
students, it is essential to prepare them for the real
situations in which a combination of many aspects of
software engineering will be encountered. The problem is
to select the most important aspects of software
engineering. Even if we concentrate on the techniques and
basic principles used in software development phases, the
volume of the different topics the students must learn can
be so great, that it is not possible to go into specific parts in
any detail.

Challenge 3 To work on ‘real’ projects which are large
enough and small enough to be possible to complete.

Almost every software engineering course includes
elements of project work in which the students apply their
newly gained knowledge. Such projects must be chosen
carefully to get the right balance between implementation
and paperwork. When selecting a project, it is necessary to
think about the main constraint – the time frame. The
course and the project must be finished by the end of the
semester. This constraint is of great value, because it
illustrates well what has become the most important
requirement today – time to market. However, since it is
not possible to compromise with time, the functional or
quality requirements must be flexible and properly
prioritized.

Challenge 4 To balance teamwork with individual work.

To prepare the students to work in large projects, they must
learn how to work in teams. There are several possible
strategies for grouping the students and assigning roles
within each team, ranging from a purely arbitrary scheme
to arranging “job interviews” to match students with their
interests and capabilities. There must also be a balance
between the responsibilities of the teams and the
individuals. Shall the team be collectively responsible for

the project or shall each individual have his/her
responsibilities? Should all students work in one team, or
should they be divided into several small groups? If there
are several teams, should the project be organized in a
manner which requires the teams to cooperate (the result
from one team can be input to another), or should the teams
work independently? Cooperation is frequently essential in
real situations, but it can be significantly more difficult to
appreciate this within a course, where the time frames are
strictly defined.

Challenge 5 To balance ideal preconditions with a
chaotic environment for the students.

One of the main goals in teaching software engineering is
to simulate real situations as far as possible. As real
situations are far from being ideal, one approach that has
proved efficient is a “dirty-trick” model [8] in which
students are confronted with unpredictable problems during
the project. The supervisors play frequent “dirty tricks” on
the students to simulate a volatile reality. This model is
however not appropriate in a Swedish educational
environment in which the relations between teachers and
students are very direct, almost as between students. The
“dirty trick” model would work only if the students were
explicitly warned of tricks. The students would take this as
a competition between the teachers and students, forgetting
about the main goal of the project. Even if the students
were informed about possible problems, our experience is
that the students would come back and complain about the
course and simply demand normal conditions should apply.

Challenge 6 To have a proper balance between
permitting the students to work independently and under a
degree of control.

One of the most important challenges is to establish good
relations between students and their teachers. Teachers
must be enthusiastic to make their students enthusiastic
about their projects. On the other hand it is unsatisfactory if
the teachers guide students too closely. In such a case there
is a risk that students may stop thinking independently and
begin to rely completely on the guidance of the teachers.

Challenge 7 To achieve a good balance between long
term and short term educational goals

Faulk [12] points out the importance of having a
curriculum, which combines industrial relevance with
academic excellence. To achieve industrial relevance the
practical parts of the course must be compatible with real
industry projects, methods, tools and experiences. Lack of
an industrial connection will discourage the students from
taking the course. On the other hand, if a curriculum is only
based on current practice in industry, the universities will
not support the course, since the main goal of education is
to prepare students not only for current needs but for their
entire professional life.

All the challenges above must be considered when a
successful software engineering course is to be set up.

4 CASE STUDY – A SOFTWARE ENGINEERING
COURSE FOR COMPUTER SCIENCE STUDENTS

Course description
The software engineering course [10] was attended by
students from the third or fourth year of the computer
science program. The goal of the course was to give the
students a general knowledge of software engineering and
how to utilize this knowledge in other projects. All students
were experienced in different programming and design
techniques, so the main purpose of the course was not
programming, but other phases of software development.
To meet Challenge 1, the first half of the course was
theoretical with lectures and individual exercises,
concluding with a written examination. The individual
exercises helped students understand the theory presented
during the lectures and the examination required them to
learn the theory sufficiently to be prepared for the project.
The second part of the course included a practical project
with the students working in teams.

Software engineering topics related to the phases of the life
cycle of a software product were covered, using [1] and [2]
as the main course literature. The theoretical part covered
requirements, system analysis, development models,
configuration management, project management, software
maintenance, teamwork, etc.

To get the right equilibrium between theory and practice,
ABB was invited to participate with their experience of
software development. Their current project model, which
is influenced by CMM [14], was used with small
modifications. Following a project model used in industry,
we tried to give a realistic picture of a running of a project.
For example, the students calculated the project costs.
Many were quite surprised by the final amount.

For the project work the focus was on teamwork, planning,
process measurement and learning by doing. We divided
students into teams of seven or eight students. They could
choose the development model, but the main milestones
were defined by us to minimize the risk of project failures.
The milestones were later used to measure the accuracy of
the project plan and the progress of the project. The teams
reported the project status each week and each milestone
had to be approved as completed.

During the project work period the students were required
to analyze the problem to be solved, define and process
requirements, and design and implement the system. The
most difficult part was to capture the requirements, as the
task they were given was to develop a program derived
from a research paper [3]. The paper describes how to
manage requirements with configuration management and
it proposes a tool for this management. By giving the
students a task related to software engineering, our
intention was even more to put the focus their attention on
the software engineering questions. The implementation
part included partial use of existing software, partial new
development. In both cases, the principle of learning by

doing was applied. For development, the students had to
use Visual Basic, which was unfamiliar to most. These two
conditions made the students’ work more difficult, but it
was instructional as an example of the problems they can
meet later. As students were experienced in using different
languages, we expected that it would be no big problem to
learn and use a new language. The most natural architecture
for the problem was a two- or three-tier architecture,
dividing the system into several relatively independent
parts. This architecture required differentiation of
responsibilities within the team, and as a consquence,
intensive synchronization and integration activities. We
also insisted on a strict usage of configuration management
(CM). The CM-activities included version management,
configurations (creating baselines) and change management
[13]. A CM-tool used in ABB for many years was selected
for use [9][10]. The students also used CM-related
measurements to present their activities and progress.

Challenge 3 was considered when the project task was
selected. To create competition between the teams, all
members of the most successful team were to be awarded
higher marks for the course.

We decided to have an environment to providing the
students with full support. However due to a tactical
mistake, the environment become the cause of many
problems. We permitted, namely, the students to install the
CM tool themselves, which they did with much imagination
and thereby causing a number of unintentional problems. It
was a good lesson for the teachers – separate development
from administration.

Project efforts
During the project, the students were required to record the
time spent on different activities. The chart in Figure 1
shows the average effort spent on each activity, as
compared with the average planned effort.

Figure 1. Planned and actual effort (%) per activity.

The first conclusion one may draw from the graph is that
there is a relatively small discrepancy between the planned
and actual values, which leads to the suspicion that the
students did not report correctly. We have discussed this
question with the students, arriving at the conclusion that
students recorded correctly, in spite of a broad opinion [8]
that it is impossible to measure students’ efforts due to their

0 5 10 15 20 25 30 35 40

Requirements

Design

Coding

Testing

Configuration Mgt.

Project mgt.

Others

Actual Effort Planned Effort

style of working. Due to strict milestones they simply could
not afford to spend more time on a specific activity (for
example design), since that would leave no time for the
next activity. The graph also shows that coding was the
most time consuming activity, although this was not the
purpose of the course. There are several explanations why
this was so. Firstly, the students had to learn Visual Basic
and for many students it took a longer time than we
expected. Secondly, the coding time is the easiest to
measure. When we asked them why they spent less time on
other activities, many of them answered that they forgot to
report time they spent in discussions, small tests, and so on.

Weekly meetings were held between each project team and
the teachers. At these meetings, a member of the team
presented their results for the previous week and the
activities planned for the following week. The students
were also to report whether they felt their work was
according to schedule or lagging behind. Interestingly, all
the teams reported that they felt their project was on track
on every meeting, although some projects were late. Over
time, the students learned not to present “what is supposed
to be done” but the real state of the project.

Project results
In order to be approved, the teams had to perform several
elements satisfactory – starting from the analysis of the
paper and the requirements elicitations, continuing with the
system analysis and design, and finishing with the
implementation of the application. In addition to these,
factors related to the product, such as functionality,
usability, and modularity, and the project activities, such as
project planning, reporting, configuration management, and
presentations had to be approved.

The project results varied. Two teams passed with
difficulties, one of these not being able to organize their
work properly. This team consisted of many strong
individuals with different backgrounds, some of them good
hackers, but because of weak leadership the team lagged
behind the others. Although some parts of the programs
were very well made, the integration was very weak. The
hackers failed to inform the others of the features of their
parts of the application. They included certain fancy
features not specified in the requirements, but they failed to
make the application sufficiently robust and general. The
second team had difficulties understanding the problem –
and even the aim of the course. It took them much time to
get started and they remained persistently behind schedule.
Two teams did a fairly good job. One team of students with
less experience than average made very good progress.
These students took the project work very seriously and
probably gained the most in accumulating knowledge. Two
teams did very well. They succeeded in implementing all
the main requirements, with a good product design, good
code and very good teamwork. While one team had a little
better application design, the other had an excellent
finalization, with very good product presentation, excellent
user manual and even a printed CD. An interesting detail

showed that one of these teams really enjoyed the work – it
continued to work with the project even after the end of the
course.

Students opinions
The students presented an evaluation of the course at its
conclusion. This evaluation showed that the students
appreciated working in teams and that they saw that
development of software is more than coding. An
interesting reflection was that the “hacker” students did not
appreciate the course as much as the others.

The students found that the communication between project
members and the steering group is of major importance.
Some of them felt that too much freedom was left to the
students, and that they sometime did not known what was
required of them. This was partially true, and intended. We
wanted them to be able to make their own decisions and
even to judge for themselves what was required, and what
they could manage. The groups also concluded that all the
members in a group must have the opportunity to give
his/her opinion. All the students agreed that it is of great
importance to have fun during the project.

Figure 2. Students evaluation

The students’ evaluation shows that they were relatively
satisfied with the course, and that the project work was the
more interesting part, that it gave them more. The problems
they met with in the development environment (one “dirty
trick”) were not appreciated at all.

The complete evaluation list is placed on [10].

Evaluations 0% 10% 20% 30% 40% 50%

The course was:

vary bad

bad

good

very good

excellent

The project gave you:

nothing

little

sufficient

pretty much

very much

Dev. Environment was:

very bad

bad

good

very good

5 CONCLUSION

We tried to meet the challenges discussed in section 3 and
to find the most appropriate balance between different
requirements. We found that having the first part of the
course more theoretical and the last half more practical
worked well. However, the students thought it would have
been better if the exercises during the theoretical part were
connected more closely with the project.

Many software engineering disciplines were covered in the
project, but a focus on a few more important was
inevitable. Some parts, such as programming style and
object-oriented programming, were not emphasized since
they were covered by other curriculums. It was good to
have selected topics on which we could place emphasis
(project management, requirement elicitation, teamwork,
configuration management). We covered other topics more
briefly even if it was difficult to make the selection
mentioned in section 3.

The idea of permitting the students to implement a research
prototype was quite successful. Although it was not a
project originated from industry, it was large and complex
enough to require them to apply the knowledge obtained in
the theoretical part of the course.

To provide a creative environment for both individuals and
teamwork we decided to make the teams responsible for the
final results. The students defined the requirements
themselves, and which of these were to be implemented.
They also decided which development model to use. This
proved to work well for the teams in which a strong project
manager was chosen, but not so for one team where the
project manager was not enthusiastic enough to lead the
members. This particular team almost failed to accomplish
the minimum goals set by the supervisors due to stresses
within the team. Other teams divided the task into smaller
and more independent parts. This worked well for the most
part, but one team began integrating too late and ran into
problems as a result.

The incidental introduction of a “dirty trick”, i.e. problems
with the development environment, was very unfortunate,
and even jeopardized the project success. To ensure an
open dialog with the students we agreed that the
supervisors could be interrupted whenever needed. E-mail
and the web were also used frequently for communication.
Discussions between the students and the supervisors were
both at personal and professional levels. One team decided
not to interact frequently with the customers (supervisors)
and they did not properly understand the requirements. In
general, communication between the students and teachers,
as well as among the students, was very good, this being a
characteristic of Swedish culture and universities’ tradition.
Good teamwork is also characteristic of Swedish industry.

The use of the development process model provided by
ABB appeared to be very successful, although to complex
in some details.

6 REFERENCES

[1] Sommerville I., Software Engineering, Addison-
Wesely, 1999.

[2] Pfleeger S.,L., Software Engineering: Theory and
Practice, Prentice Hall, 1999.

[3] Crnkovic I., Funk P., Larsson M., “Processing
Requirements by Software Configuration
Management”, Proceedings of 25th Euromicro
Conference, Milan, IEEE, 1999.

[4] Shaw M., “We Can Teach Software Better”,
Computing Research News, 4, 4 September 1992.

[5] Shaw, M., “Software Engineering Education: A
Roadmap”, The Future of Software Engineering,
22nd International Conference of Software
Engineering, ACM, 2000.

[6] Dawson R.J., Newshman R.W., Kerridge R.S.,
“Bringing the ‘Real Word’ of Software Engineering
to University Undergraduate Courses”, IEEE Proc.
In Software Engineering, 144, 5-6(1997), 44-48.

[7] Leventhal L.M., Mynatt B.T., “Components of
typical undergraduate software enineering courses:
Results from survey”, IEE Trans.Softw.Eng., vol
SE-131,11(1987) 1193-1198.

[8] Dawson R., “Twenty Dirty Tricks to Train Software
Engineers”, Proceedings of 22nd International
Conference on Software Engineering. ACM, 2000.

[9] Crnkovic I., “Experience with Change-Oriented
SCM Tools”, Software Configuration Management
ICSE’97 Symposium, Springer, 1997.

[10] Software Engineering course, CD5360, Mälardalen
University, http://www.idt.mdh.se/kurser/cd5360
(partially in Swedish).

[11] Crnkovic I. and Willför P., “Change Measurements
in an SCM Process”, System Configuration
Management Symposium, Springer, 1998.

[12] Faulk S. “Achieving Industrial Relevance with
Academic Excellence: Lessons from the Oregon
Master of Software Engineering”, Proceedings of
22nd International Conference on Software
Engineering. ACM, 2000.

[13] Estublier J., “Software Configuration Management:
A Roadmap”, The Future of Software Engineering,
22nd International Conference of Software
Engineering, ACM, 2000.

[14] Software Engineering Institute, “CMM for
Software”, SEI-93-TR-24 and -25, 1993.

	ABSTRACT
	INTRODUCTION
	EXPERIENCE FROM INDUSTRY
	CHALLENGES IN SOFTWARE ENGINEERING EDUCATION
	CASE STUDY – A SOFTWARE ENGINEERING COURSE FOR COMPUTER SCIENCE STUDENTS
	Course description
	Project efforts
	Project results
	Students opinions

	CONCLUSION
	REFERENCES

