
 1

Software Diversity and Fault-Tolerance: An Overview

Daniel Rodriguez Retamosa and Mehrdad Saadatmand
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University
Västerås, Sweden

dra05002@student.mdh.se , mehrdad.saadatmand@mdh.se

Abstract

The design of reliable and fault-free software
is of a major concern for safety-critical real-time
and distributed applications. The fault tolerant
community addresses these problems through
redundancy in hardware components and by
diversity, using different software components.
Diversity has been used for many years now as a
computer defence mechanism to achieve an
acceptable degree of fault-tolerance against flaws
introduced in design and provides security to
software systems. In this paper we give a
comprehensive overview of the fault-tolerance
techniques based on the design and data diversity
approaches. Furthermore, we provide our work
with some real applications which implement some
of the fault-tolerance methods highlighted within
this paper.

Keywords

Design diversity, data diversity, fault-tolerance,
dependability

1. Introduction

As a matter of fact, today’s real-time and
distributed software development faces up to
growing system complexity. Nowadays software
has to deal with the challenge of enhancing system
dependability, meaning its “ability to deliver
service that can justifiably be trusted” [4] and
increasing performance (reliability) in spite of the
occurrence of faults within its execution [2,3]. J.M.
Voas refers to finding faults at early steps of the
software’s life-cycle (requirement and design
specifications) as an inherent software problem.
More than 50% of all failures can be traced back to
the specifications. Design faults prevention and
removal are not straightforward tasks and thus they
can not ensure the absence of faults. In order to
shield systems effectively from faults and assure

appropriate levels of fault tolerance, not only fault-
avoidance techniques are needed but also some
other means such us fault treatment and error-
processing. The former is based on fault-masking
to prevent its activation and the latter aims to
substitute erroneous states with error-free states
[6]. Persistent faults after the development of
safety-critical real-time and distributed systems
reveal a lack of dependability and may have
catastrophic consequences [1]. The reliability
requirements of today’s state of the art systems
such as flight critical, commercial and military
aircrafts hang on the application of strategies to
achieve a high degree of fault-tolerance.

Originally, the use of redundant modules was
applied on the development of fault-tolerant
architectures to effectively deal with physical
faults in the hardware of a system. Work in [7]
overviews two general architectures: N-Modular
Redundancy and M-N Majority Voting, on the
basis of redundancy. Those approaches clearly
succeed upon fault detection. However, as long as
design is a human discipline, systems can not stay
away from imperfections and the lack of precise
designs may provoke the independent replication
of every single fault over system modules.
Therefore, simple copies of hardware components,
data structures or algorithms are far from being
sufficient means to isolate the system from faulty
occurrences and prevent a failure of the entire
system. More recently, the tolerance of design
faults, especially in software, relies on the concept
of diversity [1,5].

Diversity is an important issue to be
considered when building computer systems due to
its implications in cost-effectiveness, reliability
and safety of fault-tolerance software when it is
delivered to operation [13]. The concept can be
applied in an extensive way to many applications
with safety concerns. Diversity is widely
implemented in the area of real-time control in
railway, aviation and aerospace industries and in
nuclear power plant controls. Moreover, it is also

 2

used to serve in the area of on-line transactions
which include bank records and library
transactions among others, preventing from
failures in data communication [7].

In fault-tolerance software, we find two
important approaches within the scope of diversity:
design diversity and data diversity [8]. Design
diversity is the creation of multiple
implementations of a given specification based on
the idea that the same fault would not affect all the
versions at once, i.e. different implementations
have different designs. Data diversity is the use of
multiple copies of a single implementation with
each copy operating on different input data but
yielding the same desired results [5].

Popular techniques which are based on the

design diversity concept for fault tolerance in
software are:

 Recovery Blocks (RB). It was first introduced

in 1974 by Horning. Early implementations
were developed by Randell and Hecht in 1975
and 1981 respectively. Recovery modules (try
blocks) run different version of the same
algorithm. RB performs fault detection by
means of running an acceptance test (AT) on
the output of an algorithm. If an AT fails,
backward recovery [1] is carried out with aid
of a recovery cache and another alternate
version is chosen for execution. Many
implementations, especially for real-time
applications, include a watchdog timer. The
RB is categorized as a dynamic redundancy
technique [1,11].

 N-Version Programming (NVP). It was first

suggested by Elmendorf in 1972 and
developed by Avizienis and Chen between
1977 and 1978. Compared with the recovery
blocks, NVP is a static technique that requires
several independent versions of a program for
a certain application. These versions execute in
parallel and each produces its required output.
A voter deems the outputs as acceptable/not
acceptable usually via a majority vote. In case
of detected errors it performs a forward
recovery method to lead the system to a safe
state with aid of diverse back-up information
[1,10].

Data diversity was introduced by Amman and

Knight in [9] after observing that certain failures in
a system were caused by combination of specific

values in the input. Software programs logically
represent input and intermediate data as points at
the data space. Unlike design diversity, data
diversity uses only one version of the software and
applies it to fault-related points at the data space.
Therefore fault-tolerance is achieved by using
diversity in the data space. In order to complement
design diversity in the quest for fault-tolerance
software, there exits several data diversity
techniques which are similar to the aforementioned
for the design diversity approach: retry blocks and
N-copy programming [9].

Central sections of this work will go through

design and data diversity approaches in detail as
means of achieving fault-tolerance in software.
Last section provides the reader with an overview
of some real applications of diversity.

2. Design Diversity

Generally, faults can exist in different phases
of software development (requirements and
specifications, design, implementation and coding,
testing and maintenance) [1]. But the severity of
faults in the first steps of software development
can have greater effects than later steps. From
another point of view, detection of faults and their
effects could be harder also in real-time and
embedded systems due to issues like timing,
ordering and so forth, than sequential systems. If
we consider that complete removal of faults in
sequential systems is a hard task, it becomes even
‘effectively impossible’ for real-time systems [1].

For safety critical systems the continuous and
correct operation of the system is very important.
Many techniques have been presented to ensure
this behavior in these systems. One of the famous
ones which is used to increase the fault-tolerance
of the system is the use of diversity in the system
especially for critical parts. According to [14] the
idea behind using diversity is that “two heads are
better than one.” So if we can implement it in our
system and use some kind of diversity we can
reach the same effect in the system, which is
believed to lead to more reliability. For example if
one person works on a math problem and reach an
answer and another person also comes to the same
answer we can have more trust in the correctness
of the answer. In short, the main objective for
using diversity is to reduce the chance of failure
for independent versions of a system (or
subsystem) due a similar error [1].

 3

Despite this general belief, there are several issues
regarding diversity which can highly affect this
feature and finally stop it from providing the
expected reliability in the system; the most
important of these issues is ‘dependency’.

In this section design diversity in software and

the related issues will be discussed and two major
methods for design diversity are introduced:
recovery block and multi version software.

2.1 A Note on Redundant Identical Blocks

Using redundant and identical copies of critical

sections of a system has been a common trend in
the hardware of a system before its appearance in
software development technologies. It was that for
critical parts of the system, several copies of a
circuit or component were used so that in case the
main one stops functioning correctly, another one
takes its role and thus the whole system continues
to work despite the fault. This technique was quite
helpful for detection and tolerance of ‘physical
faults’ [1]. This method can also be used in
software fault-tolerance, but there are two major
problems with this method in general. The first one
is that if there is a problem or defect in the design
of such components/circuits, then using identical
copies of them is not that helpful as they also
contain the same defect. So just using identical
backup components is not enough [1]. Another
problem about this method is that for real-time
systems the time which is required for a backup
copy to come to work after a fault is detected with
the primary one, could be totally unacceptable;
since the same procedure which has finally failed
should be repeated in a backup component [7].
(This also applies to non-identical redundant
blocks).

2.2 Types of Diversity

From the view point of applying diversity to a
system, a system can have random or enforced
diversity. In random diversity, as an example, there

may be two (or more) programming teams which
are working separately on the same problem and it
is just hoped that the created versions do not
contain similar problems and thus will not lead to
the same errors; i.e. the versions ‘fail
independently’. In enforced diversity, the diversity
in the system is applied ‘systematically’ [1], like
forcing each group to use a different and specific
programming language, algorithm or even data
structures to create the software.

2.3 Recovery Blocks

One of the important methods in fault
tolerance by design diversity is the use of recovery
blocks. In this method several versions of a critical
part of a system are made and put in the system to
be used sequentially; although it is possible to use
them concurrently too [1]. When the system goes
through the primary block and realizes that the
output is not correct, it moves back to the state
before entering that block and tries the same
procedure with another block which [usually]
provides the same functionality in just a different
way. In order to restore a system to move back to
the state before entering a block, we need to keep
the state of the system in a secure storage called
‘recovery cache’ [1]. Also another important part
of recovery blocks is the mechanism by which the
system detects an incorrect result: Acceptance Test.
When a block generates an output, acceptance test
is performed on it and if an error is found, the
system rolls back to the previous state and then
tries another block with the same input values.
This process is repeated until the output of a block
passes the acceptance test or there would be no
other recovery blocks left to try.

As stated before, this method may not be a

good solution for real-time systems in which
timing is very important. However, it is still
possible to use this method in such systems if a
correct estimation can be done about the recovery
blocks to find out the amount of time which may
be needed to have a correct output value before the
deadline, as is shown in Figure 1.

 4

Figure 1: Timing in recovery blocks [1]

A useful diversity for recovery blocks could be

the use of different algorithms in different blocks.
For example we may use a fast algorithm as our
primary block and have an old slower but more
reliable one as a backup block for the primary [1].
Since recovery blocks can be time consuming
when an error is detected, it is highly
recommended that recovery blocks be used for
critical parts of the system only.

There are also several important issues and
guidelines for acceptance test. First of all it should
be remembered that if acceptance test is not
designed carefully, it can contain errors too so this
part should be kept as simple as possible. The other
issue about acceptance test is that performing a
reasonable acceptance test could often be time
consuming. So some times a faster but less
accurate acceptance test could be used instead. For
example if the acceptance test should test whether
an input array is correctly sorted, one solution
could be to check the order of the items in the
array (ascending or descending) and also checking
the existence of all the input items in the output
which can be very time consuming. An alternative
to provide the same testing in shorter time could be
checking the order of items and then instead of
performing a test to see if all items are present, it is
possible to check the sum of the items in the output
array against the sum of the items in the input
which is a little less accurate but faster [1].

With careful time estimation, parallel

execution of recovery blocks is also possible. In
this scenario, blocks could have different execution
times and the output is not the one which is
produced by the fastest block, but it will be the
output of the block which has the highest priority
compared to others that has also passed its
acceptance test. In other words, recovery blocks

are executed in parallel and by the deadline time
(or when all executions are finished), among all
generated correct outputs, the one which belongs to
the block with highest priority will be selected [1].

In systems where there are concurrent
processes that communicate with each other, usage
of recovery blocks would require more
considerations since the effects of communication
between processes should also be taken into
account. So if at one point an error is detected roll
back should be done until the point where the
effect of communication between processes is also
neutralized. In order to reduce these roll backs for
communications, it is possible to create a ‘restore
point’ just as soon as some processes start a
conversation and there should be no
communication between these processes with other
processes which are not in the conversation. An
important point for this case is that processes in a
conversation should finish it together to reduce the
‘domino effect’ [1] of rollbacks.

2.4 Multiversion (N-Version) Programming

In this method all versions are run in parallel

and usually on different machines. It is one of the
important methods for systems which require fault-
tolerance in both hardware and software parts. It is
also possible that on systems which do not have
necessary requirements to run them in parallel,
versions are run sequentially. The key point in this
method is that after the execution of all versions
the results are gathered and then the system
decides upon the correct result by consensus. The
part of the system which is responsible for this task
is the decision mechanism (or voting mechanism).
An illustration of how a multiversion system works
is shown in the following picture:

 5

Figure 2: Multiversion architecture [1]

In some implementations of mutliversion

systems, an acceptance test is also added to each
version to filter out wrong results from the decision
mechanism. The difference between the type of
acceptance test used here with that of recovery
blocks is that here it is not needed to be a very
complicated acceptance test since its goal is only to
filter out obvious wrong results or put away
versions which have not produced results and help
the system not wait unreasonably for such versions
to send their results [1].

Another good feature which can be
implemented in this method is having a feedback.
So after the decision mechanism decides upon the
final result, the result will be sent to those versions
which provided a wrong output. This way these
parts can adapt and reconfigure themselves to
generate correct answers for next operations (and
rollback to the correct state). When two versions
are used, the system is able to detect when an error
has occurred in the system but there is no way to
judge which could be the correct answer. In order
to ‘mask the error’ in the system at least three or
more versions are needed. The decision
mechanism itself is likely to contain errors, so
designing this part is very important and it must be
quite reliable. It is also possible to use diversity for
decision mechanism [1]. The main difference
between decision mechanism and acceptance test
which is used in recovery blocks is that,
acceptance test works on a single output at a time
(individually) while decision mechanism receives
all the results and then works on them. Therefore
timing in systems which use decision mechanisms
is very important and all versions should finish
their operation and submit their results in a
reasonable time. Due to this fact in real-time

systems usually a specific amount of time is
allowed for versions to hand in their results,
otherwise the decision mechanism ignores them
and starts its operation on the already received
answers from other versions. This specific time
should be decided according to the deadline of the
task.

According to [1] it is possible to categorize the

results of acceptance test in each version in four
groups: G (good) which mean the result of a
version has passed its acceptance test and it is also
a correct value , D (detected error) when an
acceptance test realizes an incorrect value and so it
does not enter the decision mechanism, U
(undetected error) means the acceptance test
considered it as correct so it has passed the
acceptance test and entered decision mechanism
but it is not a correct value according to the
problem, and finally S (similar errors) refers to
those incorrect values which are similar between
different versions (which may lead to a
consensus!). Different combination of these
outputs leads to different final results of the
system. For example in case of DDU in a three
version system, since the system has detected two
incorrect values(DD) so the only one on which it
can work is U. In such systems if it is allowed to
produce the final answer by just having one value
then the output of the system will be that incorrect
value (U). It is possible to stop this effect by not
letting the system “degrade to a simplex mode” [1]
instead of triplex (as an example).

An important fact about decision mechanism
which should be remembered during design is that
in some situations it could be just more than a
simple voting and consensus system and according

 6

to the type or results it is dealing with, the voting
and consensus mechanism in it could be a lot
different and more complex. For example in
programs that produce a real or a string value the
voting mechanism could be somewhat different, as
in string values, there could be several
representations of a specific word or sentence
which differ in usage of upper/lower case
characters, spacing and punctuation. Also in real
values for example there could be some minor
differences between produced results from
different versions in the sixth or seventh digit after
the decimal point. So according to the context and
purpose of the program, decision mechanism
maybe implemented differently for such situations
whether to consider these cases as similar or not
similar. Another example is shown in Figure 3. As
is shown in that picture, different versions produce
pair values and the decision mechanism should
reach a consensus on these results. If only pairs are
important to us as a single unit then no consensus
can be made on them as they are not the same, but
it can be seen that there are common values in the
pairs which could mean a consensus if they are
considered from a different aspect. So in the right
diagram in the figure, if common generated values
are considered, it is possible to select (A,B) as the
final result in the decision mechanism as two
versions have produced A and two have produced
B.

A different architecture for diversity by NVP
(N-version programming) is “N Self Checking
Programming” or NSCP in short. In this
architecture versions are grouped into pairs which
help them verify their own results. In terms of
hardware, each pair could run on the same machine
in this model. The general design is shown in the
Figure 4. You can read more about that model in
[15].

Figure 3: Different decision mechanisms

according to the context [1].

Figure 4: N Self-Checking Programming [15].

2.5 Diversity Issues

In previous sections, diversity methods were
discussed and some important considerations in
using each of them mentioned. In this part, some
major problems in software diversity in general,
are discussed.

One of the major issues with diversity is the
cost. Although diversity can provide a good
approach to make the system fault tolerant and
mask errors, but it can dramatically increase the
cost of a project. According to [14] this increase is
even not linear with the versions. When different
versions are produced, each version adds its own
additional costs to the system, plus potential
integration and design costs which are
automatically added when n-version programming
is used. Considering design, it should be
remembered that designing a redundant system
requires more work than just a normal non-
redundant one as some issues should be taken into
account in the design phase. More work in
requirement part is also needed as they should be

 7

defined in a way to be suitable for all the versions.
Although this feature may lead to having better and
mode detailed requirements, but of course it means
more work and cost. Also after creating each
version, testing of each version is also important.
Here it is suggested that instead of testing each
version separately, a back-to-back1 test be done to
reduce the cost of testing each version individually.
To run different versions of the program, different
machines and processors are usually used and this
also adds its own expenses. Therefore, the final
cost of the project should also be considered in
comparison to the reliability gained by using
diversity.

The other issue in software diversity which is
very important is the problem of independence. As
mentioned in previous sections the main goal of
diversity is to have different parts in the system
which act differently on the same input to produce
the expected output. So if there is a bug
somewhere in one version, because of different
implementation and design of other ones, those
other versions do not fail on that input so the
system will continue to work and the error is
masked in the system. This behavior requires an
important factor which is independency. Versions
should be made independent of each other so that
no similar bug exists in them. As stated, diversity
is applied in the system either randomly or
systematically (enforced). Both of these methods
follow the goal of independency. Independency
can be achieved by having different programming
teams using different programming languages,
algorithms and data types, etc.

There are several reasons for having similar
bugs in the system. Mostly a problem in the design
or requirements can lead to all independent
systems following and implementing it and thus all
producing the same error. Independency in
implementation is also very important. An example
for a ‘similar’ mistake which can occur in
implementation of different versions can be
problems related to out of boundary issues which
are possible to be neglected easily [1].

1 Back-to-Back Test: In back to back testing, all
versions are presented with the same input and if there
is any discrepancy found in the results of the versions,
then the versions are examined to see which ones have
produced the correct and incorrect results and then the
erroneous versions are fixed accordingly.

One key fact about making similar mistakes is
that some problems are inherently harder in nature
than others and thus no matter if different
independent implementations for it are being
developed, there is a high risk that independent
teams make the same mistake on that particular
hard part. So “variation of difficulty over the
demand space” [14] is a very important cause for
having similar mistakes among independent
versions and should be taken into account to
provide better independency and diversity.

In short, the final purpose of analyzing all

these pitfalls is to achieve a design in which all
versions fail independently given different inputs,
if they are going to fail.

3. Data diversity

In previous sections we have described the
general concept of design diversity as a technique
for software fault tolerance and have covered the
recovery block and N-version programming as two
possible approaches to its implementation.

The data diversity approach relies on the
observation that software programs sometimes fail
for certain values in the input space and these
failures could be averted if there is a minor
perturbation of input data which is acceptable to
the software, i.e. diversity in the data space may
avoid sequences of events that lead to failures. For
instance, sensors always provide precise data and
small modifications to those data would affect the
application [9]. The point with data diversity is to
achieve fault-tolerance by re-interpreting the input
data and producing data points out of well defined
failure domain boundaries for the program [9]. A
failure domain is defined in [12] as a set of input
values that cause program failures.

The central part of any data diversity scheme is
thus the re-expression algorithm which is in charge
of transforming the input in a re-expressed input,
i.e. it represents the original input in a different
form. As basic examples of data re-expressions we
could mention changes to floating point values
(lose precision), reordering of data sequences,
changes in data timing, reordering of transactions
or rewrite SQL code among many others.

Depending on the density of the failure domain,

the re-expressed input may lie out of the failure

 8

boundaries. Data diversity uses identical copies of
one version of software for a certain specification.
The program executes correctly if and only if the
re-expression of the input is not within the failure
domain [9]. The re-expression of inputs can be
exact or just simple approximations to the
information in input. Exact re-expression works
well for error detection but they are less flexible to
avoid the initial causes of failure [9]. On the other
hand, approximated re-expressions are easier to
generate and more likely succeed in avoiding the
failure region. Given the importance the re-
expression algorithm has for the data diversity
approach, it becomes essential to keep its design
free of faults. Obviously, simple re-expression
algorithms are easier to implement than more
complex ones and therefore they may contain
fewer design faults [9].

3.1 Retry blocks

The retry blocks scheme crops up as an
adaptation of recovery blocks scheme to use data
diversity. Re-expressed data is forwarded to a retry
block which runs the same version of the software
replicated at each block. Their outputs are
evaluated at a retry block's acceptance test which
deems the validity of a certain result of the
algorithm. A retry block's acceptance test is
equivalent to a recovery block's acceptance test
[9]. The retry blocks technique first attempts to
pass the acceptance test by using the primary
algorithm. If for any reason the result of primary
algorithm result fails the acceptance test, then a re-
expressed form of input data will be given to the
same algorithm and the algorithm is executed
again with this new data until a correct output is
produced (retry block complete) or the process’s
deadline is violated [9,15]. If the deadline expires,
a backward recovery-based backup algorithm is
invoked with the original input data. The backup
algorithm is also evaluated by the acceptance test
and an error exception is generated if this backup
algorithm is not successful.

Figure 5: Retry Blocks Structure [9]

Finally it is important to know that the
performance of the acceptance test determines the
performance of the retry blocks technique [9].

3.2 N-copy programming

The N-copy programming scheme is the data
diverse complement of N-version programming for
the design diversity approach. This technique uses
a voting mechanism to select the correct output and
a forward recovery algorithm to obtain fault-
tolerance. In practice, N copies of the same
program execute concurrently, each on a set of
data produced by re-expression but sequential
execution is also achievable with data diversity.
Re-expressed data sets are distributed between
copies of the program and outputs are provided to
the decision mechanism. Outputs generated by the
different copies can converge or diverge depending
on which re-expression algorithm is selected.

Figure 6: N-copy Programming Structure [9]

Exact algorithms should generate identical

outputs and the final result can be obtained by
simple majority voting. On the other hand,
approximate algorithms may produce different but
still acceptable outputs, however unfortunately a
decision based on majority is not applicable in this
situation, though. The final system output in this
case is selected according to the frequency of
occurrence of intermediate outputs (calculated on
re-expressed inputs). For example, if a certain
approximation of the exact correct output is
obtained several times, the likelihood of that being
selected is bigger. If the number of occurrences of
all outputs is equal, then an arbitrary choice is to
be carried out [9].

 9

4. Diversity in practice

In this section we explore a real-world example of
using diversity within the area of real-time control
applications in aviation and space applications.

Space shuttle

This is an excellent example of the concept of
design diversity applied to real-time control on the
NASA’s Space Shuttle, where design faults in the
system were tried to be avoided by using diversity
[7].

Five computers carry out all necessary guidance
and flight control operations. The Shuttle’s
primary system consists of four computer running
identical control software versions. In addition to
this, each computer is fed with the output of the
other three computers and performs a validation
check of those outputs by comparing its own
output with those data via software. Furthermore,
every single computer is able to report errors
sensed on any of the other three computers by
forwarding an error message through an error flag
line. A faulty computer interrupts its operations if a
voting on the three error lines results to be positive,
and informs the rest about the exceptional
situation. The overall system bears the occurrence
of maximum two failures. A sequence of two
failures forces the system to run in a duplex mode
of operation. The two remaining primary
computers attempt to avoid the occurrence of a
third failure performing self-testing and
comparison of their outputs. If it can be avoided,
the system runs in an uncertain state [7].

The fifth computer implements a different
version of the design and assists the primary
system by performing validation actions over the
outputs of the primary computers in order to
guarantee that failures can not be caused by
common operation bugs such as identical, but
incorrect outputs produced by those four primary
computers [7].

5. Conclusions

In this paper different aspects of diversity in
software development were covered. Two major
types of diversity were introduced: design diversity
and data diversity. Design diversity can be
achieved by using recovery blocks or different
versions attempting to solve a specific problem.
Also we saw that although diversity can help us
build more reliable applications but on the other

hand it can increase significantly the final cost of
the project. The other main issue which we
discussed and should be taken into account is the
issue of independency which is the main idea
behind design diversity.

6. References

 [1] John P.J Kelly, Thomas I. McVittie, Waine I.
Yamamoto, “Implementing design diversity to achieve
fault-tolerance”, IEEE 0740-7459/91/0700/0061

[2]Rogério de Lemos, José Luiz Fiadeiro, “An
Architectural Support for Self-Adaptive Software for
Treating Faults”, WOSS ‘02, Nov 18-19, 2002,
Charleston, SC, USA. 2002 ACM 1-58113-609-
9/02/0011

[3] Pankaj Jalote, Satish K. Tripathi, ”Final Report on
Workshop on Integrated Approach for Fault Tolerance -
Current State and Future Requirements”

[4] Algirdas Avizienis, Jean-Claude Laprie, Brian
Randell, “Fundamental Concepts of Dependability”,
Research Report No 1145, LAAS-CNRS, April 2001.

[5] Avizienis, A. Kelly, J.P.J., “Fault Tolerance by
Design Diversity: Concepts and Experiments” IEEE,
Aug. 1984, Vol 17, Issue: 8, page(s) 67- 80, ISSN:
0018-9162

[6] J.C Laprie et al. “Dependability: Basic Concepts and
Terminology”, IFIP WG 10.4 – Dependable Computing
and Fault Tolerance, Aug 94.

[7] Mohamad R. Neilforoshan, “Fault tolerant
computing in computer design”

[8]“A Survey of Software Fault Tolerance Techniques”;
Zaipeng Xie, Hongyu Sun, Kewal Saluja.

[9] “Data Diversity: An Approach to Software Fault
Tolerance”, R. E. Ammann and J. C. Knight, IEEE
Transactions on Computers, April 1988 (Vol. 37, No. 4)

[10] A. Avizienis, “The N-version approach to fault-
tolerant software,” IEEE Trans. Software Eng., vol. SE-
11, Dec. 1985

[11] B. Randell, “System structure for software fault
tolerance,” IEEE Trans. Software Eng., vol SE-I, June
1975

[12] F Cnstian, “Exception handling,” in Resilient
Computing Systems, Vol. 2, T Anderson, Ed New York

 10

[13] B. Littlewood, L. Strigini, “Fault tolerance via
diversity against design faults: design principles and
reliability assessment”, ICSE 2000, Limerick, Ireland,
ACM 23000 1-58113-206-9/00/

[14] BEV LITTLEWOOD, PETER POPOV, and
LORENZO STRIGINI, “Modeling Software Design
Diversity – A Review”, Centre for Software Reliability,
City University

[15] Zaipeng Xie, Hongyu Sun and Kewal Saluja, “A
SURVEY OF SOFTWARE FAULT TOLERANCE
TECHNIQUES”

