Towards Adaptive Hierarchical Scheduling of
Overloaded Real-time Systems

Nima Moghaddami Khalilzad, Thomas Nolte and Moris Behnam
MRTC/Milardalen University
P.O. Box 883, SE-721 23 Visteras, Sweden
nmi09001 @student.mdh.se

Abstract—In a hierarchical scheduling framework, a resource
can be shared among modules with different criticality levels.
In our recently introduced adaptive hierarchical scheduling
framework, modules receive a dynamic portion of the CPU
during run-time. While providing temporal isolation is one of
the main advantages of hierarchical scheduling, in an adaptive
framework, for example when the CPU is overloaded, the higher
priority modules can violate timing guarantees of the lower
priority modules. However, the priorities of modules are assigned
based on parameters other than the module criticality levels. For
example the priority is often assigned according to periods and
deadlines of tasks to increase the CPU utilization assuming static
systems, i.e. modules parameters do not change during runtime.
In an overload situation the high criticality modules should be
superior to the low criticality modules in receiving resources. In
this paper, extending our adaptive framework, we propose two
techniques for controlling the CPU distribution among modules
in an overload situation. We are taking another step towards
having a complete adaptive hierarchical scheduling framework
by incorporating an overload controller into our framework.

I. INTRODUCTION

Adaptability is increasingly becoming the ubiquitous feature
of real-time systems. Due to the fact that execution time of
real-time tasks often varies significantly, adaptive scheduling
of tasks is of importance. For example a decoder task of an
H264 stream can experience more than five times execution
time variation depending on the video content [1]. In order
for resources to be used efficiently, systems should adapt
themselves to the current load situation. We have recently
introduced an Adaptive Hierarchical Scheduling Framework
(AHSF) in which subsystems can adapt their bandwidth re-
quest according to the current load of their internal tasks
[2]. Hence, the CPU resource is flexibly shared among sub-
systems which is conducive to a better performance of our
adaptive framework in comparison with the static frameworks
especially when tasks experience a sudden change in their
execution time.

While, a number of studies have been conducted on overload
scheduling [3], [4], [5], scheduling of mixed criticality systems
in overload situations is also investigated in [6]. In this paper
we study some applicable techniques that can be applied in the
context of our Hierarchical Scheduling Framework (HSF) [7]
in which modules budgets are adapted during run-time using
feedback control loops [2].

Using the HSF we can provide temporal isolation for real-
time tasks and guarantee their timing requirements [8]. In the

HSF a system is composed of a variety of modules denoted
as subsystems. During run-time, each subsystem receives a
portion of the CPU and using this portion it should schedule
its own tasks. All subsystems are scheduled using a global
level scheduler.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief information about our HSF. Section III
describes our AHSF. In Section IV two methods are suggested
for dealing with scheduling in an overload mode. In Section V
we show one example for illustrating the presented methods.
Related works are presented in Section VI. Finally, our con-
clusions are presented in Section VII.

II. THE HIERARCHICAL SCHEDULING FRAMEWORK

In this paper we consider the use of feedback scheduling in
a single CPU where each CPU is modeled as a system S. Each
system consists of a set of subsystems Sg € S. The system is
scheduled using a two level HSF. During run-time, the global
scheduler chooses one of the subsystems and allocates CPU to
that subsystem. Then, the subsystem’s local scheduler shares
this allocated CPU among its tasks according to its scheduling
algorithm. In this paper, we study systems that are using the
fixed priority algorithm in both local and global levels.

A. Subsystem Model

Each subsystem Ss is represented by its timing interface
parameters (T, Ps,Bs, (s) where T, Ps, Bs and (g are subsys-
tem period, priority, budget and criticality respectively. Each
subsystem Sg also consists of a set of tasks Ts and a local
scheduler. Assuming n subsystems in the system there exist n
levels of priority and criticality starting from O to n— 1.

III. THE ADAPTIVE HIERARCHICAL SCHEDULING
FRAMEWORK

In our AHSF, each subsystem has one budget controller
which is responsible for adapting the budget of the subsystem
to its internal tasks demands. The budget controller finds
a suitable budget value for its corresponding subsystem by
periodically sampling the controlled variables. The subsystem
does not receive the new budget unless it is approved by
the overload controller. The overload control logic is only
activated in overload situations. In normal mode, subsystems
can acquire their necessary budget values. The architecture of
our AHSF is illustrated in Figure 1.

Global FPS Scheduler

' 4 1 1

Overload Controller

Budget
Controller

Budget
Controller

Budget
Controller

System

Local FPS
scheduler scheduler

Task Task
set set

Adaptive Hierarchical Scheduling Framework

Local FPS
scheduler

Task
set

Local FPS.

Fig. 1.

The budget controller uses two PI feedback control loops
for controlling the budget of subsystems. These loops are
called "M-loop” and ”U-loop” [2]. While the ”"M-loop” tries to
minimize the number of deadline misses, the "U-loop” keeps
the budget of subsystems to a minimum possible value.

IV. OVERLOAD SCHEDULING

In an overload situation, which we will call a critical mode,
the controller cannot provide all subsystems with enough
budgets. Therefore, we suggest a mechanism for distributing
the CPU among subsystems based on their criticality value
Cs. In dealing with the critical mode, the very first issue is
detecting the time which the system mode is changing from
normal to critical. Furthermore, after providing the most crit-
ical subsystem with enough budget, other subsystems should
be able to use the remaining portion of the CPU resource such
that they do not violate the schedulability condition of a higher
criticality subsystem.

A. Mode Change

We suggest two mechanisms for detecting the mode change
time. The goal of proposing these methods is to predict
overload situations and to avoid critical deadline misses.

Both methods require conducting a schedulability analysis
in global level. Since the global scheduler schedules subsys-
tems in a similar way as scheduling simple real-time periodic
tasks, it is possible to use the schedulability analysis methods
used for scheduling periodic tasks. The subsystem can be
modeled as a periodic task where the subsystem period is
equivalent to the task period and the subsystem budget is
equivalent to the task execution time. It is important to note
that in the mode change methods we are interested in the
global level schedulability, i.e, all subsystems should receive
the assigned budget within their period. Therefore, a system
can be schedulable in the global level and yet some tasks in
the local level miss their deadlines.

1) Method one: According to offline analyses we can find
a safe budget ceiling for all subsystems in which the whole
system is schedulable and completely utilized. In doing so,
we need to add an additional parameter to each subsystem in
the subsystem interface which is the maximum budget value
B’S""”‘. Therefore, a system would be considered in its critical
mode if any of its subsystems Ss € S is requesting a budget
more than its maximum value (Bg > B§4‘”). It is important to
note that changing the mode does not necessarily mean that
there is not enough resources. We only force the system to do
some additional checks by changing the mode.

In this approach, B’S” % of the subsystems should be assigned
to a safe value which could be a considerable safe boundary
plus the time that all tasks inside that subsystem can finish
their worst case execution time. This time duration can be
calculated using the notion of real-time virtual processor
model introduced by Mok et al. [9]. In calculating Bg”‘” we
should assume that all other higher criticality subsystems in
the system Sg € S are using their BZS”“X and find a sufficient
value for B’S""”‘ such that the response time of Sg is less than
its period Ty.

2) Method two: Using an online schedulablity analysis in
the global level, the system can detect the mode change time.
Whenever the global scheduler fails to (analytically) schedule
subsystems according to their new budget value, the system is
considered to be in its critical mode.

B. Budget Distribution Policy in the Critical Mode

In the critical mode, the controller starts to share the
budget among subsystems from the most critical subsystem
to the least critical one. Therefore the most critical subsystem
receives the entire budget that it requests. The amount of
budget that the lower criticality subsystems receive is com-
pletely dependent on the new budgets of the higher criticality
subsystems. If a lower criticality subsystem asks for less
than the maximum possible budget it will get it, otherwise
it will get the maximum possible value. It is an undeniable
fact that in the critical mode, less critical subsystems might
completely be shut down or receive a small amount of budget
such that their tasks start missing their deadlines which is
unavoidable. The important point to highlight here is that the
criticality value of a subsystem should be assigned based on
the criticality of its inner tasks. In the case that a subsystem is
composed of mixed criticality tasks, one approach is to assign
the average value of the tasks criticality to the subsystem
criticality {g and use a scheduler in the local level which
takes the criticality level of tasks into account. In this approach
subsystems should have a minimum budget value Bg’”” which
indicates how much budget is necessary for only scheduling
its corresponding high criticality tasks. Another approach is
to simply assign the maximum criticality level of tasks to the
subsystem criticality value. However, by using this approach
the system discriminates between tasks that have the same
criticality levels and belong to different subsystems.

C. Calculating the Remaining Budget

As it is mentioned, in the critical mode after assigning the
budget for a higher criticality subsystem, there would be a
limitation for the budget of a lower criticality subsystem. We
present two approaches for mapping the consumed budget in
a high criticality subsystem to the budget value of a low
criticality subsystem. These approaches correspond to the
methods presented for detecting the mode change.

1) Method one: If we are using an offline analysis for
detecting a mode change, then we know BZS”‘”‘ for each subsys-
tem, and we also know that if all subsystems use their B§4 4 the
whole system is schedulable. In this method, after detecting
the mode change, B’SVI‘”‘ are assigned to their corresponding Bs.

For a system consisting of two subsystems S; and S;
assuming {; > {; and S; requests a new budget that is o
unit more than its maximum budget (B; = Bf”““roc), the
system enters to the critical mode and we initialize the budgets
with the maximum budgets Bs = B’S”‘”“. In order to provide
the high criticality subsystem with the requested budget we
need to reduce the budget of the lower criticality subsystem.
Hence, Bj = B; — [a ’1 On the other hand, if afterwards S;
requests a budget value which is o unit less than its current
budget B;, we can transfer this extra budget to S; using
the following equation: B; = B; + [a ’1 These equations
are used in 1mp1ementat10n of the ”TakeRequlredBudget(Cs,
o)” and the ”GiveExtraBudget({s, o)” functions presented in
Algorithm 1 which shows pseudocode of method one. In this
algorithm NewBudget; represents the new budget value that the
budget controller suggests to the current subsystem S;. When
a subsystem requests a budget value which is less than its
current budget we give the extra budget to the lower criticality
subsystem using the ”GiveExtraBudget({; + 1, a)” function. In
the case that there is no other lower criticality subsystem in the
system, this function reserves the extra budget in the lowest
criticality subsystem such that the “TakeRequiredBudget((;,
a)” function can use this spare budget.

The “TakeRequiredBudget({;, o)” function takes the re-
quired budget from some of the lower criticality subsystems
(depending on amount of the requested budget) in such a
way that S; can receive the maximum available budget value.
Indeed, when a subsystem asks for a budget value which
is more than its current budget B;, the controller takes this
amount from the lowest criticality subsystem. If the lowest
criticality subsystem cannot afford the whole required budget,
the ”"TakeRequiredBudget” function gets the entire lower crit-
icality subsystem budget and takes the remaining requested
budget from the subsystem which belongs to the one level
higher criticality (if its criticality is lower than criticality of
the requested subsystem). The main purpose of exchanging
budgets among subsystems in this method is to keep track of
the overall available budget.

2) Method two: In this approach, we should do a schedu-
lability analysis after each new budget assignment. In contrast
with the global schedulability test which is done for mode
change detection, in conducting the schedulability analysis

Algorithm 1 Method one
for {;=0t0 {;=n—1do
= |B; — NewBudget; |,
if NewBudget; < B; then
GiveExtraBudget({; + 1, o);
B; = NewBudget;;
end if
if NewBudget; > B; then
B; = B; + TakeRequiredBudget(n — 1, a);
end if
end for

for the subsystem S; the algorithm assumes that all lower
criticality subsystems are shut down. In doing so, when a
higher criticality subsystem requires more budget, the algo-
rithm punishes the lowest criticality subsystem. When the
system is not schedulable, we have to rollback the last budget
assignment and assign a lower value to the budget of that
subsystem. Algorithm 2 shows pseudocode of method two. In
this pseudocode the ”Schedulable(S,S;)” function conducts a
schedulability analysis according to the new budget values.
Furthermore, the FindNewBudget(S;,B;) function returns a
new value for the budget of subsystem S; based on the last
failed value.

Algorithm 2 Method two
for {;=0t0o {;=n—1do
B; = NewBudget;;
while Schedulable(S,S;) # True do
B; = FindNewBudget(S;,B;);
end while
end for

V. EXAMPLE

Assume a system with the specifications presented in Ta-
ble I. In order to illustrate the introduced approaches, we
present a scenario and show how we can apply these two
methods to schedule the example system in the critical mode.

Name [7y [Initial By [BY** Pg [&
S1 20 I 2 1
S5 22 3 4 2 2
S3 18 2 2 0 (highest) 3
M 19 8 8 3 0 (highest)
TABLE I

SUBSYSTEMS SPECIFICATIONS

Assume that S has current budget B; =2 and that it requires
two additional units of budget, and also assume that this will
cause a mode change from normal to critical mode. The other
subsystems have their initial budget values and they want
to keep their budgets unchanged. If we want to schedule
the system without considering their criticality, the timing
constraints of S; are guaranteed only if the remaining budget
after using S3 is sufficient for S;. However, since {; > (3, in
interfering of S; by S3 we want S| to use the CPU.

A. Method one

e Since B| > levmx the system mode will change to the
critical mode and Bs = BY/®*.

o TakeRequiredBudget(3, 2) will take two units of budget
from $3 and will give it to S;. Hence, B; =4 and B3 =0.

« Since §; asks for a budget less than its current budget, the
”GiveExtraBudget(3, 1)” will change Bz =1 and By = 3.

e B3 =1 and S§3 asks for 2. Since there is no other lower
criticality subsystem the “TakeRequiredBudget” function
returns 0 and B3 remains unchanged.

B. Method two

« The global schedulability check will fail (assumption) and
it will cause a mode change.

« The budget of S; will change B; = 4 and the schedula-
bility analysis assuming B, = B3 = 0 will be successfully
done.

o The budget of S, will be set B, =3 and a schedulability
test assuming B3 = 0 will be done. Since the system is
schedulable the algorithm will move to the next step.

o The budget of S3 will be set B3 =2 and a schedulability
test will be done. Since the system is not schedulable
it will assign B3 = 1 and perform the schedulability
test again. Since this time the system is schedulable the
algorithm will move to the next step.

VI. RELATED WORKS

Related works of this paper are twofold: adaptive schedul-
ing and overload scheduling. Reservation-based algorithms
are similar to our HSF in a sense that we also reserve
resources for the subsystems. Feedback scheduling applied
to the reservation-based algorithms [10]. Adapting the band-
width of servers in reservation based scheduling algorithms is
formulated as an optimization problem, and integer program-
ming and linear programming solutions are suggested in [11].
Stankovic et al. have studied feedback control techniques in
distributed systems [12]. Lu et al. introduced a Proportional
(P) controller which controls CPU utilization requests based
on miss ratio and utilization feedback loops [13].

de Niz et al. presented a scheme for protecting temporal
isolation of high criticality tasks in mixed criticality systems.
In their scheme a low criticality task cannot interfere with
a high criticality task [6]. In [14] each task, in addition to
a criticality value, has a mandatory and an optional part.
In overloaded situations a set of task parts are chosen that
maximizes the overall value of the system. In [15] the authors
by introducing an elastic task model, showed that how tasks
can adapted themselves to the different quality of services.
Their proposed approach suggests that in overloaded situations
instead of rejecting a new task by reducing the utilization of
other tasks, the system lets the new task to use the CPU.

VII. SUMMARY AND CONCLUSIONS

In this paper, we propose one online and one offline method
for controlling the budget adaptation in an overload situation.
When it comes to implementation, different approaches can

be used for implementing these methods. For instance, the
schedulability test can be done using either the utilization
based test, the response time analysis or an approximation
approach such as the one presented in [16].

The next step in our work is to implement these techniques
in our simulation environment and further investigate pros and
cons of each method. Moreover, we will conduct a set of
experiments to compare the response time of tasks in AHSF
and HSF. Finally, another trend of our work is to study other
types of controllers instead of the PI budget controller.

REFERENCES

[1] M. Asberg, T. Nolte, C. M. O. Perez, and S. Kato, “Execution time mon-
itoring in linux,” in Proceedings of the Work-In-Progress (WIP) session
of 14th IEEE International Conference on Emerging Techonologies and
Factory Automation (ETFA’09), September 2009.

[2] N. M. Khalilzad, M. Behnam, T. Nolte, and M. Asberg, “On adaptive
hierarchical scheduling of real-time systems using a feedback controller,”
in Proceedings of the 3rd Workshop on Adaptive and Reconfigurable
Embedded Systems (APRES’11), April 2011.

[3] G. Buttazzo, M. Spuri, and F. Sensini, “Value vs. deadline scheduling
in overload conditions,” in Proceedings of the 16th IEEE Real-Time
Systems Symposium (RTSS ’95), December 1995, pp. 90-99.

[4] S. Biyabani, J. Stankovic, and K. Ramamritham, “The integration of
deadline and criticalness in hard real-time scheduling,” in Proceedings
of 7th the IEEE Real-Time Systems Symposium (RTSS ’88), Dec. 1988,
pp. 152 -160.

[5] G.de A Lima and A. Burns, “An optimal fixed-priority assignment algo-
rithm for supporting fault-tolerant hard real-time systems,” Computers,
IEEE Transactions on, pp. 1332 — 1346, October 2003.

[6] D. d. Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling of
mixed-criticality real-time task sets,” in Proceedings of the 30th IEEE
Real-Time Systems Symposium (RTSS ’09), December 2009, pp. 291—
300.

[7]1 T. Nolte, M. Behnam, M. Asberg, R. J. Bril, and 1. Shin, “Hierarchical
scheduling of complex embedded real-time systems,” in Ecole d’Ete
Temps-Reel (ETR’09), August 2009, pp. 129-142.

[8] G. Lipari and S. Baruah, “A hierarchical extension to the constant
bandwidth server framework,” in Proceedings of the 7th IEEE Real-
Time Technology and Applications Symposium (RTAS '01), May 2001,
pp. 26 -35.

[91 A. Mok, X. Feng, and D. Chen, “Resource partition for real-time sys-

tems,” in Proceedings of the 7th Real-Time Technology and Applications

Symposium (RTAS '01), May 2001, pp. 75-84.

L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a

reservation-based feedback scheduler,” in Proceedings of the 23rd IEEE

Real-Time Systems Symposium (RTSS ’02), December 2002, pp. 71-80.

A. B. d. Oliveira, E. Camponogara, and G. Lima, “Dynamic recon-

figuration in reservation-based scheduling: An optimization approach,”

in Proceedings of the 2009 15th IEEE Symposium on Real-Time and

Embedded Technology and Applications (RTAS ’09), 2009, pp. 173-182.

[12] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and

C. Lu, “Feedback control scheduling in distributed real-time systems,”

in Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS

’01), December 2001, pp. 59 — 70.

C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control

real-time scheduling: Framework, modeling, and algorithms,” Real-Time

Systems, pp. 85-126, 2002.

P. Mejia-Alvarez, R. Melhem, and D. Mossé, “An incremental approach

to scheduling during overloads in real-time systems,” in Proceedings

of the 21st IEEE Real-time Systems Symposium (RTSS’00), November

2000, pp. 283-293.

G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive

rate control,” in Proceedings of the 19th IEEE Real-Time Systems

Symposium (RTSS ’98), December 1998, pp. 286 —295.

N. Fisher and S. Baruah, “A fully polynomial-time approximation

scheme for feasibility analysis in static-priority systems with bounded

relative deadlines,” Journal of Embedded Computing, vol. 2, pp. 291—

299, December 2006.

[10]

(11]

[13]

[14]

[15]

[16]

