
Support for Hardware Devices in Component
Models for Embedded Systems

Luka Lednicki
Faculty of Electrical Engineering and Computing

University of Zagreb
Zagreb, Croatia

luka.lednicki@fer.hr

Abstract — With the decreasing costs of electronic parts for
embedded systems, complexity of their software has
drastically increased. A possible solution for handling this
high complexity is component-based development, a branch
of software engineering that builds complex software
systems out of encapsulated units of software named
software components. Component-based approach has
proven beneficial in enterprise systems and desktop
domains. However, embedded system domain introduces
some domain-specific problems (e.g. satisfying safety-
criticality, real-time requirements and interaction with
environment). Therefore, if we want to use the component-
based approach in embedded systems we must address these
problems. In this paper we present an overview of how
interaction with environment impacts the use of component-
based approach for embedded systems. We present different
ways in which component models can enable us to manage
hardware devices and provide examples from existing
component models. We also present our research plan that
addresses the need to improve how component models
enable managing hardware devices.

Component-based software enginveering; hardware
components; hardware devices; non-functional properties;
analysis

I. INTRODUCTION

As modern embedded systems grow in complexity
component-based development is an increasingly
attractive approach utilized to make the development of
such systems simpler and less error prone [3]. However,
in embedded system domain component-based approach
to software development is seldom used in practice, and
is mostly explored in component models used in research
context.

Amongst other things, one of the problems that
component-based development for embedded systems
must address is interaction of a software system with the
environment, the physical world that the system is
embedded into [5]. This interaction is done using
hardware devices, such as sensors and actuators. A
simple example of an embedded system is a temperature
regulation system, which keeps an constant temperature
in a room, cooling or heating the air in it. Such a system
must have at least one temperature sensor, and two
actuators: one for starting the heating process and one for
starting the cooling process. So, even if complexity of
software in such a system is very low, its behavior is
highly dependent on the communication with hardware
devices, and behavior of devices themselves.

Communication between software and hardware
devices can be as simple as writing value to a hardware
pin or port of the device that the system is deployed on,
or as complex as invocation of a service on a remote
device. In all cases, this interaction with the environment
implies dependencies of software components on the
hardware or middleware used to communicate with the
environment. Same environment, and combination of
hardware and middleware also affect the behavior of an
embedded system. As reusability and analyzability of
software components and component based systems
highly rely on such dependencies and effects on behavior,
failure to adequately express them can hinder the use of
component-based approach in the embedded system
domain.

Section II of this paper provides a background on
component-based development for embedded systems. In
Section III we discuss different ways in which hardware
devices can impact component models. Section IV
presents four levels of support for hardware devices that
component models can provide. In Section V we give an
overview on some of existing component models,
showing their level of support for hardware devices. Our
plans for future research are given in Section VI. Section
VII concludes the paper.

II. COMPONENT-BASED DEVELOPMENT FOR EMBEDDED
SYSTEMS

Component-based development [4] is a software
engineering approach in which software systems are built
by composing them out of preexisting and reusable units
of software, software components. However, these
components are more than just segments of software
code. In many cases software components are packages
of containing software code, different models that
describe behavior of the component, collection of both
functional and non-functional properties or attributes and
different documentation files that describe a component.
In this way, beside just the benefit of reusing components
and reducing efforts needed for system development by
composing systems out of components, we are able do
different types of analysis of system properties and
behavior in early stages of system development, before
the actual system is complete and deployed [6].

Non-functional properties like worst-case response
time of some functionality, or memory consumption, are
often as important when developing software for
embedded systems as is their main functionality. Because
of their small size, limited power sources and limitations

on cost embedded systems generally have poor
processing power and memory resources compared to
standard desktop computers. Also, their functionality is
often time (real-time systems) and safety critical (e.g.
vehicular electronic control units). Ability to conduct
analysis in early phases of system development, and
predict system behavior and properties (both functional
and non-functional) can greatly improve development
process of such systems. For this reasons there are many
component model that aim embedded system domain,
e.g. SaveCCM [12], Rubus [10], COMDES-II [11],
ProCom [15], AUTOSAR [1], Koala [14], etc.

As already mentioned, all possible component-based
development for embedded systems is still not fully
exploited. Component models used in industry do not
provide all the potential benefits of component-based
development, and are mostly used just for system
modeling. Also, most of the component models used in
industry provide support for hardware device which does
not promote reuse of hardware-dependent components
and limits our ability of system analysis. On the other
hand, component models for embedded systems currently
used in research most often focus on providing support
for handling only pure software components and rarely
try to provide comprehensive approach for dealing with
components dependent on external devices, which is
essential for real-world use.

III. EFFECTS OF HARDWARE DEVICES ON SOFTWARE
COMPONENT MODELS

Dependencies on hardware devices can affect
component models on many different levels. As main
functionality of embedded systems is that they interact
with their environment using hardware components, to be
able to fully utilize component-based approach in
embedded systems we must first identify how these
dependencies affect component models.

From the architectural point of view, such
dependencies have to be clearly stated and presented for
developers to be able to see and manage them.

In the deployment phase, software components and
subsystems are allocated to the underlying hardware that
will support them. In this phase, there must be an ability
to see dependencies on hardware devices and ensure that
the hardware targeted for deployment can satisfy these
dependencies.

During analysis phase, effects of the external devices
on behavior of software components must be taken into
consideration.

Finally, during synthesis phase we generate
executable code using system models. In this phase we
must take care that the code generated for software
components reflects the platform's specifics of
communicating with external devices.

As reuse of once developed components is one of key
concepts of CBD, we also need to make sure that
components that are dependent on hardware can be
deployed on different platforms that handle hardware
devices in different manner.

IV. APPROACHES ON INTEGRATING HARDWARE DEVICES

We have identified four main levels of support for
hardware devices that component models can provide.
These levels are depicted in Figure 1.

A. Externalized, outside of component model
Some component models avoid providing any support

for stating dependencies or communicating with
hardware. Interaction of software components with
environment is forbidden. Instead, it is supposed that this
communication is handled by software outside of
component model framework, and then in some way

A B

C D

Figure 1. Different levels of support for hardware devices in component models: A – externalized, outside component model; B -
Implicitly, on code level; C – explicitly, using specialized entities; D – explicitly, encapsulated in software components.

Component model

Component model

HW

Component model
Software component

Code
Software component

HW

Software
component

Specialized entity

HW

Component model

Software component

HW

presented as inputs or outputs to the framework and
system composed out of components.

Although this is a valid approach, it is obviously
inadequate for use in embedded systems as main task of
embedded systems is communication with their
environment. By not having a way for expressing
interaction with environment, these types of component
models can make system development more cumbersome
and less suitable for analysis.

B. Implicitly, on code level
It is common in component models to handle

interaction with environment as any other code inside
software components. In this case software components
communicate with hardware by direct method calls to
underlying platform or operating system. These method
calls are interleaved with the rest of the code, and hard-
coded inside component.

Such treatment of communication with environment
limits our ability to fully utilize advantages of
component-based development in embedded systems.
First of all, it stops us from using a component as black-
box as it interacts with its environment in a way that is
not visible from it's outside interface. Along with that,
having platform-specific communication hard-coded
inside component's code can greatly hinder reuse of the
component, as it can only be reused on the same platform
with exactly same configuration. This also prevents us
from checking validity of deployment because we cannot
determine if the platform we are deploying on is adequate
for our system. Our ability to analyze such systems is
also reduced, because we are unable to take into account
non-functional properties and behavior of hardware
components.

C. Explicitly, using specialized entities
Another way of handling hardware dependencies and

interaction with environment is introducing special
entities in component model that will encapsulate them.
These entities are able to communicate with normal
software components, but have syntax and semantics that
differ from software components.

This approach is appropriate for component-based
development for embedded systems as it enables us to
explicitly state the dependencies of systems on hardware
components and how software components interact with
the environment. Reuse of software components is
simple, as there is a clear boundary between software and
hardware. It also enables us to include hardware
components in system analysis.

One negative aspect of this approach is how it effects
hierarchical composition of components. It is a common
case in component models that they enable creation of
composite components, i.e. software components that are
composed of other software components (instead of
defining their functionality by code). Composite
components then act as normal software components,
respecting same interface syntax and semantics. If we
encapsulate hardware components in separate entities we
have no way of exposing hardware devices in composite
components, as hardware dependencies are not part of
standard component interface.

D. Explicitly, encapsulated in software components
In some component models interaction with hardware

is inclosed in software components, but exposed through
component's interface. In this case we are able to describe
communication with hardware components using same
syntax and semantics as communication between normal
software components.

Similarly to approach in subsection IV.C., this
approach allows us to fully utilize component-based
approach for developing software for embedded systems.
Additionally, by having the ability to state interaction
with hardware components as a part of software
component interface we are able to include hardware
components in a hierarchical software component model.

V. EXAMPLES OF HARDWARE COMPONENT INTEGRATION

In this section we will give an overview of how some
of the component models currently used in research or
industry deal with dependencies on hardware components
and how the communication between hardware and
software components is treated. This investigation was
done as part of research for survey on component models
currently in use [9]. Although our research covered a
number of component models for embedded systems,
most of them did not provide any documentation or other
information on how interactions with hardware
components is treated. As a conclusion, we can argue that
their support for hardware devices is either implicit
(encapsulated in code) or externalized (outside of
component model).

A. SaveCCM
SaveCCM [12] is a component model developed at

Mälardalen university for purpose of research on
component-based development for vehicular and safety-
critical embedded systems. In SaveCCM software
components are not allowed to directly communicate
with hardware devices (hardware devices are
externalized). Instead, communication with them takes
place outside of the component model. Data that is the
subject of the communication is presented as input or
output values to the component-based system.

B. Rubus
Rubus component model [2], [10] was created by

Articus Systems for development of dependable
embedded real-time systems. Architectural elements of
Rubus are software items, which can be either basic
software circuits or assemblies or composites of other
software items. Behavior of a software circuit is defined
by a C-language entry function. There are no special
architectural elements that model external devices such as
sensors and actuators. Instead, they are modeled by basic
software circuits (support for hardware devices is
implicit, on code level). Sensors are represented by
software circuits that have no input data ports and at least
one input trigger port, while actuators are modeled by
software circuits that have no output data ports. Platform
and device dependent information or behavior are hard-
coded in the software circuit's C entry function.

C. COMDES-II
COMDES-II [11] is a component-based software

framework aimed for efficient development of reliable
distributed embedded control systems with hard real-time
requirements. COMDES-II defines a two-layer
component model, having the "upper" layer specify the
behavior of a systems using active software artifacts
called actors, while the "lower" layer defines the behavior
of the actors using function block instances. Interaction
of actors with the environment is encapsulated in input
and output signal drivers (hardware devices are supported
explicitly, using separate entities). Drivers can be
classified as either communication drivers (used to sense
or actuate signals on a network), or physical drivers (used
for sensing or actuating physical signals).

D. AUTOSAR
AUTOSAR [1], [8] is a new standardized architecture

created by a partnership of a number of automotive
manufacturers and suppliers with a goal to manage
increasing complexity of vehicular embedded systems,
enable detection of errors in early design phase and
improve flexibility, scalability, quality and reliability of
such systems. To achieve this, AUTOSAR applies
component based approach for developing embedded
systems. In AUTOSAR, underlying hardware that the
system is deployed on is abstracted away by the
AUTOSAR Run-time Environment that provides a
platform-independent framework for the application
layer. As a consequence, AUTOSAR applications can
only be deployed on a hardware device only if there is an
existing AUTOSAR Run-time environment for this
specific device. In the application layer dependencies on
specific hardware is encapsulated in special type of
components, sensor and actuator components. These
components are dependent on a specific sensor or
actuator, but are independent of the hardware device that
the application is deployed on. The fact that there is no
possibility of hierarchical nesting of components
software components and sensor and actuator
components still act as separate entities, so we can not
say AUTOSAR fully supports explicit encapsulation of
hardware in software components. Support for hardware
devices remains explicit, using separate entities.

VI. PROPOSED RESEARCH

The goal of the research is to investigate to
incorporating hardware devices into component models
for embedded systems in such a way that and construct
an approach that would significantly advance how these
component models handle hardware devices.

Our hypothesis is that providing a way for explicitly
stating dependencies of software components on
hardware devices will enable reuse of such components
on different platforms or different configurations of
platforms. Also, by providing information about
functional and non-functional properties of these devices,
and providing a way to propagate these properties to
component models, we will have a basis for better
prediction of system behavior and the analysis of systems
will be more accurate.

Some of the questions we will try to address are:

• What are the requirements for describing
dependencies of software components on
hardware devices in component models for
embedded systems?

• How can we describe dependencies of software
components on hardware devices and specify
functional and non-functional properties of these
devices?

• How can we improve reusability of software
component that are dependent on hardware
devices?

• How can we utilize information about functional
and non-functional properties of hardware
devices to enable more accurate analysis of
systems?

Our research will be divided into three phases:
defining requirements, hardware device description,
integration into component models and evaluation. Next,
we will describe each phase in more details.

A. Requirements
As the first part of our research we will need to

investigate what are the requirements for describing
dependencies of software components on external
hardware devices. We can describe hardware devices on
many different levels of abstraction and specify many
different properties (both functional and non-functional)
that characterize them. However, we must find which of
these abstraction levels the is most adequate and which of
the properties are required for successful integration of
hardware devices into component models. We will
especially have to take into account how hardware
devices affect reuse and analysis of software components
and component based systems.

B. Hardware device description
After we understand the requirements for describing

hardware devices we must find a way to describe them.
Because of the overall need for describing hardware in
engineering community, there are already a number of
hardware description languages (for example AADL [7]
or SysML [13]) that are used to define hardware on
different levels. Some of these languages can be easily
incorporated into component models.

Taking into account the requirements defined by the
first step of our research, we will try to identify a suitable
hardware description language. If none of existing
hardware description languages fully fulfill our needs
there will be a need for adaption of one of the existing
hardware description languages. Another option is
creating a custom hardware description language for
purpose of our research.

C. Integration into component models
Once we devise a way to adequately describe

hardware devices we must provide an ability to integrate
devices into component models.

The first step of this integration is to extend software
component description with information about
dependencies on hardware devices. Again, one of the
main concerns here is how to add this new information

without limiting our ability to reuse components in
systems with different hardware configurations. Also, we
will have to define how we can create mappings between
software components that have dependencies on
hardware devices and actual hardware devices specified
by our hardware description language.

Besides only including hardware devices when
designing component-based systems, we also want to
take into account non-functional properties of hardware
devices during analysis of such systems. This requires us
to also propagate non-functional properties of hardware
devices to software components. In order to take
advantage of current analysis techniques, we have to
present these properties in a way that is usable by these
techniques.

D. Evaluation
We will use our research to extend an already existing

component model for embedded systems. The whole
approach will be evaluated on a number of different case
studies with the goal of comparing our approach with
methods that are currently used. We will evaluate two
properties: analysis accuracy and reuse possibility. As
one of our hypothesis is that by adding information about
non-functional properties of hardware devices will result
in better prediction of system behavior, we will measure
if using our approach analysis provides predictions that
are more close to real measured values than the values
obtained by system analysis that does not take into
account hardware devices. Also, we will examine if by
applying our approach we will be able to reuse more
components between different systems, compared to
number of reused components in same systems without
using our approach.

VII. CONCLUSION

In this paper we have illustrated how interaction
between software components and hardware devices,
such as sensors and actuators, has an important role in
component models for embedded systems. In this
domain, failure to adequately express dependencies of
software components on hardware devices and
communication between the two can severely impair our
ability to use all benefits that a component-based
approach can introduce.

A survey of different component models has shown
us that component-based development for embedded
systems is still not widely utilized by industry, and most
of the component models in this domain are developed
and used in the research community. However, lack of
any information about how hardware devices are
included in component models, and inadequate
approaches of some component models that provide this
information, leads us to a conclusion that this aspect of
embedded systems is still not fully explored when it
comes to component-based development.

Therefore, we propose a research plan that will
address the lack of proper management of hardware
devices in component models for embedded systems. In
our research we will provide ability to explicitly state
dependencies of software components on hardware

devices, define how we can build specification of such
devices that will allow them to be incorporated in
component models, and provide a way to define
mappings between software components and hardware
devices. As a result we expect higher reusability of
software components and possibility for more accurate
analysis.

ACKNOWLEDGMENT

This work was supported by the Unity Through
Knowledge Fund via the DICES project, the Swedish
Foundation for Strategic Research via the strategic
research center PROGRESS, and the Swedish Research
Council project CONTESSE (2010-4276).

REFERENCE

[1] AUTOSAR Development Partnership, AUTOSAR – Technical
Overview, 2008

[2] Arcticus Systems, http://www.arcticus-systems.com/
[3] Atkinson, C.; Bunse, C.; Gross, H.-G.; Peper, C., "Component-

Based Software Development for Embedded Systems – An
Overview of Current Research Trends", Lecture Notes in
Computer Science, November 2005

[4] C. Szyperski, "Component Software: Beyond Object-Oriented
Programming", Adissom-Wesley, 2002

[5] C. Bunse, H.-G. Gross, "Unifying Hardware and Software
Components for Embedded Systems Development", In:
Architecting Systems with Trustworthy Components, R.
Reussner, J. A. Staffort, C. A. Szyperski (Eds), Lecture notes in
Computer Science, Vol 3938, Springer, 2006.

[6] Crnković Ivica, Larsson Magnus, "Building Reliable
Component-Based Software Systems", Artech House
Publishers, 2002

[7] Feiler, P. H., Gluch, D., Hudak, J., "The Architecture Analysis
& Design Language (AADL): An Introduction", Software
Engineering Institute, Technical Note, CMU/SEI- 2006-TN-
011, Feb 2006.

[8] Heinecke H., Damm W., Josko B., Metzner A., Kopetz H.,
Sangiovanni-Vincentelli A., Di Natale M., Software
Components for Reliable Automotive Systems, Design,
Automation and Test in Europe, 2008

[9] Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petričić, Ivica
Crnković, "Classification and Survey of Component Models",
DICES technical report, University of Zagreb, 2009, available
at http://www.fer.hr/dices/

[10] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats
Lindberg, John Lundbäck, Kurt-Lennart Lundbäck, The Rubus
Component Model for Resource Constrained Real-Time
Systems, 3rd IEEE International Symposium on Industrial
Embedded Systems, 2008

[11] Ke Xu, Sierszecki Krzysztof, Angelov Christo, COMDES-II: A
Component-Based Framework for Generative Development of
Distributed Real-Time Control Systems, RTCSA '07:
Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications, 2007

[12] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson, J.
Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The SAVE
approach to component-based development of vehicular
systems. Journal of Systems and Software, 80(5):655– 667,
May 2007.

[13] OMG. SysML Version 1.1, 2008.
[14] R. van Ommering, F. van der Linden, and J. Kramer. The Koala

component model for consumer electronics software. In IEEE
Computer, pages 78–85. IEEE, March 2000.

[15] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and A.
Vulgarakis, “ProCom – the Progress Component Model
Reference Manual, version 1.0,” Mälardalen University,
Technical Report MDH-MRTC-230/2008-1-SE, June 2008.

	I. Introduction
	II. Component‑based Development for Embedded Systems
	III. Effects of Hardware devices on Software Component Models
	IV. Approaches on Integrating Hardware devices
	A. Externalized, outside of component model
	B. Implicitly, on code level
	C. Explicitly, using specialized entities
	D. Explicitly, encapsulated in software components

	V. Examples of Hardware Component Integration
	A. SaveCCM
	B. Rubus
	C. COMDES-II
	D. AUTOSAR

	VI. Proposed research
	A. Requirements
	B. Hardware device description
	C. Integration into component models
	D. Evaluation

	VII. Conclusion

