
NSAD 2011

Fully Bounded Polyhedral Analysis of Integers

with Wrapping

Stefan Bygde, Björn Lisper 1

School of Innovation, Design and Technology
Mälardalen University

Väster̊as, Sweden

Niklas Holsti 2

Tidorum Ltd
Helsinki, Finland

Abstract

Analysis of convex polyhedra using abstract interpretation is a common and powerful program
analysis technique to discover linear relationships among variables in a program. However, the
classical way of performing polyhedral analysis does not model the fact that values typically are
stored as fixed-size binary strings and usually have a wrap-around semantics in the case of overflows.
In embedded systems where 16-bit or even 8-bit processors are used, wrapping behaviour may even
be used intentionally. Thus, to accurately and correctly analyse such systems, the wrapping has to
be modelled.
We present an approach to polyhedral analysis which derives polyhedra that are bounded in all di-
mensions and thus provides polyhedra that contain a finite number of integer points. Our approach
uses a previously suggested wrapping technique for polyhedra but combines it in a novel way with
limited widening, a suitable placement of widening points and restrictions on unbounded variables.
We show how our method has the potential to significantly increase the precision compared to the
previously suggested wrapping method.

Keywords: Abstract Interpretation, Abstract Domains, Numerical Domains, Convex Polyhedra,
Widening, Overflows

1 Introduction

A general and commonly used application of program analysis is to derive
which numerical values the program variables can take at each point in the

1 Email: {stefan.bygde,bjorn.lisper}@mdh.se
2 Email: niklas.holsti@tidorum.fi

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:stefan.bygde@mdh.se
mailto:niklas.holsti@tidorum.fi


Bygde, Lisper and Holsti

program. This is typically done using abstract interpretation [3] and some
numerical abstract domain to get an approximation of the possible values.
Many relational and non-relational domains have been developed [3,5,6,11,4],
all with the common assumption that variables can take arbitrary integer
values. However, in real programs, a value is usually stored as a fixed-size
binary string. A common source of subtle bugs is overflows, meaning that the
result of a computation is too large to be stored in a binary string of the given
size. An overflow could result in a run-time error, saturation of the result at the
largest or smallest representable value of the integer type, or a wrap-around.
In general purpose processors, wrap-around is the most common approach to
handle overflows. Although wrap-arounds may be the reason for some bugs,
it is not uncommon that wrap-arounds are used intentionally, in particular
on processors with a short word-length. Unfortunately, under the mentioned
assumption about variables, most abstract numerical domains derive unsound
results if wrap-arounds are present in a program.

To make analysis results sound w.r.t. wrap-arounds it is necessary to make
modifications to the selected domain. Sen and Srikant [13] present a variation
of the reduced product of the integer and congruence domain which handles
special cases when overflow occurs. In addition they use a relational analysis
of affine equalities. Gustafsson et al. [7] modify the interval domain so that
variables are bounded to within their range, and wrap-arounds are handled by
using a more powerful representation of intervals. Relational domains are more
challenging. Müller-Olm and Seidl [12] present an analysis that can derive all
affine equalities among variables of programs which is safe in the case of wrap-
arounds. Brauer and King [1] suggest a method to derive transfer functions for
relational domains, and do so for the octagon domain, while considering wrap-
around effects by using a SAT-solver. Finally, Simon and King [14] present a
way to use polyhedral analysis (originally presented in [4]) in such a way that
it is sound even when wrap-arounds are present.

Our work builds on Simon and King’s approach to use the classical poly-
hedral analysis. We show in this paper that just using Simon and King’s
approach directly can lead to unnecessary loss of precision, in particular loss
of relational information.

We present a polyhedral analysis which derives fully bounded polyhedra
that are sound in the presence of wrap-arounds in the program. Our approach
is based on a combination of wrapping polyhedra (using the approach in [14]),
limited widening [9], an appropriate placement of the widening, and imposing
bounds on variables based on type information. The benefits of our approach
are the following:

• Increased precision compared to using the approach outlined in [14] with
standard abstract interpretation.

2



Bygde, Lisper and Holsti

• Bounded polyhedra are particularly useful for analyses that depend on the
number of integer points inside a polyhedron (e.g., [10], [2]), since a bounded
polyhedron guarantees that this number is finite.

Section 2 contains preliminaries to our approach, explaining classical poly-
hedral analysis and wrapping of polyhedra. We show in Section 3 a moti-
vational example of our method and how it differs from other methods. In
Section 4 we detail our approach to a bounded polyhedral analysis. Section 5
discusses our approach to widening, which is the core of the method. Finally,
we conclude in Section 6.

2 Preliminaries

2.1 The Polyhedral Domain

The classical abstract domain of convex polyhedra [4] abstracts a finite set of
integer points S ⊆ R

n by α(S), the smallest convex polyhedron enclosing all
integer points in S. An efficient implementation of convex polyhedra needs
a dual representation. One representation is a set of linear constraints C;
the polyhedron P(C) then consist of all points in R

n fulfilling the constraints
in C. The other representation is a frame F , which is a tuple 〈V,R〉 of
vertices V = {v0, ...,vv−1} ⊆ R

n, and rays R = {r0, ..., rr−1} ⊆ R
n. The

polyhedron P(F ) of a frame represents the points in R
n which are a convex

combination of the vertices plus a linear combination of the rays (allowing
unbounded polyhedra). Note that we use P to distinguish a polyhedron from
its representation.

In this paper we will model integer-valued variables, hence we will be
interested in the integer points inside a polyhedron. Thus, if P is a polyhedron
then γ(P ) ⊆ Z

n (that is, the concretisation function) will denote the integer
points inside P .

2.2 Finite Integer Variables

To correctly model variables which may wrap around, we need to be more
specific about how we model variables. Let X = {x0, ..., xn−1} be the set of
program variables. Each variable xj is associated with a size wj defining how
many bits are used to store the variable (we allow variables to have different
sizes) and a type, signed (int) or unsigned (uint). We define the range of a
variable x as a function returning a set of constraints.

range(xj) =







{xj ≥ 0, xj ≤ 2wj − 1} if xj is uint

{xj ≥ −2wj−1, xj ≤ 2wj−1 − 1} if xj is int

3



Bygde, Lisper and Holsti

Fig. 1. The picture on the left (a), shows a polyhedron before wrapping. The base window is shown
outlined by a dot-dashed square. The polyhedron covers a part of the base window and parts of the
three neighbouring windows. The grid of variously hatched triangles shows the condition x0 ≤ x1

taken as a signed comparison of the 8-bit unsigned residue of x0 with the 8-bit signed residue of x1.
The polyhedron intersects three components of this condition, one in the base window, one in the
next window to the right of the base window, and one in the next window above the base window.
To the right (b), the intersections of the condition with the unwrapped polyhedron are shown,
shifted to the base window, and their convex hull, which is the resulting wrapped polyhedron.

We then define the set of range constraints RV for a set of variables V ⊆ X

as
RV =

⋃

x∈V

range(x)

If V is the set of all program variables X we simply write R for RX . The set
of range constraints forms a polyhedron P(R).

2.3 Wrap-arounds

Simon and King [14] have developed a method to make polyhedral analysis
sound for finite-sized integers with wrap-around behaviour. Since our method
builds on this method, the basics are presented here.

Define the base window B as the set of integer points in P(R), the range
constraint polyhedron. Let M : Z

n → B be defined as 〈p0, p1, ..., pn−1〉 7→ (p0

mod 2w0 , p1 mod 2w1 , ..., pn−1 mod 2wn−1) where the mod residue is taken as
signed or unsigned depending on the type of the variable xj. Simon and
King’s concretisation function is then defined as γSK = M ◦ γ. This means
that γSK(P ) ⊆ B for any polyhedron P .

Intuitively, γSK(P ) can be seen as partitioning Z
n into a grid of rectangular

windows, each of with dimensions 2wj , taking the intersection of P with each
window, and shifting this intersection into the base window by the required
multiples of 2wj in each coordinate xj. Then, γSK(P ) is the mosaic composed of
these shifted “residue fragments” of P , which may overlap each other. Note
that the points in γSK(P ) might not form a convex polyhedron if P is not

4



Bygde, Lisper and Holsti

Fig. 2. An example program L.

contained in B.

Addition, subtraction, and multiplication by constants can be handled as
usual, because these operations commute with modular residue. Arithmetic
inequality comparisons (<,≤,≥, >) of finite-sized integers, however, do not
commute with modular residue. Therefore, it is necessary to explicitly wrap
a polyhedron when a constraint is applied. Let c be a constraint, P be a
polyhedron and V ⊆ X be a set of variables. Then, informally, the function
wrap(P, c, V ) physically performs the partitioning and shifts previously men-
tioned, applies c on every fragment and computes the convex hull of the result.
However, only the subspace of Z

n involving the variables in V is partitioned
and shifted by wrap(P, c, V ). In typical use, V is the set of variables involved
in the linear constraint c. This wrapping is illustrated in Figure 1.

In practice Simon and King compute this approximation of c applied to P

only when P has a finite number of residue fragments, in other words only if all
the variables involved in the constraint are bounded in P . Otherwise, Simon
and King discard all information about these variables in P and substitute
the condition c itself as the only constraint on these variables.

3 Motivation and Illustrating Example

We model programs as flow charts, as seen in Figure 2, where we associate
each edge q in the flow chart with a convex polyhedron P (q). Using classical
polyhedral analysis [4], the program L in Figure 2 gives rise to the following
recurrence equation system:

Pn(0) = ⊤ Pn(1) = Pn(0)[x → N ]

Pn(2) = Pn−1(2)∇(Pn(1) ⊔ Pn−1(5)) Pn(3) = Pn(2) ⊓ {x ≤ 0} (1)

Pn(4) = Pn(2) ⊓ {x ≥ 1} Pn(5) = Pn(4)[x → x + 1]

Assume that L (in Figure 2) is executed on an 8-bit processor. Let x

and N be 8-bit unsigned integer variables. Then L terminates because x

wraps around when 255 + 1 returns 0. Thus, (1) will give unsound results.

5



Bygde, Lisper and Holsti

This is because the classical polyhedral domain does not model wrap-arounds.
To make the result sound, we apply Simon and King’s wrapping operator,
substituting the equations P SK

n for Pn. The equations P SK
n for edges 0, 1, 2

and 5 are equal to Pn, but for edges 3 and 4 we have:

P SK
n (3) = wrap(Pn(2), {x ≤ 0}, {x}) (2)

P SK
n (4) = wrap(Pn(2), {x ≥ 1}, {x}) (3)

Iter n = 1 n = 2

P SK
n (0) ⊤ ⊤

P SK
n (1) x = N x = N

P SK
n (2) x = N ⊤

P SK
n (3) x = 0 ∧ 0 ≤ N ≤ 255 x = 0 ∧ 0 ≤ N ≤ 255

P SK
n (4) 1 ≤ x ≤ 255 ∧ 0 ≤ N ≤ 255 1 ≤ x ≤ 255 ∧ 0 ≤ N ≤ 255

P SK
n (5) 2 ≤ x ≤ 256 ∧ 0 ≤ N ≤ 255 2 ≤ x ≤ 256 ∧ 0 ≤ N ≤ 255

Table 1
Iterating abstract interpretation of program L using wrapped polyhedra.

The result of the iterates is shown in Table 1. The polyhedron P SK
2 (3)

correctly implies that N has to be in the range 0 to 255. However, during
the process, the relational information between x and N has been lost. This
is due to the wrapping of the unbounded polyhedron P SK

1 (2) = P({x = N}),
which has to discard the relational information between x and N in order
to make a sound and safe wrapping. While this is a simple example that
could have been avoided by imposing bounds on x and N at the start of
the program, unbounded polyhedra are frequent (caused by any widening,
non-linear assignment or unbounded initial state) and apparently make the
wrapping algorithm lose a lot of precision. This has led us to devise a fully
bounded polyhedral analysis. Our method uses limited widening, places the
widening points in a suitable way, and uses type information to bind variables.
To show the idea we sketch here how our method analyses L. The equations
for our method are the following:

PBD
n (0) = P(R) PBD

n (1) = PBD
n (0)[x → N ]

PBD
n (2) = PBD

n (1) ⊔ PBD
n−1(5) PBD

n (3) = wrap(PBD
n (2), {x ≤ 0}, {x})

PBD
n (4) = PBD

n−1(4) ∇R∪{x≥1} wrap(PBD
n (2), {x ≥ 1}, {x})

PBD
n (5) = PBD

n (4)[x → x + 1]

where R = {0 ≤ x ≤ 255, 0 ≤ N ≤ 255}.

The difference between PBD
n and P SK

n can be seen in three places. First,
the initial program point PBD

n (0) bounds the variables according to their type.
Second, the widening point has been moved to PBD

n (4), and finally, the widen-

6



Bygde, Lisper and Holsti

ing has been replaced by limited widening (explained in Section 5.1).

All these polyhedra are fully bounded so we can represent their frames with
sets of vertices only, no rays are needed. This representation is more convenient
for our method. The iterates shown in Table 2 use this representation. Here
we let the first dimension correspond to x and the second to N . Note that R
represented as a set of vertices is {(0, 0), (0, 255), (255, 0), (255, 255)}.

In this example, our approach takes a few more iterations before stabili-
sation, but this result, while still sound w.r.t. wrap-arounds, is more precise
than the previous approach. In particular, notice that in PBD

4 (3) we have that
x remains zero, but N can be any number between 0 and 255 (soundness),
and we have kept the valuable relation between x and N in PBD

4 (2), PBD
4 (4)

and PBD
4 (5), as the polyhedra have triangular shapes. This information was

not retained in P SK
2 (2), P SK

2 (4) or P SK
2 (5).

Iter 1 2

PBD(0) (0, 0), (0, 255), (255, 0), (255, 255) (0, 0), (0, 255), (255, 0), (255, 255)

PBD(1) (0, 0), (255, 255) (0, 0), (255, 255)

PBD(2) (0, 0), (255, 255) (0, 0), (255, 255), (2, 1), (256, 255)

PBD(3) (0, 0) (0, 0), (0, 255)

PBD(4) (1, 1), (255, 255) (1, 1), (255, 255), (255, 1)

PBD(5) (2, 1), (256, 255) (2, 1), (256, 255), (256, 1)

Iter 3 4

PBD(0) (0, 0), (0, 255), (255, 0), (255, 255) (0, 0), (0, 255), (255, 0), (255, 255)

PBD(1) (0, 0), (255, 255) (0, 0), (255, 255)

PBD(2) (0, 0), (255, 255), (256, 255), (256, 1) (0, 0), (255, 255), (256, 255), (256, 0)

PBD(3) (0, 0), (0, 255) (0, 0), (0, 255)

PBD(4) (1, 0), (1, 1), (255, 255), (255, 0) (1, 0), (1, 1), (255, 255), (255, 0)

PBD(5) (2, 0), (2, 1), (256, 255), (256, 0) (2, 0), (2, 1), (256, 255), (256, 0)

Table 2
Iterating abstract interpretation for L using fully bounded polyhedra. The iterates are shown as

sets of vertices rather than constraints.

4 Bounded Polyhedral Analysis

In classical analysis, a polyhedron may become unbounded in three cases:
First, in the initial program point, where nothing is known about the program
variables. Second, any non-linear assignment drops any information about a
variable, leaving the polyhedron unbounded in the direction of that variable.
Third, widening often produces an unbounded polyhedron.

Bounded polyhedra have several benefits. First, the wrapping algorithm
loses all relational information between variables which are unbounded. If
a polyhedron is bounded, this information is not necessarily lost. Second,
analyses that count the number of integer points in polyhedra (such as [10],
[2]) greatly benefit from having this number finite.

7



Bygde, Lisper and Holsti

4.1 Making Polyhedra Bounded

We consider each of the possible ways of making a polyhedron unbounded
and argue how it is possible to soundly and precisely make it bounded. This
section details how the equations P SK

n are replaced by PBD
n .

4.2 Entry point

The classical polyhedral domain uses the unbounded polyhedron as starting
point to denote that nothing is known about the variable values. That is, if pinit

is the initial program point, the initial equation for the classical polyhedral
domain using wrapping is P SK

n (pinit) = ⊤. However, since each variable is
associated with a type, it is possible to bind them. That is, at program start,
the constraints R all hold. Thus, we define

PBD
n (pinit) = P(R)

Note that PBD
n (pinit) is sound and more precise than P SK

n (pinit).

4.3 Non-Linear Assignments

In polyhedral analysis, a non-linear assignment discards all information about
the assigned variable as well as its relation to other variables. As an example
let px:=? be an edge immediately succeeding a non-linear assignment. Then,
P SK

n (px:=?) = πx(Pn(prev(px:=?))), where πx is the projection operation in x,
adding a line to the frame in the direction of x. The function prev(p) returns
the edges that enter the node that p leaves. In the case of an assignment,
it is guaranteed to be just one, so we slightly abuse notation in this case to
refer to the single element of the return from the prev function. After the
non-linear assignment we can, since relational information pertaining to x has
been discarded, claim that range(x) is true. Thus, we define:

PBD
n (px:=?) = πx(P

BD
n (prev(px:=?))) ⊓ P(range(x))

Again, PBD
n (px:=?) is sound and more precise than P SK

n (px:=?).

4.4 Widening

For a program containing cycles, widening is necessary to ensure termination.
In classical abstract interpretation, the widening is usually inserted immedi-
ately after the loop merge points. Let ploop be a program point immediately
succeeding a loop merge node (for example edge 2 for program L). Then, the

8



Bygde, Lisper and Holsti

classical polyhedral analysis defines:

Pn(ploop) = Pn−1(ploop)∇
⊔

q∈prev(ploop)

Pn−1(q)

This commonly results in an unbounded polyhedron, since widening often
removes constraints. It would not be sound with respect to wrap-arounds to
apply any range constraints in this case, so we have to take another approach.

5 Making Widening Bounded

The standard widening operation, as mentioned, often makes polyhedra un-
bounded. However, with the help of limited widening it might be possible to
intersect the result with some finite constraints. Our idea is to use widening
in such a way that it is always possible to intersect the result with a fully
bounded polyhedron.

5.1 Limited Widening

Limited widening was suggested in [9]. The idea with limited widening is to
have a set of constraints C and define limited widening ∇C as follows:

P∇CQ = (P∇Q) ⊓ {c ∈ C|P ⊑ P({c}) ∧ Q ⊑ P({c})}

That is, the result of the widening is intersected with all constraints in C which
hold in both P and Q. It can be shown that this is a widening operation for
any set of constraints C. The set C is typically selected strategically for each
program.

Our idea is to use the range constraints R of a program as the set C in
limited widening. Our goal is to be able to intersect with all range constraints,
to make the polyhedron fully bounded. To avoid wrapping variables more than
necessary, the widening point should not be put at the loop merge point.

5.2 Placement of the Widening Point

In the classical polyhedral analysis it is common to place the widening point
immediately after the loop-merge node. However, doing this without wrap-
ping often results in an unbounded polyhedron (see Table 1). Our goal is
to intersect the result with the range constraints and to reduce unnecessary
wrappings. To this end, we place the widening point at the conditionals where
wrapping must be done anyway. We do this in a way so that we still have

9



Bygde, Lisper and Holsti

exactly one widening per cycle in the flow chart. This means that we replace

P SK
n (ploop) = P SK

n−1(ploop)∇
⊔

q∈prev(ploop)

Pn−1(q)

with
PBD

n (ploop) =
⊔

q∈prev(ploop)

PBD
n−1(q)

This is possible since we will be putting a widening point elsewhere in the
cycle. Let σ be a linear inequality constraint involving the variables Xσ and
let pσ be the edge immediately succeeding a conditional within a cycle 3 .
When using Simon and King’s wrapping, Pn(pσ) is defined as

P SK
n (pσ) = wrap(P SK

n (prev(pσ)), {σ}, Xσ)

where Xσ are the variables involved in σ. We replace this with:

PBD
n (pσ) = PBD

n−1(pσ) ∇R∪{σ} wrap(PBD
n (prev(pσ)), {σ}, X) (4)

at one conditional in every cycle. Note that we use X, the set of all program
variables, rather than Xσ (however, this can be improved, see discussion be-
low). Placing the widening at the conditional avoids unnecessary wrapping
but does not affect the soundness of the method. We put the widening in
conjunction with the wrapping, and we use a limited widening with the range
constraints of the program variables R and the conditional itself σ. Since lim-
ited widening is a widening, and since we have a widening in every cycle, this
is a sound and safe thing to do, and it still guarantees termination. Moreover,
this always results in a fully bounded polyhedron, as shown by the following
proposition.

Proposition 5.1 Let PBD
0 (q) = ⊥ for all edges q in a program. Let σ be a

linear constraint, let C = R∪ {σ}, and let PBD
n (pσ) be defined by (4). Then:

PBD
n (pσ) ⊑ P(C)

for all n > 0. Moreover, PBD
n (pσ) is a fully bounded polyhedron since P(C) is.

Proof. First, let Qn = PBD
n−1(pσ) and Rn = wrap(PBD

n (prev(pσ)), {σ}, X), so
we have

PBD
n (pσ) = Qn ∇C Rn

We will prove by induction over n that the proposition holds. Let n = 1, then
Q1 = PBD

0 (pσ) = ⊥. The wrapping operator guarantees that all variables X

3 Note that σ can either be the conditional corresponding to the false-branch or the true-
branch depending on the form of the loop; if it is the false-branch σ is simply negated.

10



Bygde, Lisper and Holsti

are within their respective range. Thus, ∀c ∈ R : Rn ⊑ P({c}) for all n > 0.
Also we have that Rn ⊑ P({σ}), since the wrapping operation applies the
condition after wrapping. Now we have

Q1∇CR1 = ⊥∇CR1

= ⊥∇R1 ⊓ P({c ∈ C|⊥ ⊑ P({c}) ∧ R1 ⊑ P({c})})

= R1 ⊓ P({c ∈ C|⊥ ⊑ P({c}) ∧ R1 ⊑ P({c})})

= R1 ⊓ P(C) ⊑ P(C)

where the last equation comes from the fact that ⊥ ⊑ P({c}) for any c and
Rn ⊑ P({c}) has already been established for any c ∈ C. Thus, the proposi-
tion holds for n = 1. Now assume that Qn∇CRn ⊑ P(C) holds, then

Qn+1∇CRn+1 = (Qn+1∇Rn+1) ⊓ {c ∈ C|Qn ⊑ P({c}) ∧ Rn ⊑ P({c})}

The inductive hypothesis says that Qn ⊑ P({c}) and Rn ⊑ P({c}) for all
c ∈ C, so again we have that {c ∈ C|Qn ⊑ P({c}) ∧ Rn ⊑ P({c})} = C. So,

(Qn+1∇Rn+1) ⊓ {c ∈ C|Qn ⊑ P({c}) ∧ Rn ⊑ P({c})}

= (Qn+1∇Rn+1) ⊓ P(C) ⊑ P(C)

2

Proposition 5.1 proves that all variables are bounded after widening. This
together with the previous steps to make sure a polyhedron is bounded results
in an analysis where each polyhedron is bounded. On a final note, it is possible
to improve the set X in Proposition 5.1, by observing that only the variables
involved in constraints that are removed by the widening operator need to
be wrapped, since they are the only ones being affected by the widening.
However, we used X as the set of all variables to simplify the proof.

6 Conclusions and Future Work

We have developed an analysis using fully bounded convex polyhedra which
is sound for programs with wrap-around semantics. This is done by impos-
ing range bounds on variables at the initial program point and at non-linear
assignments, wrapping polyhedra at conditionals (as in [14]) and finally by
using limited widening with range constraints and placing this widening at
conditionals.

We believe that this analysis is likely to be more precise than using Simon
and King’s approach on standard abstract interpretation. This is because
their approach has to discard any relational information among unbounded
variables, whereas our method never leaves any variable unbounded. Note that

11



Bygde, Lisper and Holsti

we have not specified at which conditional in a cycle the widening point should
be placed. We plan to develop heuristics for placing the widening points,
although we expect that optimal placement depends on the program. Our
method is being implemented in the SWEET tool [8] that performs control-
flow analysis for bounding the worst-case execution time of embedded, real-
time programs. We plan to evaluate the method on programs with and without
wrap-arounds.

Acknowledgement. This work was supported by the EU FP7 project
APARTS, Grant Number 251413.

References

[1] Brauer, J. and A. King, Transfer function synthesis without quantifier elimination, in:
G. Barthe, editor, ESOP, Lecture Notes in Computer Science 6602 (2011), pp. 97–115.

[2] Bygde, S., Static WCET analysis based on abstract interpretation and counting of elements,
Licentiate thesis (2010).
URL http://www.mrtc.mdh.se/index.php?choice=publications\&id=2144

[3] Cousot, P. and R. Cousot, Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints, in: POPL, 1977, pp. 238–252.

[4] Cousot, P. and N. Halbwachs, Automatic discovery of linear restraints among variables of a
program, in: POPL, 1978, pp. 84–96.

[5] Granger, P., Static analysis of arithmetical congruences, in: International Journal of Computer
Mathematics, Volume 30, 1989, pp. 165–190.

[6] Granger, P., Static analysis of linear congruence equalities among variables of a program, in:
Proceedings of the international joint conference on theory and practice of software development
on Colloquium on trees in algebra and programming (CAAP ’91): vol 1 (1991), pp. 169–192.
URL http://portal.acm.org/citation.cfm?id=111310.111320

[7] Gustafsson, J., A. Ermedahl and B. Lisper, Towards a flow analysis for embedded system C
programs, in: The 10th IEEE International Workshop on Object-oriented Real-time Dependable
Systems (WORDS05), 2005.
URL http://www.mrtc.mdh.se/index.php?choice=publications&id=0972

[8] Gustafsson, J., A. Ermedahl, C. Sandberg and B. Lisper, Automatic derivation of loop bounds
and infeasible paths for WCET analysis using abstract execution, in: Proc. 27th IEEE Real-
Time Systems Symposium (RTSS’06), 2006.

[9] Halbwachs, N., Delay analysis in synchronous programs, in: C. Courcoubetis, editor, CAV,
Lecture Notes in Computer Science 697 (1993), pp. 333–346.

[10] Lisper, B., Fully automatic, parametric worst-case execution time analysis, in: J. Gustafsson,
editor, Proc. Third International Workshop on Worst-Case Execution Time (WCET) Analysis,
2003, pp. 77–80.
URL http://www.mrtc.mdh.se/index.php?choice=publications\&id=0629

[11] Miné, A., The octagon abstract domain, Higher Order Symbol. Comput. 19 (2006), pp. 31–100.

[12] Müller-Olm, M. and H. Seidl, Analysis of modular arithmetic, ACM Trans. Program. Lang.
Syst. 29 (2007).
URL http://doi.acm.org/10.1145/1275497.1275504

[13] Sen, R. and Y. N. Srikant, Executable analysis using abstract interpretation with circular
linear progressions, in: Proceedings of the 5th IEEE/ACM International Conference on Formal
Methods and Models for Codesign, MEMOCODE ’07 (2007), pp. 39–48.
URL http://dx.doi.org/10.1109/MEMCOD.2007.371251

[14] Simon, A. and A. King, Taming the wrapping of integer arithmetic, in: Static Analysis, Lecture
Notes in Computer Science 4634, Springer Berlin / Heidelberg, 2007 pp. 121–136.

12

http://www.mrtc.mdh.se/index.php?choice=publications\&id=2144
http://portal.acm.org/citation.cfm?id=111310.111320
http://www.mrtc.mdh.se/index.php?choice=publications&id=0972
http://www.mrtc.mdh.se/index.php?choice=publications\& id=0629
http://doi.acm.org/10.1145/1275497.1275504
http://dx.doi.org/10.1109/MEMCOD.2007.371251

	Introduction
	Preliminaries
	The Polyhedral Domain
	Finite Integer Variables
	Wrap-arounds

	Motivation and Illustrating Example
	Bounded Polyhedral Analysis
	Making Polyhedra Bounded
	Entry point
	Non-Linear Assignments
	Widening

	Making Widening Bounded
	Limited Widening
	Placement of the Widening Point

	Conclusions and Future Work
	References

