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Abstract—There are several issues faced by a developer when
holistic response-time analysis (HRTA) is implemented and
integrated with a tool chain. The developer has to not only
implement the analysis, but also extract unambiguous timing
and tracing information from design model. We present an
implementation of HRTA as a plug-in for an industrial tool
suite Rubus-ICE that is used for component-based development
of distributed real-time embedded systems. We present our
preliminary findings about implementation issues and highlight
our experiences. Moreover, we discuss our plan for testing and
evaluating the integration of HRTA as a plug-in in Rubus-ICE.
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I. INTRODUCTION

In order to provide an evidence that each action in
the system will meet its deadline, a priori analysis tech-
niques, also known as schedulability analysis techniques,
have been developed by the research community. Response
Time Analysis (RTA) is a method to calculate upper bounds
on response times of tasks or messages in a real-time system
or a network respectively. Holistic Response-Time Analysis
(HRTA) is a well established schedulability analysis tech-
nique to calculate upper bounds on the response times of
event chains (distributed transactions) in a distributed real-
time system.

A tool chain for industrial development of component-
based distributed real-time embedded (DRE) systems con-
sists of a number of tools such as designer, compiler, builder,
debugger, inspector, analyzer, coder, simulator, synthesizer,
etc. Often, a tool chain may comprise of tools that are
developed by different tool vendors. The implementation of
state of the art analysis techniques, e.g., RTA, HRTA, etc.
in such a tool chain is not trivial.

In this paper, we discuss the implementation of HRTA as
a standalone plug-in in an industrial tool suite Rubus-ICE
(Integrated Component development Environment) [1]. We
investigate how to practically extract unambiguous timing
information from the component model required to carry
out HRTA. We present our preliminary findings about im-
plementation issues. We also discuss our plan for testing and
evaluating the integration of the HRTA plug-in in Rubus-
ICE.

II. BACKGROUND AND RELATED WORK

A. The Rubus Concept

Rubus is a collection of methods and tools for model-
based development of dependable embedded real-time sys-
tems. The Rubus concept is based around the Rubus Com-
ponent Model (RCM) [2] and its development environment
Rubus-ICE, which includes modeling tools, code generators,
analysis tools and run-time infrastructure. The overall goal
of Rubus is to be aggressively resource efficient and to
provide means for developing predictable and analyzable
control functions in resource-constrained embedded systems.

RCM expresses the infrastructure for software functions,
i.e., the interaction between the software functions in terms
of data and control flow separately. The control flow is
expressed by triggering objects such as clocks and events
as well as other components. In RCM, the basic component
is called Software Circuit (SWC). The execution semantics
of an SWC is simply: upon triggering, read data on data
in-ports; execute the function; write data on data out-ports;
and activate the output trigger.

Fig. 1 depicts the sequence of main steps followed in
Rubus-ICE from modeling of an application to the genera-
tion of code. The component-based design of an application
is modeled in the designer tool. Then the compiler compiles
the design model into an Intermediate Compiled Component
Model (ICCM) file. Then the builder tool runs a set of plug-
ins sequentially. Finally, a coder tool generates the code.
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Figure 1. Sequence of steps from design to code generation in Rubus-ICE

B. Plug-in Framework in Rubus-ICE

The plug-in framework in Rubus-ICE [3] facilitates the
implementation of state of the art research results in an
isolation and their integration as add-on plug-ins with the
integrated development environment. A plug-in is interfaced
with the builder tool as shown in Fig. 1. The plug-ins
are executed sequentially which means that the next plug-
in can execute only when the previous plug-in has run to



completion. Hence, each plug-in reads required attributes as
an input, runs to completion and finally writes the results to
ICCM file. The required and provided services by a plug-
in are defined by means of an Application Programming
Interface (API). Each plug-in should specify the supported
system model, required inputs, provided outputs, error han-
dling mechanisms and a user interface. Fig. 2 shows a
conceptual organization of a Rubus-ICE plug-in.
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Figure 2. Conceptual organization of a plug-in in Rubus-ICE

C. Holistic Response Time-Analysis (HRTA)

Liu and Layland [4] provided theoretical foundation for
analysis of fixed-priority scheduled systems. Joseph and
Pandya published the first RTA [5] for the simple task
model in [4]. Subsequently, RTA has been applied and
extended in a number of ways by the research community.
Tindell [6] developed the schedulability analysis for tasks
with offsets and it was further extended by Palencia and
Gonzalez Harbour [7]. In crux, RTA is used to perform a
schedulability test which means it checks whether or not
tasks in the system will satisfy their deadlines. There are
many real-time network protocols used in DRE systems. In
this paper, we will focus on Controller Area Network (CAN)
and its high-level protocols. Tindell et al. [8] developed
the schedulability analysis of CAN which has served as a
basis for many research projects. Later on, this analysis was
revisited and revised by Davis et al. [9].

HRTA combines the analysis of nodes (uniprocessors) and
a network. Hence, it computes the response times of event
chains that are distributed over several nodes in a DRE
system. In this paper, we consider the timing model that
corresponds to the holistic schedulability analysis for dis-
tributed hard real-time systems [10]. An example distributed
transaction in a DRE system is shown in Fig. 3. The holistic
response time is equal to the elapsed time between the arrival
of an event (corresponding to the brake pedal input) and the
response time of Task4 (corresponding to the production of
a signal for brake actuation).
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Figure 3. Holistic response-time in a distributed real-time system

III. IMPLEMENTATION

In this section, we discuss the implemented analysis,
implementation issues and experiences while implementing
and integrating HRTA as a standalone plug-in in Rubus-ICE.

A. Implementation of HRTA in Rubus-ICE

1) Node Analysis: In order to analyze nodes, we imple-
ment RTA of tasks with offsets [6], [7] in Rubus-ICE.

2) Network Analysis: As a first step, we have imple-
mented RTA of two different profiles for CAN. Only one
of these profiles can be used at a time for the analysis of a
DRE application.

1) RTA of CAN [8], [9].
2) RTA of CAN for mixed messages [11].

The next step will be to implement two more analysis pro-
files for CAN, i.e., RTA of CAN with FIFO queues [12] and
RTA of CAN with FIFO Queues for Mixed Messages [13].

B. Implementation Issues and Experiences

1) Extraction of Unambiguous Timing Attributes: One
common assumption in HRTA is that the timing attributes
required by the analysis are available as an input. However,
when HRTA is implemented in a tool chain for the analysis
of component-based DRE systems, the implementer has to
not only implement the analysis, but also extract unambigu-
ous timing information from the component model and map
it to the inputs for the analysis model. Often, the design
model contains redundant timing information and hence, it
is not trivial to extract unambiguous timing information for
HRTA. Examples of timing attributes to be extracted from
the design model are worst-case execution times (WCETs),
periods, minimum update times, offsets, priorities, deadlines,
blocking times, precedence relations, jitters, etc. In [14], we
identify all timing attributes of nodes, networks, transactions,
tasks and messages that are required by HRTA.

2) Extraction of Tracing Information of Distributed
Transactions: In order to perform HRTA, correct tracing
information of distributed transactions should be extracted
from the design model. For this, we need to have a mapping
among signals, data ports and messages. Consider an exam-
ple of a two-node DRE system modeled with RCM as shown
in Fig. 4. Consider the following distributed transaction:
SWC1 → OSWC A → ISWC B → SWC2 → SWC3

In this example, our focus is on the network interface
components, i.e., Output Software Circuit (OSWC) and
Input Software Circuit (ISWC) [15]. In order to compute
holistic response time of this distributed transaction, we
need to extract unambiguous timing and tracing information
from the component model. We identified the need for the
following mappings in the component model.

• At the sender node, mapping between signals and input
data ports of OSWC components.

• At the sender node, mapping between signals and a
message that is sent to the network.

• At the receiver node, mapping between data output
ports of ISWC components and the signals to be sent
to the desired components.



• At the receiver node, mapping between message re-
ceived from the network and the signals to be sent to
the desired component.

• Mapping between multiple signals and a complex data
port. For example, mapping of multiple signals ex-
tracted from a received message to a data port that sends
a complex signal (structure of signals).

• Mapping of all trigger ports of network interface com-
ponents along a distributed transaction as shown by a
bidirectional arrow in Fig. 4.
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Figure 4. Two-node DRE system modeled in RCM

3) Sequential Execution of Plug-ins in Rubus-ICE: The
Rubus plug-in framework allows only sequential execution
of plug-ins. This means that a plug-in executes to completion
and terminates before the next plug-in is executed. It should
be noted that there exists a plug-in in Rubus-ICE that
performs RTA of tasks in a node and it is already being used
in the industry. There are two options to develop HRTA plug-
in for Rubus-ICE, i.e., option A and B as shown in Fig. 5.
Option A involves reusing the existing Node RTA plug-in
and developing two more plug-ins, i.e., one implementing
network RTA algorithms and the other implementing holistic
RTA algorithms. In this case HRTA plug-in is very light
weight. It iteratively uses the analysis results produced by
the node and the network RTA plug-ins and accordingly pro-
vides new inputs to them until converging holistic response
times are obtained. Option B requires the development of
HRTA plug-in from scratch, i.e, implementing the algorithms
of node, network and holistic RTA. This option does not
provide any reuse of existing plug-ins.

Since, option A allows the reuse of a pre-tested node
RTA plug-in (having most complex algorithms compared
to network and holistic RTA), it is easy to implement and
requires less time to test compared to option B. However,
the implementation method in option A is not supported by
the plug-in framework of Rubus-ICE because the plug-ins
can only be sequentially executed and one plug-in can not
execute the other. Hence, we had to select option B for the
implementation of HRTA.

4) Impact of Design Decisions in Component Model on
the Analysis: Design decisions made in the component
model can have indirect impact on the response times com-
puted by the analysis. For example, design decisions could
have impact on WCETs and blocking times which in turn
have impact on the response times. In order to implement, in-
tegrate and test HRTA, the developer needs to understand the
design model (component model), analysis model and run-

time translation of the design model. In the design model,
the architecture of an application is described in terms
of software components and their interactions. Whereas in
the analysis model, the application is defined in terms of
tasks, transactions, messages and timing parameters. At run-
time, a task may correspond to a single component or
chain of components. The run-time translation of a software
component may differ among different component models.
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Figure 5. Options to develop HRTA Plug-in for Rubus-ICE

In order to get less pessimistic response times, decisions in
component model have to be made to translate the network
interface components (OSWC and ISWC) either as separate
tasks or as a part of the task corresponding to the software
component immediately connected to them. Another issue
is that if the developer and integrator of HRTA plug-in are
two different people with different backgrounds, e.g., re-
search and industrial, the integration testing and verification
becomes a difficult and time consuming activity.

5) Analysis of DRE Application with Multiple Networks:
In a DRE application, a node may be connected to more than
one networks. If a transaction is distributed over more than
one networks, the holistic response time of the transaction
involves the analysis of all networks in the system. Consider
an example of a DRE system with two networks, i.e., CAN
and LIN as shown in Fig. 6. There are five nodes in the
system. Node 3 is a gateway node that is connected to
both the networks. Consider a transaction in which task1
in Node1 sends a message to task1 in Node5 via Node3.
Computation of holistic response time of this transaction will
involve the computation of message response times in both
CAN and LIN networks.
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Figure 6. Multiple networks in a DRE system

As a first implementation step, we assume that all nodes
in a DRE system are connected to a single network. If an
application contains more than one network, we will divide
it into sub-applications (with each having a single network)
and analyze them separately.

6) Feedback from HRTA Plug-in: We identified that it
is very important to provide the progress report of HRTA



plug-in to user during the analysis. The algorithms in HRTA
iteratively run the algorithms of node RTA and network RTA
until converging values of the response times are computed
or the computed response times exceed the deadlines. It is
important to display the number of iterations performed. A
user should be provided the control to stop the plug-in at
any time. If the analysis results indicate that the system is
unschedulable, it will be interesting to provide suggestions
to the user to make the system schedulable.

7) Requirement for Continuous Collaboration between
Integrator and Developer: Our experience of integrating
HRTA plug-in with Rubus-ICE shows that there is a need of
continuous collaboration between the developer of the plug-
in and its integrator especially in the phase of integration
testing (see next section).

IV. TEST PLAN
In this section we discuss our test plan for both standalone

and integration testing of HRTA plug-in. Error handling
and sanity checking routines make a significant part of
the implementation. The purpose of these routines is to
detect and isolate faults and present them to the user during
the analysis. Our test plan contains following set of error
handling routines.

• Testing of all inputs: attributes of all nodes, transac-
tions, tasks, networks and messages in the system.

• Testing of linking and tracing information of all dis-
tributed transactions in the system.

• Testing of intermediate results that are iteratively used
as inputs (e.g., a message inheriting the worst-case
response time of the sender tasks as a release jitter).

• Testing of overload conditions during the analysis (e.g.,
processor utilization exceeding 100%).

• Testing of variable overflow during the analysis.

A. Standalone Testing
Standalone testing means testing of HRTA implementa-

tion before it is integrated with the Rubus builder tool as a
plug-in. In other words, it refers to the testing of HRTA in
isolation. We have already finished standalone testing. We
used following input methods for standalone testing.

1) Hard coded input test vectors.
2) Test vectors are read from external files.
3) Test vector generator (a separate program).

B. Integration Testing
Integration testing means testing of HRTA implementation

after integrating it with the Rubus builder tool as a plug-
in. Although standalone testing is already performed, the
integration of HRTA with the Rubus-ICE may induce un-
expected errors. Currently we are doing integration testing.
Our experience shows that integration testing is much more
difficult and time consuming compared to standalone testing.
We will use following input methods for integration testing.

1) Test vectors are read from external files.
2) Test vectors are manually written in ICCM file (see

Fig. 1) to make it appear as if test vectors were
extracted from the modeled application.

3) Inputs should be automatically extracted from a DRE
application modeled with Rubus component model.

V. SUMMARY

We presented an implementation of state of the art holistic
response-time analysis as a plug-in for the industrial tool
suite Rubus-ICE. We discussed our preliminary findings
regarding implementation issues. We discussed our experi-
ences and presented our test plan. We have completed the
implementation and performed standalone testing. Currently
we are doing integration testing of the plug-in in Rubus-ICE.
In future, we plan to model and analyze a large industrial
DRE application complemented with benchmarks.
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