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Abstract—In this paper we generalize our recently presented
synchronization protocol (MSOS) for resource sharing among
independently-developed real-time systems (real-time compo-
nents) on multi-core platforms. Each component is statically
allocated on a dedicated subset of processors (cluster) whose tasks
are scheduled by its own scheduler. In this paper we focus on
multiprocessor global fixed priority preemptive scheduling algo-
rithms to be used to schedule the tasks of each component on its
cluster. Sharing the local resources (only shared by tasks within a
component) is handled by the Priority Inheritance Protocol (PIP).
For sharing the global resources (shared across components)
we have studied the usage of FIFO and Round-Robin queues
for access across the components and the usage of FIFO and
prioritized queues within components for handling sharing of
these resources. We have derived schedulability analysis for the
different alternatives and compared their performance by means
of experimental evaluations. Finally, we have formulated the
integration phase in the form of a nonlinear integer programming
problem whose techniques can be used to minimize the total
number of required processors by all components.

I. INTRODUCTION

Looking at industrial systems, to speed up their develop-

ment, it is not uncommon that large and complex systems

are divided into several semi-independent subsystems (compo-

nents) which are developed in parallel. In order to guarantee

correct function of these systems, scheduling techniques are

used to enforce predictable execution of subsystems. However,

the emergence of multi-core architectures introduce challenges

in allowing for an efficient and predictable execution of

industrial software systems.

Two main approaches for scheduling real-time systems

on multiprocessors (multi-cores) exist; global and partitioned

scheduling [1], [2]. Under global scheduling, e.g., Global Ear-

liest Deadline First (G-EDF), tasks are scheduled by a single

scheduler and each task can be executed on any processor.

Under partitioned scheduling, tasks are statically assigned

to processors and tasks within each processor are scheduled

by a uniprocessor scheduling protocol, e.g., Rate Monotonic

(RM) or Earliest Deadline First (EDF). The generalization of

global and partitioned scheduling algorithms is called clustered

scheduling [3], [4], in which tasks are statically assigned to a
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subset (a cluster) of processors, and within each cluster tasks

are scheduled using a global scheduling algorithm.

When the components co-execute on a shared multi-core

platform they may share resources that require mutual exclu-

sive access. To our knowledge there is no work on handling

resource sharing among real-time components where each

component is allocated on a cluster.

Allocation of real-time components on a multi-core archi-

tecture may have the following alternatives: (i) one processor

includes only one component, (ii) one processor may contain

several components, (iii) a component may be allocated on

multiple processors. In a recent work [5] we have studied and

developed a synchronization protocol for the first alternative

which is called Multiprocessors Synchronization protocol for

real-time Open Systems (MSOS). For the second alternative,

the techniques developed for uniprocessors can be used, e.g.,

the methods presented in [6] and [7], by which the second

alternative becomes similar to the first alternative. Generaliza-

tion of MSOS to the third alternative, where each component

is allocated on a cluster, is the objective of this paper.

The contributions of this paper are: (1) We develop a

synchronization protocol for resource sharing among real-time

components on a multi-core platform, where each component

is allocated on multiple dedicated processors (cores). We have

named the new protocol as Clustered MSOS (C-MSOS). (2)

Given a real-time component, we derive an interface-based

schedulability condition for C-MSOS. The interface abstracts

the information regarding resource sharing of a component.

We show that for schedulability analysis of a component there

is no need for detailed information from other components,

e.g., scheduling protocol or priority setting policy of other

components. (3) We formulate the integration of components

as a nonlinear integer programming problem for which the

algorithms in this domain can be used to minimize the total

number of required processors for all components.

A. Related Work

Clustered scheduling techniques have been developed for

multiprocessors (multi-cores) [3], [8]. However, they assume

tasks to be independent and have not studied sharing of

mutually exclusive resources.

A non-exhaustive set of existing approaches for handling

resource sharing on multiprocessor platforms includes; Dis-



tributed Priority Ceiling Protocol (DPCP) [9], Multiprocessor

PCP (MPCP) [9], Multiprocessor SRP (MSRP) [10], Flexible

Multiprocessor Locking Protocol (FMLP) [11]

Recently, Brandenburg and Anderson [12] presented

a new locking protocol, called O(m) Locking Protocol

(OMLP) which is an suspension-oblivious protocol. Under a

suspension-oblivious locking protocol, the suspended jobs are

assumed to occupy processors and thus blocking is counted as

demand. In this paper we focus on suspension-aware locking

synchronization in which suspended jobs are not assumed to

occupy processors.

Easwaran and Andersson proposed a synchronization proto-

col [13] under the global fixed priority scheduling protocol. In

the paper, the authors have derived schedulability analysis of

the Priority Inheritance Protocol (PIP) under global scheduling

algorithms and proposed a new protocol called P-PCP which is

a generalization of PIP. For suspension-aware resource sharing

under global scheduling policies, this is the only work that

provides a schedulability test, hence in our paper we use their

schedulability test and assume that within a component local

resources are accessed using PIP.

In all the aforementioned existing synchronization proto-

cols on multiprocessors it is assumed that the tasks of one

single real-time system are scheduled on a multiprocessor

platform. C-MSOS, however, allows a component to use its

own scheduling policy and it abstracts the timing requirements

regarding global resources shared by the component in its

interface, hence, it is not required to reveal its task attributes

to other components which it shares resources with. Recently,

in industry, co-existing of several separated components (sys-

tems) on a multi-core platform (called virtualization) has been

considered to reduce the hardware costs [14]. C-MSOS seems

to be a natural fit for synchronization under virtualization of

real-time components on multi-cores where each component

is allocated on multiple processors.

II. SYSTEM AND PLATFORM MODEL

We assume that the multiprocessor platform is composed

of m identical, unit-capacity processors (cores) with shared

memory. We consider a set of real-time components, i.e., real-

time (sub)systems, aimed to be allocated on the multiprocessor

(multi-core) platform. A real-time component consists of a set

of real-time tasks. A component may also include constitute

components (i.e., hierarchical components), however in this

paper we focus on components composed of tasks only. Each

component is allocated on a dedicated subset of processors,

called cluster. Each component has its local scheduler (which

can be any multiprocessor global scheduling algorithm, e.g.,

G-EDF). The jobs generated by tasks of a component can

migrate among the processors within its cluster, however

migration of jobs among clusters is not allowed. In this paper

we focus on schedulability analysis for the global fixed priority

preemptive scheduling algorithm.

A component Ck consists of a task set denoted by τCk

which includes nk sporadic tasks τi(Ti, Ei, Di, ρi, {Csi,q,p})
where Ti denotes the minimum inter-arrival time between two

successive jobs of task τi with worst-case execution time Ei,

relative deadline Di and ρi as its unique base priority. A

task τi has a higher priority than another task τj if ρi > ρj .

The priority of a job of a task may temporarily be raised by

a synchronization protocol which is denoted as the effective

priority. The tasks in component Ck may share a set of

mutually exclusive resources RCk
which are protected using

semaphores. The set of shared resources (RCk
) consists of

two sets of different types of resources; local and global

resources. A local resource is only shared by tasks within

the same component (i.e., intra-component resource sharing)

while a global resource is shared by tasks from more than one

component (i.e., inter-component resource sharing). The sets

of local and global resources accessed by tasks in component

Ck are denoted by RL
Ck

and RG
Ck

respectively. The set of

critical sections, in which task τi requests resources in RCk

is denoted by {Csi,q,p}, where Csi,q,p is the the worst case

execution time of pth critical section of task τi in which the

task uses resource Rq ∈ RCk
. We define Csi,q to be the worst

case execution time of the longest critical section in which τi

uses Rq. We also denote CsTi,q as the maximum total amount

of time that τi uses Rq , i.e., CsTi,q =
∑

Csi,q,p. The set of

tasks in component Ck sharing Rq is denoted by τq,k , and ni,q

is the total number of critical sections of task τi in which it

accesses resource Rq. In this paper, we focus on non-nested

critical sections. We also assume constrained-deadline tasks

(i.e., Di ≤ Ti for any τi). A job of task τi is specified by Ji

and the utilization factor of τi is denoted by ui where ui = Ei

Ti
.

Component Ck will be allocated on a cluster comprised of

mk processors; m
(min)
k ≤ mk ≤ m

(max)
k where m

(min)
k and

m
(max)
k are the minimum and maximum number of processors

required by Ck respectively. To efficiently determine the

number of processors which Ck will be allocated on (i.e., mk)

in the integration phase, is one of the objectives in this paper.

III. RESOURCE SHARING

In a component-based manner the global resource require-

ments of a component should be encapsulated in its interface

(Definition 3). Furthermore, the interface should also provide

information about the maximum time duration that each global

resource can be held by the component. The tasks within a

component should not need any detailed information about the

tasks (e.g., deadlines, periods, etc.) from other components,

neither do they need to be aware of the scheduling algorithms

or synchronization protocols in other components.

Definition 1: Resource Hold Time (RHT) of a global resource

Rq by task τi in component Ck, assuming that Ck is allocated

on mk processors, is denoted by RHTq,k,i(mk) and is the

maximum duration of time that the global resource Rq can be

locked by τi. Consequently, the resource hold time of a global

resource Rq by component Ck (i.e., the maximum duration

of time that Rq is locked by any task in Ck) denoted by

RHTq,k(mk), is as follows:

RHTq,k(mk) = max
τi ∈ τq,k

{RHTq,k,i(mk)} (1)



The concept of resource hold times for compositional real-

time applications on uniprocessors was first studied in [15].

In our recent work [5] we extended this concept to multi-core

(multiprocessor) platforms to calculate resource hold times of

global resources under multiprocessor partitioned scheduling.

In this paper we further extend RHT’s to multiprocessor

clustered scheduling.

Definition 2: Maximum Resource Wait Time (RWT) for a

global resource Rq in component Ck, denoted as RWTq,k,

is the worst-case duration of time that any task τi within Ck

can be delayed by other components (i.e., Rq is held by tasks

from other components) whenever τi requests Rq.

Definition 3: Component Interface: A component Ck is

abstracted and represented by an interface denoted by

Ik(Qk(mk) , Zk(mk) , m
(min)
k , m

(max)
k ).

Global resource requirements of Ck are encapsulated in the

interface by Qk(mk) which is a set of resource requirements

that have to be satisfied for Ck to be schedulable on mk

(m
(min)
k ≤ mk ≤ m

(max)
k ) processors.Each requirement

ri(mk) in Qk(mk) is represented as a linear inequality which

indicates that an expression of the maximum resource wait

times of one or more global resources should not exceed a

value gi(mk), e.g., r1(mk)
def
= 4RWT2,k + 3RWT3,k ≤

g1(mk). Each requirement is extracted from one task re-

questing at least one global resource (Section VII). Thus,

the number of requirements equals to the number of tasks

in component Ck that may request global resources. A formal

definition of the requirements is as follows:

Qk(mk) = {ri(mk) : τi shares global resources} (2)

where

ri(mk)
def
=

∑

∀Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ gi(mk)
(3)

where αi,q is a constant, i.e., it only depends on internal

parameters of Ck (Section VII).

A global resource requirement (in Qk(mk)) of a compo-

nent Ck is extracted from the schedulability analysis of the

component in isolation, i.e., to extract the requirements of

a component, no information from other possible existing

components (on the same multi-core platform) is required.

Zk(mk) in the interface, Ik(Qk(mk), Zk(mk)), represents

a set Zk(mk) = {Zq,k(mk)} where Zq,k(mk) is the Maximum

Component Locking Time (MCLT ). Zq,k(mk) represents the

maximum duration of time that Ck (allocated on mk proces-

sors) can delay the execution of any task τx in any component

Cl (l 6= k) whenever τx requests Rq , i.e., any time any task

in Cl requests Rq its execution can be delayed by Ck for at

most Zq,k(mk) time units.

IV. LOCKING PROTOCOL FOR REAL-TIME COMPONENTS

UNDER CLUSTERED SCHEDULING

In this section we generalize our recently proposed locking

protocol, MSOS (Multiprocessors Synchronization protocol

for real-time Open Systems) [5], to real-time components

(applications) that are allocated on multiple processors. Under

MSOS each component is assumed to be allocated on one

dedicated processor. In this paper we generalize MSOS such

that a component can be allocated on one cluster. Thus the

tasks within each component have to be scheduled using a

global scheduling policy and local resources are to be handled

using a locking protocol under global scheduling policies. We

call the generalized protocol C-MSOS (Clustered MSOS).

We assume that the Priority Inheritance Protocol (PIP) for

multiprocessors is used for sharing local resources among

tasks of a component. We extend the schedulability analysis

presented in [13] such that it is compatible with C-MSOS.

First we review the characteristics of PIP for multiprocessors

as described in [13].

A. PIP on Multiprocessors

Assume that a task set is scheduled on a multiprocessor

composed of m processors, and that shared resources are

handled by PIP. Whenever a job Ji is blocked on a resource

which is locked by another job Jj with a lower base priority

than Ji, the effective priority of Jj is raised to the priority of

Ji if the effective priority of Jj is not already higher than the

priority of Ji. In this case, Ji is said to be directly blocked [13]

by Jj if Ji is among the m highest priority jobs.

Under PIP, besides direct blocking, a job Ji can also incur

interference from other lower priority jobs whose effective

priorities have been raised above Ji’s priority. Furthermore, Ji

may incur extra interference from higher priority jobs when

they have locked a resource that Ji has requested and Ji is

among the m highest priority jobs.

B. General Description of C-MSOS

Under C-MSOS, sharing local resources is handled by

multiprocessor PIP. Each global resource is associated with

a global queue in which components requesting the resource

are enqueued. Since prioritizing the components may not be

possible, the global queues can be implemented in either FIFO

or Round-Robin manner. In [5] we only studied FIFO-based

global queues. In this paper we study both types.

Within a component the jobs requesting a global resource

are enqueued in a local queue. The blocking time on global

resources should only depend on the duration of global critical

sections (gcs) in which jobs access global resources. This

bounds blocking times on global resources as a function of

(length and number of) global critical sections only. Thus the

priority of jobs accessing global resources should be boosted

to be higher than any base priority within the component.

The boosted priority of any job of task τi requesting any

global resource equals to ρmax(Ck) + 1, where ρmax(Ck) =
max {ρi|τi ∈ Ck}. Boosting the priority of a job when it

executes within a gcs ensures that it can only be preempted

by jobs within gcs’s.



C. C-MSOS Rules

The C-MSOS request rules are as follows:

Rule 1: Access to the local resources is handled by PIP

(Section IV-A).

Rule 2: When a job Ji within a component Ck requests a

global resource Rq the priority of Ji is increased immediately

to its boosted priority (i.e., ρmax(Ck) + 1).

Rule 3: If global resource Rq is free, access to Rq is granted

to Ji. If Rq is locked (by a local job or another component);

(i) if the global queues are FIFO-based a placeholder for Ck

is added to the global queue of Rq , and

(ii) if the global queues are Round-Robin-based (e.g., the

global queues can be implemented as a ring queue in which

each component has one placeholder) Ck’s placeholder is

set to an appropriate value. For Round-Robin global queues

there will be at most one placeholder per each component in

any global queue while a FIFO global queue may contain

more than one placeholder for any component sharing the

corresponding resource. Locally (for both types of global

queues) Ji is located in the local queue of Rq and suspends.

Rule 4: When a global resource Rq becomes available to

component Ck the eligible job (e.g., the one at the top of

the local queue if the local queue is a FIFO queue) is granted

accesses to Rq .

Rule 5: When Ji is granted to access Rq all processors of

the component may be busy by other jobs executing global

resources other than Rq . The jobs that are granted access

to global resources are enqueued in a FIFO queue denoted

by allResourcesQ. Obviously jobs in allResourcesQ are

granted access to different global resources and it does not

contain more than one job per each global resource. At the

time Ji is granted access to Rq , if all processors are occupied

by other jobs accessing other global resources, Ji is added to

allResourcesQ. As soon as an executing job releases a global

resource (it enters a non-critical section) it will be preempted

by the job (say Jx) at the top of allResourcesQ (if any), and

Jx will hold the global resource it has been granted access to

and it will be removed from allResourcesQ.

Rule 6: When Ji releases Rq;

(i) in the case of using FIFO global queues, the placeholder

of Ck from the top of the global FIFO queue of Rq will be

removed and Rq becomes available to the component whose

placeholder is now at the top of Rq’s global queue,

(ii) in the case of using Round-Robin global queues, Ji is

removed from the local queue and Rq becomes available to

the next component whose placeholder is set. If the local queue

is empty the placeholder of Ck is reset (e.g., the placeholder

is set to 0).

V. SCHEDULABILITY ANALYSIS

In this section we extend the response time analysis for

multiprocessor PIP in [13] to be applicable to C-MSOS.

A. Schedulability Analysis of PIP

Easwaran and Andersson [13] have shown that under mul-

tiprocessor PIP the response time of any task τi denoted by

RTi can be calculated as follows:

RTi = Ei + DBi + Ihp
(dsr)
i + Ihp

(osr)
i

+ Ihp
(nsr)
i + Ilpi

(4)

where

• DBi upper bounds the direct blocking (on local re-

sources) that τi incurs,

• Ihp
(dsr)
i is an upper bound for the amount of time that

tasks with a higher base priority than τi lock (local)

resources shared by τi (direct shared resources),

• Ihp
(osr)
i is an upper bound for the amount of time that

tasks with a higher base priority than τi may lock (local)

resources not shared by τi (other shared resources),

• Ihp
(nsr)
i is an upper bound for the amount of time that

tasks with a higher base priority than τi execute in their

non-critical sections, i.e., they do not hold any resource

(no shared resource),

• Ilpi upper bounds the amount of time that tasks with a

lower base priority than τi execute with a higher effective

priority than τi.

All the aforementioned factors that contribute to response

time of τi, except Ihp
(nsr)
i , are delays inherent in local re-

sources. Thus, for the sake of simplicity we rewrite Equation 4

as follows:

RTi = Ei + Ihp
(nsr)
i + I local(τi) (5)

where I local(τi) = DBi + Ihp
(dsr)
i + Ihp

(osr)
i + Ilpi.

To upper bound the worst-case interference from any task

τj to task τi in the interval RTi Easwaran and Andersson have

presented a worst case execution pattern [13]. In this pattern,

during the interval RTi, the carry-in job of τj executes as late

as possible and all following jobs execute as early as possible.

This pattern was fist proposed by Bertogna and Cirinei [16]

and later extended by Easwaran and Andersson to maximize

the total interference from a certain portion x (e.g., critical

sections) of execution time of any job τj to τi in RTi. In

the extended pattern, x time units of execution time of the

carry-in job appears as late as possible and the x time units

of execution time of all the following jobs (of τj in interval

RTi) appear as early as possible (Figure 1). In this worst-case

execution pattern Easwaran and Andersson [13] have shown

that in any interval t the total execution of x units of jobs of

any task τj is maximized as follows:

Wj(t, x) = xNj(t, x) + min {x, t − x + Dj − TjNj(t, x)}
(6)

where Nj(t, x) =
⌊

t−x+Dj

Tj

⌋

.

Based on this worst-case execution pattern Easwaran and

Andersson have calculated DBi, Ihp
(dsr)
i , Ihp

(osr)
i , Ihp

(nsr)
i

and Ilpi(for details about the calculations please read [13]).

1) Improved Response Times for mk Highest Priority Tasks:

Easwaran and Andersson in [13] have further improved the

computation of the response times for mk highest priority

tasks. The improved response times of mk highest priorities
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Fig. 1. Worst-case execution pattern regarding giving importance to a certain
portion of execution time.

is calculated as follows (for details about the rationale behind

the improved response times please read [13]):

RTi =











Ei+DBi+Ihp
(dsr)
i |τH(τi)| < mk

Ei+DBi+Ihp
(dsr)
i

+Ihp
(osr)
i +Ihp

(nsr)
i +Ilpi Otherwise

(7)

where |τH(τi)| is the number of tasks with priority higher than

that of τi.

B. Schedulability Analysis of C-MSOS

1) Computing Resource Hold Times: In this section we

determine the calculation of resource hold times of tasks and

components. We assume that component Ck is allocated on

mk processors. Any job of task τi (in Ck) which is granted

access to a global resource Rq can only be delayed by other

jobs accessing global resources other than Rq because the

boosted priority of a job which is granted access to a global

resource is higher than any base priority of other jobs within

its consisting component. At the time Rq becomes available to

any job of τi, in the worst case all other jobs (which share other

global resources) have been granted access to their requested

global resources before τi. However, at any time if the number

of those jobs that are ahead of τi is less than mk, they do not

interfere with τi’s job. Thus an upper bound of the delay that

τi incurs by other tasks when it is granted access to Rq is

denoted by Hi,q and can be calculated as follows:

Hi,q(mk) =

∑

τj 6=τi

(

max
Rl ∈RG

Ck
, l 6=q

∧ τj ∈ τl,k

{Csj,l}
)

mk

(8)

τi itself will hold Rq for at most Csi,q time units. Thus

the maximum duration of time that τi can lock Rq can be

calculated as follows:

RHTq,k,i(mk) = Csi,q + Hi,q(mk) (9)

As shown in Equation 1 the resource hold time of a resource

in a component is the longest resource hold time among all

tasks sharing the resource. Equation 8 shows that Hi,q(mk) is

the same for any task τi sharing global resource Rq . Thus, the

resource hold time of a global resource will be the resource

hold time of a task that has the longest gcs (in which it

accesses Rq) among all tasks sharing the resource, i.e., to

compute RHT of Rq it is enough to calculate the RHT of

the task possessing the longest gcs in which it accesses Rq.

Looking at Equations 8 and 9, it is clear that all parameters

except mk are constants. Thus RHTq,k,i(mk) and conse-

quently RHTq,k(mk) is a function of mk.

2) Computing Maximum Resource Wait Times: Each time a

component Ck requests a global resource Rq it can be blocked

by each component Cl up to Zq,l(ml) time unites. Thus the

worst-case waiting time (RWTq,k) for Ck to wait until Rq

becomes available is bounded as a summation of all MCLT ’s

of other components on Rq:

RWTq,k =
∑

l 6=k

Zq,l(ml) (10)

Calculation of MCLT ’s for components depends on the

type of global queues. In the case of using FIFO global queues,

whenever a component Cl requests a global resource Rq the

worst case happens when all tasks from component Ck sharing

Rq have issued requests before Cl (i.e., are already in the

global FIFO). On the other hand each task in Ck may hold Rq

up to RHTq,k,i(mk) time units, hence we can set Zq,k(mk)
as follows:

Zq,k(mk) =
∑

∀τi, τi ∈ τq,k

∧ Rq ∈RG
Ck

RHTq,k,i(mk) (11)

If the global queues are of type Round-Robin, each compo-

nent can have at most one placeholder in each global queue of

global resources that it shares, e.g., whenever a global resource

Rq is released by a job in component Ck, the resource Rq

should become available to the next component even if there

are jobs waiting for Rq in the local queue of Rq . Thus when

Cl is waiting for resource Rq , it may wait for component Ck

for at most max{RHTq,k,i} time units:

Zq,k(mk) = RHTq,k(mk) (12)

3) Response Times under C-MSOS: Under C-MSOS, the

response time of any task τi in component Ck , besides the

factors mentioned in Section V-A, also depends on interfer-

ence with other jobs regarding global resource sharing, i.e.,

interference with other jobs within the same component as

well as the other components. The execution (of any job) of

τi may further be delayed by the following factors, denoted

as global factors:

• The tasks with base priority lower than τi that may

lock global resources shared by τi. DBG
i (direct global

blocking) denotes an upper bound on the amount of time

(i.e., workload) that these tasks lock global resources

shared by τi in interval RTi.

• The tasks with higher (base) priority than τi that access

global resources shared by τi. An upper bound of the

amount of time that these tasks may delay τi during

interval RTi is denoted by Ihp
(dsgr)
i (direct shared global

resources).

• The tasks with priority lower than τi that may access

any global resource. The tasks holding global resources



may delay the execution of any task since their effective

priority is boosted to be higher than any task’s priority.

Ilp
(gr)
i (global resources) denotes an upper bound on

the amount of time that jobs of these tasks execute with

boosted priority in interval RTi.

• The components other than Ck whose tasks may lock

global resources shared by τi. RBi (remote blocking) is

an upper bound on the amount of time that (tasks in) those

components lock global resources shared by τi during

interval RTi.

Considering these interferences under C-MSOS, the re-

sponse time of task τi is calculated as follows:

RTi = Ei + Ihp
(nsr)
i + I local(τi)

+ DBG
i + Ihp

(dsgr)
i + Ilp

(gr)
i + RBi

(13)

Computing the global factors: We now compute the global

factors that may delay the execution (of any job) of task τi in

component Ck. We use the dispatch pattern in Figure 1 and

the definition of workload in Equation 6 to calculate these

factors.

(i) Computing DBG
i :

• for FIFO-based local queues: whenever a job Ji of τi in

component Ck requests a global resource Rq , in the worst

case all the lower priority jobs in component Ck sharing

Rq may have requested it before Ji and are located in the

local FIFO queue before Ji. Thus DBG
i can be calculated

as follows:

DBG
i =

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

(

ni,q

∑

ρj<ρi

∧ τj ∈ τq,k

Csj,q

)

(14)

• for priority-based local queues: whenever a job Ji of τi

in component Ck requests a global resource Rq , it may

happen that a lower priority job in component Ck has

locked Rq. However, Ji will not be delayed by lower

priority jobs requesting Rq that request Rq after Ji does.

Thus DBG
i can be calculated as follows:

DBG
i =

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

ni,q max
ρj<ρi

∧ τj ∈ τq,k

{Csj,q} (15)

(ii) Computing Ihp
(dsgr)
i :

• for FIFO-based local queues: in addition to lower

priority jobs, in the worst case all higher priority jobs will

be located before Ji in the local FIFO queue whenever

Ji requests Rq. Thus Ihp
(dsgr)
i is calculated as follows:

Ihp
(dsgr)
i =

∑

Rq ∈ RG
Ck

∧ τi ∈ τq,k

(

ni,q

∑

ρj>ρi

∧ τj ∈ τq,k

Csj,q

)

(16)

• for priority-based local queues: whenever a job Ji of τi

in component Ck requests a global resource Rq , it may

happen that all the higher priority jobs sharing Rq , also

request Rq . When Rq is locked by these higher priority

jobs, more of theses higher priority jobs may arrive and

request Rq . Thus Ihp
(dsgr)
i is calculated as follows:

Ihp
(dsgr)
i =

∑

ρj>ρi

Wj

(

RTi,
∑

Rq ∈RG
Ck

∧ {τi,τj}⊂ τq,k

CsTj,q

)

(17)

(iii) Computing Ilp
(gr)
i : upper bounds the amount of time that

the jobs of tasks with lower priority than τi delay the execution

of any job of τi, when they execute with their boosted priority

(i.e., when holding global resources). The jobs contributing to

Ilp
(gr)
i also include all the jobs of lower priority tasks that

share global resources with τi. For example suppose that a

task τx with lower priority than that of τi shares a global

resource Rq with τi. The longest gcs of τx (i.e., Csx,q) in

which it shares Rq with τi contributes to DBG
i (i.e., whenever

τi requests Rq, τx may have requested it before). On the other

hand, all gcs’s of τx may also repeatedly interfere with τi when

the jobs of τi execute in their non-critical sections. However,

if there are less than mk jobs executing at the same time, the

lower priority jobs executing within their gcs’s do not interfere

with the executing job of τi. Thus we can calculate Ilp
(gr)
i as

follows:

Ilp
(gr)
i =

∑

ρj<ρi
Wj

(

RTi,
∑

Rq ∈RG
Ck

∧ τj ∈ τq,k

CsTj,q

)

mk

(18)

Please notice that calculation of DBG
i , Ihp

(dsgr)
i and

Ilp
(gr)
i does not depend on the type of global queues (i.e.,

FIFO or Round-Robin), hence those calculations are valid

for both types. However, the execution delay introduced to

tasks from other components with which they share global

resources is calculated differently depending on the type of

global queues as explained in the following:

(iv) Computing RBi for FIFO global queues:

• for FIFO-based local queues: whenever a job of task

τi requests a global resource Rq, in the worst case

all local tasks (in the same component as τi) as well

as all tasks from other components have requested Rq

before τi. However, the execution delays introduced by

the local tasks regarding shared global resources are

considered in DBG
i and Ihp

(dsgr)
i . On the other hand,

τi will wait for any component Cl for at most Zq,l time

units (whenever it requests Rq) because for FIFO global

queues Zq,l is the summation of resource hold times of

all tasks from component Cl that share Rq (Equation 11).

Consequently τi will wait up to RWTq,k =
∑

l 6=k

Zq,l time

units considering all other components sharing Rq . Thus

for FIFO global queues RBi is calculated as follows:

RBi =
∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

ni,qRWTq,k (19)



• for priority-based local queues: In [5] for the case of

using priority-based local queues for accessing global

resources, we have shown that whenever a job Ji requests

a global resource Rq each request to Rq from a higher

priority job Jj will introduce an extra RWTq,k to Ji. The

rationale is similar here as well, i.e., each gcs of Jj in

which it requests Rq , may delay Ji for another RWTq,k.

Similar to the calculation of workload of a task during

an interval by Equation 6, the maximum number of gcs’s

of a task τj during any interval t can be calculated as

following:

Ngcsj(t, Ei) = Nj(t, Ei)+

⌈
min {Ei,t−Ei+Dj−TjNj(t,Ei)}

Ei
⌉

(20)

where the first term Nj(t, Ei) is the number of jobs that

totally locate in t (their arrival and deadline locates within

t) plus the carry-in job. The second term equals to 1 if

there is a carry-out job within t, and it equals 0 otherwise.

Besides each RWTq,k introduced because of requests of

higher priority jobs, the request of Ji to Rq itself may

also wait for Rq up to RWTq,k time units. Thus, for

the case that both the global queues and local queues for

accessing global resources are FIFO-based, RBi can be

calculated as follows:

RBi=
∑

Rq∈RG
Ck

∧ τi∈τq,k

(

ni,q +
∑

ρj>ρi

∧ τj∈τq,k

nj,qNgcsj(RTi, Ei)
)

RWTq,k

(21)

(v)Computing RBi for Round-Robin global queues:

• for FIFO-based local queues: every time a job of task

τi from component Ck requests global resource Rq , the

worst case happens when all local tasks have requested

Rq before τi and globally in the worst case per every

request to Rq , Ck has to wait for all other components.

Thus, in the worst case every request before τi’s as well as

τi’s own request to Rq have to wait RWTq,k =
∑

l 6=k

Zq,l

time units until Rq becomes available. The maximum

number of requests in the local queue of global resource

Rq is the number of tasks sharing the resource which

is denoted by |τq,k|. Considering that the durations of

time that local tasks hold Rq are counted in DBG
i and

Ihp
(dsgr)
i , we can calculate RBi for Round-Robin global

queues as follows:

RBi =
∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

ni,q|τq,k|RWTq,k (22)

• for priority-based local queues: This case is similar to

the case of using priority-based local queues with FIFO-

based global queues. This means that a request of any

job Ji to a global resource Rq may incur RWTq,k time

units per each request to Rq from higher priority jobs

sharing Rq. Furthermore, each request of Ji, itself may

wait at most RWTq,k time unit for Rq to be released by

other components accessing Rq . Thus, RBi for the case

of using Round-Robin-based global queues and priority-

based local queues to access global resources can also be

calculated by Equation 21.

Looking at Equations 19 and 22 it may seem that the value

of remote blocking (RBi) under Round-Robin global queues

is always greater than that under FIFO global queues as each

maximum resource wait time, for Round-Robin queues, is

multiplied by the number of tasks sharing the global resource

(e.g., |τq,k|). This is not true, because maximum resource

wait times are calculated differently depending on the type

of global queues; comparing Equations 11 and 12 shows

that under Round-Robin global queues maximum component

locking times and consequently maximum resource wait times

(Equation 10) are smaller than that under FIFO global queues.

Thus in different situations (e.g., the number of tasks sharing

a global resource) remote blocking under either type of global

queues can be larger than that under the other one.

C. Improved Response Times under C-MSOS

Easwaran and Andersson in [13] have shown that under PIP,

the response time of any task τi among the mk highest priority

tasks only depends on Ei, DBi and Ihp
(dsr)
i which are the

worst-case execution time of τi and the factors with regarded

to the local resources that τi shares. These factors represent

sequential executions and they do not depend on the number

of processors available to Ck. However, as shown in [13] the

other factors (i.e., Ihp
(nsr)
i , Ihp

(osr)
i and Ilpi) are affected

by the number of processors and they do not affect response

time of τi if τi is among the mk highest priority tasks. In this

section we present how the response times for some of the

mk highest priority tasks under C-MSOS can be improved.

Under C-MSOS, besides the mentioned sequential factors,

the factors DBG
i , Ihp

(dsgr)
i and RBi regarding the global

resources accessed by τi are also sequential. This means that

when τi is waiting for a locked global resource the waiting

cannot be reduced even if there is a free processor in Ck.

Thus the factors DBG
i , Ihp

(dsgr)
i and RBi contribute to the

response time of τi even if τi is among the mk highest priority

tasks in Ck (i.e., |τH(τi)| < mk). However, a job Ji generated

by τi can execute in parallel with other jobs accessing global

resources that are not requested by Ji. Hence, Ilp
(gr)
i will not

affect RTi if there are enough processors.

Thus, if the number of tasks with higher priority than that

of τi plus the number of tasks with lower priority than that

of τi and that share any global resources is less than mk,

the execution of τi will never be delayed except the times

it is waiting for a locked resource. Thus we can rewrite the

response time calculation in Equation 13 for task τi as follows,

where |τG
L (τi)| denotes the number of tasks with priority lower

than that of τi that share any global resources:



If |τH(τi)| + |τG
L (τi)| < mk:

RTi =Ei+DBi+Ihp
(dsr)
i +DBG

i +Ihp
(dsgr)
i +RBi (23)

otherwise

RTi = Ei+DBi+Ihp
(dsr)
i +DBG

i +Ihp
(dsgr)
i +RBi

+Ihp
(osr)
i +Ihp

(nsr)
i +Ilpi+Ilp

(gr)
i

(24)

VI. EXTRACTING INTERFACES

A component Ck is abstracted by its interface Ik, which

consists of four elements; Qk(mk) , Zk(mk) , m
(min)
k and

m
(max)
k (Definition 3). In Section V-B2 we have shown how to

calculate the elements of Zk(mk) (e.g., Zq,k(mk) for resource

Rq) for FIFO and Round-Robin global queues (Equations 11

and 12 respectively). In this section we determine how to

extract the requirements in Qk(mk) as well as m
(min)
k and

m
(max)
k by means of schedulability test of C-MSOS.

A. Deriving Requirements

As shown in Equation 3, a requirement in Qk(mk) specifies

that a linear expression whose variables are the maximum

resource wait times of one or more global resources should

not exceed a value which is a function of mk, e.g., gi(mk).
Each requirement is derived from the schedulability analysis

of one task that shares any global resources and each task

sharing global resources produces one requirement.

To guarantee schedulability of a component Ck on mk

processors, for any task τi in Ck, condition RTi ≤ Di has

to be satisfied. Looking at the calculation of response times

under C-MSOS (Section V-B3), the response time of tasks that

do not share any global resources is only dependent on the

local factors, i.e., for task τi the only factor in RTi that needs

information from other components (other than τi’s consisting

component) is the remote blocking factor RBi. If τi does not

share any global resources then RBi = 0 because it will not

be blocked on any global resource. Intuitively the response

time of such task can be calculated without any requirement

on external factors. On the other hand, if τi shares global

resources it may incur remote blocking. However, the amount

of remote blocking that τi can tolerate is limited and it should

not exceed a value that makes τi to miss its deadline.

The maximum acceptable response time of τi denoted by

RT
(max)
i , is when it equals its deadline, i.e., RT

(max)
i = Di.

During interval RT
(max)
i (or Di) the delay introduced by

local factors and global factors except remote blocking RBi

is constant which means that they can be calculated without

any requirement on external factors from other components.

The remaining slack (if any) can be taken as the maximum

tolerable remote blocking. Thus the maximum remote blocking

RB
(max)
i that τi can tolerate is calculated as follows:

RB
(max)
i = RT

(max)
i − internali(mk)

where

internali(mk)= Ei+DBi+Ihp
(dsr)
i +DBG

i +Ihp
(dsgr)
i

+Ihp
(osr)
i +Ihp

(nsr)
i +Ilpi+Ilp

(gr)
i

by replacing RT
(max)
i with Di:

RB
(max)
i = Di − internali(mk) (25)

The terms in internali(mk) can intuitively be calculated

using their corresponding equations in Section V by replacing

RTi with Di where it is applicable.

Looking at the calculation of RBi in Equations 19 and 22

for FIFO and Round-Robin global queues respectively we can

rewrite the calculation of RBi as follows:

RBi =
∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k (26)

where αi,q = ni,q for FIFO and αi,q = ni,q|τq,k| for Round-

Robin queues respectively. In both cases, αi,q is a constant,

i.e., it depends only on the local factors.

Considering RBi ≤ RB
(max)
i and by combining Equa-

tions 25 and 26 we can derive the following requirement:

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ Di − internali(mk) (27)

The requirement derived in Equation 27 adheres the def-

inition of a requirement in Equation 3 (gi(mk) = Di −
internali(mk)).

The discussion in Section V-C for improvement of re-

sponse times can also be applied here to improve (reduce)

internali(mk) and consequently improve (relax) the require-

ment in Equation 27 for some of the tasks among the mk

highest priority tasks sharing global resources:

If |τH(τi)| + |τG
L (τi)| < mk:

internali(mk)=Ei+DBi+Ihp
(dsr)
i +DBG

i +Ihp
(dsgr)
i (28)

otherwise

internali(mk)= Ei+DBi+Ihp
(dsr)
i +DBG

i +Ihp
(dsgr)
i

+Ihp
(osr)
i +Ihp

(nsr)
i +Ilpi+Ilp

(gr)
i

(29)

As it can be seen in Equation 28, internali(mk) cannot

further be reduced even if mk is increased since none of its

terms are dependant on the number of processors that Ck is

allocated on.

B. Determine Minimum and Maximum Required Processors

In this section we derive the calculations to determine

m
(min)
k and m

(max)
k for component Ck in its interface.

m
(min)
k is the minimum number of processors required by

Ck such that it is schedulable. Obviously ⌈Uk⌉ ≤ m
(min)
k

where ⌈Uk⌉ =
∑

τ∈τCk

ui.

Theorem 1. Under C-MSOS, the minimum number of required

processors for component Ck to be schedulable, can be



achieved by setting RBi = 0 for any task τi sharing global

resources, and is calculated as follows:

m
(min)
k = min

mx≥⌈Uk⌉

∧ Ck is schedulable on mx

{mx} (30)

Proof: If task τi does not share any global resources, its

response time depends only on internal factors (i.e., no infor-

mation from other components is needed). We assume that Ck

is allocated on mk processors. Considering the calculations for

the factors regarding local resources [13], among the factors

that RTi depends on Ei, DBi and Ihp
(dsr)
i do not depend on

mk while Ihp
(osr)
i , Ihp

(nsr)
i and Ilpi monotonically decrease

when mk increases, and consequently RTi monotonically de-

creases by increasing mk. Thus, when increasing mk, suppose

that mx is the first number of processors for which RTi is

decreased enough such that RTi ≤ Di. In this case τi will not

need further increase of the number of processors since it is

already schedulable by mx processors.

If τi shares global resources, besides the aforementioned

factors, its response time also depends on DBG
i , Ihp

(dsgr)
i ,

Ilp
(gr)
i as well as remote blocking RBi. Looking at the

calculations for these factors in Section V-B, DBG
i and

Ihp
(dsgr)
i do not depend on mk while Ilp

(gr)
i monotonically

decrease with increasing mk. RBi depends on information

from components other than Ck . Setting RBi = 0 means that

no other component, whose tasks may access global resources

shared by τi, co-execute with Ck. Thus, τi does not need to

tolerate any remote blocking. Let us denote RT 0
i (ml) as the

response time of τi where Ck is allocated on ml processors

and RBi = 0, and denote RT >0
i (ml) when RBi > 0. We

assume that mx is the smallest number of processors for which

RT 0
i (mx) ≤ Di. Suppose that there exist a my such that if

Ck is allocated on my processors the following statement is

true: (my < mx) ∧ (RBi > 0) ∧ (RT >0
i (my) ≤ Di). From

one side the response time of τi will increase if the remote

blocking factor RBi is increased and from the other side the

response time of τi also monotonically increase by reducing

the number of processors, hence RT 0
i (my) ≤ RT >0

i (my).
Considering that we have supposed RT >0

i (my) ≤ Di it turns

out that RT 0
i (my) ≤ Di which is in contradiction with the

assumption that mx is the minimum number of processors on

which RT 0
i (mx) ≤ Di.

Thus setting RBi = 0 for any task τi sharing global

resources, m
(min)
k is the smallest mx (mx ≥ ⌈Uk⌉) number

of processors on which RTl ≤ Dl for any task τl in Ck.

m
(max)
k is the maximum number of processors required for

Ck to be schedulable, i.e., further increasing the number of

processors for Ck does not improve the schedulability of any

component. In a component Ck the tasks that do not share

any global resources do not benefit (from the schedulability

point of view) from increasing the number of processors

from m
(min)
k since these tasks are already schedulable on

m
(min)
k processors. However, (Equation 27) for any task τi

sharing global resources, the requirement extracted from τi

will be relaxed by increasing mk, i.e., τi can tolerate more

remote blocking (from other components) which benefits other

components sharing global resources with τi. Thus m
(max)
k

is the maximum number of processors where at least one

requirement in Qk(mk) is relaxed, i.e., allocating Ck on mh

where mh > m
(max)
k does not further relax any requirement

hence no component will benefit from Ck being allocated on

mh compared to the case where Ck is allocated on m
(max)
k .

Theorem 2. Under C-MSOS, m
(max)
k = |τH(τmin)| + 1,

where τmin is the task with minimum priority among all tasks

sharing any global resources.

Proof: In Section VI-A we have showed that for a task

τi sharing any global resources, if |τH(τi)| + |τG
L (τi)| < mk,

internali(mk) cannot further be decreased by increasing mk

(i.e., the requirement extracted from τi cannot further be

relaxed). When increasing mk, as soon as all tasks sharing

global resources are among the mk highest priority tasks,

condition |τH(τi)| + |τG
L (τi)| < mk will hold for any task

sharing global resources. This is because if a task τi (sharing

any global resources) is among the mk highest priority tasks

any task in τH(τi) will also be among them. Furthermore since

all tasks sharing global resources are among the mk highest

priority tasks any task in τG
L (τi) as well as τi itself are also

among them, thus |τH(τi)|+ |τG
L (τi)| < mk holds for all these

tasks. Hence, by definition mk = m
(max)
k .

On the other hand the last task sharing global resources

that ends up in the mk highest priority tasks will be τmin.

As soon as τmin ends up in mk priority tasks, these mk tasks

will only consist of all tasks in τH(τmin) and τmin itself. Thus

mk = |τH(τmin)| + 1.

VII. MINIMIZING THE NUMBER OF REQUIRED

PROCESSORS FOR ALL COMPONENTS

In this section we will show that using the information in

the interfaces of components the integration of all the real-time

components on a multiprocessor platform can be formulated

as a Nonlinear Integer Programming (NIP) problem [17]. By

formulating the integration phase as a NIP problem, by means

of the techniques in this domain [17] we can minimize the

number of required processors on which all components will

be schedulable.

A typical model of a NIP problem is represented as follows:

For n number of integer variables x1, · · · , xn, there is

an objective function f : Rn −→ R to be minimized (or

maximized):

Minimize f(x1, · · · , xn) (31)

With a set of (nonlinear) inequality constraints g and a set

of (nonlinear) quality constraints h formed as follows:

gi(x1, · · · , xn) ≤ bi, i = 1, · · · , i = p
hj(x1, · · · , xn) = cj , j = 1, · · · , i = q

(32)

If the objective function f or some of the constraints gi are

nonlinear, the problem is a NIP problem. An optimal solution

(x̄1, · · · , x̄n) is a solution for which all constraints hold and

the output of the objective function is minimized.



Our goal is to minimize the number of total required

processors by all components in the integration phase. Thus,

assuming that there are n components to be integrated on a

multiprocessor platform, the objective function will be formed

as follows:

Minimize f(m1, · · · , mn) = m1 + · · · + mn (33)

where mi is the number of processors that Ci will eventually

be allocated on.

We rewrite the model of a requirement ri (Equation 27) in

the requirement set Qk(mk) of a component Ck:

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ Di − internali(mk)

It can be shown that by replacing the terms of

internali(mk) with their calculations from corresponding

Equations in [13] and Equations 14, 16, and 18 in this paper,

it can be simplified as follows:

internali(mk) = βi +
δi

mk

(34)

where βi and δi are constant numbers, i.e., they depend only

on the internal parameters of Ck.

Thus we can rewrite requirement ri as follows:

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ di −
δi

mk

(35)

where di = Di − βi.

Shown in Equation 10, RWTq,k is the summation of

Zq,s(ms)’s (s 6= k) and Zq,s(ms)’s in turn as shown in

Equation 11 (we consider FIFO global queues without loss

of generality) depend on RHT’s. Furthermore, similar to the

simplification of internali(mk) in Equation 34, the calcula-

tion of RHTq,s,i(ms) can be simplified as follows:

RHTq,s,i(ms) = σi +
γi

ms

(36)

where σi = Csi,q and γi =
∑

τj 6=τi

(

max
Rl ∈RG

Cs
, l 6=q

∧ τj ∈ τl,s

{Csj,l}
)

/ms

which are also constants.

Thus by combining Equations 10, 11, and 36, we can rewrite

Equation 35 as follows (e.g., for FIFO queues):

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,q

∑

l 6=k

∑

∀τi, τi ∈ τq,l

∧ Rq ∈RG
Cl

(σi +
γi

ml

) ≤ di −
δi

mk

(37)

Finally, it is easy to see that Equation 37 can be rewritten

in the following form:

∑ cl

ml

≤ bi (38)

The requirement in Equation 38 is a nonlinear inequality

constraint which adheres to the form of constraint for a NIP

problem (Equation 32). Thus every requirement in Qk(mk)
of every component Ck will generate a nonlinear inequality

constraint. Furthermore, every component Ck generates the

inequality constraint m
(min)
k ≤ mk ≤ m

(max)
k which can

be divided into two inequalities mk ≥ m
(min)
k and mk ≤

m
(max)
k . Obviously m1, · · · , and mk are integers, thus the

integration of the real-time components on a multiprocessor

platform under C-MSOS can be modeled as a NIP problem.

VIII. EXPERIMENTAL EVALUATION

We have performed experimental evaluation to investigate

the performance of C-MSOS for its four different alternatives

where global queues are FIFO-based or Round-Robin-based

and the local queues (to access global resources) are FIFO-

based or Priority-based.

A. Experiment Setup:

To determine the performance of all four alternatives we

tested the schedulability of a set of randomly generated com-

ponents on a multiprocessor platform under each alternative

and according to different settings. For each setting, the

number of components was varied from 2 to 22, and each

component was allocated on 3 or 5 processors (processors

per component). The number of components sharing each

global resource was chosen between 2 and 12 (components per

resource), and the number of tasks per each component sharing

a global resource was varied from 2 to 12 (tasks per component

per resource). For each component a task set was randomly

generated where the utilization of each task was randomly

chosen between 0.01 and 0.1, and its period was randomly

chosen between 10ms and 100ms, and the execution time of

the task was calculated based on its utilization and period. For

each component, tasks were generated until the utilization of

the component reached a cap or a maximum number of 30
tasks were generated. The utilization cap of a component was

set to be the number of processors of the component multiplied

by 0.4. A task included up to 4 critical sections, and the total

number of shared global resources was 8 or 16. The length of

global critical sections ranged from 10µs to 150µs. For each

setting we generated 1000 platforms.

B. Results:

First we performed the experiments for the platforms that

consisted of similar components, e.g., all the components shar-

ing the global resources had the same number of tasks sharing

each global resource (the number of tasks per component

per resource were the same), etc. The performance of C-

MSOS for its different alternatives, according to the number

of components on the platform, the number of components

sharing each resource, the number of tasks per component

sharing each resource, and the length of critical sections per

task, is illustrated in Figures 2, 3, 4, and 5 respectively.

In this case (where the components are similar), the overall

results show that C-MSOS mostly performs better if the local
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Fig. 2. Schedulability of C-MSOS by increasing the number of components
on the platform. 3 processor per component, 8 global resources each shared
by half of the components from which 4 tasks share the resource, up to 4
critical sections per task each with length of 40 µs.

DEDFDGDHDIDJDKDLDMDEDD
F G H I J K L M ED EE EFNOPQORSTUOVWXQYOZ[\T]̂\̂

S_
`abcde fg hfbifjdjkl mnoepjq dorn sdlfaerd

tuvwxuyzy{|uv}xuyzy{~E� tuvwxuyzy{| uv}xu���v~F�tuvwxu��| uv}xuyzy{~G� tuvwxu��| uv}xu���v~H������� ������
Fig. 3. Schedulability of C-MSOS by increasing the number of components
sharing each resource. 12 component, 3 processor per component, 8 global
resources each shared, 4 tasks per component sharing a global resource, up
to 4 critical sections per task each with length of 40 µs.
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Fig. 4. Schedulability of C-MSOS by increasing the number of tasks per
component per resource. 12 component, 3 processor per component, 8 global
resources each shared by 4 components, up to 4 critical sections per task each
with length of 40 µs.

queues are FIFO-based. When using FIFO-based local queues,

C-MSOS performs similar for both FIFO-based and Round-

Robin-based global queues. However, using prioritized local

queues, C-MSOS mostly performs better by using Round-

Robin-based global queues.

Second, we performed experiments where each generated

platform consisted of components with different degree of

resource sharing. This is closer to reality where components

may differ in their settings, e.g., the number of tasks per

component sharing a global resource can be different for
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Fig. 5. Schedulability of C-MSOS by increasing the length of critical sections
(in µs). 12 component, 3 processor per component, 8 global resources each
shared by 4 components from which 4 tasks share the resource, up to 4 critical
sections per task.
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Fig. 6. Schedulability under C-MSOS for components with different number
of tasks per resource. 12 component, 3 processor per component, 8 global
resources each shared by 6 components, up to 4 critical sections per task
each with length of 80 µs.

different components. Looking at the schedulability analysis

in Section V-B3, an important factor for which the different

alternatives of C-MSOS may perform differently is the degree

of resource sharing in each component, e.g., a component

may benefit better under an alternative of C-MSOS depending

on the number of its tasks that share each global resource.

We performed experiments in which each generated plat-

form consisted of components with different number of tasks

sharing each global resource. we generated 1000 platforms

consisting of 12 components. For each platform we divided its

12 components into 6 groups (2 components per group); where

beginning from the first group to the sixth group they included

2, 3, 4, 5, 6, and 7 tasks sharing each resource respectively.

The results in Figure 6 illustrates the average percentage

of schedulable components of each group under different

alternatives of C-MSOS. As shown in Figure 6, for any type

of components the alternative of C-MSOS where the global

queues are FIFO-based and the local queues are priority-based

(FP) is always outperformed by other alternatives. In fact this

alternative (FP) was never better than any other alternatives for

any settings. Furthermore, the components that share global

resources, and include only 2 tasks per each shared global



resource, perform better under the both alternatives that use

Round-Robin-based global queues (RF and RP) compared to

the alternative where both global and local queues are FIFO-

based (FF). The alternative RF (Round-Robin global queues

and FIFO local queues) performs better for the components

that have less than 5 tasks per each global resource they

share while FF (FIFO global queues and FIFO local queues)

alternative performs better for the component with 5 and more

tasks per each global resource they share. Alternative FF

performs better than RP even for components with 3 and more

tasks per each global resource the components share. Given

any type of global queues, all types of components benefit

more from FIFO-based local queues rather than priority-

based queues, i.e., FF and RF always outperform FP and RP

respectively.

IX. CONCLUSION

In this paper, we have generalized our recently proposed

protocol (MSOS) [5] which handles resource sharing among

real-time components on a multi-core platform where each

component is allocated on one dedicated processor. In this

paper we have developed a new locking protocol (C-MSOS) to

handle resource sharing among components where each com-

ponent is statically allocated on multiple dedicated processors

(one cluster). We have also assumed that the tasks within

each component are scheduled using global fixed priority

preemptive scheduling policy.

In C-MSOS each component is abstracted and represented

by an interface which abstracts the information about global

resources it shares with other components. Furthermore, the

interface includes a set of requirements that should be satisfied

for the component to be schedulable when it co-executes with

other components on a shared multi-core platform. This offers

the possibility to develop different real-time components in

parallel and independently and their schedulability analysis

can be performed and abstracted in their interfaces.

In the future we plan to implement C-MSOS under real-

time operating systems (RTOS) and study its performance. We

also plan to study legacy real-time components and attempt to

extract interfaces for them according the interface model of C-

MSOS. C-MSOS is based on shared memory synchronization,

hence an interesting future work is to study resource sharing

among real-time components on a multiprocessor platform by

means of message passing approaches.
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