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Abstract

The fundamental requirement for the design of effec-
tive and efficient fault-tolerance mechanisms in depend-
able real-time systems is a realistic and applicable model
of potential faults, their manifestations and consequences.
Fault and error models also need to be evolved based on
the characteristics of the operational environments or even
based on technological advances. In this paper we propose
a probabilistic burst error model in lieu of the commonly
used simplistic fault assumptions in the context of proces-
sor scheduling. We present a novel schedulability analy-
sis that accounts for the worst case interference caused by
error bursts on the response times of tasks scheduled un-
der the fixed priority scheduling (FPS) policy. Further, we
describe a methodology for the calculation of probabilistic
schedulability guarantees as a weighted sum of the condi-
tional probabilities of schedulability under specified error
burst characteristics. Finally, we identify potential sources
of pessimism in the worst case response time calculations
and discuss potential means for circumventing these issues.

1 Introduction

Ubiquitous deployment of embedded systems is having
a great impact on our society since they interact and con-
trol our lives in many critical real-time applications. Typ-
ically those embedded systems used in safety or mission
critical applications (e.g., aerospace, avionics, automotive
or nuclear domains) have the design objective to maintain
the properties of correctness and timeliness even under error
occurrences. They are characterized by high dependability
requirements, where fault tolerance techniques play a cru-
cial role towards achieving them. The fundamental require-
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ment for the design of effective and efficient fault-tolerance
mechanisms is a realistic and applicable model of potential
faults, their manifestations and consequences. These sys-
tems typically work in harsh environments where they are
exposed to frequent transient faults such as power supply
jitter, network noise and radiation. Fault and error models
also need to be evolved based on the changes in the envi-
ronments of usage or even based on technological advances.
For example, nano-level shrinking of electronic devices are
making them highly susceptible to transient errors and a re-
cent study [14] has shown that even significantly low in-
dividual gate error probabilities could produce many-fold
higher output error probabilities. Though single event up-
sets (SEU) traditionally were a concern only in memory de-
vices, increased clock frequencies also increases the chance
of a transient pulse getting latched thus affecting the logic
parts as well. Increased sensitivity to noises results in an
unacceptably large number of soft-errors and timing faults
and design of appropriate fault-tolerant techniques and ar-
chitectures have become a recent research focus in the nano-
electronics community [21].

Due to the strict timeliness requirements in many safety
or mission critical systems, real-time schedulability analy-
sis techniques such as fixed priority preemptive scheduling
have been increasingly used during their design. In order
to provide real-time guarantees for fault tolerant systems,
it is necessary to take into account an appropriate fault hy-
pothesis, as no system can cope with an arbitrary number
of faults over a bounded time interval. The majority of the
previous research works assumed a worst case error distri-
bution, e.g., single faults with a minimum inter-arrival time
equal or greater than the largest period in the task set, or
schedulability-centric approaches based on fault assump-
tions modeled as stochastic events [6]. However, once an
error occurs, it is likely that the fault causing this error will
be in effect for a certain duration and will cause a burst of
errors rather than a single error during that period.

As the errors in a burst are caused typically by a sin-
gle fault source, their probability of occurrence needs to be



modeled differently than the errors caused by independent
faults. This probability depends on several factors, such as
the type and the severity of the fault, the resistance of the
hardware to the fault, and the reaction of the fault detec-
tion and fault tolerance mechanisms to the fault. Further-
more, the error bursts can have different durations due to
various reasons. For example, if we imagine a vehicle as
our system under observation, which passes through a field
with strong electromagnetic interference (EMI), the dura-
tion of the exposure to this fault is related to the area of this
field as well as the velocity of the vehicle. Though there
exist research works addressing error bursts in the context
of computer networks, they do not explicitly consider the
complex effects of error bursts and their impacts on real-
time tasks. Accounting the duration of errors and their con-
sequences are equally relevant from the processor schedul-
ing perspective as well and to the best of our knowledge,
the proposed work is first of its kind in this direction. In
the context of real-time systems which traditionally follow
a read-compute-write semantics, burst errors occurring in
networks (connecting the controller to the sensors and ac-
tuators) during read or write phase could potentially behave
and affect the system as burst errors in the tasks.

In this paper, we introduce a novel probabilistic burst er-
ror model and propose the associated schedulability anal-
ysis for real-time tasks scheduled under the fixed priority
scheduling (FPS) policy. In particular, we are interested in
the probabilities of the tasks meeting their deadlines based
on the error rate assumptions. Due to the stochastic nature
of the error occurrences as well as the complex effects due
to the variations in the error parameters, we propose an ap-
proach that combines schedulability analysis with sensitiv-
ity analysis to provide probabilistic schedulability guaran-
tees for the real-time task sets.

The rest of the paper is organized as following: in Sec-
tions 2 and 3, we introduce the task and the error model
respectively, followed by the proposed methodology in Sec-
tion 4 where we present the schedulability analysis. In Sec-
tion 5 we illustrate our methodology with an example. The
sources of pessimism in our analysis together with indica-
tors for potential solutions are discussed in Section 6. In
Section 7, the related works are briefly described followed
by Section 8 which concludes the paper.

2 Real-time task model

We assume a sporadic task set, ' = {r,72,..,7n},
scheduled by the preemptive FPS paradigm where each task
represents a real-time thread of execution. Each task 7; has
a minimum inter-arrival time 75, a known worst-case execu-
tion time (WCET) C}, a deadline D, and a priority P;. We
assume a single processor platform and that the tasks have
deadlines equal to or less than their minimum inter-arrival

times.

We assume that, upon a task failure, each task 7; exe-
cutes an alternate task 72/* with a worst-case execution time
Ca less than or equal to the original worst-case execu-
tion time of its primary C;, a deadline equal to the origi-
nal deadline D; and a minimum inter-arrival time equal to
the original minimum inter-arrival time 7;. This alternate
can typically be a re-execution of the same task, a recov-
ery block, an exception handler or an alternate with im-
precise computations. We assume that each task failure is
detected before the completion of the failed task instance.
Although somewhat pessimistic, this assumption is realis-
tic since in many implementations, errors are detected by
acceptance tests which are executed at the end of task ex-
ecution or by watchdog timers that interrupt the task once
it has exhausted its budgeted worst case execution time. In
case of tasks communicating via shared resources, we as-
sume that an acceptance test is executed before passing an
output value to another task to avoid error propagations and
subsequent domino effects.

3 Fault and error model

We assume that the main sources of errors are the EMI
and the transient hardware faults that affect, e.g. the sen-
sors and the network systems. Examples to these errors are
incorrect input values from sensors or failure in delivering
the output values via network messages. Errors are detected
at the end of task executions by observing, e.g., the out of
range output values or omitted outputs, missing acknowl-
edgements in case the outputs are transmitted as network
messages. The error detection mechanisms we have con-
sidered are usage of sanity checks, range checks, checksums
(for network messages) for the value correctness and the us-
age of watchdog timers for the time correctness. We assume
that the watchdog timers are implemented as simple hard-
ware that run in parallel with the tasks and interrupt in case
of detected errors and the overhead of the value error detec-
tors are included in the task worst case execution times. We
further assume that a single error do not propagate into sev-
eral tasks by the design of fault containment regions, such
that, for instance, an input signal from a sensor is not al-
lowed to be shared by several tasks.

Every fault is characterized by three parameters:

1. Duration: Faults affect systems for certain durations
as in the vehicle example which passes through a field
with strong EMI. The factors affecting the duration in
this example is the speed of the vehicle and the area
of the field under EMI. While an individual error has
no “duration”, in case a fault materializes in more than
one error, we obtain an error burst with a length [ be-
tween the first and the last error, bounded by the du-
ration of that particular fault. If the fault materializes



in only one error, it is a single error with no length.
However, for the sake of presentation, we use the term
error burst for both error bursts and single errors with
lengths | > 0.

The duration of the faults is very much domain spe-
cific, and in this paper, we assume that the information
regarding the probability distribution of the fault dura-
tions (in the form of error burst lengths) is available.

2. Intensity: The intensity of a fault, determines the like-
lihood of causing errors during its presence. Hence it is
directly proportional to the minimum inter-arrival time
between two errors within a burst.

3. Rate: The rate of a fault determines the minimum
inter-arrival time between two independent errors in
the form of either error bursts or single errors.

The number of fault events in a unit time is denoted
by A which not only depends on the system but also
on the type of environment. For a given system, the
common values for \ range from 102 errors per hour
in aggressive environments to 10~2 errors per hour in
lab conditions as presented by Ferreira et al. [9] and
Rufino et al. [22].

Our error model consists of the following three parame-
ters as illustrated in Figure 1, where A denotes the primary
execution of task A, and A%t denotes one of its alternate
executions under sporadic arrivals of an error burst 3:

1. Tg: The minimum inter-arrival time between error
bursts.

2. Thurst: The minimum inter-arrival time between er-
rors within a burst. In this paper we assume 7T5*"* =
0. This implies that any task instance scheduled even
partially under the error burst will be considered as
failed.

3. f(1): The probability mass function for the error burst
length [. This function gives the probability that an
error burst length is equal to a specified value of [ for
potential values from the range of [.
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Figure 1. FT execution under error bursts

4 Methodology

Our research goal is to find Pr(5), the probability that
the given task set is schedulable. This probability is depen-
dent on the parameters of the error burst (g and /) as well
as the conditional probability that the tasks set is schedula-
ble under a specific set of values of these parameters. Con-
sidering the interplay between Tz and [, we plan to perform
a set of sensitivity analyses to derive the minimum inter-
arrival times between error bursts (T’z) for each discrete [
value. The burst lengths and the corresponding T values
will then be used to find the probability of schedulability for
each burst length . Finally the schedulability of the system
will be computed as a cumulative sum of these individual
conditional probabilities. The steps involved in the method-
ology are illustrated in Figure 2 and briefly described below.

Task Error rate robability mass
attributes ) function f{1)

> Select ]
Sensitivity v
i Analysis
: T,=0

Perform schedulability test STEP 1

using 7 and /

|
‘ yes

Calculate probability of
schedulability for the given / and
derived T},

Covered all ['s in f{1)?
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}STEP 2

Calculate cumulative
probability of schedulability
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Figure 2. Methodology overview

STEP 1: Sensitivity analyses: In this step, a series of
sensitivity analyses are performed for each discrete / in
the probability mass function f () in order to derive the
minimum inter-arrival time between error bursts (T’g)
that renders the taskset schedulable. The new schedu-



lability analysis proposed in this paper is the main tool
for performing these sensitivity analyses.

STEP 2: Probability calculation of the validity of
the minimum inter-arrival times between error bursts:
The goal of this step is to derive the probability that
the actual inter-arrival times between bursts will not
be shorter the previously calculated minimum inter-
arrival times. It involves the usage of previously pro-
posed statistical approaches to find the probability of
the bursts occurring with inter-arrival times larger than
or equal to the Tr by taking into account A\ and the
mission time L. The mission time (or lifetime) L of a
system varies largely depending on the domain, typi-
cally ranging from minutes for a car to take a short trip
to years for a satellite to complete its mission.

STEP 3: Calculation of the cumulative probability of
schedulability: Finally, based on the probability mass
function f(I) as well as the derived probabilities for
each discrete [, we derive the cumulative probability
of schedulability.

4.1 Worst case response time analysis un-
der error bursts

In this section, we propose a worst case response time
analysis that identifies whether a given task set is schedula-
ble when affected by error bursts with a specified length [
and a minimum inter-arrival time 7Tr. One should note that
if the burst length is greater than or equal to the minimum
inter-arrival time between bursts, every burst can start be-
fore the end of the previous one, hence the error bursts can
potentially affect the whole mission. If this is the case, or
if the burst length is greater than the minimum inter-arrival
time of the task whose worst case response time is to be
calculated, schedulability of this task cannot be guaranteed
under the assumption 75"t = 0.

The traditional response time analysis calculates the
worst-case response time R; for each task 7; using the fol-
lowing equation assuming that there are no task failures and,
hence, no recovery attempts [12]:

R;
Ry =C; +B; + Z {Tl C; (1)
jehp() ' Y

where hp(i) is the set of higher priority tasks than task 7;,

B; is the maximum blocking time caused by the concur-

rency protocols used for accessing the shared resources.
The following recurrence relation is used for solving

Equation 1:
rn
flo
J

Pt =Ci+ Bi+ Y
jehp(i)

where r? is assigned the initial value of C;. 7™ is a mono-
tonically non-decreasing function of n and when "™ be-
comes equal to r}' then this value is the worst-case response
time R; for task 7;. If the worst-case response time R; be-
comes greater than the deadline D;, then the task cannot be
guaranteed to meet its deadline, and the task set is therefore
unschedulable.

If we assume an FT scheduler where the failed tasks are
re-executed, then the execution of task 7; will be affected
by both errors as well as the execution of the higher priority
tasks. Based on this assumption, the worst-case response
times are computed [5] by using the following equation:

R; R;
{T]-‘ Cj+ ’VTE-‘ keﬂﬁg}fw(Fk) 3

where F}, is the extra computation time needed by task 7y,
Ty 1s a known minimum inter-arrival time between errors,
and hep(7) is the set of tasks with priority equal to or higher
than the priority of task 7; (hep(i) = hp(é) U 7). The last
term calculates the worst-case interference arising from the
recovery attempts. This equation is also solved by a recur-
rence relation as in the previous case. If all R; values are
less than or equal to the corresponding D; values, then the
task set is guaranteed to be scheduled under the condition
that no two errors occur closer than the Tr value.

The main differences between the error characteristics
in the traditional single error model and our proposed burst
model are:

R;=Ci+Bi+ Y

j€hp(i)

e An error burst contains multiple errors within itself

e An error burst can affect multiple tasks

Hence, the worst case scenario required for calculating the
worst case response times is not the same in case of error
bursts as compared to the model introduced in [6].

Definition 1. We define the worst-case error overhead F;
for a task T; caused by an error burst 5 as the largest
amount of time required to recover from the effects of the
burst.

Theorem 4.1. The worst case error overhead for task T;
caused by error burst 3 of length [ is:
E; = max( max (200" +1—¢),
kehep(i)

> Gt max (bR 4+ CRlt = Cy 1€, C))

k€hep(i)—{rn}
“)

where Ty, is the highest priority task in the task set T, € is
an arbitrarily small positive real number, and b is a boolean
variable indicating whether the burst ends before the high-
est priority task T, completes its execution.

{ 0, Zflgch-i-G
b= 1

otherwise



Proof. An error burst S of length [ can either affect one
task instance alone, or together with a set of task instances
preempting it. Note that a single burst cannot affect several
task instances executing non-preemptively in a sequence,
since the first instance needs to recover from the burst (i.e.,
the burst needs to end) before the next in the sequence can
start its execution. Hence we have two cases:

e Case 1: The burst hits only one task during its length
[. Here we have 2 scenarios: the burst either affects 7;
directly, or a higher priority task instance from hep()
that delays the execution of 7;. In both the scenarios,
the worst case occurs when the burst starts just prior
to the completion of the affected task instance (say a
small e before), and ends right after the start of the
execution of one of its alternates. The scenario is illus-
trated in Figure 3 where the sum of the computation re-
quirements of all failed alternates except last failed one
equals [ — e. Hence, E; = maxjcpep(i) 20810 +1— €
(in Figure 3, € = €1 + €2).
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Figure 3. Worst case error overhead when the
burst hits only one task

e Case 2: The burst hits multiple tasks during its length
l. In this case, the only possible scenario is when the
burst hits while higher priority tasks preempt lower pri-
ority ones, thus released in increasing priority order.
In this case, the worst case occurs when all task in-
stances in hep(#) are involved in the preemption during
the burst. Here again we have 2 scenarios depending
on whether the burst ends before the highest priority
task 77, completes its execution. In the scenario where
the burst ends before the highest priority task 7;, com-
pletes its execution, each task in hep(z') contributes to
the worst case error overhead for task 7; with one al-
ternate. The scenario is illustrated in Figure 4.a where

_ It It
E; = Zkehep(i)—{m} Og + CZ .
In the second scenario, i.e., where the highest priority
task 75, completes its execution before the burst ends,

task 73, contributes with an additional overhead con-
sisting of a number of alternates affected by the burst.
Here, the worst case occurs, similarly to Case 1, when
the burst ends right after the start of the execution of
one of its alternates. The scenario is illustrated in Fig-
ure 4.b where the worst case error overhead is given by
Ei = Eenep(iy— ) O + 207" = G +1—e).
Hence, E; = Y cpnep(i)—(my O + max(bCpl* +
Colt — Oy, + 1 — €, Ct) where 7y, is the highest prior-
ity task in the task set I' (in Figure 4.a, € = €; + €2 and
in Figure 4.b, € = €1 + €2 + €3).

O

The total interference I; experienced by a task 7; is the
sum of the maximum interference caused by the higher pri-
ority tasks, [ Zh P and the maximum interference caused by
error bursts I

Vr, €D, I =1 4 I¢ (5)

Note that I, zh P is given by the traditional response time anal-

ysis [1, 12]:
Lr=3 {;?w G
jehp(i) 'Y

Consequently, the worst case error interference that needs
to be accounted for in the response time analysis is obtained
by multiplying the maximum number of bursts that can oc-
cur during the response time of a task 7; by its E;. In this
case, the maximum interference caused by an error burst
with a minimum inter-arrival time 7z on a task 7; € T' in
the interval (0, R;] is,

err __ Rl .

Hence, the equation that gives the worst case response time
for a task 7; under error bursts is:

R; R;
R =C;+ B; + Z {T] C; + [TJ E,. (D
j€hp(3)

J

4.2 Probabilistic schedulability bounds

Based on the sensitivity analyses that use the worst case
response time analysis presented in the previous section
(Equation 7) we obtain the minimum inter-arrival time 15
between error bursts under which the given task set is still
found schedulable. Here, we make the similar assumption
as in [6] that during a mission, if the actual shortest inter-
val between two errors W is less than the derived minimum
inter-arrival time of error bursts T'g, then the task set is un-
schedulable. Hence, the probability of unschedulability for
agiven [, Pr(U|l), is equal to Pr(W < Tg|l).
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Figure 4. Worst case error overhead when the burst hits several tasks

Hence, our ultimate goal to find the probability of
schedulability of a given task set, is translated to the deriva-
tion of the probability that, during the mission time L, no
two consecutive error bursts arrive with an inter-arrival time
shorter than the derived 1.

We use a previously proposed approach [6] that uses the
Poisson probability distribution, to find the probability of
a number of events occurring in a fixed time period, as-
suming that the events occur at a constant rate (denoted
by A) and their occurrences are independent. The follow-
ing approximations for the upper and the lower bounds for
Pr(W < Tg |l) were presented in this approach:

Upper bound: If L/(2TF) is a positive integer then

Pr(W < Tg|l) <1+ [eT5(1 + ATg)] 75

—2[e=e (1 4 2\Tg)| 75 ®)

Lower bound: If L/(27%) is a positive integer then

Pr(W < Tg|l) > 1— [e 5 (1+ \Tp)|T5  (9)

Finally based on the derived probabilities of schedulabil-
ity corresponding to each burst length I, Pr(U]!), as well as
the probability values for each [ extracted from the proba-
bility mass function f (1), we calculate the cumulative prob-
ability of the schedulability Pr(.S) of the given task set.

Pr(8) =3 (1=PrUIDFG) (1)

l

S Example

We consider a single processor system on which a task
set consisting of 4 tasks as shown in Table 1 is allocated.
The columns P, T, C, C**, and D represent the tasks’
priority, minimum inter-arrival time, worst case execution
time of the primary, worst case execution time of the alter-
nate, and relative deadline respectively. Priorities are or-
dered from 1 to 4 where 4 is the lowest priority. The time

[Task [P | T [C]C" ] D |

A 1|30 |6 4 30
B 2|40 | 4 4 40
C 3140 |2 2 40
D 4 1100 | 8 4 100

Table 1. Example task set

unit is milliseconds. We assume a mission time of half an
hour (I = 1/2h), and a discrete probability distribution for
burst length [ as shown in Figure 5. Expected number of
error bursts in unit time is assumed as A = 10° = 1.

We used Equation 7 to perform a sensitivity analysis for
each error burst length [ in the probability mass function
f(1) in Step 1, and found the minimum inter-arrival times
between error bursts, T at which the task set is guaran-
teed to be schedulable. In Step 2, we used the statistical
approach presented in Section 4.2 and derived the probabil-
ities of unschedulability for each [/ and the corresponding
T as shown in Table 2.

Finally in Step 3, we used Equation 10 and based on the



Figure 5. Probability mass function f(!)

| L Te | PWUIY |
0 | 39 | 8.1250x10°6
1 | 39 [ 8.1250x10°6
2 | 39 | 8.1250x10°6
3 | 40 | 8.3333x10°©
4 | 44 19.1667x10~°
5 | 45 | 9.3750x10~©
6 | 49 | 1.0208x10~°
7 | 50 | 1.0417x10~°
8 | 58 | 1.2083x10°°
9 | 59 | 1.2292x10~5
10 | 60 | 1.2500x10~°

Table 2. Probabilities of unschedulability

derived probabilities of unschedulability, P(U |), as well as
the probability of each [ extracted from f(l), we calculated
the cumulative probability of schedulability as P(S) = 1 —
8.6212% 10~ 7 = 0.99999913788036. This analysis showed
that the example task set is schedulable with the probability
0.99999913788036 during a 1/2h mission where A = 1,
for the burst length characteristics given by f(1).

6 Discussion

While the response time analysis based on Equation 7
introduced in Section 4.1 is sufficient, it may provide pes-
simistic results. In this section we discuss a number of
sources of pessimism in the proposed approach, together
with potential solutions towards an exact analysis.

6.1 Sources of pessimism

First source of pessimism: This is due to the assumption
that each error burst can cause an error overhead equal to
worst case error overhead E;. However, depending on the
relation between the minimum inter-arrival times of tasks
and error bursts, this can be a pessimistic assumption.

We use a simple example to illustrate this case. Let
our task set consist of 3 tasks, as shown in Table 3 where
columns P, T, C, D represent the tasks’ priority, minimum

inter-arrival time, worst case execution time and deadline
respectively. A lower value of P represents a higher prior-
ity. Let us also assume that Ty = 12 and [ = 2 + €.

[Task [P[ T [C]C" ]| D |
A J1]5[4] 4 ]50
B [2[50]2] 2 [50
C [3]2s]1] 1 |25

Table 3. Example Task Set 1

By using Equation 7, the worst case response time of
task C in the above task set is calculated, based on its worst
case error overhead B = QC;}” +1—€=10,as Rc = 34,
which indicates that the task set is unschedulable. However,
the actual worst case response time R¢ of task C is 23 as
shown in Figure 6 and hence the task set is in fact schedu-
lable.

Tp=12 Tp=12
| |

Bk

=

Figure 6. Exact worst case response time for
task C

This scenario typically occurs when higher priority tasks
that do not have outstanding computations during a burst,
are in fact accounted for in the worst case error overhead E.
In our example, during the actual response time R¢c = 23
of task C, maximum two error bursts can occur. However,
only one of them can cause an error overhead equal to 10,
while Equation 7 accounts it two times. This is because
the first instance of task A has already completed its execu-
tion before the second error burst arrives and the release of
task A’s second instance comes later than the end of the this
burst. Hence, A has no outstanding computation during the
second burst.

Second source of pessimism: This is due to the assump-
tion that error bursts arrive with an exact inter-arrival time



of T'r. However, in order to generate worst case error over-
heads, the error bursts may need to arrive with a inter-arrival
time larger than Tz to ensure non-overlap of consecutive
worst case error overheads. This will imply a potential re-
duction in the maximum number of error bursts.

This phenomenon is exemplified by using the task set
represented in Table 4. We use the same error burst charac-
teristics as in the previous example (T = 12 and [ = 2+¢).

[Task [P[ T [C]C" ]| D |
A J1]5[4] 4 ][50
B [2[50]2] 2 [50
C [3]25]3] 3 |26

Table 4. Example Task Set 2

In this case, the worst case error overhead for C is cal-
culated as Ec = CHt + C¢t + 209 —Cy +1—e =11
from Equation 4. Here, again, only one error burst (instead
of two) can occur during the response time of task C, that
can cause an error overhead equal to 11. Figure 7 shows the
execution scenario that gives the worst case response time
for task C, that is R = 26.
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Figure 7. Worst case response time when
bursts are separated by more than Tz

Note that the worst case error overhead for the second
burst occurs only if the second burst arrives with an inter-
arrival time larger than Ty = 12 (Figure 8 shows the sce-
nario where the error bursts arrive with an inter-arrival time
of T = 12, and the response time of task C is less than 26).
In the worst case response time scenario (Figure 7), the term

“?E—‘ in Equation 6 calculates the maximum number of er-
ror burst arrivals as three, however, we can see that this is a

pessimistic number as there are only two errors in the exe-
cution scenario that give the worst case error overheads for
each burst.
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Figure 8. Shorter response time when error
bursts’ inter-arrival time equals T

6.2 Pessimism reduction

In order to address the above mentioned sources of pes-
simism in the response time calculations, we further refine
some of the terminology and definitions used so far.

We denote the set of bursts interfering with a task 7,
i.e., arriving after the release of 7;, by {87 j = 1,2,...}.
Consequently, the largest interference in terms of failed task
executions due to 47 that affects the response time of 7;, is
denoted as the worst-case error overhead EY .

Additionally, we denote by Slj the set of task instances
with higher or equal priority than that of 7;, that may be
dispatched for execution during the burst 37.

Potential solution for the first source of pessimism: By
replacing the hep(i) with the actual S we can eliminate this
source of pessimism, as we exclude the tasks that cannot
be hit by burst 5J during the response time of 7; from the
calculation of EY. Hence, equation for deriving the worst
case error overhead for task 7; caused by error burst 5 with
a length [ becomes:

E? = max(max(2C{' +1 — ),
kes]

> O+ max(bCR + CR — G+ 11— €, CY))
k€SI —{m}

(1D

where 7, is the highest priority task in the task set S/, € is

an arbitrarily small positive real number, and b is a boolean



variable indicating whether the burst ends before the highest
priority task 73, completes its execution.

b:{ 0, ifl<Ch+e

1, otherwise

Potential solution for the second source of pessimism:
This requires the identification of the worst case inter-arrival
times between bursts, i.e., the burst inter-arrival times that
give the worst case error overheads.

Definition 2. We define the worst-case inter-arrival time
Ty’ between the error bursts 37 and 37~ as the minimum
inter-arrival time between those bursts that gives the worst
case error overhead for task T; under burst [37.

Using this information together with the start time of the
first burst interfering with 7; (start(3')), one can derive the
maximum number of burst occurrences, /N, during a given
time interval as follows.

R — Y0 (T — Tp) — start(B')
Ty (12)

N =

Combining Equations 11 and 12, the refined worst case
response time of a task 7; € I" under error bursts with mini-
mum inter-arrival time Tz and length [, is given by the fol-
lowing relation:

N
R; :
R, =C;+ B; + E {TWOjJrE E!  (13)
j€hp(rs) ' Y j=1
7 Related Work

There had been significant research efforts in fault-
tolerant scheduling of real-time task sets. Pandya and
Malek [17] showed that single faults with a minimum inter-
arrival time of largest period in the task set can be recov-
ered if the processor utilization is less than 0.5 under Rate
Monotonic scheduling. Ramos-Thuel and Strosnider [20]
used Transient Server approach to handle transient errors
and investigated the spare capacity to be given to the server
at each priority levels. Ghosh et al. [10] presented a method
for guaranteeing that the real-time tasks will meet the dead-
lines under transient faults, by resorting to reserving suffi-
cient slack in queue-based schedules. Burns et al. [5][18]
provided exact schedulability analysis for fault-tolerant task
sets under specified failure hypothesis and different fault
tolerant strategies. Lima et al. [13] extended the uniproces-
sor scheduling analysis to the case of multiple faults as well
as for the case of increasing the priority of a critical task’s
alternate upon fault occurrences. Han et al. [11] extended
the last chance strategy described by Chetto and Chetto [8]

for fixed priority preemptive scheduling. They assume an
imprecise computation model, and aim to guarantee either
the primary or alternate version of each task while trying to
maximize primary executions. The majority of the previous
works assumed a worst case error distribution, e.g., single
faults with a minimum inter-arrival time of largest period in
the task set, or schedulability-centric approaches based on
fault assumptions modeled as stochastic events [6]. How-
ever, once an error occurs, it is likely that the fault causing
this error will be in effect for a certain duration, will cause
more errors during that period and have an adverse effect on
the task response times.

Burton and Sullivan defined error bursts consisting of er-
rors that are occurring during the period that a fault is in
effect and if two successive errors within that duration does
not exceed a certain maximum error-free period [7]. Fer-
reira et al. [9] show that 90% of the errors occurring in a
network, e.g., Controller Area Network (CAN), are in the
form of error bursts with an average length of 5usec in an
aggressive environment (factory conditions). However, the
probability distribution of the burst length is highly depen-
dent on the environment and more experimental studies are
required in order to determine valid distributions for differ-
ent domains. An example of such a study for telecommuni-
cation systems can be seen in [7]. Punnekkat et al. [19] pro-
posed an approach to schedule real-time messages on CAN
in a fault-tolerant manner using fixed priority scheduling
(FPS). Navet et al. [16] proposed a probabilistic schedula-
bility analysis for message scheduling on CAN. Later on,
Broster et al. [2, 3, 4] addressed the reliability of message
transmission on CAN assuming probabilistic fault models.
Both Navet et al. and Broster et al. presented error burst
models where they model the error bursts as a number of
errors within a given time interval. However, they did not
model the important characteristics of error bursts such as
burst length and the error intensity within a burst, which are
crucial for performing accurate schedulability analyses. Re-
cently, Many and Doose [15] presented an error burst model
and provided recovery strategies in FPS under error bursts.
However their model treats the error burst as a black box,
hence it is not capable of modeling the error behavior within
bursts. Moreover, they assume that a task instance is hit by
at most one burst during its response time.

8 Conclusions

Design of dependable real-time systems demands ad-
vances in both dependability modeling as well as schedul-
ing theory in tandem in order provide system level guar-
antees that potential error scenarios are addressed in an ef-
fective as well as efficient manner. In this paper, we have
introduced a burst error model together with the associated
schedulability analysis for real-time systems. We presented



a sufficient analysis that accounts for the worst case in-
terference caused by error bursts on the response times of
tasks scheduled under the fixed priority scheduling (FPS)
policy, which we further refined by addressing the poten-
tial sources of pessimism in the calculations. We have out-
lined a method to derive probabilistic scheduling guarantees
from the stochastic behavior of errors by performing a joint
schedulability— and sensitivity analysis.

Our ongoing research includes extending this approach
to handle error probabilities that are less than 1 within an
error burst, as well as consideration of multiple criticality
levels of real-time tasks for efficient usage of resources.
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