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Abstract—Embedded real-time systems are increasingly being Software is then built out of predefined components, which
assembled from software components. This raises the issuewt are combined to achieve the desired functionality. For such
to find the timing properties for the resulting system. Idealy, systems it is interesting to derive properties of the sydtem
these properties can be inferred from the properties of the - . .
components: this is the case if the underlying timing model the pr.Oper.t'es of !ts p_artS'AmOdel Where properties Ca_r.Ebed
is Compos'tionaj_ However, Compositiona| t|m|ng models tend r|Ved N thIS fash|0n IS Ca||ed0mp08ItI0na| Let CompOSItIOI’l
to provide a simplified view. An important question is then: of components be expressed by the binary operat@onsider
when is a compositional model “accurate enough” to meet the the propertyp(c) of components:, and let® be a binary
requirements for an analysis that is based on the model? operator composing properties.fc; ® c2) = p(c1) ® ples),

In this paper we consider a simple, statistical compositioal . . o
model for execution time distributions of sequentially conposed then the model for properties(c) is compositional. If@

components, which assumes that the distributions of the uret- IS ine>.<pensive.to evaluate, then prc_)pertie§ for a system can
lying random variables are independent. This assumption i®nly  be quickly derived from the properties of its parts using the

approximately correct in general, as dependencies can appe model.

due to both software and hardware effects. We have made an However, compositional models are usually approximate:

experimental investigation of how hardware features affetthe . .
validity of the timing model. The result is that for the most the simpler they are, the more approximate they tend to be. In

part, the effect of hardware features on the validity of the model @ given situation it is important to know whether an estimate
is small. The hardware feature with the strongest influenceri  of a property, which is derived using a compositional model,
the experiment was the reorder buffer, followed by branch tdle s accurate enough. Thus, compositional models need to be
associativity, L2 cache size, and out-of order execution. investigated w.r.t. precision.
We consider code-level component models, where function
block-like components are used to implement sequentikétas
Many embedded systems have requirements on the timiBgce the tasks are sequential, the codes for the components
properties. These can be requirements on the worst-cagk be executed in some sequential order. Thus, we con-
timing, but also on “softer” properties such as throughpuidersequential compositioaf components;; ¢z, expressing
performance, and “soft” worst-case behaviour where the r&-composite component wherg and c, are executed in
quirements may be expressed using probabilities for ousrrusequence. We assume a probabilistic timing model where
Analysis of timing properties is often divided ingystem- the timing property for a componentis its execution time
level analysis anccode-levelanalysis. An example of worst- distribution 7'(¢). Under the assumption of an underlying
case system-level analysis is response-time analysis )(RTAdditive timing model for sequential composition, and inde
On code level, the archetypal worst-case analysis is Worpendence of execution times for different components, the
Case Execution Time (WCET) analysis. However, also otheistributionT(c1; c2) can be calculated frof(c;) andT'(cz)
analyses are concievable. For throughput and performanieg, convolution[3]. This provides a simple, compositional
it is of interest to characterize the timing behavior also faiming model for execution time distributions, which can be
other than the worst case. A possibility is to consider thesed to quickly estimate the execution time distributioois f
execution time to be a random variable, and characterize tasks from the distributions of its components.
timing behavior by its probability distribution. If we know However, this timing model rests on the assumption that the
the probability distributions on code level, for individuaexecution times for components are independent. This is in
tasks, then the distributions for system-level timings &&n general not true: covariations in execution time can arith b
estimated from these [1]. Soft real-time requirements thah software level, for instance through shared, or depeanden
are expressed in probabilistic terms, like the probabiitya inputs to the components, and on hardware level through
violated deadline, can then be decided from these disiwibsit the influence of the hardware state on the execution time of
Component-based software development [2] is a stromtstructions. Especially for modern high-end processaith
trend that is gaining ground also for embedded systenisatures such as caches, parallel functional units, anefeut

|. INTRODUCTION



order pipelines, this influence can be strong. We therefeeein | Truth | Hyistrue | Hy s false |

to know how strong the covariations of execution times aa¢ th Decision reject Hy | type | error right decision

it can cause in practice. acceptH, | right decision| type Il error
We have made an experimental evaluation of how hardware

architecture features affect the validity of the compositl Fig. 1. Types of errors in hypothesis testing.

model for execution time distributions above. We have mea-
sured the execution time distributions for code running in . o
isolation, composed them, and compared with the distribti- it ¢@n be computed in tim®(inn), wherem andn are the
tions for the codes executing in sequence. We have uddgnber of elements in the probability spaces6fandY’,
the Kolmogorov-Smirov goodness-of-fit test [4] to test thEFSPECtively.
hypothesis that the probability distributions are equaltifer-
more, we have investigated which architectural feature® h
the largest influence on the validity of the model. For this Hypothesis testing means to decide, from a number of
purpose we have used another statistical metfiedtional Samples (teStS, or sets of ObservationS), whether one cshoul
factorial design[5], which is a systematic method to find outconsider a property to be true or not. How can we find out?
the ||ke|y cause for an observed variation. In order to apjp]b/ We may never know for sure, but a statistical test will give us
method we needed to do experiments with different hardwaigidance in making a decision. In statistics we can state thi
configurations, and therefore we used the SimpleScalar té¥pblem using two hypotheses: I&f, denote the hypothesis
chain [6] to simulate these configurations. that the property is true, and |éf; denote the hypothesis that
The rest of this paper is organized as follows: in Section I, is false.. The hypothesigl, is callednull hypothesisand
we introduce our statistical timing model and the differenf{1 is calledalternative hypothesisVle must decide whether to
statistical tests and analyses that we have used. Sectionafcept or reject the hypothedi based on a sample. In doing
describes the experimental setup: method, simulator, a$® We might be making a mistake. For example, suppose the
benchmarks used. In Section IV we present the results of th@perty really is true. If we decide to acceffy, then we
experiments. Section V gives an account for related woret, amade the right decision. But if we reject it then we will make

in Section VI we wrap up and give ideas for future researchh error, called dype | error. On the other hand, if the real
truth is that the property is false, and we rejéfy, then we

Il. STATISTICAL MODEL AND ANALYSIS would make the right decision. However, if we decide to atcep
A. Model Hy in this situation, we would be doingtgpe Il error. Figure

We model the execution time of a component (or a piedeSummarises the types of errors. The probability of a type |
of code in general) by a random variable. Now consider twRjTor is usually denoted by and is commonly referred to as
software components, and c.. Let their execution times be the significance levebf a test. The probability of a type I
modeled by the random variable$, and X», respectively. €or is usually denoted by. The power of a test is defined
For the sequentially composed component; we model its a8S1 — 5, i.e., the probability of correctly rejecting the null
execution time by the random variablé; + X,, capturing hypothesis.
the assumption that execution times of sequentially eiegut The general aim in hypothesis testing is to use statistical

aC. Hypothesis Testing

pieces of code simply add up. tests that make: and as small as possible. This goal requires
) o compromise, since making: small involves rejecting the
B. Convolution of Distributions null hypothesis less often, whereas makjfgmall involves

For a random variableX, denote its probability density accepting the null hypothesis less often. These actions are
function by fx. In general, if the random variable¥ and contradictory; that is, as increasesg will decrease, while
Y are independent then the probability density function f@s« decreases; will increase. The general strategy is to fix
X +Y is given by [3]: « at some specific level, and to use the test that minimises
A common choice isy = 0.05.

= — d
v () /fX(y D)y (2)dz D. Kolmogorov-Smirnov Test

The integral defines a binary operation on functions called|n order to test that the two samples come from the
convolution A similar convolution Operation is defined forsame distribution, we have used the two-samp|e K0|mogorov-
discrete probability functionsx, and a corresponding resultsmirnov goodness-of-fit test (KS test) [4]. It is a nonparaine

holds for discrete independent random variables [7]: statistical method for comparing two sets of data, and is
independent of the underlying distribution. Given two inde
pxiv(y) = px(y —z)py(z) pendent samples and S’, the test evaluates the following
VYV

null hypothesisthe two independent samplésand S’ came

This operation has some interesting and useful properti@®m the same distributioagainst the alternative hypothesis:
it is associative and commutative, and can be generalizedthe two samples came from different distributiofi®ie test
any number of variables. For discrete random variaBleend uses theempirical cumulative distribution functio(ECDF)



for each of the samples: &8 = {z1,...,z,} be a random i fi fgl’ f‘{ fi fﬁ i
sample of sizew. The ECDFFs(x) is defined by T Tl [ FL =T | =1 [ =1 =1
FL AL 1|+ [T -1]+1
FL 1| F1 | 1| -T[F1]+1
T 1| 1| 1 [ FL[F1]+1
FL| 1| 1|+ [ L[ F1] -1
—T| 1| +1 [ +L [ L[ 1] +1
—T [ FL | +L [+ [ L[ F1] -1

T 18] 7] 5[ 1] 5]-5

TABLE |
EXAMPLE OF A CONFIGURATION OF RUNS FOR THE FRACTIONAL
FACTORIAL DESIGN. WHEN USING FOLDOVER THE LINES ARE REPEATED
AND THE SIGNS FORP; TO P7 ARE INVERTED.

1 .
Fs(x) = — x [Number of observations< ]
n

The statistic of the test is given by

o ol x| N1 cof ro| o —| T

Dg s = max |Fs(z) — Fsi ()]

l.e., the test statistic is the maximum vertical distandsvben
the ECDF’s of S and S’. The null hypothesis is rejected at
significance levek if

n+n'
!

Ds s > K,
nn
wheren andn’ are the sizes of the two Samp|esy respectiveﬁ‘/'and the column foz. The influences are shown in the last
The coefficientk,, is the critical value of the Kolmogorov row of the table.
distribution, and it depends on the significance level and on i
the sizes of the samples. )
Equivalently, the acceptance of the null hypothesis can be'Ve represented c_ode for componenis c; by compiled
based on the so-calledp-value”, which is the probability code for for C function1(), c2() . Call thes_e codeé:l,_ )
of finding a distance bigger than (or equal )5 in the C2. We then emulated the effec_t of sequ(_entlal composition
population assuming that the null hypothesis is true. THe nt: ¢z Of components by sequential executioh; C2 of the
hypothesis is accepted if thevalue is greater than the choseﬁomp'led codes. One can argue that execution of sequgntiall

significance levelv. This is just another way of expressing thék:Jomposed compogen_ts _?ISO V\;:” anlud; the ;r_ans_fer IOf \mll:jel
acceptance test. etween ports and similar, which renders this simple mode

a bit crude. However, a realistic assumption is that this is
E. Fractional Factorial Design effectuated by some “glue codg’ executing in-betweeCl
Fractional factorial designis a methodology for experi- 21d C2. Then sequential composition of components can
mentally determining the influence of factors on some entit§¢ reduced to sequential composition of code, albeit also
Rather than testing with all combinations of possible valudVolving code forg. We can simply consideg as code
of the factors, a reduced set of combinations is tested. ItfRy @ “virtual” componenty, and then consider the sequential
usually assumed that combined effects of different factmrs COMPOSitionc;; g; co. The execution time distribution for this
the entity are low compared to the direct influence of ea@PmMPposition can now be estimated by the convolutions of

factor. Under this assumption, the number of tests can B¢ three individual distributions, and the validity of ghi
significantly reduced. estimation can be tested in the same way as described below.

The Plackett and Burman design [5] is an instance of Given some selected C function&(), c2() representing
fractional factorial design. It can accurately quantify #ffects COMPonent code, the experiment would proceed as follows:
of single factors, and usinfpldoverit can also quantify the « compilec1(), andc2() into C1, andC2, respectively,
combined effects of pairs of factors. For each factdiigh  « runCl; C2 for a number of inputs to give an ECDF for
and alow value is selected. The experiment is then run with  its execution time,
different combinations of high and low values, for the digiet ~ « run Cl and C2 in separation for different inputs, to

. EXPERIMENTS

factors, in a systematic fashion. Far factors, the number of
runs of the experiment in this design is the next integer
multiple of four greater tharlv (2K for foldover). The high

provide estimated distributions from which an ECDF for
their convolution can be calculated;
apply the Kolgomorov-Smirnoff test to test, for some

and low values need not be numeric: they can, for instance, selected significance level, the null hypothesis that the un

be two different ways of doing branch prediction. In [8] the  derlying distributions for the execution times 61; C2,

use of the methodology was proposed to provide a sound and the convolution of distributions of the execution times

methodological basis for experimental computer architect for C1 andC2, are the same, and

design. o repeat the above for a number of different pairs of
Table | shows how to estimate the influence from different benchmarks.

factors P; on an entityR from the experiment. In the matrix, However, to simplify the measurement process we measured

—1 stands for low value and for high value. Each row the time for full compiled C programs rather than individual

represents one run, with the combination of high/low-valuéunctions. Such programs always include a call twea n()

for the factors given by the matrix entries and the rightmog&inction. In order to compensate for its execution time, we

element the resulting value aR. For each factorP;, its measured the execution time for the “empty” C program

influence onk is now estimated as the inner product of columnmai n(), and then subtracted this time from the measured



execution times formai n() {c1(); }, mai n() {c2(); }, 85836 bytes;
andnmai n() {c1();c2(); }. e gauss: triangulation of sparse matrix with Gaussian
In the compilations of all these programs, the data and elimination algorithm. Object code size: 8488 bytes.
object code forc1() andc2() were included so that the We used the SimpleScalar tool chain to run our experi-
executable code could have similar sizes for the differensr ments [6], [10]. It can provide detailed simulations of mod-
We selected C programs to represent components from #re out-of-order microprocessors, allowing a wide range of
MiBench benchmark suite [9]. The suite emphasises diyershiardware configurations. The tool chain has four simulators
in order to reflect the needs of the wide range of applicatios$ m out or der provides the most cycle-accurate execution
in the embedded systems domain. It is composed of fregime, and is the one we use here. It implements the RUU
available standard C source code, where slight adaptatigRegister Update Unit) structure in order to deal with ofit-o
have been made in some of them to increase portability. Theler execution.
benchmarks are grouped into six categories: The suite includes a gcc cross compiler (GNU GCC v2.7.2)

« automotive and industrial control: as some embedd&pt generates executable code from C source code. The

processors do not have dedicated hardware, this categgifpulator accepts as input binary code and configuration
provides basic math abilities, bit manipulation, simpl@arameters, executes the code, and outputs statistics thieou

data organisation and image processing, execution including the execution time measured in cycles.
. network: benchmarks for devices like switches angor the detailed model, specific parameters can be used to
routers where the embedded processors need to do shepffigure the processor core, the memory hierarchy and the

est path calculations, tree and table lookups, branch predictor. The architecture is derived from the MIPS
tion and hashing, and the instruction set is called PISA (Portable InstruniSet

. consumer devices: this category focus on multimegf¥chitecture). o _ _
applications, with image, MP3 and MPEG processing and The benchmarks were compiled into object code with

HTML typesetting, the SimpleScalar compilegsl i ttl e-na-sstri x-gcc,
. office automation: category with text manipulation algodénerating code for the PISA architecture using optinosati
rithms and speech processing, and level zero, and were adapted to perform IO of data from/to

« telecommunications: this category consists of voice eflobal data structures. They were later linked to be execute
coding and decoding, frequency analysis and checksifisolation and together in sequential composition. Aftes
algorithms. linking, the sizes of the executable files varied from 8194 to

The sizes of the benchmarks vary from small, with a fev2\106172 bytes.

lines of source code (like quicksort), to big ones, like the IV. RESULTS
GhostScript interpreter. We used the following benchmarks e first tested the hypothesis that the convolution of execu-
e Susan: an image processing benchmark. It has algtion time distributions accurately approximates the dstion

rithms for smoothing, and corner and edge recognitionf sequentially composed code. We ran two sets of composi-
Object code size: corner 117872 bytes, smoothing 1171@8ns of two and three components, testing 100 compositions

bytes, edge 118300 bytes; of pairs (and triples, respectively) of benchmarks dravemifr
o fft: fast Fourier transform. Object code size: 1514the set described in Section Ill. For each composition we
bytes; made 100 runs each for each individual component and 100

o MM matrix multiplication. Object code size: 4396 bytestuns of their composition to estimate their execution time
o prines: test an array of integer, if they are prime odistributions. We used the R statistics package [11] toutate

not. Object code size: 2844 bytes; the greatest vertical distanc® between convolution and
o adpcm adaptive differential pulse code modulation Obmeasured cumulative distribution, and fhealue. Thep-value
ject code size; 26580 bytes; was then used to evaluate the KS test. We used the commonly
o conpress: compression of ASCII text. Object codeused significance level = 0.05.
size: 11896 bytes; SimpleScalar was configured to simulate a processor with
e (sort: sort an array of strings. Object code size: 150dhultiple functional units, cache memories, and branchipred
bytes; tion according to the following: 128kb instruction L1 cache
o pbnsr ch: Pratt-Boyer-Moore string search. Object codwith LRU (associativity 2), 256 kb direct-mapped L1 data
size: 3760 bytes; cache, 32 kb instruction L2 cache with LRU (associativity 8)

o di j kst ra: shortest path in a weighted graph - the grapbatency 1 cycle to L1 caches, 5 cycles to L2 cache, 50 cycles
is the same in the simulations, with each run finding th® main memory, memory access bus width 4, two-level branch
path between two different nodes. Object code size: 5586ediction, four integer ALU'’s, four FP ALU's, in-order iss.
bytes; The result was that with = 0.05, the null hypothesis was

o sha: a hash algorithm. Object code size: 7564 bytes; rejected by the KS test only for a few compositions: two for

o rijndael : encryption of a message. Object code sizeompositions of two components, and one for compositions of



Cumulative Distribution Function
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D =0.047
p-value = 0.977

red: conv(T(a),T(b))
blue: T(a;b)

20 40 60 80

X (execution time — megacycles)

Fig. 4. Composition of two components: we accept the hymishthat the
convolution has the same distribution as the execution tifitiee composition.
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Fig. 3. The sortegh-values for 100 random sample compositions of three
components.

three components. The sortpdsalues are plotted in Figures
2 and 3, respectively. As can be seen, mesalues are very
close to one meaning that there is very little evidence again
the null hypothesis.

Fig. 4 shows an example where the KS test accepted the
null hypothesis. In this exampld) is 0.047. Thep-value is
0.977, and as it is greater than= 0.05, we accept the null
hypothesis.

Next, we systematically investigated which hardware fea-
tures would most likely be responsible for a rejection of the
null hypothesis. We used the Plackett and Burman design

Hardware feature

I-tlb size ENTRIES
mem latency first next
D-tlb size ENTRIES
I-tlb assoc

Isq entries

L1 i-cache block size
memory ports

int alus

branch misprediction penalt
ras entries
speculative branch update
L1 d-cache latency
D-tlb assoc

L1 i-cache repl policy
L1 d-cache repl policy
btb entries

L1 i-cache latency

int mult div units

L1 i-cache assoc

L1 d-cache size KB
I-tlb latency

fetch queue entries
L2 cache latency
execution order

L2 cache size KB

btb assoc

ROB entries

TABLE Il

Ol BB B W w| L W | W N[N N NN NN NNN N R R R R R 2

for this purpose. From the more than 40 hardware configuranymeer or TIMES A HARDWARE FEATURE WAS THE MAIN VARIABLE

tion parameters available in the SimpleScalar simulatbah, t
N = 37 parameters were chosen. These parameters were all
used in [8], and their high and low values were set to the same
values as there. The paramef€mwas set to 40 (next multiple

of four), resulting in 80 different hardware configuratignsth

AFFECTING THE DEVIATION BETWEEN THE REAL EXECUTION TIME

DISTRIBUTION AND THE CONVOLUTION.
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Fig. 5. For this composition, using perfect branch predictin the Fig. 6. The hypothesis for the same composition as in Figugedscepted
simulation, the hypothesis is rejected. when we use the 2-level adaptive branch prediction algoriththe hardware
simulator.

foldover). Each configuration was then tested for 63 difiere =~ . ) . ] .
compositions of two components drawn from the selectd@is is not reliable in general [13] as it is hard to find theutp
set of benchmarks, estimating the cumulative distributidfframeters that cause the worst execution time. .
functions in the same way as before. For each composition,’us, WCET analysis methods usually attempt to estimate
we recorded which hardware feature had the biggest estimag® WCET from WCETs for small pieces of the program,
influence on the deviation between convolution and measur®@ically basic blocks, which are combined using programvflo
execution time distribution. The result is given in TableAor Information to form a WCET estimate. This is a bit similar
this particular sample, the number of entries in the reord® Sequential component composition in that estimatiornef t
buffer (ROB) was the most frequent parameter having thetal WCET typically is done by adding the local WCETSs for
strongest influence. the identified longest path. However, WCET analysis differs
For the 63 different compositions, we had two cases whéftat basic blocks typically are small, and their code is el
the null hypothesis was rejected and one case very cld@PWn, whereas components can be “black boxes” and may
to rejection. We examined these a bit closer to see h&gntain larger code.
strong the estimated influence of the 37 different hardwareln static WCET analysis, a microarchitectural analysis at-
parameters was. Table Ill shows the estimated influence t8fpts to bound the WCET for basic blocks using their code,
each parameter on thevalue, and on the distand®, for the @and knowledge of the hardware timing model [14]-[17]. This
three cases. Interestingly, in all three cases the brarchigtor 1S @ White-box approactHybrid methodsare more related to
was deemed to have the largest influence and not the ROEUr approach: there, basic blocks are treated as black boxes
One of these cases is shown in Fig. 5. The plot shows tAgd their WCETSs are estimated from measurements [18], [19].
result with branch predictor set to “high”, which means petf This work is closely related to ours in that timing profiles
branch prediction. Interestingly, if we change the configion are generated for the basic blocks, and combined using a
to the “low” value, 2-level adaptive branch prediction,iitbe convolution model with possible dependencies to create a
null hypothesis is accepted. This case is shown in Fig. 6. gepbabilistic model for the total execution time from which
for this example, the branch predictor really has a sigmficathe WCET can be estimated. In [20], copulas were used to

influence on the validity of the convolution as compositiof*odel the dependencies.

operator for execution time distributions. The basic blocks considered in hybrid WCET analysis.are
typically much smaller than the components that we consider
V. RELATED WORK Thus dependencies between their execution times can be

Timing analysis is of fundamental importance to the suexpected to have stronger correlations, which necessitate
cessful design and execution of real-time systems. Theuexemore elaborate treatment.
tion time is needed, for example, in scheduling and schedu-nstead of estimating a value for the WCET, the work in [21]
lability analysis [12]. Often, the analysis aims at deterimj focusses on deriving a execution time probability distidou
(or bounding) the worst-case timing. On code level, one kdégr a component in isolation, using measurements of regons
timing measure is thevorst-case execution tim@VCET) of time, and does not tackle the problem of composition. A
a program, which is the largest possible execution time ofspecial monitor component is responsible for the measure-
program executing on a given hardware while not being intanents. Dynamic simulation and statistical analysis is aksxd
rupted. It is often estimated through measurements; haweva performance analysis [22], and can be used to find code



Effect onp-values Effect on distances
HW feature A B [ A B C
L2 cache latency 1.69 0.13 0.11| 0.28 0.12 0
speculative branch update | 1.07 0.14 0.11| 0.2 0.04 0
ras entries 044 0.18 0.14] 0.12 0.08 0.08
int mult div units 217 023 0.12| 0.2 0.2 0.08
L1 i-cache latency 153 0.26 0.12] 0.2 0.04 0.08
mem latency first next 0.59 0.57 0.79| 0.32 0.16 0.64
D-tlb page size KB 0.2 0.6 0 0.08 0.08 0
memory ports 1.69 0.71 0.11| 0.12 0.16 0
L1 d-cache block size 169 071 0.01| 012 0.16 0.04
ROB entries 061 0.78 0.12] 0.04 0.04 0.04
int alus 1.3 0.82 0.13] 0.2 0.24 0.08
L1 i-cache assoc 1.71 091 0 0.28 0.2 0
L2 cache assoc 051 0.93 0 0 0.12 0
I-tlb assoc 1.07 105 0.03| 0.16 0.12 0.07
L2 cache size KB 123 111 0.04] 025 0.24 0.08
Isq entries 0.66 1.19 0.37] 0.2 0.24 0.16
L2 cache block size BYTES 0.51 1.48 0.01| 0.07 0.16 0.04
L2 cache repl policy 153 149 0 0.08 0.2 0
L1 d-cache latency 0.59 1.56 0.12| 0.12 0.28 0.04
D-tlb assoc 123 162 0.01] 024 0.24 0
execution order 123 164 0.13] 0.2 0.16 0.08
L1 d-cache repl policy 0.59 1.68 0.03] 0.16 0.28 0.08
mem bandwidth 051 171 0.12] 0.09 0.25 0.09
L1 d-cache assoc 044 1.74 0.01| 0.12 0.16 0.04
btb entries 169 194 0.04] 04 025 0.09
btb assoc 044 226 0.05] 0.07 024 0.12
I-tlb latency 0.77 242 0.11] 0.12 0.32 0.04
L1 i-cache repl policy 0.61 2.63 0 0.12 0.37 0
I-tlb page size KB 233 2.65 0 0.24 0.4 0.01
fetch queue entries 0.2 2.78 0.11| 0.08 0.4 0.05
branch misprediction penalty 0.59  3.22 0.72] 0.32 0.52 0.53
I-tlb size ENTRIES 0.13 346 0.01 0 0.44 0
D-tlb size ENTRIES 0.2 3.91 0.02] 0.12 044 0.04
L1 d-cache size KB 123 421 0.01] 0.12 0.6 0.04
L1 i-cache size KB 2.81 534 0 0.24 0.88 0
L1 i-cache block size 0.66 6.4 0.05| 0.08 0.84 0.11
branch predictor 9.29 10.87 38.76 33.65 1.08 7.1

TABLE Il

ESTIMATED INFLUENCE OF EACH HARDWARE PARAMETER ON THE PVALUES, AND DISTANCES D, USING THE FRACTIONAL FACTORIAL DESIGN FOR THE
COMPOSITIONSA=FFT;RIJNDAEL, B=FFT;MM AND C=GAUSS;RIIJNDAEL.

bottlenecks, parts of the code where the program spend mfostthe execution time distributions of components. We used
of the time, and optimisations can be focused in these spectfie Kolmogorov-Smirnov goodness-of-fit test to evaluate ho
parts. In [8] statistical analysis is used to analyse commputvell the convolution seems to approximate the real distigiou
architecture performance, and the fractional factoridigle of the composed components when hardware influences are
is used to analyse how changes in the architecture affect taken into account. Our results indicate that for the mosdt, pa
execution time. the convolution provides a good approximation of the actual
The two-sample t-test is used in [23] as a hypothesis testecution time distribution.
to measure performance similarities between benchmahis. T We then investigated which hardware features seem to

test requires Student’s t distribution for the samplesevbiur influence the validity of the convolution approximation the

use of the KoImogorov_-Sr_mrn_ov test has the advantage thaHBst. We found that several such features could have the most
can be used for any distribution. significant influence, with high rankings for reorder buffer
branch table associativity, L2 cache size, and out-of order
execution. However, for the the cases where the convolution
In this work we investigated the execution time of sedid not provide a very accurate model, the branch predictor
guentially composed components using statistical methwels was found to have the largest influence on this discrepancy.
propose the use of convolution as a composition mechani3iis indicates that the branch predictor is an importartofac

VI. CONCLUSION



affecting the validity of convolution as composition op@ra [3] T. T. Soong,Fundamentals of Probability and Statistics for Engineers

and thus should be taken into account when selecting haedwair Wiley-Interscience, 2004. . . .
S . . T . 4] D. J. SheskinHandbook of Parametric and Nonparametric Statistical
for applications where timing-predictability is requited Procedures, Third Edition Chapman & HalllCRC, 2004.

The convolution model relies on an assumption that sequefs] R. L. Plackett and J. P. Burman, “The design of optimum tifagtorial
tial timing models are additive, such that estimated exenut __ experiments,” inBiometrika vol. 34, 1946, pp. 255-272.
. f iall . L . v Heled [6] T. Austin, E. Larson, and D. Ernst, “Simplescalar: Anrastructure for
times _Or Sequem_'a y executing activities can Slmp y computer system modelingComputey vol. 35, no. 2, pp. 59-67, 2002.
up. This assumption is used not only for sequential componefr] C. M. Grinstead and J. L. Sneliptroduction to Probability American

composition, but also in other parts of the real-time arka i _ Mathematical Society, 1997. . . .
hedulabili lvsis. Th | h — [8] J.J.Yi, D. J. Lilja, and D. M. Hawkins, “Improving compert architec-
schedulability analysis. us, our results can have sgamge ture simulation methodology by adding statistical rigdEEE Trans.

also in those areas. Comput, vol. 54, no. 11, pp. 1360-1373, 2005.
A topic for future research is to make a more detailed® M. R.Guthaus, J. S. Ringenberg, D. Ernst, T. M. AustinMTdge, and

. . . h f f th d d . R. B. Brown, “MiBench: A free, commercially representatiembedded
Investigation how features of the composed codes Interact penchmark suite,” ifProc. Fourth Annual IEEE International Workshop

with hardware features to strengthen or weaken their inleen  on Workload Characterization (WWC-4)Washington, DC, USA: IEEE
on the validity of simple compositional timing models like _ Computer Society, 2001, pp. 3-14.

. . 10] D. Burger and T. M. Austin, “The SimpleScalar tool segrsion 2.0,
the convolution model. Obviously, features such as contrdf” SIGAR%H Comput. Archit. Newsol, 25?n0. 3, 1997. o

structure (frequency and predictability of branches), mgm [11] R Development Core TeamR: A Language and Environment
access patterns, etc. will interact with hardware featares for Statistical Computing R Foundation for Statistical Computing,

. L Vienna, Austria, 2008, ISBN 3-900051-07-0. [Online]. Ashie:
as branch predictors, pipelines, and memory systems to make . /ww.R-project.org

the influence on timing model validity stronger or weaker. [g2] J. Ganssle, “Really real-time systems,” Rroc. Embedded Systems
it possible to come up with simple code characteristics th[?g] Conference, Silicon Valley 2006 (ESCSV 20Gg)r. 2006.

. . . . . R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thegi D. Whal-
can predict which hardware features will be influential for ™ & " g “Bemat Cg_ Ferdinand. R. Heckmann. T. Mhi‘f% F. Merell

composition of certain codes? I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrone, Wbhst-case
We have investigated sequential composition on single- execution-time problem—overview of methods and survey aoflst”

. . . Trans. on Embedded Computing Sy&l. 7, no. 3, pp. 1-53, 2008.
core architectures. For components running in parallel oni@; 3 gngblom, “Analysis of the execution time unpredidtity caused by

multicore architecture, simple compositional timing misde dynamic branch prediction,” ifroc. 8" IEEE Real-Time and Embed-
are desirable as well as long as they are reasonably accurate ded Technology and Applications Symposium (RTAS 08ashington,
. . DC, USA: IEEE Computer Society, May 2003.

A pOSSIble example 'T@I lc2) = maX(T(_Cl)vT(Q))’ Wh.ere [15] J. Engblom and B. Jonsson, “Processor pipelines and pieperties
“|"is a parallel composition operator. As in the sequentigeca  for static WCET analysis,” inProc. 2*¢ International Workshop on
such simple timing models are not exact, and an interesting Embedded Systems, (EMSOFT2002). Lecture Notes in Computer

. P 9 . . . . 9 Science, A. L. Sangiovanni-Vincentelli and J. Sifakis, Ed®l. 2491.
tqplc for future research is to |nvest|_g§1te the mflue_n_ce of  Grenoble: Springer, Oct. 2002, pp. 334-348.
different hardware features on the validity of parallelitim [16] C. Ferdinand and R. Wilhelm, “Efficient and precise @dtehavior
models. prediction for real-time systemsReal-Time Systemsol. 17, pp. 131—

. . . . . 181, 1999.
_ Another important topic for further work is t(? 'nveSt'ga_tmt_ [17] S. Thesing, “Safe and precise WCET determination bytrabsinter-
influence of software data/control dependencies on thelitali pretation of pipeline models,” Ph.D. dissertation, Samtlaniversity,
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[
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