Malardalen University Press Licentiate Thesis
No0.136

Software Testing in Agile
Development

Technological and Organisational
Challenges

AdnanCalsevc

June 2011

V A
\ ¥V 4
MALARDALEN UNIVERSITY

School of Innovation, Design and Engineering
Malardalen University
Vasteas, Sweden

Copyright© AdnanCaugevi¢, 2011

ISSN 1651-9256

ISBN 978-91-7485-015-4

Printed by Malardalen University, Vasteras, Sweden

Abstract

The contemporary industrial trend towards agile softwaneetbpment brings
forth new concerns, challenges as well as opportunities.@the main issues
concerns the quality of the final product, for which testiaghe well-known
assurance mechanism. However, how to perform testing esiigging ex-
pertise in an agile environment presents a challengingifsuthe software
industry. This can potentially create confusion and coptuctivity which
can lead to a situation where testing teams and their pesctice considered
obstacles for the full implementation of agile processehiwian organisation.

This thesis identifies and addresses test-related ordgimmaband techno-
logical challenges in an agile environment. In this contest propose a hew
role for traditional testers which enables them to integjweith the agile team
as well as fully exploit their knowledge in the new contexe Wave conducted
an elaborate industrial survey on the preferences andipeaatith respect to
the contemporary aspects of software testing, and ideshtiigt-driven devel-
opment as an important technological area for improvem&rgubsequently
performed systematic review on empirical evidence rel&etst-driven de-
velopment revealed a list of factors which may limit its wsgeead industrial
acceptance and usage. Knowledge of testing was identifiedeasf those fac-
tors and we further attempted to confirm its significanceuptoa controlled
experiment performed with master students.

Our future works aim to confirm these research findings in nédavell as
industrial settings, and investigate other limiting fastm detail, with the aim
of providing guidelines for achieving better utilisatiof testers and testing
practices.

Acknowledgements

This thesis could not have been done without the great stppory supervi-
sor Sasikumar Punnekkat and my co-supervisors Daniel Sarkdamd lvica
Crnkovi¢c. Thank you guys for your leadership, patience mmawledge you
shared so unselfishly. Even though this thesis was my déstingour super-
vision made me realise how the journey itself mattered thetmo

As a Ph.D. student | was relying on my supervisors supporiuinliph-
ing research results, but co-authoring with researchersfauy comfort zone
greatly improved my collaboration and interaction skilisdeed this is some-
thing | am very thankful for to Abdulkadir Sajeev, Rikard lcafrrank Luders,
and Iva Krasteva.

Travelling to conferences and research project meetingsagher link in
the chain of experience a graduate student should have kjoanStig Lars-
son, Sigrid Eldh, and Radu Dobrin for being an often travehpanion in this
phase of my study. Mingling is so much easier with you guysiado

When not travelling, | had to share my office space with regitsat room-
mates: Srinivasan Jayakanth (JK), Stefan Bjornandehrit@bannmann, Eti-
enne Borde, Aleksandar Dimov, Andreas Johnsen, VijayhlakSaravanan
(Viji), Huseyin Aysan, Abhilash Thekkilakattil, and JalZhou. Thank you
guys for being silent, but also cheerful and always readwafemall talk.

It's not very easy to focus on the research when there arerastnaitive
issues hanging above your head. Luckily, | had administgieople around
me to always rely on. Thank you Harriet Ekwall, Gunnar Wid&rMonica
Wasell, Susanne Fronna, Carola Ryttersson, and Malinvisisq

Directly or indirectly, many senior researchers at MDH hpkavided help
to my Ph.D. studies. Thank you Hans Hansson, Kristina Luisdigvaul Pet-
tersson, Cristina Seceleanu, Thomas Nolte, Dag Nystréamiblsovi€, Jan
Carlson, and Tiberiu Seceleanu mostly for isolating me filoeworld of fund-
ing but also for having the time for me and my questions.

As a person | am very dependant on the communication ancaatten
with other human beings, and MDH could not be a better chaaget many
interesting discussions during the coffee breaks, trawetgher social events.
Thank you Ana Petriti¢, Andivkovié, Aneta Vulgarakis, Antonio Cicchett,
Barbara Gallina, Batu Akan, Branka Paveti¢t, Farhang NerRaterico Ci-
ccozzi, Giacomo Spampinato, Hongyu Pei-Breivold, Jadm&igryadevara,
Josip Maras, Juraj Feljan, Leo Hatvani, Luka Lednickihvttad Saadatmand,
Mikael Asberg, Moris Behnam, Nikola Petrovi¢, Rafia Inam, Saad &t
Séverine Sentilles, Stefan Bygde, Svetlana Girs, Thoreasdue, and Yue Lu
for sharing a few moments of your life with me.

| would like to express my gratitude to my parents Zuhdija &efika
Causevit as well as to my sister AzEausevic for their unconditional sup-
port and love through all of my life. | appreciate your smiledaunderstand
your tears.

I would like to thank to my wife AidaCauevit for supporting me and
believing that | can achieve much more. If | have to start ghisney again |
could not imagine anyone else beside me except you. | lovke you

And last, but most certainly not the least, | would like tortkéo my daugh-
ter Alina Caugevic for making me a complete person. Your smile, ynitey,
your hug, your cry... everything of yours helps me move fadva love you,
too.

AdnanCausevic
Vasteras, June 21, 2011

List of Publications

Papers Included in the Licentiate Thesi$

Paper A An Industrial Survey on Contemporary Aspects of Software
Testing AdnanCausevi¢, Daniel Sundmark and Sasikumar Punnekkat,
In proceedings of the International Conference on Softiasting (ICST),
Paris, France, April 2010

Paper B Factors Limiting Industrial Adoption of Test Driven Devpio
ment: A Systematic Reviewdnan Causevi¢, Daniel Sundmark and
Sasikumar Punnekkat, In proceedings of the Internationaifé&ence
on Software Testing (ICST), Berlin, Germany, March 2011

Paper C Impact of Test Design Technique Knowledge on Test Driven
Development: A Controlled ExperimeitdnanCausevic, Daniel Sund-
mark and Sasikumar Punnekkat, In submission

Paper D Redefining the role of testers in organisational transition
agile methodologiesAdnan Causevi¢, A.S.M. Sajeev and Sasikumar
Punnekkat, In proceedings of International Conferencedftw@re, Ser-
vices & Semantic Technologies (S3T), Sofia, Bulgaria, Oetpp009

1The included articles are reformatted to comply with theriiate thesis specifications

vi

Other relevant publications

Conferences, Workshops and Poster Sessions

e Reuse with Software Components - A Survey of Industriag SfaRrac-
tice, Rikard Land, Daniel Sundmark, Frank Luders, Iva Krastend
AdnanCausevi¢, International Conference on Software Reysinger,
Falls Church, VA, USA, September, 2009

e A Survey on Industrial Software Engineerjn&gjnanéauéevié, Iva Kra-
steva, Rikard Land, A.S.M. Sajeev and Daniel SundmarkgPsstsion
at International Conference on Agile Processes and eXtierogram-
ming in Software Engineering (XP2009), p 240241, Sprin§ardinia,
Italy, Editor(s):P. Abrahamsson, M. Marchesi, and F. Mauviay, 2009

Technical Reports

e An Industrial Survey on Software Process Practices, Pesfegs and
Methods AdnanCaugevit, Iva Krasteva , Rikard Land, A.S.M. Sajeev
and Daniel Sundmark, MRTC report ISSN 1404-3041 ISRN MDHINIR
233/2009-1-SE, Malardalen Real-Time Research Centatatdalen Uni-
versity, March, 2009

Contents

Thesis 1

Introduction 3
1.1 Background 4
1.1.1 Agile Development 4
1.1.2 SoftwareTesting 6
1.1.3 Test-drivendevelopment 7
1.2 Motivation and Problem Description 8
1.3 Outlineofthesis. 8

Research Summary 9

2.1 ResearchMethodology 10

2.2 ResearchProcess 10
2.2.1 Technological perspective 11
2.2.2 Organisational perspective 13

2.3 Contribution 14
231 PaperA 14
232 PaperB 15
233 PaperC 15
234 PaperD 16

Related Work 17

3.1 Technological perspective. 17
3.1.1 Empirical StudiesonTDD 18
3.1.2 Test-relatedresearch 19

3.2 Organisational perspective 19
3.2.1 Transitioningto Agile, 20

Vii

viii Contents
4 Conclusions and Future Work 21
Bibliography 23
I Included Papers 29
5 PaperA:
An Industrial Survey on Contemporary Aspects of Software Test-
ing 31
5.1 Introduction 33
5.2 ResearchMethod 34
5.2.1 Categorization of Respondents 34
5.2.2 QuestionSelection 35
5.2.3 ScalesUsedforAnswers 36
5.3 Testing Practices and Preferences 36
5.3.1 Agilevs. Non-Agile 37
5.3.2 Distributed vs. Non-distributed 40
533 Domain 41
5.3.4 Safety-criticality 43
535 Testersvs.Non-Testers 45
5.4 TechniquesandTools 46
5.5 Satisfaction of Current Practice 49
5.5.1 Satisfaction within Different Categories of Respamg 49
5.5.2 Satisfaction with Particular Testing Practices50
56 Conclusion 52
5.7 Acknowledgments, 53
Bibliography L 55
6 Paper B:
Factors Limiting Industrial Adoption of Test Driven Develo pment:
A Systematic Review 57
6.1 Introduction 59
6.2 ResearchMethod 60
6.2.1 SearchProcess 60
6.2.2 PaperExclusionProcess 61
6.2.3 DataExtractionProcess 62
6.2.4 DataSynthesis 63

6.3 Resultsand Analysis, 63

Contents ix

6.3.1 Empirical Studiesof TDD 63
6.3.2 Reported EffectsofandonTDD 66
6.3.3 Factors Limiting Industrial Adoption of TDD 67
6.4 Discussion. 73
6.4.1 ThreatstoValidity 73
6.4.2 ImplicationsforResearch 74
6.4.3 Implicationsforindustry 76
6.5 Conclusion 76
6.6 Acknowledgments 77
Bibliography 79
Paper C:
Impact of Test Design Technique Knowledge on Test Driven De&l-
opment:; A Controlled Experiment 87
7.1 Motivation. 89
7.1.1 Problem Statement 89
7.1.2 ResearchObjective 89
7.1.3 Context 90
7.1.4 PaperOutline 90
7.2 RelatedWork 90
7.2.1 TDD and testing knowledge 90
7.2.2 ExperimentsinTDD 91
7.3 ExperimentalDesign 91
7.3.1 Goals, Hypotheses, Parameters, and Variables1. 9
7.3.2 ExperimentDesign 95
733 Subjects. 96
734 Objects 96
7.3.5 Instrumentation, 97
7.3.6 Data Collection Procedure 97
7.3.7 \Validity Evaluation 98
74 Execution 98
741 Sample 98
7.4.2 Preparation 98
7.4.3 Data Collection Performed 99
7.4.4 \Validity Procedure 99
75 Analysis 100
7.5.1 Descriptive Statistics 100
7.5.2 DataSetReduction 103

7.5.3 HypothesisTesting 104

X Contents

7.6 Interpretation, 106
7.6.1 Evaluation of Results and Implications 106
7.6.2 LimitationsoftheStudy 107
7.6.3 LessonslLearned 108

7.7 Conclusionsand FutureWork 109
7.7.1 Relationto Existing Evidence 109
7.7.2 Impact 109
773 FutureWork 110

Bibliography 113

8 PaperD:

Redefining the role of testers in organisational transitionto agile

methodologies 117

8.1 Introduction 119

8.2 Transitiontoagile, 120
8.2.1 Organisational goal for transition 120
8.2.2 Parametersoftransiton 120
8.2.3 Options for testers during transition 121

8.3 Models for Transitionof Testers 122
8.3.1 Sumrell'sapproach 122
8.3.2 Gregory-Crispinapproach 122

8.4 Ourapproach 123
8.4.1 Comparisonofthemodels 124
8.4.2 Motivation forthe newrole. 125

8.5 Evaluationplan oL 125

8.6 Conclusionsand futurework 126

Bibliography 129

Thesis

Chapter 1

Introduction

Traditional software development life cycle has becomdénmate to preserve
quality of software products when organisations attemghtarten their time-
to-market. In many cases the quality control is often reduwrepostponed due
to the reduced deadlines or overrun of the development ghp@d. Organisa-
tions are in need of a new process that will value quality ithestage of their
product development without interfering with the produetivkry schedule.
They are increasingly turning their interest to agile methogies [3].

Agile is, indeed, a software development philosophy thdit bvattle with
short delivery schedules by creating a product with fewatuees instead of
lowering quality standards of the same product. The prokikethat many
proven cases of agile development in large scale enviroharenspecific to
each organisational setting and their best practices ¢amm@asily imple-
mented within another organisation. Of course, at the sam® tve can only
guess the number of unsuccessful agile development asemgtganisations,
without publicly available reports on their failures (iteliature known as pub-
lication bias [4]). However, during our involvement in FLEXan EU-ITEA2
funded Project [5], we became aware from our industrialrad, of many of
issues related to the transition from the traditional kfge to the Agile ap-
proach. One of the reason for such issues, could be in facbthanisations
are trying to reuse techniques and tools from traditionaktigpment process
that may not be applicable within particular agile practiaand blamely Agile
development processes may not be fully justifiable.

4 Chapter 1. Introduction

The research presented in this thesis, originated from aymtemise and
investigates if traditional approaches to software tgstiith existing practices
in place could be utilised to full extent within agile devetoent.

1.1 Background

In this thesis we will be using several concepts from thréfedint areas, viz.,
Agile development, Software testing and Test-Driven Depeient. We now
present some key concepts from these areas, before prgtidimetails on the
contributions of this thesis.

1.1.1 Agile Development

Agile development is considered a relatively young soferamgineering dis-
cipline that emerged from industrial needs for a softwaretigpment process
where the main focus should be on the customer and theiréssimeeds. The
idea is to have a constant communication channel with thesmes by itera-
tively providing working software product with currentlyast needed business
values built in. Historically, the idea behind an agile aygwh is actually not
new. It was reported [6] that NASA Project Mercury (first UShan space-
flight program in 1960s) used time-boxed iterations withgtegitten before
each increment - an activity very similar to what is knowrgpds a test-driven
development (TDD).

Agile is not a software development process by definitionyatiner a phi-
losophy based on a set of principles. These principlesstelin the so called
“Agile Manifesto” [7]. Since understanding of agile is relg on those twelve
principles, we are listing them here:

1. Our highest priority is to satisfy the customer througilga
and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development
Agile processes harness change for the customer’s competi-
tive advantage.

3. Deliver working software frequently, from a couple of ksee
to a couple of months, with a preference to the shorter time-
scale.

4. Business people and developers must work together daily
throughout the project.

1.1 Background 5

)]

. Build projects around motivated individuals. Give thédma t
environment and support they need, and trust them to get the
job done.

6. The most efficient and effective method of conveyingirgor
tion to and within a development team is face-to-face cenver
sation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. Time sp
sors, developers, and users should be able to maintain a con-
stant pace indefinitely.

9. Continuous attention to technical excellence and good de
sign enhances agility.

10. Simplicity - the art of maximizing the amount of work not
done - is essential.

11. The best architectures, requirements, and designsgamer
from self-organizing teams.

12. Atregularintervals, the team reflects on how to beconme mo
effective, then tunes and adjusts its behavior accordingly

Agile Manifesto [7]

By following these principles, organisations are commgjtio have a continu-
ous feedback with customer and provide value to their bgsineeds.

Several software development processes use some of thosplas, like:
eXtreme Programming (XP), Scrum, Dynamic Systems Devetopiiethod
(DSDM), Feature Driven Development (FDD), etc. usuallyerehg to them
asagile software development methodside from following agile principles,
each of those methods contains differagtle practices Pair programming
(PP), test-driven development (TDD) and continuous irgegn (Cl) are just
a few to mention.

An overview of one Scrum iteration (sprint), as an examplagife devel-
opment process, is shown in Figure 1.1. Prioritised protacklog is used
to select user stories for the upcoming sprint. By dividingn into concrete
tasks, they become part of the current sprint backlog. @utfie period of 2-4
weeks only items in the current sprint are completed on g deikis. After
each sprint a potentially shippable product increment khexist.

6 Chapter 1. Introduction

24
hours

Product backlog Sprint backlog Productincrement
2-4
weeks

Figure 1.1: One sprint overview in Scrum process

1.1.2 Software Testing

Software testing is a major activity in software developtreard has two main
goals:

¢ to confirm a software solution is behaving as per its requirements, and

¢ to find faults in a software which are leading to its misbehaviour.

It is important to note how testing cannot be used as a protduif free
software. A famous quote from Edsger Dijkstra [8] is dedaglihis as: “Test-
ing can only show the presence of errors, not their absei@ms.of the reasons
why we cannot claim there are no faults in software is in faat £xhaustive
testing of any, especially complex systems, is just notiptesdue to the high
number of variables influencing its final outcome.

Commonly, there are three levels of testing of softwareesyst[9]:

e System level has the purpose of testing overall system functioning from
a user perspective.

¢ Integration level - has the purpose of testing interconnections between
various components/modules during their integration phas

e Unit level - has the purpose of testing functional and non-functional
properties of a single unit/module/component of the system

Software testing is a widely researched domain of its ow &itmulti-
tude of techniques and tools proposed for industrial practh comprehensive
discussion on this vast research domain is beyond the sddpis thesis and
hence not attempted.

1.1 Background 7

1.1.3 Test-driven development

Test-driven development (TDD), sometimes referred aditess{programming,
is a practice within the extreme programming developmerthoteproposed
by Kent Beck [10]. TDD requires the developers to construttmated unit
tests in the form of assertions to define code requiremerfitsdowvriting the
code itself. In this process, developers evolve the systamosigh cycles of
testing, development and refactoring. This process is shiowigure 1.2.

Write
Test
Refactor Test Fail
Test Write
Pass Code

Figure 1.2: Test-driven development practice overview

In their experiment, Flohr and Schneider [11] prescribedTdgtivities to
students as a list of next activities:
1. Write one single test-case

2. Run this test-case. If it fails continue with step 3. Iftimst-
case succeeds, continue with step 1.

3. Implement the minimal code to make the test-case run

4. Run the test-case again. If it fails again, continue witps
3. If the test-case succeeds, continue with step 5.

5. Refactor the implementation to achieve the simplesgdesi
possible.

8 Chapter 1. Introduction

6. Run the test-case again, to verify that the refactoredemp
mentation still succeeds the test-case. If it fails, cargin
with step 5. If the test-case succeeds, continue with stiép 1,
there are still requirements left in the specification.

Flohr and Schneider [11]

1.2 Motivation and Problem Description

Today’s business needs are demanding from software oggams to accept
a constant pace of change as it reflects the current market@mbmic de-
mands. According to the agile philosophy delivering an ewg software
product without having a predefined set of requirementsutihbe changed
at a later stage is something companies should not fight sigdint rather
embrace. Agile software development is one representafitiee current in-
dustrial solutions to this challenge.

But this comes with a price. Adopting agile development fanynorgan-
isations creates not only a phase shift in thinking on howeeetbp software
but it also introduces significant amount of changes to tegly activities [12].
These changes consist of facilitating continuous produegiration, ability to
prioritise tasks, committing to its delivery all the way d¢luigh daily stand-up
meetings and burn-down charts.

In particular, changes affecting testing teams and testeng create ad-
ditional confusion with respect to understanding who igpoesible for the
product quality and how to allocate time for this activityn dgile develop-
ment, quality is everyone’s responsibility and having imchthat traditional
testing can consume even more than 50% of the total develuptinge [9],
testers do have a concern of ensuring how this time will becatked in agile
development.

1.3 Outline of thesis

This thesis consists of two main parts. The first part is oggghas follows:

Chapter 2 presents a summary of the research conducted egthigtion of

the research process and its major contributions. Chappeo\ddes related
work with respect to both technological and organisatipeaspectives of our
research. Thesis conclusion and guidelines for future vewekoutlined in

Chapter 4. The second part of the thesis consists of Chaptéreough 8

which represent research publications included in thisithe

Chapter 2

Research Summary

Overall goal of our research efforts is:

to identify deficiencies in current testing practices inlagievelopment
environments and provide validated methods of betterzatithn of testers
and testing techniques.

In order to help organisations successfully utilise agictices, we set out to
investigate how well software testing fits with the statehef practice of agile
philosophy or the agile manifesto. The goal of this reseanhid be viewed

from two dimensions:

e Technological defined with the top-level research question:
RQ-1: What are the technological challenges of traditional saftsv
testing in agile?

e Organisational, defined with the top-level research question:
RQ-2: What are the organisational challenges of traditional afte
testing in agile?

From the technological perspective, the goal is to idendi$y related practices,
methods, techniques, improvements or practice adoptidmswwill provide
most benefit to an organisation. It is also required to idgtithiting factors
for usage of such practices in an industrial environment.

From an organisational or process point of view, the goal deffine a new
role for testers during an organisational transition tasaagile methodology.
Itis our belief that this role will enhance the stature of¢es as well as enable
the company to effectively deploy the testers in the newrenwent.

10 Chapter 2. Research Summary

2.1 Research Methodology

The research is based on empirical methodologies incluatiadysis of quali-
tative and quantitative data. Literature and industrialeys were performed
in order to perceive the state of the art and state of the ipeacExperiences
from industry on this topic were collected and summariseith Wie research
in a reusable form on a higher level of abstraction intendedokt provided as
guidelines for transition organisations.

2.2 Research Process

In Figure 2.1 an overview of the conducted research prosgagsented.

Organisational) PaperD
perspective

Challenges of
Software Testing in

Agile Development

Technological
perspective

Figure 2.1: Research process overview

2.2 Research Process 11

2.2.1 Technological perspective

As a starting point in detailed investigation of the topdesesearch question
within the technological perspective (RQ-1), we decidestéot the process by
forming next research question:

RQ-1.1 What are the current industrial preferences and practicgated to
the contemporary trends on software testing?

To address this question, we decided to join our effort watresal other re-
searchers in order to define and execute a questionnairghen online web
based survey [13]. With this survey we specifically targételdistrial opinion
on the usage of the current and preferred industrial pes@nd methods on
software testing. During the formulation, execution andlgsis of this empir-
ical study, the subsequent research question evolved as:

RQ-1.2 Can we identify the factor in which the preference and pracghow
maximum difference?

After analysis phase was performed on the collected dataf@2 exam-
ined test related practices, test-driven development (T@dined the highest
score of “dissatisfaction”. This means that among the nedpots, the accu-
mulated absolute difference between the preferred anccthaldevel of usage
of TDD was highest. Further analysis revealed that the mexddevel of us-
age of TDD was significantly higher than the actual level aichtit has been
practised. This result was interpreted as “Respondentiddia to use TDD
to a significantly higher extent than they actually do prédg&nThis was an
interesting finding for which we could not provide any clead®bvious rea-
sons why this situation exist in industry. In order to getith@ader view of the
problems related to usage of TDD, the next research questasrformulated
as:

RQ-1.3 How can we get a deeper insight on the factor with maximurerdiff
ence?

Realising that TDD as a practice should be investigatedhéuntve had to
make a decision on how to proceed with the research processal@rnative
was to further investigate industrial opinions by perfargdirected interviews
with selected organisations. Another could be to organisanaquestionnaire

12 Chapter 2. Research Summary

survey with specific and directed questions relating to tege of TDD. The
problem with those solutions was that they are all providingndustrial per-
spective to the usage of TDD which we to some extent alreaitheddrom our
first survey. We thought that academic opinions on the usad®b should

also be considered in our research since after looking atdoitial search
results we noticed a growing number of empirical publiaagidirectly investi-
gating benefits of TDD. For those reasons we decided to perdosystematic
literature review on empirical studies of TDD.

When completed, the systematic literature review broughwdrd a list
of 48 empirical studies on TDD, conducted in academic, itrthlsor mixed
settings. Study participants were students as well as gsimheals. This result
lead to forming a new research question:

RQ-1.4 Can we identify and list limiting factors of TDD from the résuof
the literature study?

Empirical studies, identified in the systematic literatteeiew, were per-
formed with different experiment designs (number of pgrtiats, complexity
of problems, duration of study, etc.) making it difficult twettly compare the
findings and easily create a common conclusion. We decidatetdify and
list all negative, neutral or positive effects of or on TDDdagroup them in
common effect areas. Especially, we noted effects of TDD eiplicit claims
on requirements for a successful usage of TDD. In order fiecefrea to be
considered as a limiting factor, next criteria had to be ifeti

e The effect area had to contain at least two studies with ebsiens of
negative effects of or on TDD

e The effect area had to contain more studies with obsenatibnegative
effects of or on TDD than studies with observations of pesiéffects of
oron TDD

¢ Negative effects in the effect area had to be observed imat e study
performed in an industrial setting

Applying those criteria on selected research publicatidestified and
listed seven potential limiting factors of industrial adiop of TDD: increased
developmenttime, insufficient TDD experience/knowledigek of upfront de-
sign, domain and tool specific issues, lack of developet Bkiriting test
cases, insufficient adherence to TDD protocol, and legadg.co

2.2 Research Process 13

Out of these seven factors, we decided to explore one factdetail to
confirm its impact and see what kind of guidelines could beviged. “Lack
of testing knowledge” came as the first obvious choice dueit@an research
leanings as well as due to the potential for independeneapbn and per-
ceived impact. The next research question was formed as:

RQ-1.5 Can we confirm significance of testing knowledge as a limftiatpr
for TDD adoption?

During the autumn of 2010 a controlled experiment with nrastedents
was performed as part of the course on Software Verificattmh\&alidation
provided by Malardalen University. The objective of thepekment was to
investigate if developers who were educated on generaigdatowledge will
be able to utilise TDD more effectively. As a result of the esiment we
noticed that students had difficulties creating negatisedases.

2.2.2 Organisational perspective

In order to perform detailed investigation of the top-lexetearch question
within the organisational perspective (RQ-2), we setupribet specific re-
search question:

RQ-2.1 What to do with traditional testing department when an oiigation
transits to agile development process, where tester'sméems to be ambigu-
ous and diminished?

In this investigation we considered several options faditranal software
testers during their organisation’s transition towardseagpftware develop-
ment. Among various alternatives we proposed a new rolerfoject Men-
tor” for testers. With this role we wanted to emphasise tesbility to com-
municate with development team on technical aspects ofiacdtdevelopment
while at the same time being able to recognise the value foctistomer by
understanding the overall functional behaviour of theesyst

14 Chapter 2. Research Summary

2.3 Contribution

Since the thesis is written as a collection of papers, itdridmrtions are sum-
marised with contributions from each individual researapgr. Relation be-
tween research paper contribution and research questignesented in Ta-
ble 2.1.

Paper A| Paper B| Paper C| Paper D
RQ-1 v v v
RQ-1II|
RQ-12|
RQ-1.3 v
RQ-1.4 v
RQ-1.5 v
RQ-2 v
RQ-2.1 v

Table 2.1: Relation between research questions and ptibtisa

2.3.1 PaperA

An Industrial Survey on Contemporary Aspects of Softwastinig Adnan
Causevit, Daniel Sundmark and Sasikumar Punnekkat,dogedings of the
International Conference on Software Testing (ICST), & &riance, April 2010

Summary Using data from an industrial survey [13] a state of the pcact
paper was written. The survey in addition to confirming soroputar be-
liefs also lists several noteworthy findings from the pecsipes of respondent
categories such as safety-criticality, agility, disttibn of development, and
application domain. These findings clearly depict negaligerepancies be-
tween the current practices and the perceptions of the nelgmts. This paper
covers RQ-1.1 and provide contribution to RQ-1.2 by idgimy test-driven
development (TDD) as a factor with maximum difference bemveurrent and
preferred practice.

My contribution | was the main author of this paper contributing with data
analysis (performed using custom made software, develbpade for this

2.3 Contribution 15

purpose). Co-authors supervised the process and helpednmuliating find-
ings and descriptive statistics.

2.3.2 PaperB

Factors Limiting Industrial Adoption of Test Driven Devpioent: A System-
atic Review Adnan Causevi¢, Daniel Sundmark and Sasikumar Punnekkat,
In proceedings of the International Conference on SoftWasing (ICST),
Berlin, Germany, March 2011

Summary As a direct result of investigation from Paper A, a systemidti
erature review on TDD was performed. After initial keyworhsch on seven
major research databases, results yielded 9462 publisatim several steps
we removed publications that are not of an interest havingul8ications as
the final number of our systematic review. With this activR@)-1.3 was ad-
dressed. The process of extracting effects areas on or of ff@D selected
research publications and identifying limiting factorswtributed to RQ-1.4.
Seven limiting factors were identified viz., increased depment time, insuf-
ficient TDD experience/knowledge, lack of upfront desigamain and tool
specific issues, lack of developer skill in writing test casasufficient adher-
ence to TDD protocol, and legacy code.

My contribution | was the main author of this paper contributing in obtain-
ing collection of papers from the search databases, fifienm removal as well
as analysis of findings presented in selected collectiorapéps. Co-authors
helped to filter the papers and also performed reading ofteeldist of publi-
cations to validate the findings.

2.3.3 PaperC

Impact of Test Design Technique Knowledge on Test Driverelbpment:
A Controlled ExperimentAdnanCausevic, Daniel Sundmark and Sasikumar
Punnekkat, (In submission)

Summary Among the seven limiting factors identified from the systéma
study in Paper B, knowledge of testing was selected to bbduihvestigated
as part of a controlled experiment with master studentsderoto address re-
search question RQ-1.5. The experiment was designed aooumse on Soft-
ware Verification and Validation at Malardalen Universifyarticipants were

16 Chapter 2. Research Summary

divided into two groups solving two problems on two differencasions, be-
fore and after the course. The analysis was performed orotlexted source
code and test scripts created by students, as well as guesiie survey re-
sponses. Results are showing positive improvements ofctel# coverage
but no statistically significant difference exist betweea-pmnd post- course
groups. Qualitative analysis of data revealed lack of negéést cases result-
ing in students inability to detect bugs related to unspatifiehaviours.

My contribution | was the main author of the paper, contributing in setting
up the pre-requirements for the experiment (lab instrustiqgproblems user
stories, SVN, etc.), collecting data points and perforntimg analysis. Co-
authors helped in study design, analysis of the data anditmg/section on

statistical analysis.

2.3.4 PaperD

Redefining the role of testers in organisational transitioragile methodolo-
gies AdnanCausevi¢, A.S.M. Sajeev and Sasikumar Punnekkat, Inegabc
ings of International Conference on Software, Services &a&wic Technolo-
gies (S3T), Sofia, Bulgaria, October, 2009

Summary This paper provides a state of the art analysis of testeiimaig-
ile organisation and propose a new role called “Project MénA major task
of project mentors is to manage the expectations of the meswand other
stake holders. This requires domain knowledge and thetyalidispeak in
the language of the customers, which often programmers I&tkilarly, for
managers, recognising the limitations of programmersse aldifficult task.
Managers without a technical background often fail to ustderd difficulties
which are faced by programmers on a daily basis. Testersogacpmentors,
we believe, will be in a position to better appreciate thaffiedlties and trans-
late them to other stake holders with the help of their donkaiowledge. A
mentor’s role of helping others to implement quality in theaily activities
could contribute significantly to the success of the projébis paper directly
address research question RQ-2.1.

My contribution Idea for this paper originated from a discussion with vis-
iting professor Abdulkadir Sajeev. | was the main authohds paper but the
writing process was an iterative contribution of all aughor

Chapter 3

Related Work

Since our research is based on challenges from two fairfereifit perspec-
tives, technological and organisational, we are presgritgre related work
from both of them independently.

3.1 Technological perspective

Agile does not have a formal definition behind its processkiEhvmakes it
very hard for academic researchers to measure the qualiiats it can pro-
duce and in specific to reason about its claimed success. kWbaarchers
can do is to perform a series of empirical studies in academiadustrial
settings for the purpose of evaluating quality improveraéntroduced with
agile methodologies. Another aspect of investigation abgile development
are the growing number of claimed success stories from tngltlsat are pre-
sented to the community. By contributing with their expade and lessons
learnt from projects with varying size and duration, indy$ making a sig-
nificant impact on the current body of knowledge that showlhe neglected.

The central research paper on agile methodologies is "EoapiBtudies
of Agile Software Development: A Systematic Review” [14]hi§ system-
atic literature review provides information regarding opdate findings w.r.t.
empirical evidence of agile software development. It alsavjoled additional
insights for our own systematic literature review of emgafistudies on TDD.
Another additional resource on general understanding ié agethods is a
chapter of Williams [15] within Advances in Computers boekiss where she
describes different agile principles, practices and nedhapies.

17

18 Chapter 3. Related Work

3.1.1 Empirical Studies on TDD

Several publications with empirical finding were also usedur research. In
this section we are grouping them by the aim of the studyfitsel

Benefits of TDD

Muller & Hagner [16] performed an experiment with studedigided into

two groups, test-first and traditional, with focuses on thegpamming effi-
ciency, the reliability of the resultant code and progrardanstanding. Flohr
& Schneider [11] had an experiment with students divided imto groups
(test-first and classical-test) for the purpose of invesing impact of test-first
development process. Gupta & Jalote [17] performed an @xpet with stu-

dents divided in two groups (TDD and waterfall) evaluating impact of TDD

on designing, coding, and testing. Data is obtained by prestire and forms.
Kollanus & Isomdttonen [18] performed experiment withudgnts on under-
standing TDD and perception on difficulties of TDD. Data waflected by

questionnaire.

Quality of produced code

George & Williams [19] had professional developers fromethcompanies
in TDD and waterfall-like control groups to investigate eaglality improve-

ments. Another controlled experiment of Janzen & Saied?@hg¢xamined the

effects of TDD on internal software design quality. The ekpent was con-

ducted with undergraduate students in a software engimgedurse. Janzen
et al. [21] had empirical studies in three industry shortreea investigating
effects of test-driven development (TDD) on internal safitevquality. Vu et

al. [22] performed an experiment with students divided i xperimental

groups (test-first and test-last) in a year-long softwargreering course eval-
uating productivity, internal and external quality of theoguct, and the per-
ception of the methodology.

Productivity improvements

Geras et al. [23] executed experiment with professionaéidg@ers divided in

two groups working on two problems using test-first and kestprocesses to
investigate productivity and software quality. Huang & Etminbe [24] had a
controlled experiment with students that investigateddisénctions between
the effectiveness of test-first and test-last approaches.

3.2 Organisational perspective 19

Quality of tests

Erdogmus et al. [25] performed an experiment with undengaéeistudents di-
vided into two groups (test-first and test-last) investiggatest per unit effort,

quality and productivity. Madeyski [26] had an experimeiittmstudents di-

vided in test-first and test-last groups examining branefe@ge and mutation
score indicator of unit tests.

Impact of experience

Muller & Hofer [27] investigated conformance to TDD of fessionals and
novice TDD developers. Hofer & Philipp [28] performed arpeximent with
professionals and students investigating if expert prognars conformto TDD
to a higher extent than novice developers.

3.1.2 Test-related research

One of the key papers on software testing is: “A Survey onifigstechnique

Empirical Studies: How Limited is our Knowledge” [29]. Thpsper provides
a valuable analysis of maturity level of the knowledge otiigstechniques.

Several research activities with the focus on agile andhigstre also identified
in literature. Schooenderwoert et al. [30] are discussilffigrént agile test

techniques for embedded systems while Paige et al. [31}asatieg discussion
around extreme programming development for high integyistems. Eunha
et al. [32] are describing a test automation framework faleadevelopment
and testing with more focus on the developer side of testing.

3.2 Organisational perspective

A seminal document for agile development is the “Agile Mastb” [7] ex-
plaining the main agile principles and goals behind itsqgduphy. This docu-
ment represents a main point in our investigation on how tpathe process
while still conforming to the agile principles. By lookingtb some industrial
reports it is possible to see how IBM is transitioning theiarn to agile [33],
how Microsoft [34] is overcoming communication problemshwiesters or
how the Israeli Air Force [35] is adding value to their teamitiyoducing an
outside professional tester. Some organisations are elM@mwo share their
lessons learnt from mistakes in adopting agile [36].

20 Chapter 3. Related Work

3.2.1 Transitioning to Agile

We are relating our work with two approaches from the orgatiogal perspec-
tive on how to address the role of testers issue while triangitg to agile devel-
opment. Sumrell [37] reports on the experience in trangitig from Waterfall
to Scrum. One of the major issues was to decide how to tramgfoe QA team
and their testing strategies to the new environment. Theoagp taken for the
QA team s to continue to have the primary responsibilityesting, but share it
with developers and project managers. Instead of testétimgvantil the parts
are ready for test, the new approach would be a quicker budk:so that the
QA team can do its work rather than having to wait. Retrairgngeeded for
QA personnel to be able to instrument code for testing rattaar rely on pre-
vious practices of automated testing strategies. Howewdriesting becomes
largely the responsibility of the developers. We can idgrseveral character-
istics of this approach. One, the role of tester is somewinaihished because
some of the testing is now done by the developer. The tesjaires retraining
on the technical side. The tester needs to work more closifydevelopers
and project managers thus requiring a higher level of grooniing skills. We
hypothesise that in such an environment, a tester needsdivée adequate
training for this transition, otherwise, it is likely thaefor she will fail in the
new environment where they are not in control of quality, &Bedomes just
another member of a team.

Gregory and Crispin [38] discuss in detail the role of testrragile devel-
opment. Their recommendation is to make testers a part afi¢kielopment
team. The role of testers is to help clarify customer reaquéets, turn them
into tests, and help developers understand the customeireatgnts better.
Testers need to speak the domain language of the customéhatechnical
language of the developers. The characteristics of thisoggh include an
increased role for testers as the link between customerderedopers in addi-
tion to their role of testing. It is a shift in their work enginment as they move
from the Quality Assurance Division to be part of developipsirs or groups.
They probably will need retraining on interpersonal skiisvork closely with
customers and developers more than they are used to in the pas

Chapter 4

Conclusions and Future
Work

This thesis represents a set of activities conducted asoparresearch pro-
cess in order to identify and address potential challenf§esftware testing
in agile development. By performing various empirical $&sdquestionnaire
survey, literature review and controlled experiment) weught upfront test-
driven development as a noteworthy testing research @rednvestigating
why this practice is not utilised to a higher extent withidurstrial settings.

During our investigation of the current body of knowledge,identified 18
effect areas out of which 7 are considered as limiting factor the industrial
adoption of TDD, namely, increased development time, fitgsaht TDD ex-
perience/knowledge, lack of upfront design, domain- armd$pecific issues,
lack of developer skill in writing test cases, insufficiedharence to TDD pro-
tocol, and legacy code.

We set up a controlled experiment with master students tesiiyate if
developers knowledge of testing can affect adoption of TR0 groups of
students were using TDD to solve two juxtaposing problenfereeand after
the course on Software Verification and Validation. It isioeable that code
coverage increased in both groups after the course, but uld oot identify
any statistically significant difference between the gsupurther analysis of
students achievements revealed lack of test cases witlotlus on negative
testing.

From an organisational perspective of agile adoption, westigated pos-
sible options for transition of traditional testers intoagile environment. We

21

22 Chapter 4. Conclusions and Future Work

propose to define a new role for testers called “Project M&mtbich will em-

phasise their understanding of the complete system fromeaperspective,

but also utilise their technical knowledge in communicatigth developers.
In summary, the main contributions of this thesis are:

e The identification of TDD as a practice which is not used togktent
industry would prefer.

e Listing seven potentially limiting factors for industriatioption of TDD

e Pointing out student’s inability to write negative test&asluring con-
trolled experiment

e Proposing the need for augmenting the TDD with the new ps&Eps
or specific testing knowledge

e Proposing the “Project Mentor” role for traditional testén an agile
environment

Concerning future work, the process of identifying limgifactors for in-
dustrial adoption of TDD was conducted using peer-revies@entific publi-
cations that have been addressing validity threats of grapirical study. In
order to confirm significance of identified limiting factorsrduture work will
focus on obtaining insights from industrial reports whiceresnot covered in
our previous study due to the validity requirements. Thislvé done in com-
bination with industrial interviews to cover the full scopkobstacles for full
utilisation of test-driven development approach.

As indicated by our study, TDD also needs to be supplemenitdngw
process steps or test design techniques, which could pedtefiirther enhance
the robustness and the reliability of the system. In thigexnwe will inves-
tigate how TDD can be augmented for achieving improved caddity while
keeping its fundamental principles.

In a long term research perspective, we also intent to paréor industrial
case study investigating how experienced developers daudfit from testing
knowledge and what kind of specific testing knowledge thegdnria order to
increase the quality of the code artefacts they produce.

Apart from conforming the existing contributions of oureasch, our fu-
ture work will focus on approaching as close as possible éqgthal set up at
the very beginning of our research:

to identify deficiencies in current testing practices inlagievelopment
environments and provide validated methods of betterzatibn of testers
and testing techniques.

Bibliography

[1] Annual Testing Survey. Technical Report Suite 350, @uassurance
Institute, 7575 Dr. Phillips Blvd., Orlando, FL 32819, 1994

[2] Pankaj JaloteAn integrated approach to software engineering (3rd Edi-
tion). Springer-Verlag New York, Inc., New York, NY, USA, 2005.

[3] Mikael Lindvall, Victor R. Basili, Barry W. Boehm, Patria Costa, Kath-
leen Dangle, Forrest Shull, Roseanne Tesoriero, Laurie iliaviis, and
Marvin V. Zelkowitz. Empirical Findings in Agile Methods. nlPro-
ceedings of the Second XP Universe and First Agile UnivesddZence
on Extreme Programming and Agile Methods - XP/Agile Une&802
pages 197-207, London, UK, 2002. Springer-Verlag.

[4] Barbara Kitchenham and Stuart Charters. Guidelinepéoforming Sys-
tematic Literature Reviews in Software Engineering. TéchinReport
EBSE 2007-001, Keele University and Durham University ti&aport,
2007.

[5] FLEXIITEA2 Project. http://www.flexi-itea2.org/.

[6] C. Larman and V.R. Basili. Iterative and incremental elepments. a
brief history. Computey 36(6):47 — 56, june 2003.

[7] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Céckn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsniihdrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. MartBteve
Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. ifdsto
for Agile Software Development. http://www.agilemanii@srg/, 2001.

[8] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editoStructured pro-
gramming Academic Press Ltd., London, UK, 1972.

23

24

Bibliography

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

lan Sommerville Software engineering (6th edAddison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

Kent Beck.Extreme programming explained: embrace changsdison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

Thomas Flohr and Thorsten Schneider. Lessons Leamosd &n XP
Experiment with Students: Test-First Needs More Teachirigsirgen
Munch and Matias Vierimaa, editoBroduct-Focused Software Process
Improvementvolume 4034 of ecture Notes in Computer Scienpages
305-318. Springer Berlin / Heidelberg, 2006.

Barry Boehm and Richard Turner. Management Challertgebn-
plementing Agile Processes in Traditional DevelopmentaBizations.
IEEE Software22:30-39, 2005.

Adnan Causevic, Iva Krasteva, Rikard Land, A. S. M. ajand Daniel
Sundmark. An Industrial Survey on Software Process Pestierefer-
ences and Methods. (ISSN 1404-3041 ISRN MDH-MRTC-233/2009
SE), March 2009.

Tore Dyba and Torgeir Dingsgyr. Empirical studies gil@software de-
velopment: A systematic revieinformation and Software Technolqgy
50(9-10):833 — 859, 2008.

Laurie Williams. Agile Software Development Methodgles and Prac-
tices. Advances in Computer80:1—44, 2010.

M.M. Muller and O. Hagner. Experiment about test-fpsbgramming.
Software, IEE Proceedings149(5):131 — 136, October 2002.

Atul Gupta and Pankaj Jalote. An Experimental Evahratf the Effec-
tiveness and Efficiency of the Test Driven DevelopmentPioceedings
of the First International Symposium on Empirical Softwregineering
and MeasurementESEM ’'07, pages 285-294, Washington, DC, USA,
2007. IEEE Computer Society.

Sami Kollanus and Ville Isomottdnen. UnderstandirigD in academic
environment: experiences from two experimentsPtaceedings of the
8th International Conference on Computing Education Reteoli
'08, pages 25-31, New York, NY, USA, 2008. ACM.

Bibliography 25

[19] Boby George and Laurie Williams. A structured expenitaf test-driven
development. Information and Software Technolqgy6(5):337 — 342,
2003.

[20] David S. Janzen and Hossein Saiedian. On the InfluengestfDriven
Development on Software DesigBoftware Engineering Education and
Training, Conference qrpages 141-148, 2006.

[21] David S. Janzen, Clark S. Turner, and Hossein Saiedtampirical soft-
ware engineering in industry short courses. Software Eaging Edu-
cation Conference, Proceedings, pages 89-96, 2007.

[22] John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, anahidl S. Janzen.
Evaluating Test-Driven Developmentin an Industry-Spoed&apstone
Project. InProceedings of the 2009 Sixth International Conference on
Information Technology: New Generatigpages 229-234, Washington,
DC, USA, 2009. IEEE Computer Society.

[23] A. Geras, M. Smith, and J. Miller. A Prototype Empiri¢alaluation of
Test Driven Development. IRroceedings of the Software Metrics, 10th
International Symposiunpages 405-416, Washington, DC, USA, 2004.
IEEE Computer Society.

[24] Liang Huang and Mike Holcombe. Empirical investigatimwards the
effectiveness of Test First programmingnf. Softw. Techngl.51:182—
194, January 2009.

[25] Hakan Erdogmus, Maurizio Morisio, and Marco Torchia®m the Effec-
tiveness of the Test-First Approach to ProgrammiligE Transactions
on Software Engineerin@1:226—-237, 2005.

[26] Lech Madeyski. The impact of Test-First programmingooanch cover-
age and mutation score indicator of unit tests: An experimef Softw.
Technol, 52:169-184, February 2010.

[27] Matthias Muller and Andreas Hofer. The effect of exipace on the test-
driven development proces&mpirical Software Engineerind 2:593—
615, 2007.

[28] Andreas Hofer and Marc Philipp. An Empirical Study ¢ fTDD Con-
formance of Novice and Expert Pair Programmers. In Will Aalehn
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Sz{pe

26

Bibliography

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Pekka Abrahamsson, Michele Marchesi, and Frank Maureigragdig-
ile Processes in Software Engineering and Extreme Progriagymol-
ume 31 ofLecture Notes in Business Information Processpapes 33—
42. Springer Berlin Heidelberg, 2009.

N. Juristo, A. M. Moreno, and S. Vegas. A Survey on Tagfliechnique
Empirical Studies: How Limited is our Knowledge. Rroceedings of
the 2002 International Symposium on Empirical Softwarei®eying
pages 161—, Washington, DC, USA, 2002. IEEE Computer Societ

Nancy Van Schooenderwoert and Ron Morsicato. Tamiedetmbedded
Tiger - Agile Test Techniques for Embedded Software.Plnceedings
of the Agile Development Conferenpages 120-126, Washington, DC,
USA, 2004. IEEE Computer Society.

Richard F. Paige, Howard Chivers, John A. McDermid, aué R.
Stephenson. High-integrity extreme programming. Phoceedings of
the 2005 ACM symposium on Applied computBgC '05, pages 1518—
1523, New York, NY, USA, 2005. ACM.

Eunha Kim, Jongchae Na, and Seokmoon Ryoo. DevelopifgsaAu-
tomation Framework for Agile Development and Testing. Iril\Walst,
John Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemegpes-
ski, Pekka Abrahamsson, Michele Marchesi, and Frank Maad#ors,
Agile Processes in Software Engineering and Extreme Pragrang vol-
ume 31 ofLecture Notes in Business Information Processpages 8—12.
Springer Berlin Heidelberg, 2009.

Susan D. Shaye. Transitioning a Team to Agile Test Mashan Pro-
ceedings of the Agile 200Bages 470—477, Washington, DC, USA, 2008.
IEEE Computer Society.

Michael Puleio. How Not to Do Agile Testing. IAGILE '06: Proceed-
ings of the conference on AGILE 2Q@&ges 305-314, Washington, DC,
USA, 2006. IEEE Computer Society.

David Talby, Orit Hazzan, Yael Dubinsky, and Arie KereAgile Soft-
ware Testing in a Large-Scale ProjeiEEE Softw,. 23:30-37, July 2006.

Kay Johansen and Anthony Perkins. Establishing aneAtgisting Team:
Our Four Favorite “Mistakes”. IRProceedings of the Second XP Universe
and First Agile Universe Conference on Extreme ProgramraimgjAgile

Methods - XP/Agile Universe 20ppages 52-59, London, UK, 2002.
Springer-Verlag.
[37] Megan Sumrell. From Waterfall to Agile - How does a QA tredran-

sition? INAGILE '07: Proceedings of the AGILE 200Fages 291295,
Washington, DC, USA, 2007. IEEE Computer Society.

[38] Lisa Crispin and Janet GregonAgile Testing: A Practical Guide for
Testers and Agile TeamAddison-Wesley Professional, 2009.

Included Papers

29

Chapter 5

Paper A:

An Industrial Survey on
Contemporary Aspects of
Software Testing

AdnanCausevi¢, Daniel Sundmark and Sasikumar Punnekkat
In proceedings of the International Conference on SoftWasing (ICST),
Paris, France, April 2010

31

Abstract

Software testing is a major source of expense in softwaregiand a proper
testing process is a critical ingredient in the cost-effit@evelopment of high-
quality software. Contemporary aspects, such as the in¢taxh of a more
lightweight process, trends towards distributed develepirand the rapid in-
crease of software in embedded and safety-critical systemaslenge the test-
ing process in unexpected manners. To our knowledge, thergeay few
studies focusing on these aspects in relation to testingraeped by different
contributors in the software development process.

This paper qualitatively and quantitatively analyses detan an indus-
trial questionnaire survey, with a focus on current pragiand preferences
on contemporary aspects of software testing. Specifidhltyanalysis focuses
on perceptions of the software testing process in diffecaégories of re-
spondents. Categorization of respondents is based oy-gafitality, agility,
distribution of development, and application domain. Wibnfirming some
of the commonly acknowledged facts, our findings also renetdble discrep-
ancies between preferred and actual testing practices. elie/é continued
research efforts are essential to provide guidelines iadagptation of the test-
ing process to take care of these discrepancies, thus iimgrthe quality and
efficiency of the software development.

5.1 Introduction 33

5.1 Introduction

Software testing, as a practice, has been able to sucdgssfalve over time
and provide efficient and constant support for improvemienseftware qual-
ity. On the other hand, testing is still notorious for its 1sige resource con-
sumption within software projects. To this date, much of iagearch efforts
on software testing have been focusing on designing newigeés, as well as
investigating their effectiveness in real developmentexts. However, dur-
ing the entire history of software development, testinghds and techniques
have struggled to keep up with the ever faster evolution et in software
development paradigms. We cannot expect any favourabtegehia this state
of affairs, unless a conscious effort is made in anticipgptive trends, learning
the stakeholder mindsets, and pinpointing the problemsarttas our belief
that such an effort could help in efficiently allocating tlesting resources to-
ward a specific context or in proactively deciding the tagtiesearch agenda
in general. To our knowledge, there exist no detailed ingasbns with such
a perspective. The research presented in this paper is hstepain this direc-
tion, in that it specially focuses on the stakeholder parypes on some con-
temporary aspects related to testing. The specific resgaedtion we address
in this paper is:ls it possible to identify and list main discrepancies betwe
current and preferred testing practices that could be cdesd as obstacles
for software testing practitioners?

By qualitatively and quantitatively analysing the resulfsa recent ques-
tionnaire survey on practices and preferences in indlsitware develop-
ment, with respect to the above research question, we heméfidd a number
of areas and practices where the preferred practice significdiffers from
what is perceived as the actual current practice. We belieatghese areas and
practices assist in pointing out directions for future ezsh within software
testing.

The contributions of this paper are three-fold:

¢ A qualitative analysis on practices and preferences imgpsf different
contemporary categories of software development praieats (Sec-
tion 5.3).

e A qualitative analysis on techniques and tools used in copteary test-
ing (Section 5.4).

e A quantitative analysis of satisfaction with current tegtpractice among
different categories of respondents (Section 5.5).

34 Paper A

5.2 Research Method

We base our analyses in this paper on data from a recent rred$strvey on

software development practices and preferences. Thiggwas a combined
effort of several researchers with diverse research fdicintegrated to one
study to minimise the responders time. The survey was peddrusing a
web-based questionnaire, and the invitation was disgthaimong industrial
software development companies using, e.g., the FLEXI @883l European
project networks. More information about the questiormais well as all data,
is available as a technical report [1]. The questions pentifior our research
were embedded in the larger set of questions and were fotaduila such a
way as to provide the list of discrepancies indirectly ratthan asking the
questions in a direct way which could be either provocativeoald result in a
no response since some of the respondents may not want empteemselves
as opinionated.

5.2.1 Categorization of Respondents

In our analysis, we categorize survey respondents acaptdifive aspects of
contemporary software development, namely:

1. Agility of Development Process

2. Distribution of Development

3. Domain of Product(s)

4. Safety-Criticality of Product(s)

5. Amount of Testing performed by Respondent

In order to categorize respondents according to these @specmake use
of a set of categorizing questions. For example, a respdrmdongs in the
“Agile” category of respondents if the answer to the questi@ur current
software development process'is “ Agile”.

Note that any respondent may be included in several nonatiytexclu-
sive categories. For example, a respondent might be céedoais aester
working with safety-critical software in anon-distributeddevelopment (ex-
amples of mutually exclusive categories &estersand non-testersanddis-
tributed andnon-distributed. The domain categories are not mutually exclu-
sive, as some respondent companies develop software feoiplaidomains.

5.2 Research Method 35

This cross-coupling between categories was an intentmutabme of our re-
search objective of unearthing more inter-related ansfr@nsthe respondents
indirectly.

The categorization of respondents and the categorizingtigus can be
viewed in Table 5.1.

Categorizing Criterio Cate_gorizing guestion and response Category
Question Response
Agility of Our current software | “Agile” Agile
Development Process development process | Other Non-agile
is:
Distribution of In our team: all of the | Yes Distributed
Development team members are No Non-distributeg
collocated in one
building
Safety-Criticality If the software “Many Safety-critical
of Product(s) developed in our lives” or “A
current project fails, single life”
the maximum damage | Other Non-safety-
could be the loss of: critical
Amount of testing At work, | perform the | 1-7 Testers
performed by following activities 0 Non-testers
Respondent [indicate how often on
a scale of 0 to 7]:
[testing]
Domain of The software we build Web web
Product(s) in our project is: Software
Desktop Desktop
Software
Embedded | Embedded
software

Table 5.1: Categorization of Respondents

5.2.2 Question Selection

Since the amount of questions in the survey data is quite l@gotal of 260
guestions were included in the questionnaire), we wantefdos only on
questions that explicitly or implicitly related to the tiesf process. For the ex-
plicitly test-related questions, this process was trj\bak for the more implicit

36 Paper A

questions, the process was subjective. Our rationale vedsftr a question

to be test-related, the practice queried on needs to diraffééct the testing
process. An example of such an implicitly test-related tjaess the question
“Management should encourage regular interaction betwesreldpers and
customers/business peoplsince regular interaction between developers and
customers directly may affect how acceptance testing i®paed.

Moreover, for each contemporary aspect, we selected adabdta subset
of test-related questions that specifically applied to gaaticular contempo-
rary aspect. For example, the questidi never have to wait for source code
in order to start the testing procesis highly interesting in a distributed devel-
opment context, where communication between differenekb@ment teams
may be impaired by, e.g., geographical and cultural diggamgthin the organ-
isation.

5.2.3 Scales Used for Answers

Respondents were providing their opinion by selecting drikeoptions from
a given scale of answers against each question. Two diffecates (with 7
or 8 divisions) were used in our survey depending on the typguestion.
The 7-scale options represent: “Very strongly disagre8tydngly disagree”,
“Disagree”, “Neither agree nor disagree”, “Agree”, “Stgiynagree”and “Very
strongly agree”. For certain analyses, 7-scale answerns mapped to numer-
ical values in the (-3, 3) interval. This would mean that a'‘value should
be interpreted as the respondent strongly disagrees vetstdétement provided
in the question, whereas a “1” should be interpreted as tEorelent agrees.
The 8-scale answers were used for questions in which respbnere asked to
provide the level of usage for some testing types. This way tlould choose
an option from 0 to 7 where 0 means they never use it and 7 theyaluse it.

In Section 5.3, Table 5.3 to Table 5.7 present the data fretlestions
where the used scale is implicitly assumed from left to righthe headings
of the columns with numeric values. The numerical valuesiin tepresent
the number of respondents in that particular group who hagsvared that
particular question with the same answer option.

5.3 Testing Practices and Preferences

For a better understanding of our targeted respondentpga@eneral overview
of respondent demographics for the complete survey is predén Table 5.2.

5.3 Testing Practices and Preferences 37

Male 73

Gender Female 10
25-29 13

30-34 22

Age 35-39 25
40-49 14

50-59 6

Udergraduate or lower 3

) I Bachelor degree 21
Education qualification Postgraduate degree 75
PhD or above 14

1-4 years 16

5-8 years 22

IT work experience 9-12 years 18
13-16 years 14

More than 16 years 13

I am not in a team 6

1-5 people 25

6-10 people 22

Team size 11-15 people 10
16-20 people 6

21-50 people 9

More than 50 people 4

a software part/component which is to be integrat&s

End product of project is a software service - 4
a software system that will be used by end users39

other 5

Table 5.2: Respondent Demographics

Now we analyze data regarding practices and preferencesting in the
different categories of respondents. Please note that soestions are con-
ditional based on earlier responses which as a result prdegs number of
responders compared to the complete survey. This anafygierformed on
five different aspects where each aspect is individuallggméed within its ap-
propriate subsection.

5.3.1 Agile vs. Non-Agile

In the remainder of this section, we will use the term “agédspondents” to
refer to the group of respondents who claim that agile ig thwirent develop-
ment process. Similarly, we will use the term “non-agilep@sdents” to refer

38 Paper A

to the group of respondents that claim to use any other deredat process
(e.g., waterfall, adaptive, ad-hoc, etc.).

Regular interaction with customers is a central theme ileatgvelopment
[2] and it can as a benefit provide a continuous assistanceating and val-
idating acceptance tests. However, looking at the respofisen the agile
respondents (see Table 5.3), there are (clear) indicatiahshis agile practice
is not followed to the extent they would prefer. To some elxtemstomer in-
teraction is limited to elicitation of requirement and gutace testing. This is
true also for the non-agile respondents, but they are, togaida&xtent, happy
with the current practice.

The agile respondents are not averse to changes, espemaliyared to
the non-agile respondents, who have a slight tendencytouliage customers
from changing requirements. Moreover, in the preferrecttmre, the agile
respondents would like to be even less restrictive to chambereas the non-
agile respondents would like to discourage customers ingihg requirements
even more.

Changing working software is, as expected, favoured and mare pre-
ferred among the agile respondents. Surprisingly, theawle-respondents do
not mind such changes, even though they are less enthaodiaati the agile
respondents.

Changes to working software with the specific purpose of owing the
structure of the code (i.e., refactoring) is highly preéeremong both groups,
but the agile respondents appear to be following this pradt a significantly
higher extent (albeit not quite at the desired level). ltidguobably be claimed
that the high acceptance of changes to working code is at @scbnfidence
provided by the regression suites created by a test-drigeeldpment practice
[3]. However, this is not a conclusion we can draw solely daseour data.

Test driven development (TDD) is one of the most promineatfices used
in agile development. However, our respondents, espgdtradl ones working
in agile processes, are leaning towards disagreementtisapitactice is in
place at their current organisation. Both groups are aggaékeir preference is
to use this practice to a higher extent.

As a summary, we can observe two facts from this data:

1. Respondents working in agile processes are not happycwitient test
first practice (possibly because they are in an early phaadaytion)

2. Non-agile respondents are unknowingly following ag#sting prac-
tices.

5.3 Testing Practices and Preferences

39

Interaction with customers/business people should bedptue-
ing the requirements at the beginning of the project and then
acceptance testing at the end of the project

1 04 1 2 1 2

Current Practice Agile
Non-Agile 1 5 3 10 12 4 1
. 3 2 2 0 1 1 2

My preference Agile
Non-Agile 4 5 4 4 6 11 2

Customers/ business people should be discouraged frongicigan
requirements once they are specified

4 0 3 2 1 1 1

Current Practice Agile
Non-Agile 1 4 6 10 10 3 1
. 4 2 3 2 0 1 0

My preference Agile
Non-Agile 12 S 2

Once a piece of code starts working, it should rarely be meifi

31 3 2 1 0 O

Current Practice Agile
Non-Agile 2 4 6 13 6 4 1
: 3 2 4 1 0 0 O

My preference Agile
Non-Agile O BN 4 [e] !

Regular changes to working code should be encouraged if they
improve the code in some way (e.g. its design, its structizg e

0o 0 0 2 4 3 1

Current Practice Agile
Non-Agile 1 4 6 13 8 2 0
. 0 0 0 0 2 6 2

My preference Agile
Non-Agile 0 1 5 8 11 7 3

Test cases should be written before writing code

1 2 4 1 2 0 O

Current Practice Agile
Non-Agile 1 7 11 8 5 3 0
. 1 1 1 0 3 4 0

My preference Agile
Non-Agile 2 0 5 6 9 12 1

Table 5.3: Survey data for Agile vs. Non-Agile

40 Paper A

5.3.2 Distributed vs. Non-distributed

By answering the question if all of the team members are catkd in one
building, responders are grouped into distributed anddistributed categories.
Questions were asked only to responders who claim to have sesting ac-
tivities at their work, i.e., the distributed and the nostdbuted respondents
make up disjoint subsets of the testers category. Colletdéalis presented in
Table 5.4.

Please indicate how strongly you agree or disagree withdhewfing statements
with respect to your testing experience in current orgaicisa

We never have to wait for Distributed 3 2 4 1 3 3 2
source code in order to start the

testing process Non distributed © 3 40702 0 2
The necessary infrastructure pistributed 0 2 7 0 6 2 1
for executing test cases is

always in place Non distributed © 2 2720 3 1 0 2

There are no changes done onDistributed

code during integration testing
Non distributed T3 0T

During integration testing, | do pigtributed 2 19 1. 5 0 0
not mind code to be changed
while | am testing it Non distributed ' 0 4 6 6 1 0

Table 5.4: Survey data for Distributed Development

When it comes to not having source code available on timeatb thte test-
ing process, testers working in distributed environmeius gery diverse an-
swers. In average, they can be considered the same, as nmast-dfstributed
responders, who claimed they neither agree nor disagreetbblem exist
in their organisation. Since we expected testers workindistributed envi-
ronments to experience this problem in higher extend, weocdynclaim that
working in distributed development is not a main cause o&ylin source
code delivery within our respondents.

Not having a proper infrastructure for testing in place dopbtentially
slowdown the testing process. We expected this in partitalae a problem
for distributed development, and even though answers wgia aiverse they
were very close to neither agree nor disagree that probldgm missing in-
frastructure exists. However, non-distributed respotgiema slightly higher

5.3 Testing Practices and Preferences 41

extent indicated to experience the problem of not havingssary infrastruc-
ture in place. Again we could claim within our responderg tha problem
with not having a proper infrastructure for testing is noedtly related to us-
ing distributed development process.

Changes done on code could produce further delays and irteocbm-
plexity during integration testing. One would naturallypext this to be in
much higher degree presentin distributed developmergr#tan non-distribu-
ted. Our data shows this is not entirely true for our respatsleBoth groups
tend to disagree there are no changes on code during inteygtasting with
slightly higher level of disagreement within non-distriéd respondents. On
the other hand, respondents working in distributed devetag prefer to dis-
agree that they do not mind code to be changed while they stiadet dur-
ing integration. Non-distributed respondents prefersrmmnt out to neither
agreement nor disagreement with this statement.

We expected to recognize potential challenges with testiaged to dis-
tributed development by analysing our data, but as predémthis section, we
did not find any such problems among our respondents.

5.3.3 Domain

In the domain categorization, respondents were categbezeording to an-
swers to the following question: “The software we build irr quoject is:”.
Possible answers were “Desktop”, “Web” or “Embedded”. Imtcast to the
other respondent categorizations in this paper, the doo@eygories are non-
mutually exclusive. Hence, if respondents are working impanies develop-
ing products in several domains, they are included in ak¢h@omain cate-
gories. Survey data for the domain categorization is ptesdn Table 5.5.

In the domain categorization, our expectation was to findahack of test-
ing infrastructure would cause problems for testing patéidy in the embed-
ded system domain, mainly due to problems of hardware/so&wo-design
and hardware availability in early stages of developmerd.fuvther believed
that this would negatively affect the time available fortitgg. Moreover, as
commonly stated (e.g., in [4]), we hypothesized that dgualent of web and
desktop software would, to a larger extent, be influencedjiyweight and ag-
ile methods, whereas development of industrial and emiuksiafitware would
typically follow a more traditional, plan-driven proce§shere is, however, no
support for the latter assumption in the data, as developmethod seems to
be independent of software domain among our respondents.

We do note a more prominent lack of availability of a propstitey infras-
tructure in the embedded system domain, but not fully to #ierg we might

42 Paper A

Please indicate how strongly you agree or disagree withdhenfing statements
with respect to your testing experience in current orgdiuna

o 2 4 2 0 2 2

The necessary infrastructure Desktop
forexegutlng test cases is Web o 22 o1, o
always in place €

Embedded OpEm ' 2 2 0

1 3 0 3 3 2 O
| have enough time to test the Desktop

software before its deployment \yepy o 15 1.4 2 0

Embedded C 2 mEl KR °

In our project we use the following testing types
1 1.0 0 0 2 0 1

Desktop
Unit testing Web 0o 1 0.1 o BEE
Embedded 1 2 1 2 1 3 0 2
1 0 I 0 2 0 1 1

Functional black-box testing oP esktop
the whole system Web 2 0 0 1 3 0 4 1
Embedded 1 0 0 0 3 1 2 5
1 0 2 0 O 0 1 2

Performance testing (incIudingDeSktOp
load and stress testing) Web 2 1.0 0 1 1 2 4
Embedded 1 o 1 1 2 2 3 2

In my opinion, the ideal level for each of the following testitypes in our project
should be

Desktop
Unit testing Web 0O 1 0 0 1 1 2 6
Embedded 1 2 1 1 0 1 3 3

Functional black-box testing oP esktop

the whole system Web 1 0 0 0 0 4 2 4
Embedded 1 0 0 0 0 2 2 7
1 0 1 0 0 2 0 2

Performance testing (includingDESkmp
load and stress testing) Web 1 0o o 1t 1 3 2 3
Embedded 1 0 0 0 3 2 06

Table 5.5: Survey data for Application Domain

5.3 Testing Practices and Preferences 43

have expected. Furthermore, it is worth mentioning that thaficiency does
not seem to significantly affect the experienced sufficiesictime available
for testing, which is quite equal between the domains.

Regarding the importance of different testing types, indineent practice,
web development seems to put a large emphasis on unit testiregeas em-
bedded system development to a higher degree focuses aipfuadcsystem
testing. In the desktop system development category obrefgmts, there is
no clear indication of a coherent current practice.

Comparing the current practice with what is considered dleali practice,
there are a few noteworthy discrepancies. Generally, ambrigtegories of
respondents, there is a preference towards more rigoretisgeat all levels,
particularly visible in the functional system-level texti Notable is also the
degree in which embedded system developers would like tease load and
stress testing, a practice where they feel that the cureset bf practice is
insufficient.

5.3.4 Safety-criticality

Prior to the analysis of respondent data, we expected sefiiyal respondents
to lean towards more traditional types of development astirntg in the cur-
rent practice, but we were curious and more hesitant regguttieir preferred
practice.

When it comes to customer involvement, there is a signific#feérence
between the safety-critical respondents, and the nortysefiical respondents
(see Table 5.6). The safety-critical respondents to a kextent limit customer
interaction to requirements elicitation in the beginnirighe project, and ac-
ceptance testing at the end of the project. This is sometthiagcannot be
seen in the group of non-safety-critical respondents, witiee current prac-
tice varies. Interestingly, the safety critical resportiqeeference is to further
decrease customer involvement, whereas most non-safetyakrespondents
would prefer an increase.

Discouraging customers/business people to change reagrts is a prac-
tice which both groups neither agree nor disagree to cuyremists in their
organisation. We expected safety-critical environmerteanore resistant to
change than non-safety-critical respondents, but withinrespondents this is
not a case. Interestingly, the preference of both groups doechange signif-
icantly from the current practice. We could say that chaggéequirements is
not something our respondents would agree easily with,thsirather some-
thing they must accept, regardless of software criticality

44 Paper A

Both the safety-critical and the non-safety-critical gatées of respon-
dents state that writing test cases before writing code istimmot consid-
ered as the current practice. However, while the non-satfiétigal respondents
seem quite willing to change this situation, the safetyigai respondents show
no interest as a group in changing towards a more test-ddegelopment.
This is noteworthy considering the fact that empirical ssdeem to ascribe
test-driven developed code a high external code qualitie]dJr]. For fairness
sake, it is not trivial to see how such a practice would affand be affected
by, other specific aspects of safety-critical system dgaraknt, e.g., fulfilment
of safety certification standards.

Interaction with customers/business people should bedjatucing the requirements
at the beginning of the project and then for acceptancentgsti the end of the
project

Current practice Safety-critical

Non-safety-critical

My preference Safety-critical

Non-safety-critical 7 5 6 3 7 71 2

Customers/ business people should be discouraged frongicigarequirements
once they are specified

Current practice Safety-critical

Non-safety-critical

My preference Safety-critical

Non-safety-critical 33/9 7 8 7 1

Test cases should be written before writing code
1 1.4 1 1 0 0

Current practice Safety-critical

Non-safety-critical 1 8 9 8 6 3 0

. 1 0 3 2 1 1 0
My preference Safety-critical

Non-safety-critical 2 1 2 3 [1188 1

Table 5.6: Survey data for Safety-Criticality

5.3 Testing Practices and Preferences 45

5.3.5 Testers vs. Non-Testers

Programming should start only after the design is completed
2 6 10 9 10 1 O

Current practice Testers

Non-Testers

My preference Testers

Non-Testers
The main focus of the team should be to get the code to work

. Testers 0 1 3 6 11 13 4
Current practice

Non-Testers Ol THEO !

Testers 0 2 6 5 6 13 6
My preference

Non-Testers 0 B ' I °

The main focus of the team should be on the production of tdfacts (e.g. design
documents, requirements documents) not just code

1 3 5 9 16 4 O

. Testers
Current practice

Non-Testers O O NN 0 ¢

Testers 1 2 3 7 10 12 3
My preference

Non-Testers
Once a piece of code starts working, it should rarely be mexiifi

. Testers 5 4 7 13 3 4 0
Current practice

Non-Testers 0 TN ° °

Testers 39 11 7 2 3 1
My preference

Non-Testers 0 N ' ! 2

Table 5.7: Survey data for Testers vs. Non-testers

Based on responders’ answers to question on how often théyrpetest-
ing activities, we grouped their response into two categgrTesters and Non-
testers. We expected to have insights into differences @nthsting related

46 Paper A

activities are seen from these roles. Data is presentechiie 5a7.

Testers and non-testers opinions whether programminddhtaut only af-
ter the design is completed, do not differ significantly. lBgtoups are stating
this is, to some extent, present in their current practidarbportantly to no-
tice, both groups equally point out preference on having phactice in place.
Similar results can be seen in question if the main focus eftéam should
be on the production of all artefacts and not just code. MNeitasters nor
non-testers agree or disagree this practice exist in theefent organisations.
However, both group preferences show high level of agreéthatiteam focus
should be tailored towards generating all artefacts ofrsof development.

Question if the main focus of the team should be to get the todeork
show us some difference in group opinions. Testers thinktthig philosophy
is slightly present in their current organisation, whilenftesters tend to dis-
agree. Both groups seem satisfied with their current peastitce preference
on this idea does not change. Another philosophy was imyegstil by a ques-
tion on if once a piece of code starts working, it should rake modified.
Here, testers show tendency to disagree that this appra@stliretheir current
organisation, while non-testers neither agree nor digagith it. Interestingly,
testers’ preferences are to further disagree with thistip@avhile non-testers
show some level of agreement this practice should existgarisations.

5.4 Techniques and Tools

Respondents, who previously stated to perform testingites at work, were
additionally asked questions regarding tools and teclasiquurrently in use
within their organisation. Those questions did not have prgdefined an-
swers since we expected the respondents to provide us witteimformation
about existing testing practices. We expect that an apjatepgrouping of in-
formation (for e.g.. domain-wise) could be beneficial fowngractitioners.
Table 5.8 and Table 5.9 present the respondents answenaéollby our qual-
itative analysis of the data.

Based on the provided responses (shown in Table 5.8) weenatcex-
pected, that it is very common for organisations to have ddflavels of test-
ing. Those levels are usually unit, integration and systamalltesting. Besides
having testers, testing activities are also performed yeldpers. In most
cases, unit level testing using a white box approach is sorespility of de-
velopers, whereas integration and system level testingl@me by dedicated
testers performed mostly as black box testing. Interelstimge have not found
a big presence of automation effort in testing.

5.4 Techniques and Tools

47

Which testing technique do you use in your organisation¥ydif are not sure
of the name of the technique, try to explain in short how yorigeen testing)

Unit testing, integration testing and functional testing.

Low level: Lint, Code coverage, Manual code review. Higteleuntegration
test, Regression test (to verify legacy functionality)n€tion test (verify new
stuff), System test (from an end user perspective)

White box unit testing

unit testing w test coverage strategies (all statemeraskbbox behaviour) sys-
tem testing with real hardware done by or together with ogtauer

No automated testing, only interactive. Though, we havéstatich measures
coverage as well as performance bottlenecks.

unit testing by developers, per use case manual testinglmjotesters

No technique as we just do prototypes. We dont test it towm@stsddocuments,
since just on user tests.

Module test, integration test on dedicated hardware, tesbmplete machine

1. Manually develop and debug using whatever equipmentiadlai using
PC/Windows or actual target hardware. 2. Module testing orkstation plat-
form using PC/Windows in a repetitive form. 3. Manual refpegiintegration
tests on actual target hardware platform. 4. Automated t@stactual hardware
and/or system. (not all tests use have automated test cases)

White-box (developers testing their code using debugd#iemk-box (on sys-
tem level) Unit testing (not so common) Automatic testing §o@ common)

Limited regression testing, limited automated user iaiEzftesting

It varies from project to project. My current project writesit tests at the same
time as the code, and different people do system testing.

Ad hoc testing, i.e. testing only specific functionalitytrat than full regression
testing for each release.

Testframe

Vast test automation, explorative testing, black-box -tediox, etc, etc...

manual testing

Unit Testing and Integration Testing (White box) by the depeent team.
Black Box (System Testing and Performance Testing) by aepgaddent Test
Team

Unit tests, integration & regression tests.

Use case testing State transition testing Classificaties imethod Boundary
value analysis

Ad hoc

Different in different projects.

Acceptance testing against functional and non-functice@lirements, creating
system test automation in business value order. Unit geatiicl module testing
done by developers.

User-story approach, old-fashioned test-case appro&pluratory testing, test
automation, TDD

Component testing done by designers during developmenhctien testing
before delivery to integration branch. Integration tegti8ystem/load testing.

Table 5.8: Respondent Answers on Techniques in use

48 Paper A

With respect to tools used as support for testing (shown lxteTa.9), from
respondent answers we can notice that there is utilizafitwoti open source
and proprietary tools. However, open source testing taegsnsto be mostly
used for unit testing whereas for higher level of testingrappetary tool is in
place. Even a few in-house developed testing tools aredsitatbe answers.

Do you use any tools for testing within your organisation®aBE provide us
with their names:

Not any specific tool.

Expect/TCL, Jcat (java based tool), Perl. Also some praguyetesting plat-
forms based on previously named tools.

NUnit

internally developed tool, simple script on top of a CAN & I&@nulator and
same scripts using real CAN & I/0O when software is downloagledarget.
Two tools named something with "coverage” and "performnjoat remember
the company behind)

JUnit, JEmitter

PC-Lint and/or Programming Research QA C for static ang/yd5DevStudio
for code coverage analysis of test cases, homebrewedgéstiness suited for
the current development tools, RTOS supported functionsifing analysis.
JTAG/BDM-debuggers for on-target testing. National lastents LabView us-
ing automated test cases derived from requirement tools.

TestComplete (tool for automatic tests)

Yes. Do not know.

Again it varies from project to project. | think my currentopect uses JUnit,
but I have no time to get involved.

Not personally.

code coverage, JUnit(UnitTest)

change control, bug tracking, test case management, &c., e

Proprietary in most cases.

Check, valgrind

tcl/expect, Test-RT

Test Director CTE Test execution tools (self-made, usingview and Perl)
NUnit for developer tests

No

Our proprietary test automation system

In-house test automation

TTCN. Load/traffic generators (not sure of name, SipP?).

Table 5.9: Respondent Answers on Tools in use

5.5 Satisfaction of Current Practice 49

5.5 Satisfaction of Current Practice

Our third and final analysis in this paper is a quantitativalysis on the sat-
isfaction of current testing practices. If one agrees thatkedge of required
process improvements is, to some extent, intrinsic witliftweare develop-
ment organisations, this information may provide valuapl&elines for fu-
ture research directions in this area. Below, we will disalissatisfactiorof
current practice rather thaatisfaction This might seem overly negative, but
is rather an effect of measuring the absolute value of tHeréifice between the
perceived current and the preferred practices. Hence tavailgie indicates a
high degree of dissatisfaction. Needless to say, a low @egjrdissatisfaction
equals a high degree of satisfaction.

Here, individual dissatisfaction of current testing piees is defined as the
mean absolute difference between the perceived currectigeaand the pre-
ferred practice for all testing-related questions for @kinespondent. Dissat-
isfaction among a category of respondents is defined as the ofall individ-
ual dissatisfactions for the respondents within that acategFormally, given
the setR of respondents in a particular category, and thesef test-related
questions, the dissatisfactid@ r is defined by

do.n = R 2 2 lear ~pasd

qEQ reR

where,c, » andp, , refer to the current and the preferred practice of question
q as reported by the respondent

5.5.1 Satisfaction within Different Categories of Responehts

For the categorization used in Section 5.3, the dissatiefatesults are shown
in Table 5.10.

As can be seen in the table, the differences between thecrasgre not
remarkably large. The difference between the most didgatisategory of
respondents (nhon-distributed) and the most satisfied cgterf respondents
(safety-critical) is 0.359, corresponding to little overeothird of a grade per
question and respondent on a 7-grade scale. Neverthdiessafiety-critical
respondents stand out as the most satisfied categoriegpohaeants. This can
possibly be attributed to the fact that the training levalsuch organisations
are very high and focused which make them fully believe in badonfident
of the activities and practices. Further investigation s necessary to con-
firm that such a conclusion is justifiable from a technololgp@ant of view. It

50 Paper A

Respondent category Dissatisfaction
Safety-critical respondents 0.660
Agile respondents 0.728
Desktop respondents 0.821
Embedded respondents 0.875
Distributed respondents 0.880
Web-based respondents 0.910
Testers 0.931
Non-testers 0.933
Non-safety-critical respondents 0.983
Non-agile respondents 0.995
Non-distributed respondents 1.019

Table 5.10: Dissatisfaction within categories of responsie

is also worth mentioning that the satisfaction of currestitg practice among
respondents doing distributed development is actuallydrighan that of re-
spondents doing non-distributed development. The obvageesmption would
be that distributed development puts additional straintherefficiency of test-
ing. A possible explanation of these results might be thaistibution of
development enforces the software development orgaoiztdibe more con-
scious about its testing strategy.

5.5.2 Satisfaction with Particular Testing Practices

In order to analyse the dissatisfaction with regards to quaar practice, de-
noted byd, r, we make use of a special case of the above equation, where
the question on the practice of interest @pe= {q}.

1
dg,r = 757 Z |cq.r — Pa,rl
|R| reR

It should also be noted that a high dissatisfaction in a duesinly tells us
that there is a large difference between the current andréfernped practice.
It does not explicitly tell us the nature of this dissatisi@ac, nor does it mean
that respondents agree on whether the practice queriedonfddbe increased
or decreased. A prime example of this is the questionce a piece of code
starts working, it should rarely be modifiedvhich has a dissatisfaction of
0.935, which is quite high in relation to the total data setwidver, taking into

5.5 Satisfaction of Current Practice 51

account whether the respondents want an increase or a defghe practice
(mathematically, this is equivalent to disregarding theddite value operation
on the difference between current and preferred practwe)end up with a
value of 0.109, indicating that there is almost an equalrddsiincrease the
practice as it is to decrease it, among the set of respondents

Question Dissatisfaction
Changing working code should not be encouraged [but 0.500
cannot be prevented
Testing should be a defined phase in project develop- 0.587
ment
Procedures and processes should be allowed tq be 0.652
changed often if the change brings in an improvement
Project planning should be incremental, one iteratiopn at 0.681
atime
How much functionality is in the current working code 0.696
should be the sole criteria for determining progresg of

the project

Table 5.11: Questions with the Lowest Degree of Dissati&fac

In Table 5.11, the five questions with the lowest degree cfatiisfaction
are presented. Notably, two out of the three questions Wwétawest degree of
dissatisfaction concern changes to working code for thpgme of quality im-
provement or customer satisfaction. Considering the feitthese statements
are mostly agreed to by the respondents, it seems to be dg@ecepted, both
in theory and in practice, that changes are inevitable irstifavare develop-
ment process, even though they may pose difficulties.

Table 5.12 displays the five statements with the highestedegf dissatis-
faction. Out of all the queried practices, test-driven d@yment seems to be
the practice where the difference between the preferresdipesand the current
practice is most significant. Further analysis of the qoesiaire data reveals
that the cause of this dissatisfaction is that test-driveretbpment is not prac-
tically used to the extent that is desired by the respondé&stslready shown
in Section 5.3, this is true both for agile- and non-agil@oeEsients.

The question Programming should start only after the design is com-
pleted, is notable not only because of its high degree of dissati&in, but
also that because it polarized respondents to such an eSren respondents
recognized this as the current practice, and would like aedse. On the other
hand, twenty respondents felt that the programming staotsdon and should

52 Paper A

Question Dissatisfaction
Test cases should be written before writing code 1.609
Programming should start only after the design is cqm- 1.271
pleted

Comprehensive documentation should be an essential 1.250
part of software development
There should be general guidelines and principles|for 1.204
software development but not detailed rules
Management should encourage regular interaction|be- 1.200
tween developers and customers/business people

Table 5.12: Questions with the Highest Degree of Dissatiifa

be postponed until the design is completed.
For the remaining three questions in the table, the disaatien in the
practices is due to the fact that the practices are prefdotechot followed.

5.6 Conclusion

In this paper we present our analysis results from an inidispuestionnaire
survey on the current software development practices agféq@nces, specifi-
cally in relation to testing. The survey has unique featateh as strategic em-
bedding of multi-purpose questions and categorisatioegondents on con-
temporary aspects which enable us to gain qualitative litsigrhe survey in
addition to confirming some popular beliefs also lists saMeoteworthy find-
ings from the perspectives of respondent categories sushfaty-criticality,
agility, distribution of development, and application daim These findings
clearly depict negative discrepancies between the cupractices and the per-
ceptions of the respondents, thus meeting our researchtvj@resented in
the introduction.

One of the noteworthy testing research directions from dustrial per-
spective seems to be test driven development as indicatdtebysults of the
survey. Our ongoing research work attempts to refine thedange through
directed interviews as well as through further investigradiin a wider context.
We are also working on the definition of a methodology for dyically in-
corporating such findings in the management decisions ategic challenges
such as introduction of new technologies, processes, dod aeflocations in
relation to testing.

5.7 Acknowledgments 53

5.7 Acknowledgments

This work was supported by the VINNOVA through the ITEA2 et FLEXI.
The authors want to express their thanks to all the questiommespondents
and the people involved in earlier phases of this research.

Bibliography

[1] Adnan Causevic, lva Krasteva, Rikard Land, A. S. M. Sajesmd Daniel
Sundmark. An Industrial Survey on Software Process PestiPrefer-
ences and Methods. (ISSN 1404-3041 ISRN MDH-MRTC-233/2009
SE), March 2009.

[2] Geir Kjetil Hanssen. Agile Customer Engagement: a Landjnhal Quali-
tative Case Study. lin Proceedings of International Symposium on Em-
pirical Software Engineering (ISESE) (Rio,&906.

[3] Kent Beck.Test Driven Developmen#ddison Wesley, November 2002.

[4] Jussi Ronkainen and Pekka Abrahamsson. Software dawelot under
stringent hardware constraints: Do agile methods have acehadnPro-
ceedings of the Fourth International Conference on Extrémogramming
and Agile Processes in Software Engineering 2Q2®yes 73—-79, 2003.

[5] Laurie Williams, E. Michael Maximilien, and Mladen VouKTest-driven
development as a defect-reduction practicelnlProceedings of the 14th
IEEE International Symposium on Software Reliability Eregiring pages
34-45. IEEE Computer Society, 2003.

[6] Artem Marchenko, Pekka Abrahamsson, and Tuomas Ihmexgilerm
Effects of Test-Driven Development A Case Study. In Will gtalJohn
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Szakpe
Pekka Abrahamsson, Michele Marchesi, and Frank MauretprsdAg-
ile Processes in Software Engineering and Extreme Progriagnvol-
ume 31 ofLecture Notes in Business Information Processpapes 13—-22.
Springer Berlin Heidelberg, 2009.

55

[7] Boby George and Laurie Williams. A structured experimeftest-driven
development. Information and Software Technolgg$6(5):337 — 342,
2003.

Chapter 6

Paper B:

Factors Limiting Industrial
Adoption of Test Driven
Development:

A Systematic Review

AdnanCausevi¢, Daniel Sundmark and Sasikumar Punnekkat
In proceedings of the International Conference on SoftWasing (ICST),
Berlin, Germany, March 2011

57

Abstract

Test driven development (TDD) is one of the basic practidemyde software
development and both academia and practitioners clainTB, to a certain
extent, improves the quality of the code produced by dewskpgHowever, re-
cent results suggest that this practice is not followed ¢éoetktent preferred by
industry. In order to pinpoint specific obstacles limititg industrial adoption
we have conducted a systematic literature review on engpstadies explicitly
focusing on TDD as well as indirectly addressing TDD. Ouigevhas identi-
fied seven limiting factors viz., increased developmengtimsufficient TDD
experience/knowledge, lack of upfront design, domain antidpecific issues,
lack of developer skill in writing test cases, insufficiedharence to TDD pro-
tocol, and legacy code. The results of this study is of sp@unjgortance to the
testing community, since it outlines the direction for het detailed scientific
investigations as well as highlights the requirement ofiglimes to overcome
these limiting factors for successful industrial adoptdéi DD.

6.1 Introduction 59

6.1 Introduction

Test-driven development (TDD) is an essential part of edgrd®>rogramming
(XP), as proposed by Kent Beck [1]. TDD (referred as test-firegramming
as well) requires the developers to construct automatedests in the form
of assertions to define code requirements before writingtidke itself. In this
process, developers evolve the systems through cyclestpéiterelopment and
refactoring.

In a recent industrial survey [2], we examined the diffeeshetween the
preferred and the actual level of usage for a number of copbeany test-
related practices. Out of 22 examined practices, TDD gatinedighest score
of “dissatisfaction”(i.e., the accumulated absoluteatiénce between the pre-
ferred and the actual level of usage). Moreover, the predelevel of usage
of TDD was significantly higher than the actual level. Henite nature of
this dissatisfaction could be stated as “Respondents wikeldo use TDD to
a significantly higher extent than they actually do”.

Building upon these previous results, the aim of the curseidy was to
investigate potential factors that are limiting the indiadtadoption of TDD.
Here, a factor could translate to a method, technique, te¥gperience, tool,
or similar, that either exists, or missing, or is newly imtuged in a particular
organisation. The specific research question we addrebsipdper is:

RQ: Which factors could potentially limit the industrial adagrt
of TDD?

In order to identify such limiting factors, a systematietature review of
empirical studies on TDD was undertaken. Partly based oneros of an in-
sufficient number of studies due to publication bias [3],réagew was not re-
stricted to studies reporting on failure to implement TDBstead, we decided
to expand the scope of the study and to systematically séargrimary em-
pirical studies of TDD, including (1) studies where TDD whs main focus,
(2) studies where TDD was one of the investigated practmed,(3) studies
where TDD was used in the experimental setting while ingasithg something
else. In case any of the studies reported issue(s) with agifspfactors, this
was noted. By qualitatively and quantitatively analysihg teported issues
on TDD within the selected papers, we have identified a nurobémiting
factors. The contributions of this paper are three-fold:

e A qualitative analysis on the effects of a set of factors orDTBased on
reported primary studies

60 Paper B

¢ Identification of a set of factors limiting the adoption of DOn industry
e Discussions on the implications for research and indugtityese factors

The remainder of the paper is organised as follows: Sectidmpfovide
details of the research method used, Section 6.3 presesniiésrand analysis
while Section 6.4 discuss the findings of our investigatibhe paper is con-
cluded by Section 6.5 where conclusion and future work ageegnted.

6.2 Research Method

A systematic literature review is an empirical study whenesearch ques-
tion or hypothesis is approached by collecting and aggmegavidence from
a number of primary studies through a systematic search atadexktraction
process. In this process we followed the guidelines for totidg a system-
atic literature review proposed by Kitchenham [3].

6.2.1 Search Process

The review process started with the development of a revi@topol. This
protocol described the purpose of the review, defined thesareb questions as
well as preliminary inclusion and exclusion criteria, arrdypded details on
the search string and the databases in which it would beeppli
As for inclusion and exclusion criteria, the search aimddexttifying full-

length English language peer-reviewed empirical studiesising on TDD,
including academic and industrial experiments, case e durveys and liter-
ature reviews. Short papers (in our case, below six pagesyjdls, work-in-
progress papers, keynotes, and pure industrial lessomettavere excluded.

Source Search Date

IEEExplore 2010-02-12

ACM Digital Library 2010-02-15
ScienceDirect 2010-02-11

El Compendex 2010-02-12
SpringerLink 2010-02-12

ISI Web of Science 2010-02-11

Wiley Inter Science Journal Findgr 2010-02-16

Table 6.1: Searched databases

6.2 Research Method 61

Scientific databases in the software engineering field welected based
on the aim of getting a wide and exhaustive coverage of puidistudies on
TDD. The list of selected databases is provided in Table @thin each of
these databases, a search was performed using the foll®eiolgan search
string:

“tdd” OR “test driven development” OR “test-driven develomnt” OR “test
driven design” OR “test-driven design” OR “test first” OR “&-first” OR
“integration driven development” OR “integration-drivethevelopment”

The resulting list of primary studies was collected in thelBote reference
management program in order to facilitate the paper exatysiocess.

6.2.2 Paper Exclusion Process

Following the initial search, which yielded a total of 9.48&2pers, exclusion
was performed in multiple stages:

1. In the first stage, duplicate papers were removed, andpagre ex-
cluded based on formal criteria (e.g., exclusion of shoptps) and on
title (typically off-topic papers). A total of 509 papersgsad this stage.

2. In the second stage, papers were excluded based on &hsfractal of
150 papers passed this stage.

3. In the third and final exclusion stage, papers were exdumdesed on
full text. In this stage, each paper was read by at least taearehers.
To assess the quality and suitability of each study with eéespo the
review objective, we made use of a review form similar to ttreening
guestions in the quality assessment form used by Dyba amglsRir in
their review of empirical studies of agile development [8pecifically,
we investigated (1) if the paper was a research paper, (2wh$ an
evaluation of TDD, (3) if the research aims were clearlyestaand (4)
if the paper had an adequate description of context/settmgrder to
pass the stage, a paper had to fulfill both criteria (1) anch$2ell as
either (3) or (4). A total of 48 papers passed this stage.

Paper exclusion disagreements were resolved throughatirdéscussions
between the authors.

62 Paper B

Extracted study details

General study information Publication type, year, author, etc.

Study setting Academic, industrial or semi-industrial

Domain of study objective Web, business system, embedded system, efc.

Study type Case study, experiment, survey or literature re-
view

Number of subjects
Length of study
Level of experience of subjects Novice, medium, experienced

The main focus of the study is TDD
One focus of the study is TDD
TDD is not a focus of the study, but it is used|to
study something else

Focus level of TDD in study

Table 6.2: Extracted study details

6.2.3 Data Extraction Process

In the first step of the data extraction, study details reiggre.g., study setting
and domain, were extracted for all included studies (se®RB). In this step,
data extraction was relatively straightforward. Howewerthe cases where
the data of interest was omitted or unclearly stated in tiragmy study (e.g.,
failure to mention the level of subjects’ previous expecenf TDD), the data
was omitted from extraction.

The extraction of TDD effects was more complicated. Hereyadtep
evolutionary approach was used. In the first step, eachtsdlpaper was read
by one researcher to identify explicitly stated effects 80 observed in the
study. At this stage, there was no discrimination betweeagatie, neutral
or positive effects of TDD. This stage of the review also agted explicit
claims on requirements for a successful adoption of TDD. rEason for not
only extracting negative effects of TDD was that we beliéhatt the resulting
partial view would diminish the possibilities of perforngia balanced analysis
of limiting factors. Once the first step of the data extrattieas finished, 10
studies were omitted from further analysis. These studiere wither studies
that were also reported in other included papers, or coadaimo explicitly
reported effects of TDD.

In the second step, the resulting matrix of TDD effects amthary studies
was reviewed for consistency by all authors. The aim was tersare that the
claimed effects had been interpreted similarly in the exioa process.

6.3 Results and Analysis 63

6.2.4 Data Synthesis

Based on the 18 TDD effect areas extracted in the previopswtedefined the
limiting factors for the industrial adoption of TDD as effereas conforming
to the following rules:

i. The effect area contained at least two studies with obsensbf
negative effects of or on TDD

ii. The effect area contained more studies with observationsgstive
effects of or on TDD than it contained studies with obseoradiof pos-
itive effects of or on TDD

iii. Negative effects in the effect area were observed in at tessstudy
performed in an industrial setting.

6.3 Results and Analysis

This review identified 48 empirical studies concerning TO3B. of those in-
cluded explicit claims on the effects of TDD. This sectiooydes the study
details of the larger set of identified studies, as well asratyais of the limit-
ing factors of TDD, based on the effects of TDD stated in thary studies.

6.3.1 Empirical Studies of TDD

An overview of the primary studies on TDD included in our ewiis given in
Table 6.3. Out of the 48 included studies, 25 were experime@ were case
studies, 2 were surveys, and one was a mix of a case study angbariment.
50% of the studies were performed in an academic setting, wéfé stud-
ies performed in an industrial setting and 4% were mixed acaclindustrial
studies. Over half of the included studies (58%) includeafgssional soft-
ware engineers in the group of study subjects. Most inclistedies (67%)
were studies with TDD as the primary focus of investigation.

Besides the study quality screening used for paper exclugie made no
further attempt of explicitly evaluating the quality of éamcluded primary
study. Even though some additional insights might have lgaéred by such a
quality assessment, we believe that this value would hage beited by the
heterogeneity of the included studies.

Study

Setting

Type

Subjects

Focus level

Abrahamson et. al (2005) [5]

Industrial Case Study

Professionals

TDD explicit primary focus

Bhat & Nagappan (2006) [6] Industrial Case Study Profesdion TDD explicit primary focus

Canfora et. al (2006) [7] Industrial Experiment Profesaisn TDD explicit primary focus

Canfora et. al (2006) ISESE [8] Industrial Experiment Pssfenals TDD explicit primary focus

Cao & Ramesh (2008) [9] Industrial Case Study Professional©D explicit focus, but not main focus
Chien et. al (2008) [10] Academic Experiment Students TDplieit focus, but not main focus
Damm & Lundberg (2006) [11] Industrial Case Study Professi® TDD explicit primary focus

Damm & Lundberg (2007) [12] Industrial Case Study Professi® TDD explicit primary focus

Domino et. al (2007) [13] Academic Experiment Students TDPlieit focus, but not main focus
Domino et. al (2003) [14] Academic Experiment Students Tbin focus, but used in study setup
Erdogmus et. al (2005) [15] Academic Experiment Students DERplicit primary focus

Filho (2006) [16] Academic Experiment Students TDD not inds, but used in study setup
Flohr & Schneider (2005) [17] Academic Experiment Students TDD explicit primary focus

Flohr & Schneider (2006) [18] Academic Experiment Students TDD explicit primary focus

George & Williams (2003) [19] Industrial Experiment Prafemals TDD explicit primary focus

Geras et. al (2004) [20] Academic Experiment ProfessionaldDD explicit primary focus

Gupta & Jalote (2007) [21] Academic Experiment Students Texplicit primary focus

Hfer & Philipp (2009) [22] Academic Experiment Mixed TDD diqit primary focus

Huang & Holcombe (2009) [23] Academic Experiment Students DDTexplicit primary focus

Janzen & Saiedian (2006) [24] Academic Experiment Students TDD explicit primary focus

Janzen & Saiedian (2008) [25] Mixed Exp./Case Study Mixed DTexplicit primary focus

Janzen et. al (2007) [26] Academic Experiment Professsonal DD explicit primary focus

Kobayashi et. al (2006) [27] Industrial Case Study Profesals TDD explicit focus, but not main focus
Kollanus & Isomttnen (2008) [28] Academic Experiment Stoide TDD explicit primary focus

Layman et. al (2006) [29] Industrial Case Study ProfesdfonaTDD explicit focus, but not main focus
LeJeune (2006) [30] Academic Case Study Students TDD éifuizus, but not main focus

9

g Jaded

Study Setting Type Subjects Focus level

Huang et. al (2007) [31] Academic Experiment Students TDplieit focus, but not main focus
Madeyski (2006) [32] Academic Experiment Students TDD ®xplocus, but not main focus
Madeyski (2007) [33] Academic Experiment Students TDD ndoicus, but used in study setup
Madeyski (2008) [34] Academic Experiment Students TDD ndbicus, but used in study setup
Madeyski (2010) [35] Academic Experiment Students TDD expprimary focus

Madeyski & Szaa (2007) [36] Industrial Case Study Professli® TDD explicit primary focus

Marchenko et. al (2009) [37] Industrial Case Study Profesais TDD explicit primary focus

Maximilien & Williams (2003) [38] Industrial Case Study Ressionals TDD explicit primary focus

MiSic (2006) [39] Mixed Survey Mixed TDD explicit focusubnot main focus
Miller & Hagner (2002) [40] Academic Experiment Students DDOrexplicit primary focus

Miller & Hfer (2007) [41] Academic Experiment Mixed TDD ekt primary focus

Nagappan et. al (2008) [42] Industrial ~ Case Study Profestso TDD explicit primary focus

Salo & Abrahamsson (2007) [43]

Industfial Case Study

Professionals TDD not in focus, but used in stefys

Sanchez et. al (2007) [45] Industrial Case Study Profeafson TDD explicit primary focus

Sfetsos et. al (2006) [46] Industrial Survey Mixed TDD egjtlfocus, but not main focus
Sherrell & Robertson (2006) [47] Academic Case Study Sttedlen TDD explicit focus, but not main focus
Siniaalto & Abrahamsson (2007) [48] Industrial ~ Case Study roféssionals TDD explicit primary focus

Siniaalto & Abrahamsson (2008) [49] Industrial ~ Case Study roféssionals TDD explicit primary focus
Slyngstad et. al (2008) [50] Industrial ~ Case Study Protesds TDD explicit primary focus

Wastnus & Gross (2007) [51] Industrial Case Study Profesdto TDD explicit primary focus

Williams et. al (2003) [52] Industrial ~ Case Study Professis TDD explicit primary focus

Vu et. al (2009) [53] Academic Experiment Students TDD eipprimary focus

Table 6.3: Empirical Studies of TDD

1Close-to-Industry setting as defined in [44]

SIsAleuy pue s)nsay £'9

99

66 Paper B

6.3.2 Reported Effects of and on TDD

In order to identify limiting factors of industrial adoptiof TDD, all included
studies were searched for explicit claims on effects of TD&,(cause-effect
relationships where TDD was the causing factor), as welkp#ait claims on
effects on TDD (i.e., cause-effect relationships whereeséewtor caused an
effect on the way TDD was performed). We denote these effeeisaof TDD,
and Table 6.4 presents the 18 effect areas found in the seatotal count for
the number of studies making claims regarding each effeds@given in the
table.

SI.No. Description Count
1 Development time 18
2 Experience/knowledge 4
3 Design 3
4 Refactoring 2
5 Skill in testing 3
6 TDD adherence 8
7 Code quality 18
8 Cost 1
9 Code coverage 8
10 Complexity 7
11 Time for feedback 5
12 Domain and tool specific issues 10
13 Code size 3
14 Perceptions 15
15 Communication & (customer) collaboration 1
16 Legacy code 2
17 Defect reproduction 1
18 Documentation 1

Table 6.4: Areas of Effect of TDD

Again, note that effects were included in this data extosctegardless of
whether they were mentioned in a positive, neutral or negatontext. As
mentioned above, the collection of included primary stsidighibited great
heterogeneity. As a consequence, description of TDD effesmiged from
purely quantitative data (e.g., ratio scale metrics on ameplexity [25][51]
or development time [6][19]), to qualitative data based objacts’ responses
to open-ended survey questions (e.g., nominal or ordirsésdaims on per-

6.3 Results and Analysis 67

ception of TDD [30][43]). Consequently, the items in theultiag list of effect
areas are not necessarily unique and independent. As arpkxafiect areas
like design, refactoring and complexity are highly relaté¢hen doubtful, we
have chosen not to group effect areas, as this would resaltéss rich infor-
mation from which to derive the limiting factors of TDD.

A more detailed view of the areas of effect of TDD with respiecthe
primary studies is provided in Table 6.6.

6.3.3 Factors Limiting Industrial Adoption of TDD

Based on the effect areas presented in the previous seatioidentify seven
limiting factors (LF1-LF7) for industrial adoption of TDDANn overview of
these factors is given in Table 6.5. We now describe eachesfettimiting
factors in detail together with the observations from thenpry studies as
well as providing motivations for their inclusions.

Label Description

LF1 Development time

LF2 Experience/knowledge

LF3 Design

LF4 Skill in testing

LF5 TDD adherence

LF6 Domain and tool specific issues
LF7 Legacy code

Table 6.5: Limiting Factors for TDD Adoption

Effect

Study

Development time

Experience/knowledge

Design

Refactoring

Skill in testing

TDD adherence

Code quality

Cost

Code coverage

Complexity

Time for feedback
Domain and tool
specific issues

Code size

Perceptions

Communication &

customer collaboration |

Legacy code

Defect reproduction

Documentation

Abrahamson et. al (2005) [5]

Bhat & Nagappan (2006) [6]

+

Cao & Ramesh (2008) [9]

Damm & Lundberg (2007) [12]

Domino et. al (2007) [13]

Erdogmus et. al (2005) [15]

Filho (2006) [16]

+ufn

Flohr & Schneider (2005) [17]

Flohr & Schneider (2006) [18]

George & Williams (2003) [19]

+

Geras et. al (2004) [20]

Gupta & Jalote (2007) [21]

Hofer & Philipp (2009) [22]

Huang & Holcombe (2009) [23]

Janzen & Saiedian (2006) [24]

Janzen & Saiedian (2008) [25]

Janzen et. al (2007) [26]

Kobayashi et. al (2006) [27]

Kollanus & Isomttnen (2008) [28]

Layman et. al (2006) [29]

LeJeune (2006) [30]

Madeyski (2010) [35]

89

g Jaded

Q
= - -
CIE) i;’ x| 5] 2
Effect | = 8 o | & o | EBy 58 (3]s
s | = Ele| 2] T o3 wn 9 L | o |=
(] Q =) =~ = = o) Pl o IE 0 c g9 T8 s 8
£ | © S|9|92|S > €| e8e|lo|l s 48| 8 |¢<
Study s |5 S|l e 5|3 3| E S22 N2 EGYgC| 2|6
o |2l | 2|2 |8B|°T o | T |LeEL |2 Egda|xg|E
e 182 |8|=|alg|s|e|E|2Ege|8Egs|e|s
) x|lo | | |ao|o|o|o G |EcY o| o 69| | o
QO |W || |nw |F|O|]O|O|O |FRpaO|la OPga |0 |0
Marchenko et. al (2009) [37] - - + + !] - - +
Maximilien & Williams (2003) [38] | -/= ! + + +
MiSic (2006) [39] +
Miuller & Hagner (2002) [40] -I=
Miller & Hofer (2007) [41]]] 1
Nagappan et. al (2008) [42] - ! +
Salo & Abrahamsson (2007) [43] - - +
Sanchez et. al (2007) [45] - + +
Sfetsos et. al (2006) [46] - + | -
Sherrell & Robertson (2006) [47] _
Siniaalto & Abrahamsson (2007) [48] + -
Siniaalto & Abrahamsson (2008) [49] ! !
Slyngstad et. al (2008) [50] + +
Wastnus & Gross (2007) [51] + + + + + | - +/-
Williams et. al (2003) [52] = + +
Vu et. al (2009) [53] - +] - 1 +

Table 6.6: Mapping Between Effect Observations and PrirSangies

Table legend:

+ positive mentioning of a particular effect
- negative mentioning of a particular effect

= no effect waparted for a particular effect

| effect was timmed as an important observation

SIsAleuy pue s)nsay £'9

69

70

Paper B

LF1:

LF2:

Increased development time

Description: By development time, we refer to the time required to im-
plement a given set of requirements. Time required for dgraknt of
software product is relatively easy to measure. It is howaveatter of
discussion whether the time for corrective re-work (e.gsda on failure
reports from later testing stages) should be included irddwelopment
time or not.

Observations Nine included primary studies in the review reported
negative experience with respect to the time for developntgin were
industrial studies with professionals (five case studiet @me experi-
ment) and three were academic studies with students (tweriements
and one case study). Five studies did report positive effeatevelop-
ment time when using TDD, but this was mostly when the overalject
time was captured.

Discussion Development time could be considered a business-critical
factor for adopting new practices within an organisatioepBnding on
the maturity of the organization, an up-front loss (in trase, increased
development time) might overshadow a long-term gain (elecreased
overall project time, or increased product quality both bfah were re-
ported in many of our included studies). Hence, internahoizational
pressure might risk the proper usage of TDD.

Insufficient TDD experience/knowledge

Description: By TDD experience/knowledge, we refer to the degree of
practical experience, as a developer or similar. or theaansight in
TDD.

Observations Two industrial case studies with professional develop-
ers attributed problems of implementing TDD to lack of TDDued-
tion/experience. Moreover, two other studies report $icgmt differ-
ences in the way of applying TDD between experienced TDD ldeve
ers and novice TDD developers.

Discussion When observing collected data from the included primary
studies, we noticed that participants in the experimeritisdlestudents

or professionals) were mostly provided with some trainingutorial on
how to perform TDD. In several cases [43], the knowledge owmpd as
participants would progress with the experiment. We exgexitlack of
knowledge or experience with TDD could create problemssradop-
tion.

6.3 Results and Analysis 71

LF3:

LF4:

Insufficient design

Description: Design, in this context, refers to the activity of struetur
ing (or re-structuring) the system or software under dewalent or in
evolution in order to avoid architectural problems, andpiove archi-
tectural quality. Detailed up-front software design is ancoon practice
of plan-driven development methodologies. TDD emphases small
amount of up-front design, and frequent refactoring to keeparchitec-
ture from erosion.

Observations Three primary studies reported architectural problems
when using TDD. These were two academic experiments witthesiis
and one industrial case study with professionals.

Discussion There is no massive empirical support that the lack of aesig
should be considered as a limiting factor for industrial@ém of TDD.
However, there are a handful of studies reporting problezganding
lack of design in TDD, particularly in the development ofgar, more
complex systems. Moreover, the lack of upfront design has lome of
the main criticisms of TDD since its introduction and everhié evi-
dence supporting this criticism is sparse, so is the eviglenntradicting

it [57].

Insufficient developer testing skills

Description: By developer testing skill, we refer to the developer'd-abi
ity to write efficient and effective automated test cases.

Observations Two of the included primary studies report negative ex-
periences with developers’ testing. One study is an acadexpieriment
with student subjects, where it is reported that studentsessed diffi-
culties to come up with good test cases. The other study isdarstrial
case study with mixed professional and student subjectsenhek of
developer testing skills was stated as a limiting factor.

Discussion Since TDD is a design technique where the developer un-
dertakes development by first creating test cases and thigswode
that makes the test cases pass, it relies on the ability afétaeloper to
produce sufficiently good test cases. Additionally, Ge2& feports on
the risk it brings to adopt TDD without having adequate restkills and
knowledge. We find it interesting that there are no expliviestigations

of the quality of test cases produced by developersin TDD.

72

Paper B

LF5:

LF6:

Insufficient adherence to the TDD protocol

Description: By adherence to the TDD protocol, we refer to the de-
gree to which the steps of the TDD practice are followed. Kangple,
are test cases always created and exercised to failureebibf@rcorre-
sponding code is written? TDD is a defined practice with yaérkact
guidelines on how it should be executed.

Observations Related to this limiting factor, there are two types of ob-
servations that are of relevance. First, three industasécstudies, with
professionals as subjects, report negative experientceslesieloper ad-
herence to the TDD protocol. Reasons for abandoning the Tidgol
included time pressure, lack of discipline, and shortageofeived ben-
efits. Second, two additional industrial case studies, pitifessionals
as subjects, reported correlations between low TDD adlerand low
quality. It is noteworthy that these observations were nmiadgganiza-
tions where TDD was the preferred development method.

Discussion The combined view of the five above mentioned industrial
case studies motivate the inclusion of the lack of TDD adiegeas a
limiting factor. Basically, the studies state that (1) ifngportant to ad-
here to the TDD protocol, and (2) developers do stray fronptio¢éocol

in several situations. It is however far from certain tha&rthis a clean-
cut cause-effect relationship between low TDD adherenddam qual-

ity. Not unlikely, confounding factors (e.g., tight devptoent deadlines)
might lead to both low TDD adherence and poor quality.

Domain- and tool-specific limitations

Description: By domain- and tool-specific limitations, we refer to tech-
nical problems in implementing TDD (e.g., difficulties inrfi@ming
automated testing of GUIs). Generally, the TDD practicainess some
tool support in the form of automation framework for test@ax@on.
Observations Nine studies reported negative experiences with respect
to domain and tool-specific issues. Five of them were indalstase
studies with professionals as subjects, one was an industrivey with
both student and professional respondents and three wademé ex-
periments with student subjects. The single most repogsgki is the
problem of automatically testing GUI applications, butoatetworked
applications seem to be problematic in terms of automatshte
Discussion Proper tool support for test automation is vital for the-suc
cessful adoption of TDD. With the wide variety of studies agjng
domain- and tool-specific issues as a limiting factor in tbepion of

6.4 Discussion 73

TDD, the factor would be difficult to ignore.

LF7: Legacy code
Description: By legacy code, we refer to the existing codebase in a de-
velopment organization. Legacy code often represent @scafddevel-
opment efforts and investments, and serve as a backbonalmdisting
and future products.
Observation: Two industrial case studies with professionals as sub-
jects report problems with handling the legacy codebase iadmption
of TDD. Particularly, the automated regression test swtesinit level
(which are natural consequences of long-term TDD developynare
often missing for legacy code.
Discussion TDD, in its original form, does not discuss how to handle
legacy code. Instead, the method seems to assume that alisdé-
veloped from scratch, using TDD as the development methadthis
is seldom the case in large development organization, amopt TDD
might be problematic. A lack of automated regression sdidetegacy
code hampers the flexibility provided by the quick feedbatklbanges
provided by the regression suites, and may leave developems anx-
ious about how new changes may unexpectedly affect existidg.

6.4 Discussion

In this section we are discussing threats to validity of @search as well as
implications of our results on research and industry.

6.4.1 Threats to Validity

Typically, four types of validity are discussed in empitioasearch (i.e.con-
struct validity, internal validity external validity anceliability) [54]. Below,
the threats to these validities in our study are discussed.

Construct Validity refers to the correctness in the mapping between the
theoretical constructs that are to be investigated, anddhel observations of
the study. In a systematic review, the validity of the studgstructs is inherited
from the construct validity in the included primary studida our case, this
validity threat concerned both the actual treatment of tiraary studies (i.e.,
TDD) and the effect on study outcomes (e.g, quality or dgualent time).

First, in order to measure the effects of TDD in an empiritadyg, one must
be sure that TDD is actually used within the study. This peablvas handled

74 Paper B

differently in different studies. Some studies merely assd that TDD was
used by the set of subjects as instructed [16], some studied manual su-
pervision [5], and some studies used elaborate tools tareff€dD adherence
[20]. Second, with respect to outcome measures (i.e., feetefof TDD), the

construct validity is different for different constructdost metrics for, e.g.,
complexity are formally defined and measured, and are heotcsubjects to
threats to construct validity. However, constructs likeige quality and devel-
oper skill are subject to interpretation in each primargsgtun the review, we
sought to mitigate this threat by performing the data exiwadn two phases,
with the second phase focusing on a conformance in the irtiatpon of pri-

mary study constructs between the authors.

Internal Validity concerns the proper analysis of data. Given the het-
erogeneity of the included primary studies in the reviewerinal validity is
a subject of concern, particularly in statistical analysfishe extracted data.
However, we draw no generalized statistical conclusioganging the effects
of TDD. Rather, our contribution is a set of directions fotuite research and
industrial guidelines, based on a qualitative analysitiefaxtracted data.

External Validity relates to the possibility to generalize the study results
outside its scope of investigation. The variety of studyisgf type and domain
serves to limit the external validity threat of the reviearticularly in the cases
where limiting factors are found across several studiesfferdnt domains.
Also, by collecting study details, we had the possibilityifierentiate results
based on particular study details.

Reliability concerns the degree of certainty with which a replication of
this study, e.g., by a different set of researchers, woudttlythe same study
outcome. As the search strategy, as well as the inclusioexeidsion criteria,
is explicitly given in this study, the main reliability thmeconcerns the analysis
resulting in the aggregation from reported effects of TDDinwting factors.
Particularly effects with low construct validity may beenpreted differently
in replicated reviews. Hence, we have sought to describeetbearch process,
including the data analysis, in a transparent manner.

6.4.2 Implications for Research

Test driven development was and still is under constantstiyation of re-
searchers who are providing evidence of claimed benefitshwthiis practice
can bring to a software development team. These benefitseasb seen
in our mapping table (Table V) between effect observatios@imary stud-
ies. Most noticeable positive effect is a code quality inveraent which is

6.4 Discussion 75

one of the reasons why TDD is gaining interest. Also we carttsgeprimary
studies are reporting a positive perception of participamivards TDD. This
is something our previous study [2] also revealed.

Having those two benefits empirically addressed (qualifgromement and
positive perception of practice) we propose that the nexgigoal evaluation
on TDD should include a direct investigation on the impacttad limiting
factors we presented in Section 6.3.

Next studies could focus on a limiting factor of developmane (LF1) to-
gether with the lack of TDD experience factor (LF2) to inugate if the actual
learning curve could be generating additional time for thestiopment. How-
ever, it is important for researchers to clearly state iféased development
time was reported during unit development or it is reflecteadeerall project.
This is something we had difficulties extracting from prignatudies.

By providing more complex algorithms or working in a diffatedomain
of investigation (safety-critical systems on embeddedadefor example) re-
searchers could investigate how lack of up-front desigrBjlifluence adop-
tion of TDD. Even in a student experiment setup, Kollanug [2&8ed that
slightly complex application required more of up-front idgs

TDD is a development technique which requires from develfewrite
test cases. We noticed that primary studies are not dirgatéstigating how
these test cases are designed and whether designing tesfea$DD is dif-
ferent from how experienced testers are performing it. Bydtigating LF4
with independent teams of experienced testers and devslog the focus
on efficiency and quality of test design, researchers coaid igpsights on is-
sues such as 1) whether lack of quality in tests is limitingpithn of TDD,
and 2) the right level of testing education required for d@pers to perform
TDD.

Regarding LF5, TDD adherence needs to be further evaluAtéicst step
would be to make sure that all studies examining the effecd® also has
some means of measuring TDD adherence in the experimentialgsePar-
ticularly in industrial case studies, it would be valuahieitvestigate TDD
adherence over time, with variations in, e.g., TDD experemorkload and
type of development task. Such observations should belatedawith result-
ing measurements on quality and development time.

Regarding the more technical limiting factors (i.e., thenéin- and tool-
specific issues (LF6), and the lack of automated regressi@ssfor legacy
code (LF7)), itis our belief that research could contribwi improved meth-
ods and techniques for different aspects of test automaitimiuding auto-
mated test case generation, test case execution and tesvedisation.

76 Paper B

6.4.3 Implications for Industry

This review identifies a set of potentially limiting factaindustrial adoption
of TDD, based on aggregated observations from TDD usageiousdifferent
settings. Consequently, a set of industrial guidelinestEaderived from the
study results.

First, the limiting factors that are controllable and sfiedb the adopting
organization should be taken into account prior to TDD aidoptSpecifically,
proper training on TDD practice (relating to LF2) and testecdesign (relat-
ing to LF4) should be provided before the adoption. Addiilby) strategic
recruitments of experienced TDD developers, who mightesas/TDD men-
tors could limit the problems related to lack of TDD expeden Moreover,
TDD adoption should be considered in the light of the orgatigmal domain
(relating to LF6). For example, are the developed systeragyhen graphical
user interaction? Is there proper tool support in the exgstievelopment in-
frastructure for the level of test automation required byDrDIn addition, if
the adopting organization includes a significant legacyebade lacking auto-
mated regression test suites (relating to LF7), there shmih strategy of how
to handle this that does not collide with the TDD developnpeatocol.

Second, the limiting factors that are general and TDD-iaheshould be
considered and monitored in the adopting organizatiorn(réspect to that or-
ganization’s motives for adopting TDD). Specifically, itoshid be considered
whether a small increase in (unit-level) development tifhebserved, would
be acceptable to reach other expected benefits of TDD rglatiLF1). More-
over, it would be advisable to track the architectural guglboth based on
metrics of architectural quality attributes and develgpenception) to ensure
that the lack of upfront design does not lead to architetarmsion (relating to
LF3). In addition, although the enforcing TDD protocol upive developers
might not be a good idea, it might still be advisable to keapkrof the effects
on, e.g., quality, in situations where the TDD protocol i$ fatlowed (relating
to LF5).

6.5 Conclusion

In this paper we present our analysis results from a systeneatew of the em-
pirical studies reported in the literature on the effectgafous factors on Test
Driven Development. We identified 18 effects, out of which &revdeemed
as limiting factors on the industrial adoption of TDD. Théaetors were in-
creased developmenttime, insufficient TDD experienceftedge, lack of up-

6.6 Acknowledgments 77

front design, domain and tool specific issues, lack of dgaigkill in writing
test cases, insufficient adherence to TDD protocol, andciegade. We also
provided reasons for their inclusion as well as discusstnthe various im-
plications of these factors. We also outlined the futureaesh and industrial
challenges in the light of these findings.

From the perspective of the software testing communitg, shudy throws
open the following interesting research challenges to oeesded:

e What is the optimum level of testing knowledge essentialdoFDD
developer to be efficient?

e Are there any fundamental changes warranted by the TDD apprim
the test design techniques?

e How to integrate the TDD perspective of testing and the te'sperspec-
tive of traditional development to provide a unified theooy bringing
synergy between development and testing efforts in a marduative
manner?

e Inwhat new roles [55] and how testers could contribute witkirtknowl-
edge and experience in the adoption of TDD process withirrgansa-
tion?

6.6 Acknowledgments

This work was supported by MRTC (Mlardalen Real-Time Rese&entre)
and the SWELL (Swedish software Verification & ValidationdekLence)
research school. Authors would like to express their grdéitto Dr. Stig
Larsson for valuable comments to the review protocol.

Bibliography

[1] Kent Beck and Cynthia Andre€xtreme Programming Explained: Em-
brace Change (2nd EditionAddison-Wesley Professional, 2004.

[2] Adnan Causevic, Daniel Sundmark, and Sasikumar Puratelk Indus-
trial Survey on Contemporary Aspects of Software TestimgProceed-
ings of the 3rd International Conference on Software Tgshferification
and Validation (ICST)pages 393-401, 2010.

[3] Barbara Kitchenham and Stuart Charters. Guidelinepésforming Sys-
tematic Literature Reviews in Software Engineering. TéchinReport
EBSE 2007-001, Keele University and Durham University ti&aport,
2007.

[4] Tore Dyba and Torgeir Dingsgyr. Empirical studies ofl@goftware de-
velopment: A systematic revieinformation and Software Technolqgy
50(9-10):833 — 859, 2008.

[5] Pekka Abrahamsson, Antti Hanhineva, and Juho J&alinoimprov-
ing Business Agility Through Technical Solutions: A Caseidyt on
Test-Driven Development in Mobile Software Developmenh Blusi-
ness Agility and Information Technology Diffusjammlume 180/2005 of
IFIP International Federation for Information Processingages 227—
243. Springer Boston, 2006.

[6] Thirumalesh Bhat and Nachiappan Nagappan. Evaluatiegefficacy
of test-driven development: Industrial case studies.IS6E’06 - 5th
ACM-IEEE International Symposium on Empirical Softwareyiaeer-
ing, September 21, 2006 - September 22, 200ime 2006 ofSCE’06
- Proceedings of the 5th ACM-IEEE International SymposimnkEmpir-

79

80

Bibliography

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

ical Software Engineeringpages 356—363, Rio de Janeiro, Brazil, 2006.
Association for Computing Machinery.

Gerardo Canfora, Aniello Cimitile, Felix Garcia, Mafattini, and Cor-
rado Aaron Visaggio. Evaluating advantages of test driveretbpment:
A controlled experiment with professionals. ISCE’'06 - Rredings of
the 5th ACM-IEEE International Symposium on Empirical S¢afte En-
gineering, 2006.

G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. Xisaggio. Pro-
ductivity of test driven development: A controlled expeeint with pro-
fessionals. Product-Focused Software Process Improvement, Proceed-
ings, 4034:383-388, 2006.

Lan Cao and Balasubramaniam Ramesh. Agile requirenesigiseering
practices: An empirical studylEEE Software 25(Compendex):60-67,
2008.

L. R. Chien, D. J. Buehrer, C. Y. Yang, and C. M. Chen. Aralgation
of TDD Training Methods in a Programming Curriculur2008 leee In-
ternational Symposium on It in Medicine and Education, \foknd 2,
Proceedingspages 660—665, 2008.

Lars-Ola Damm and Lars Lundberg. Results from intradgc
component-level test automation and Test-Driven Devebamndournal
of Systems and Softwarg(7):1001-1014, 2006.

Lars-Ola Damm and Lars Lundberg. Quality impact of aalucing
component-level test automation and test-driven devesopinSoftware
Process Improvement, Proceeding64:187-199, 2007.

Madeline Domino, Rosann Collins, and Alan Hevner. Coltéd experi-
mentation on adaptations of pair programmingformation Technology
and Managemen8:297-312, 2007.

Madeline Ann Domino, Rosann Webb Collins, Alan R. Heya@d Cyn-
thia F. Cohen. Conflict in collaborative software developm2003.

Hakan Erdogmus, Maurizio Morisio, and Marco Torchia@m the Effec-
tiveness of the Test-First Approach to Programmili€EE Transactions
on Software Engineerin@1:226—-237, 2005.

Bibliography 81

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Wilson P. Paula Filho. Quality gates in use-case dridemelopment.
In Proceedings of the 2006 international workshop on Softvgaaity,
WoSQ '06, pages 33—38, New York, NY, USA, 2006. ACM.

Thomas Flohr and Thorsten Schneider. An XP Experimétht 8tudents
Setup and Problems. In Frank Bomarius and Seija Komi-jeditors,
Product Focused Software Process Improvemeasitime 3547 of ecture
Notes in Computer Sciengeages 95-111. Springer Berlin / Heidelberg,
2005.

Thomas Flohr and Thorsten Schneider. Lessons Leamosd &n XP
Experiment with Students: Test-First Needs More Teachirigsirgen
Minch and Matias Vierimaa, editoBroduct-Focused Software Process
Improvementvolume 4034 of ecture Notes in Computer Scienpages
305-318. Springer Berlin / Heidelberg, 2006.

B. George and L. Williams. A structured experiment afttdriven devel-
opment.Information and Software Technolagy6(5):337-342, 2003.

A. Geras, M. Smith, and J. Miller. A Prototype Empirié&laluation of
Test Driven Development. IRroceedings of the Software Metrics, 10th
International Symposiunpages 405-416, Washington, DC, USA, 2004.
IEEE Computer Society.

Atul Gupta and Pankaj Jalote. An Experimental Evahratf the Effec-
tiveness and Efficiency of the Test Driven DevelopmentPioceedings
of the First International Symposium on Empirical Softwregineering
and MeasurementESEM ’'07, pages 285-294, Washington, DC, USA,
2007. IEEE Computer Society.

Andreas Hofer and Marc Philipp. An Empirical Study ¢wefTDD Con-
formance of Novice and Expert Pair Programmers. In Will Aalehn
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Sa{pe
Pekka Abrahamsson, Michele Marchesi, and Frank Maureigrsdig-
ile Processes in Software Engineering and Extreme Progriaigymol-
ume 31 ofLecture Notes in Business Information Processpapes 33—
42. Springer Berlin Heidelberg, 2009.

Liang Huang and Mike Holcombe. Empirical investigatimwards the
effectiveness of Test First programmingnf. Softw. Techngl.51:182—
194, January 20009.

82

Bibliography

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

David S. Janzen and Hossein Saiedian. On the InfluengestfDriven
Development on Software DesigBoftware Engineering Education and
Training, Conference qrpages 141-148, 2006.

D. S. Janzen and H. Saiedian. Does test-driven devedapneally im-
prove software design qualitfEEE Software25(2):77-84, 2008.

David S. Janzen, Clark S. Turner, and Hossein Saiedtampirical soft-
ware engineering in industry short courses. Software Eaging Edu-
cation Conference, Proceedings, pages 89-96, 2007.

Osamu Kobayashi, Mitsuyoshi Kawabata, Makoto Sakaid &ddy
Parkinson. Analysis of the interaction between practicesritroducing
XP effectively. ICSE '06, pages 544-550, 2006.

Sami Kollanus and Ville Isométtonen. UnderstandirigD in academic
environment; experiences from two experimentsPtaceedings of the
8th International Conference on Computing Education Reteoli
'08, pages 25-31, New York, NY, USA, 2008. ACM.

Lucas Layman, Laurie Williams, and Lynn Cunningham. tMations
and measurements in an agile case stddyrnal of Systems Architectyre
52(11):654-667, 2006.

Noel F LeJeune. Teaching software engineering prasticith Extreme
ProgrammingJ. Comput. Small Coll21(3):107-117, 2006.

Liang Huang, C. Thomson, and M. Holcombe. How good araryo
testers? An assessment of testing ability. TRIC-PART 200y pages
82 -88, 2007.

Lech Madeyski. [the impact of pair programming and-@sten devel-
opment on package dependencies in object-oriented desigrexperi-
ment.

Lech Madeyski. On the effects of pair programming onrtlughness
and fault-finding effectiveness of unit test®roduct-Focused Software
Process Improvement, Proceeding589:207-221, 2007.

Lech Madeyski. Impact of pair programming on thorougésmand fault
detection effectiveness of unit test suit€sftware Process: Improvement
and Practice 13(3):281-295, 2008.

Bibliography 83

[35] Lech Madeyski. The impact of Test-First programmingooanch cover-
age and mutation score indicator of unit tests: An experimaf Softw.
Technol, 52:169-184, February 2010.

[36] Lech Madeyski and t ukasz Szat a. The impact of testedrigevelop-
ment on software development productivity - An empiricaldst Soft-
ware Process Improvement, Proceedimjg64:200—-211, 2007.

[37] Artem Marchenko, Pekka Abrahamsson, and Tuomas IhmagiTerm
Effects of Test-Driven Development A Case Study. In Will talJohn
Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Sa{pe
Pekka Abrahamsson, Michele Marchesi, and Frank Maureigrsdig-
ile Processes in Software Engineering and Extreme Progriaigymol-
ume 31 ofLecture Notes in Business Information Processpapes 13—
22. Springer Berlin Heidelberg, 2009.

[38] E. M. Maximilien and L. Williams. Assessing test-drivdevelopment at
IBM. 25th International Conference on Software Engineeringcdeed-
ings pages 564-569, 2003.

[39] Vojislav B. Misi€. Perceptions of extreme progranmmi an exploratory
study. SIGSOFT Softw. Eng. Notexl:1-8, March 2006.

[40] M.M. Miller and O. Hagner. Experiment about test-fipssogramming.
Software, IEE Proceedings149(5):131 — 136, October 2002.

[41] Matthias Muller and Andreas Hofer. The effect of edpace on the test-
driven development proces&mpirical Software Engineerind 2:593—
615, 2007.

[42] Nachiappan Nagappan, E. Maximilien, Thirumalesh Blzatd Laurie
Williams. Realizing quality improvement through test @nivdevelop-
ment: results and experiences of four industrial teafEspirical Soft-
ware Engineering13(3):289-302, 2008.

[43] Outi Salo and Pekka Abrahamsson. An iterative improsetprocess for
agile software developmengoftware Process: Improvement and Prac-
tice, 12(1):81-100, 2007.

[44] Outi Salo and Pekka Abrahamsson. Empirical EvaluatioAgile Soft-
ware Development: A Controlled Case Study Approach.5th Inter-
national Conference on Product Focused Software Procepsolament
2004.

84 Bibliography

[45] Julio Cesar Sanchez, Laurie Williams, and E. Michaekalien. On
the sustained use of a test-driven development practid&\at Proceed-
ings - AGILE 2007, pages 514, 2007.

[46] P. Sfetsos, L. Angelis, and |. Stamelos. Investigatimg extreme pro-
gramming system - An empirical studgmpirical Software Engineering
11(2):269-301, 2006.

[47] Linda B. Sherrell and Jeff J. Robertson. Pair prograngrand agile
software development: experiences in a college setingomput. Small
Coll., 22(2):145-153, 2006.

[48] Maria Siniaalto and Pekka Abrahamsson. A comparatasecstudy on
the impact of test-driven development on program designestccover-
age. Proceedings - 1st International Symposium on EmpBictware
Engineering and Measurement, ESEM 2007, pages 275-284, 200

[49] M. Siniaalto and P. Abrahamsson. Does test-driven ldgveent improve
the program code? Alarming results from a comparative dasky sBal-
ancing Agility and Formalism in Software Engineerjrg82:143-156,
2008.

[50] Odd Petter N. Slyngstad, Jingyue Li, Reidar ConradiradithRnneberg,
Einar Landre, and Harald Wesenberg. The impact of test nlidevel-
opment on the evolution of a reusable framework of companerin
industrial case study. Proceedings - The 3rd InternatiGoaference on
Software Engineering Advances, ICSEA 2008, pages 214-208.

[51] H. Wastnus and H. G. Gross. Evaluation of test-drivevettgpment -
An industrial case studyEnase 2007: Proceedings of the Second In-
ternational Conference on Evaluation of Novel ApproacleeSadftware
Engineeringpages 103-110, 2007.

[52] Laurie Williams, E. Michael Maximilien, and Mladen Vau Test-driven
development as a defect-reduction practice. InrProceedings of the
14th IEEE International Symposium on Software Reliabititgineering
pages 34-45. IEEE Computer Society, 2003.

[53] John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, anavidl S. Janzen.
Evaluating Test-Driven Developmentin an Industry-Spoedd@apstone
Project. InProceedings of the 2009 Sixth International Conference on
Information Technology: New Generatigpages 229-234, Washington,
DC, USA, 2009. IEEE Computer Society.

[54] Claes Wohlin, Per Runesson, Martin Host, Magnus C.s&dm, Bjorn
Regnell, and Anders WessléBxperimentation in Software Engineering
— An Introduction Kluwer Academic Publishers, 2000.

[55] Adnan Causevic, Abdulkadir Sajeev, and Sasikumar Bkiat. Redefin-
ing the role of testers in organisational transition to@gilethodologies.

In International Conference on Software, Services & Semdettinolo-
gies (S3T,)October 2009.

Chapter 7

Paper C:

Impact of Test Design
Technique Knowledge on
Test Driven Development:
A Controlled Experiment

Adnanéauéevié, Daniel Sundmark and Sasikumar Punnekkat
In submission

87

Abstract

Agile development approaches, in spite of the skepticisntheir appropri-
ateness in high reliability applications, are increasinpging followed and
favored by the industry. Test Driven Development (TDD) iseg kgile prac-
tice and recent research results suggest that the sudcadsfution of TDD

depends on different limiting factors, one of them beingiffisient developer
testing skills. The goal of this paper is to investigate if&lepers who are
educated on general testing knowledge will be able to etilidD more effec-
tively. We conducted a controlled experiment with mastedshts during the
course on Software Verification & Validation (V&V) where sge code and
test cases created by each participant during the labs assvidleir answers
on a survey questionnaire were collected and analyzed.

Descriptive statistics indicate improvements in statencemerage. How-
ever, no statistically significant differences could beablshed between the
pre- and post-course groups of students. By qualitativéysiseof students’
tests, we noticed a lack of negative test cases resultingrirdetection of bugs.
Students did show preference towards TDD in surveys. Therargnt was
conducted in an academic setting with student subjectengiatly threatening
the external validity of the results.

Although further research is required to fully establisis ttve believe that
identifying specific testing knowledge which is complenzantto the testing
skills of a new TDD developer would enable developers togrerftheir tasks

in a more efficient manner resulting in improved reliabilitiysoftware prod-
ucts.

7.1 Motivation 89

7.1 Motivation

Test Driven Development (TDD), also known as test-first paogming, is an
essential part of eXtreme Programming (XP) [1]. TDD requiitee develop-
ers to construct automated unit tests in the form of assertio define code
requirements before writing the code itself. In this praceevelopers evolve
the systems through cycles of test, development and refagtoln a recent
industrial survey [2], we examined the difference betwdenreferred and
the actual level of usage for several test-related practidmong the 22 exam-
ined practices, surprisingly, TDD gained the highest sobrdissatisfaction’.
This means that the accumulated absolute difference bativegreferred and
the actual levels of usage was highest in the case of TDD. ah@e of this
dissatisfaction could be stated as “Respondents wouldtdikese TDD to a
significantly higher extent than they actually do currehtly

Subsequently we explored the current body of knowledgeutittan em-
pirical systematic literature review [3] to identify therliting factors which
prevents the successful adoption of TDD. Insufficient davet testing skill
was identified as one of the important limiting factors ag p&the study.

7.1.1 Problem Statement

TDD in its essence teaches developers how to perform saftdewelopment
providing some indirect basic testing skills, for exampdsdéd orpositive test-
ing (i.e. testing to show that the software “works” using valigut). We are
interested in identifying specific testing knowledge whislcomplementary
to the testing skills of a new TDD developer. We believe thathsa strat-
egy would enable developers to perform their tasks in a mificest manner
resulting in higher quality of software products.

7.1.2 Research Objective

Using the form originated from GQM [4], the research objeebf this study
can be expressed as follows:

To analyzethe effect of testing knowledge on TDa@r the pur-
pose ofevaluation of factors affecting the outcome of Tidh

respect to théactors’ limiting effect on the usage of TCflbm the
point of view ofthe software developén the context oeXtreme
Programming software development.

90 Paper C

7.1.3 Context

To perform analysis with respect to the above objective, x@eement was
organised as lab activities with master students enrofidtie Software Ver-
ification and Validation course at Malardalen Universityridg the autumn
semester of 2010.

7.1.4 Paper Outline

This paper is structured according to the reporting gumrdsliprovided by
Jedlitschka and Pfahl [5] (although some minor deviatisomfthe reporting
guidelines were made). In section 7.2 we present the retatzhrch works
followed by the experimental design in section 7.3. Seclighpresents the
details of execution of our experiment. The treatment aradyais of the col-
lected data are given in section 7.5. In section 7.6, we ptesatistical infer-
ences followed by conclusions and future research plarmseldtion 7.7.

7.2 Related Work

Test-driven development is a practice derived from expegevhich makes it
very difficult to prove its efficiency in a formal way. This ise of the reasons
why many experiments on TDD are conducted in order to progieirical
evidence of its claimed quality improvements.

In this section we present related work on empirical ingggtons of TDD
identified in our recent systematic literature review [3pyped w.r.t two as-
pects: (i) related to testing knowledge and (ii) generakexpents on TDD.

7.2.1 TDD and testing knowledge

Sfetsos et al. [6] performed an industrial survey on adgegand difficulties
that software companies experienced when applying XP:firestvas among
the investigated practices. During interviews, develspainted to difficulties
in writing tests at the very beginning of the project.

Geras et al. [7] performed an experiment with professiomatcademic
environment providing subjects with two programs for depahent, one using
test-last and one using test-first process. One of the csindsi made from the
experiment is that without adequate training and having@rtesting skills it
is risky to adopt TDD.

7.3 Experimental Design 91

Kollanus & Isomottonen [8] analysed students’ percapgiand difficulties
on TDD in an educational context experiment. As part of tieeinclusions
they present different difficulties students had when desmtests. Generally,
students find it difficult to design appropriate test casektardesign tests in
small steps.

7.2.2 Experiments in TDD

In Table 7.1 we present experiments in TDD selected from [Bliming ex-
periment environment (industrial or academic) and typeubfexcts (students,
professionals or mixed). A brief description of the aim anagjan results of
each TDD study is also presented.

7.3 Experimental Design

This section details the design of the experiment. Furthestizal experiment
setup information, e.g., for replication purposes, cancaumél at the first au-
thor's webpagé

7.3.1 Goals, Hypotheses, Parameters, and Variables

The goal of the experiment was to test the effect of knowledgsoftware
testing ondevelopment speedrtefact qualityanddeveloper perceptiowhen
using TDD. In order to do so, the following null and altermathypotheses
were formulated:

e Development Speed:

— H%,. When using TDD, there is no significant difference between

the development speed of developers with or without knogded
software testing.

— H*,. When using TDD, developers with knowledge in software

testing develop faster.

Ihttp:/Aww.mrtc.mdh.se/"accO1/tddexperiment/

Authors Year Experiment settings Subjects

Miuller & Hagner [9] 2002 Academic Students

Aim: To evaluate benefits of test-first programming comparedattitional approach.

Results: Test-first does not accelerate programming, produced gnagare not more reliable but test-first support better under
standing of program.

George & Williams [10] 2003 Industrial Professionals
Aim: To evaluate quality improvements of test-driven developneempared to a waterfall-like approach.

Results: Test-driven development produces higher quality code thightendency of developers spending more time on coding.

Geras et al. [7] 2004 Academic Professionals
Aim: To investigate developer productivity and software qyalthen comparing test-driven and traditional development a
proaches.

Results: There were little or no differences in developer produtgiviut frequency of unplanned test failure was lower for
test-driven development.

Erdogmus et al. [11] 2005 Academic Students

Aim: To evaluate functional tests in test-driven developmergmd¢ompared to traditional test-last approach.

Results: Test-first students created on an average more tests anedtémde more productive. There was no significant
difference in quality of produced code between two groups.

Flohr & Schneider [12] 2006 Academic Students
Aim: To investigate the impact of test-first compared to clagiesting approach.
Results: No significant differences could be established, but stisdgid show a preference towards test-first approach.

Janzen & Saiedian [13] 2006 Academic Students

Aim: To examine the effects of TDD on internal quality of softwessign.

Results: Positive correlation between productivity and TDD, but iféedences in internal quality. Perception on TDD was more
positive after the experiment.

Miller & Hofer [14] 2007 Academic Mixed
Aim: To investigate the conformance to TDD of professionals andce TDD developers.
Results: Experts complied more to the rules of TDD and produced tett vgher quality.

6

D Jaded

Janzen et al. [15] 2007 Academic Professionals

Aim: To investigate effects of TDD on internal code quality.

Results: Programmers’ opinions on TDD improved after the experintentinternal code quality had no significant difference
between test-first and test-last approach.

Gupta & Jalote [16] 2007 Academic Students

Aim: To evaluate the impact of TDD on designing, coding and tgstihen compared with traditional approach.

Results: TDD improves productivity and reduce overall developmdfuare Code quality is affected by test effort regardless of
the development approach in use.

Kollanus & Isomottonen [8] 2008 Academic Students

Aim: To improve understanding on TDD in educational context.

Results: Students expressed difficulties with following TDD apprhoand designing proper tests. Regardless, they believed in
the claimed benefits of TDD

Hofer & Philipp [17] 2009 Academic Mixed
Aim: To compare conformance to TDD of experts and novice prograrsam
Results: Experts refactored their code more than novice programrhatghey were also significantly slower.

Huang & Holcombe [18] 2009 Academic Students

Aim: To investigate the effectiveness of test-first approachparad to the traditional (test-last) development.

Results: Test-first teams spent more time on testing than coding coedpa test-last teams. There was no linear correlation
between effort spent on software testing and the softwasrmead quality.

Vu et al. [19] 2009 Academic Students
Aim: To investigate how test-first and test-last methodologifes® internal and external quality of the software.
Results: Test-last team was more productive and created more tégtier8s indicate preference towards test-first approach.

Madeyski [20] 2010 Academic Students
Aim: To investigate how Test-first programming can impact braswferage and mutation score indicator.
Results: The benefits of the Test-first practice can be consideredmiirtbe specific context of this experiment.

Table 7.1: Research publications on experiments in TDD

ubisaq reluswuadx3y ¢/

€6

94 Paper C

e Artefact Quality:

— HY%,. When using TDD, there is no significant difference between
the quality of the artefacts produced by developers withitdraut
knowledge in software testing.

— HY,. When using TDD, developers with knowledge in software
testing produce artefacts of a higher quality.

e Developer Perception:

— HPy. There is no significant difference in the perception of TDD
between developers with or without knowledge in softwasérg.

— HP,. Developers with knowledge in software testing have higher
preference towards TDD than those without knowledge imsof:

testing.

Construct | Variable name | Description Scale type
Developmernt User Stories Number of user stories finished Ratio
Speed within lab session.
Artefact Defects Number of defects found in codg Ratio
Quality implementation by independent

test suite.
Artefact Coverage Statement coverage of test suiteRatio
Quality when applied to code implemen)-

tation.
Artefact Complexity Cyclomatic complexity of the| Ratio
Quality code implementation.
Developer | Ease of use The ease of use with which the Ordinal
Perception steps of TDD could be followed.
Developer | Preference Subjects’ perception of TDD. Ordinal
Perception

Table 7.2: Experiment Response Variables

The development speedrtefact qualityanddeveloper perceptioare op-
erationalized in a list of response variables, providedahbld& 7.2.

7.3 Experimental Design 95

In this experiment, the factor dnowledge in software testing opera-
tionalized using a 10-weeks half-time advanced-level aoad course in Soft-
ware Verification and Validiation. The course contents heerntinspired partly
by industrial certification courses (e.g., the ISTQB fouraa and advanced-
level certification courses [21]), and partly by scientifmucses and syllabi
(e.g., the software testing course contents proposed by@mmand Offutt [22]).
For the purpose of this experiment, a subject is said to hage/ledge in soft-
ware testing if (s)he has taken partin the course lectur@exgrcises, and not
to have knowledge in software testing otherwise. This ipsujed by the data
collected in a survey at the beginning of the experiment wher asked stu-
dents to provide information about their testing expergerfeifteen out of 22
students had no experience at all and 5 students reporteal&136 months
of testing experience. Only 2 students claimed to have 2a8syef testing
experience.

An overview of the lecture topics of the course is providedable 7.3.

Lecture topic Time
Introduction to software testing and testing fundamentals | 2h.
The test processes. 2h.
Workshop. 3h.
How to practically write test cases. 2h.
Code inspection and security testing. 3h.
Test design techniques. 6h.
Static program analysis. 2h.
Real-time testing. 2h.

Table 7.3: Overview of the Software Verification and Validatcourse con-
tents.

7.3.2 Experiment Design

The experimentdesign is detailed in Figure 7.1. Two grotdigsbjects (Group
A and Group B) worked on two different problems (Problem 1 Bnoblem 2)
as part of the labs, one before and one after the course (TBiBgon both the
occasions). During both the labs they used the Eclipse [#8prated devel-
opment environment (IDE) to create software solutions iraJaogramming
language and the jUnit [24] testing framework for writingeewtable tests.

96 Paper C

Upon completion of each of the labs, the subjects answeret @ sjuestions
in an online survey system.

labl | 1 Lab2 |

| S C ! I S
Problem1 [> Problem2 |

i o I il
1 r u 1 1 r
v P - ! L

| 1 I
Group B Problem2 H»| © S P problem1 P €
[N Y e I 1 y

| 1 1

________ 1 | R |

Figure 7.1: Design of Experiment

7.3.3 Subjects

The subjects of the experiment were software engineerirgjanatudents en-
rolled in the Software Verification and Validation courseMlardalen Uni-

versity during the autumn semester of 2010. The experimestpart of the

laboratory work within the V&V course, and the subjects eareredits for

participation. Students were informed that the final gradetfe course would
be obtained from the written exam and their performancenguiabs would

not affect their grades.

7.3.4 Objects

As stated above, the experiment used two specific softwardament prob-
lems for the experiment, namely: (i) Roman numerals comer®roblem 1)

and (ii) bowling game score calculation (Problem 2). Thec#jmations for

Problem 1 were written by us (in the form of a list of user ssyifor the pur-
pose of this experiment, whereas the specifications forlemoB (also a list of
user stories) were based on the Bowling Game Kata (i.e. rtitdgm also used
by Kollanus and Isomdttonen to explain TDD [8]). Detailatbrmation about
the problems and their user stories are provided on firsbastivebpagé

http://www.mrtc.mdh.se/ accOl/tddexperiment/

7.3 Experimental Design 97

TDD Steps:

1. Write one single test-case

2. Run this test-case. If it fails continue with step 3. If the
test-case succeeds, continue with step 1.

3. Implement the minimal code to make the test-case ryn

4. Run the test-case again. If it fails again, continue with
step 3. If the test-case succeeds, continue with step

OT

5. Refactor the implementation to achieve the simplest|de-
sign possible.

6. Run the test-case again, to verify that the refactored|im-
plementation still succeeds the test-case. If it fails-cpn
tinue with step 5. If the test-case succeeds, continue with
step 1, if there are still requirements left in the specifica-
tion.

Figure 7.2: TDD steps for development.

7.3.5 Instrumentation

As one way of ensuring that subjects properly followed tlepstof TDD, we
provided the instructions for TDD prescribed by Flohr antdr8zder [12] (see
Figure 7.2).

To avoid problems with subjects’ unfamiliarity with the jiitesting frame-
work and/or the Eclipse IDE, subjects were given an Eclipsgept code
skeleton with one simple test case. Since this was all Iddata subversion
(SVN) repository, instructions on how to obtain code fromNs&hd import it
in Eclipse was also provided to students.

7.3.6 Data Collection Procedure

Teams were instructed to upload their source codes in a Spbdkitry. This
way the lab instructor had a complete log of subjects’ ai¢iziand an option
to obtain code from specific points in time.

The subjects answered survey questions using quiz assigaiméehe Black-
board learning management system for the course. The data frosutireys
were then exported in comma separated values (.csv) fileatorm

Swww.blackboard.com

98 Paper C

7.3.7 \Validity Evaluation

During experimental design the following validity threatsre identified and
addressed:

1. Maturation
The experiment was designed to provide different problenmsibjects
on different occasions in order to eliminate the factor ofuration.

2. Problem complexity
By solving different problems at each instance of the lab lveieated

the issue of problem complexity.

3. Subjects randomisation
Subjects were assigned into teams by the first-come firgesaethod.
Teams were assigned to groups in an alternating manner.

7.4 Execution

Upon defining the experimental plan and with the start of tB&/\¢ourse, all
pre-requirements for experiment execution were in place.

7.4.1 Sample

Twenty-eight students participated in the experiment.c&ithe experiment
plan was to have students working in pairs, we instructedestts during the
introduction class to individually find a classmate thaytheuld like to work

with and send an e-mail request to the lab instructor in c@ebtain a team
number. Students were informed that their lab work would $edifor the ex-
periment, but they were not provided any details on the gbdleexperiment
itself. Also, we explicitly stated that their performanagritig the lab would
not influence the final grade of the V&V course in any way. Thealfgrade

was determined by the written exam.

7.4.2 Preparation

Team numbers were assigned in sequential order based am#heftreceipt
of the e-mail requested by the lab instructor. Problems lierteams were
assigned in an alternating manner between the two immetdiatas (ex., if

7.4 Execution 99

team i was assigned problem 1, one team i+1 was assignedeprabland
team i+2 was assigned problem 1 again etc.).

Since the lab work was time-boxed to 3 hours, a Java codetskeleas
created for students. It contained a program class with omgtye method
returning zero and a test class with one assert statemedatiay the previ-
ous mentioned method. This skeleton was made to be direnfpigited into
Eclipse as an existing project.

For each team a corresponding subversion (SVN) repositasyekeated
with read/write permissions assigned only to studentsiwithe given team
and to the lab instructor. To avoid difficulties in setting$igN and importing
projectin Eclipse, an instruction on the usage of SVN angpSelwas provided
to the students.

7.4.3 Data Collection Performed

As explained to students in the lab instruction documengy &ireating a new
test or after changing code in order to pass the existing,tasbVN commit
command had to be executed. This way the lab instructor hadngplete log
of activities during the lab and an ability to obtain sourcele of the team
at any given point in time. The absence of some students fromofthe lab
sessions were clearly visible from their SVN repositorgsithe date of source
code was not the same as the date of the lab. Such data wadeckélam the
analysis.

7.4.4 Validity Procedure

During the execution of the experiment the following valdthreats were
specifically considered:

1. Non-adherence to TDD
We had to ensure that students are following TDD as per thruct®ons
provided before the lab. Due to the nature of TDD it was nagifde for
the lab instructor to follow in real-time if all the studentere perform-
ing TDD in a correct manner. This was analysed later using #gnnd
also by looking at students survey responses where theyexeteitly
asked to which extent did they follow the instructions forelepment.

2. Reuse of an existing online solution
Internet access existed in the lab and students could paltgfind com-
plete solutions to the problems from the web. The instruatiressed

100 Paper C

this issue by explaining to the students that (i) they haveaimplete
the lab by solving one user story at the time and writing a ifipetest
case for that user story, (ii) this lab work will not increas® decrease
their final grade and (iii) the strict university rules abplagiarism are
relevant for the lab as well.

Based on the above measures and aspects we can confidetatlihatahese
validity threats are avoided during this study.

7.5 Analysis

The analysis section summarizes the data collected as svidleareatment of
the data.

7.5.1 Descriptive Statistics

Based on initial experimental plan of response variables {&ble 7.2) a de-
scriptive analysis was performed for each variable inddpatiy.

First, considering the development speed construct, Eigupresents per-
centage of user stories finished during the experimentsesas mean values

User stories finished during labs
80

70

60

50

40

30

20

Group A before Group A after Group B before Group B after
the course working the course working the course working the course working
on Problem 1 on Problem 2 on Problem 2 on Problem 1

+ Mean value

Figure 7.3: Performance mean values with error bars

7.5 Analysis 101

Coverage
110
105
100
95 I
L 4

90 T
85
20 *
75
70
65
60

Group A before Group A after Group B before Group B after

the course working the course working the course working the course working
on Problem 1 on Problem 2 on Problem 2 on Problem 1

* Mean value

Figure 7.4: Code coverage mean values with error bars

Complexity
40
35
30
*
25
*
20
15 *
¢

10
5
0

Group A before Group A after Group B before Group B after

the course working the course working the course working the course working
on Problem 1 on Problem 2 on Problem 2 on Problem 1

* Mean value

Figure 7.5: Code complexity mean values with error bars

with standard error deviation. As the figure shows, the dgakent speed was
relatively unaffected in both groups before and after thase.

Second, considering the artefact quality construct, g4, 7.5, and 7.6
present percentage of statement coverage of studentsuiss, cyclomatic

102 Paper C

Defects
7
6
5
® I
4
4 L
3 $
2
1
0
Group A before Group A after Group B before Group B after
the course working the course working the course working the course working
on Problem 1 on Problem 2 on Problem 2 on Problem 1

* Mean value

Figure 7.6: Defects found mean values with error bars

Ease of TDD usage

Hlabl
8
Lab2
6
4
2 o]
0
1 2 3 4 5 6 7 8
Impossible Straightforward

Figure 7.7: How difficult was it to follow steps for developnte

complexity of the code, and the number of defects detectexhbipdependent
test suite respectively. These measures are given as mie@s vath standard
error deviations. In the case of code coverage, it can bemmtkat both post-
test groups had better mean values than the pre-test grisuiee complexity

and defects metrics, the differences between the experioigects seem to
obscure such visible results, if they exist.

7.5 Analysis 103

Consider TDD in future development

Mlabl
Lab2

1 2 3 4 5 6 7 8
No I will always use those Steps

Figure 7.8: Students perception of TDD

Finally, Figures 7.7 and 7.8 provide results related to #aeetbper percep-
tion construct. The first of these figures presents the surtudést responses
on the ease of use with which the steps of TDD are followedbs.l@ossible
responses varies from 0 to 7 where 0 means impossible tavfalhml 7 means
that following TDD was straightforward. Data is presentedlioth instances
of labs. Figure 7.8 presents the sum of student responsé®qretception of
TDD. Possible responses vary from 0 to 7 where 0 means thégatitonsider
using TDD in future developmentand 7 means they will alwasesTDD. Data
is presented for both instances of labs. Generally, stsdennd TDD to be
a preferable development method that is easy to use. Hoytheee is no ob-
vious difference between the pre-experiment and postrarpat perceptions
on this matter.

7.5.2 Data Set Reduction

Source codes of 17 teams (9 from Group A and 8 from Group B) 8rstil@lent
responses in survey questionnaires were collected foysisallThe difference
of 6 students were due to the fact that some students did hot file ques-
tionnaire but did perform the lab.

When the actual source code analysis was performed adalitiate points
had to be removed. The projects of teams 4 and 13 were exctiwetb sev-
eral syntax errors which made the complete solution unclaolgi and irrele-
vant for any of the analysis. During code coverage analykisge deviation

104 Paper C

occurred with Team 14. A detailed analysis revealed thalestts did not write
any test cases during the lab but they subsequently subntésts in SVN.
Since this was opposite from the TDD practice stated in fladiinstructions,
data from this team was also excluded.

After removing data from those three teams, in final we had gaints
from:

e 14 teams (7 from Group A and 7 from Group B) for source codeyaigl
and

e 22 student responses for survey questionnaire analysis.

7.5.3 Hypothesis Testing

Hypothesis testing was performed in two steps: FirstMaan-Whitney non-
parametric test was used to ensure that the differencespomnse variable data
between the experiment groups and between the experimgutehvere sta-
tistically nonsignificant. The: was set to 0.05, and consequently a resulting
score of more than 1.96 or less than -1.96 was required to shsignificant
difference between the objects or the groups.

The result of this analysis is shown in Table 7.4. As can be f&en the
table, there were no significant differences between theraxgnt objects or
groups, with the exception of a significant difference inembgomplexity. This
parameter is consequently omitted from further analysis.

Second, on the basis of the nonsignificant differences lmte&periment
objects and groups, thé&/ilcoxon signed rank test for paired nonparametric
data was used in order to test the null hypotheses of the iexpetr. As in
the Mann-Whitney case, the was set to 0.05. The result of this analysis is
shown in Table 7.5. For a null hypothesis to be rejected, reguired that
min(W,., W_) < Critical W holds. As shown in the table, none of the exper-
iment’s null hypotheses can be rejected based on the cadlelztta.

Development speed| Artefact quality Developer perception

User Stories Defects | Coverage| Complexity | Ease of use| Preference
Group A vs. Group B| -0.16 -0.80 -0.34 -1.36 -0.30 1.34
Roman vs. Bowling | 0.02 -1.91 0.05 -2.64 0.19 0.09

Table 7.4: Mann-Whitney z scores for differences betwegregment groups and objects. A significant difference in

complexity between the experiment objects is found.

)

Construct (Null hypothesis) | Parameter | W, | W_ | min(W,,W_) | Critical W

Development speedi(o) User Stories| 52.5 | 52.5 | 52.5 21 (14 non-zero differenceg
Artefact quality H%o) Defects 225]| 13.5| 135 4 (8 non-zero differences)
Artefact quality HYo) Coverage 25 80 25 21 (14 non-zero differenceg
Artefact quality H%o) Complexity | Not tested

Developer perceptiorH?y) | Ease of use | 30 25 25 8 (10 non-zero differences)
Developer perceptiorH??,) | Preference | 30 15 15 6 (9 non-zero differences)

Table 7.5: Testing of null hypotheses of the experimentgitie Wilcoxon signed-rank test

sisAleuy g/

S0T

106 Paper C

7.6 Interpretation

7.6.1 Evaluation of Results and Implications

When looking at the descriptive statistics results of camecage variable we
can notice a positive increase in performances of both theggwhen compar-
ing before and after the course results. Even though thesenevatatistically

significant differences in code coverage values (no nulloiypses could be
rejected), we would like to emphasise that, on an averageydbt performing
group before the course was still worse than the worst grétepthae course.

maX(A) B)pT&COUTSB < ml n(A7 B)pOStCOUTSB

The level of complexity of the students program solutionarged for both
groups from one lab to another, but this change had one direfdr Group
A and another for Group B. What we can only conclude from thisds that
solutions for Problem 1 are of higher complexity than solusifor Problem 2.
We expected the number of defects variable to provide usandtinect way
of evaluating the impact of testing knowledge. An independeite of test
cases for each problem was created but we could not use ietulhextent
since different teams finished different number of useriesorThis resulted
that every team had on an average four bugs and in most casss ¢buld
have been found by test cases designed using negative ségh tiechnique.

How strictly TDD was followed

®Lab 1
Lab2

1 2 3 4 5 6 7 8
Not at all Completely

Figure 7.9: Students adherence to TDD

7.6 Interpretation 107

Students claimed they adhered to the TDD practice duringtperiment
to a high extent, which could be seen from the survey dateepted in Fig-
ure 7.9. The ease of usage of TDD practice was also reportethigh extent
(Figure 7.7) but interestingly students did not feel the safnout their prefer-
ence of using TDD in future development (Figure 7.8).

7.6.2 Limitations of the Study

Typically, four types of validity are discussed in empitioasearch (i.e.con-
struct validiity, internal validity, external validityandreliability) [25].

Construct validity refers to the correctness in the mapping between the
theoretical constructs that are to be investigated, andd¢heal observations
of the study. Some of the constructs investigated in thidystre not triv-
ially defined, and may be subject to debate (particularlphéndase oértefact
quality and testing knowledge In order to mitigate this problem, we have
used standard software engineering metrics (e.g., coiitplaxd coverage),
and provided detailed information on the operationalaabtf each construct
involved in the experiment.

Internal validity concerns the proper analysis of data. The statistical strat
egy used in this paper was to first eliminate the possibifitmajor confound-
ing variables affecting the result (i.e., testing for diffieces between experi-
ment objects or groups), and second, to test the null hypethd-urthermore,
as the normality of the data could not be assumed, we usega@metric tests
to conduct these hypothesis tests. However, regardlebe aittategy used, it
is without question a fact that the sample size of the dataswal, which is
a major limitation for statistical analysis (and poteniallso a cause for the
inability for null hypothesis rejection). The only way tosmve this matter is
through replications of the experiment.

External validity relates to the possibility to generalize the study results
outside its scope of investigation. As many of the previpysiblished ex-
periments on TDD (see Table 7.1), this experiment is peréarin a course
setting and suffers from the consequent threats to exteatidity (e.g.,stu-
dent subjects, small scale objects, short experiment gumatlt is, however,
uncertain to what extent this affects the results, as weatrexamining a prac-
tice (TDD) directly, but rather assessing whether the fradimproves given
the acquisition of a certain knowledge.

Reliability concerns the degree of certainty with which a replication of
this study, e.g., by a different set of researchers, woudttlythe same study
outcome. Here, as the experiment package and guidelinesaate available

108

Paper C

for replication purposes, the major reliability threatateks to the replicated
execution of the V&V course. On the other hand, without hgvamy deeper
insight as to what specific testing knowledge would be beiaéfior TDD, this
needs to be considered for future work.

7.6.3 Lessons Learned

Usage of SVN repository

The SVN repository enabled the lab instructor to accessdhece code
and the test cases with the proper timestamps. SVN faetlitetsier
management and organisation of the experimental artefatttsappro-
priate access rights.

Survey questionnaires

After each lab, participants answered a series of quesiibas online
survey system. This provided valuable qualitative ingghto the ex-
periment design and execution.

Lab instructions

By providing students with detailed instructions for thé e min-
imised the possibility of misinterpretation by the studess well as the
need for manual interaction with the lab instructor.

Code skeleton

By providing students a code skeleton at the beginning oflahewe
eased the learning curve and the students were able to stiathe ex-
periment immediately.

Inability to enforce larger participation

We had 65 students at the start of the experiment, but dueriouga
reasons we ended up with a data set from 28 students only.ikVetitat
the experiment would have provided more statistically iiggnt results
if we could motivate a larger participation.

Predefined time-boxing

Instead of providing fixed time duration of the lab, it wouldvie been
better for the experiment to require a specified number of sigies
that had to be completed by the participants. This would leaabled
us to use the same independent test suite for every solutiatided by
the participants in a automated manner whereas in the duetup we

7.7 Conclusions and Future Work 109

had to distinguish the participants based on the numbereaf steries
completed and manually conduct the testing.

Additional Observations

Upon execution of an independent test suite on the partitssource code we
noticed that 95% of the errors observed were related to wifsggebehaviours.
Detailed analysis of source code and test suites reveaéhthoth occasions
(pre- and post-course) students mostly used positive &sigul techniques,
which is referred in literature as “positive test bias” [28h many of these
cases usage of negative test design techniques would halkednhe students
to capture those errors easily.

We believe that the root cause for this observation coultiééuindamental
implicit orientation of TDD towards positive test desigrch@iques since the
goal is always to create the test case for a given requirem€his points
towards the need for specific test design knowledge suchgedinetest design
techniques to be provided to the developers adopting TDBsin tlevelopment
process together with the basic testing knowledge.

7.7 Conclusions and Future Work

In this section a summary of the study results with diredifor future work
are presented.

7.7.1 Relation to Existing Evidence

In related works section we mentioned three research papen® participants
of their studies expressed difficulties with testing andforstructing test cases.
Opinions of the subjects of our study pointed out that tgskinowledge had
a relatively significant positive impact on how they perfeaTDD as can be
seen in Figure 7.10. However, based on qualitative data &onexperiment,
we also inferred that our respondents had problems wittingeaegative test
cases.

7.7.2 Impact

A growing number of research publications empirically enging TDD im-
plicitly suggest that TDD will most likely provide benefit bfgher code qual-
ity to the organisation which decide to implement this depetent process.

110 Paper C

Impact of testing knowledge on TDD

-3 2 -1 0 1 2 3
Significant negative Significant positive
impact impact

Figure 7.10: Students opinion on impact of testing knowéedg TDD

However, to the best of our knowledge, there are no reporfaiture of im-
plementing or adopting TDD within a specific organisation.this context a
more relevant research question could be: where and why TliDat work
and how to overcome those factors?

Our experiment is a initial attempt to address this reseguatstion from
an orthogonal perspective by evaluating specifically waetisting knowledge
can support TDD in practice or it could be considered as ditignifactor (as
stated in [3]). Though the present study is inconclusivepitns up several
interesting challenges for the research community. Wesbelihat identifying
specific testing knowledge which is complementary to thérngsskills of a
new TDD developer that would enable developers to achiexferpeance effi-
ciency and higher quality of software products, will haveeagimpact on the
industrial adoption of TDD.

7.7.3 Future Work

In this study we presented a detailed experiment with stisdessubjects, mak-
ing it more accessible for other researchers to replicajgediorm a similar
experiment. Alongside of providing more evidence on howegeahtesting
knowledge supports TDD in practice, we think an evolvingeripent should
be created with more specific focus. This experiment would pessibility to
directly investigate the effect of knowledge of negativitegy on TDD prac-
tice. It could be designed in a way to provide education tgestb specifically

7.7 Conclusions and Future Work 111

on how to design test cases for unspecified system behaaodrsise that
knowledge when performing TDD of software systems.

TDD per se provides an excellent opportunity for improvitgle quality
by imbibing “test culture” in the development community. etence to TDD
results in the generation of automated and executabledasssaluring the de-
velopment phase itself, thus improving the testability e system require-
ments. However, as indicated by our study, TDD needs to bpleopgnted
with new process steps or test design techniques, whicld gmientially fur-
ther enhance the robustness and the reliability of the syste

In a long term research perspective, we also intent to paréor industrial
case study investigating how experienced developers damuidfit from testing
knowledge and what kind of specific testing knowledge thegdria order to
increase the quality of the code artefacts they produce.

Acknowledgments

This work was supported by the SWELL (Swedish software \taifon &
Validation ExcelLence) research school through VINNOVAvEslish Gov-
ernmental Agency for Innovation Systems) and the OPEN-SNE-B7 re-
search project.

Bibliography

[1] Kent Beck.Extreme programming explained: embrace chargddison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[2] Adnan Causevic, Daniel Sundmark, and Sasikumar Puratelk Indus-
trial Survey on Contemporary Aspects of Software TestimgProceed-
ings of the 3rd International Conference on Software Tgshferification
and Validation (ICST)pages 393-401, 2010.

[3] Adnan Causevic, Daniel Sundmark, and Sasikumar Puratelactors
Limiting Industrial Adoption of Test Driven Development: 3ystematic

Review. InProceedings of the 4th International Conference on Softwar

Testing, Verification and Validation (ICST)011.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Romth. The Goal
Question Metric Approach. liEncyclopedia of Software Engineering
Wiley, 1994.

[5] Andreas Jedlitschka and Dietmar Pfahl. Reporting Glinds for Con-
trolled Experiments in Software Engineering. In R. Jefferyl., editor,
Proceedings of the 4th International Symposium on EmgiSwdtware

Engineering (ISESE 2005)ages 94-104. IEEE Computer Society, 2005.

[6] P. Sfetsos, L. Angelis, and I. Stamelos. Investigating €xtreme pro-
gramming system - An empirical studgmpirical Software Engineering
11(2):269-301, 2006.

[7] A. Geras, M. Smith, and J. Miller. A Prototype Empiricard&uation of
Test Driven Development. IRroceedings of the Software Metrics, 10th

International Symposiunpages 405—-416, Washington, DC, USA, 2004.

IEEE Computer Society.

113

114

Bibliography

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Sami Kollanus and Ville Isomottdnen. Understandidgdin academic
environment; experiences from two experimentsPtaceedings of the
8th International Conference on Computing Education Reteoli
'08, pages 25-31, New York, NY, USA, 2008. ACM.

M.M. Muller and O. Hagner. Experiment about test-firsbgramming.
Software, IEE Proceedings149(5):131 — 136, October 2002.

Boby George and Laurie Williams. A structured expeniinaf test-driven
development. Information and Software Technolqg§6(5):337 — 342,
2003.

Hakan Erdogmus, Maurizio Morisio, and Marco Torchia®m the Effec-
tiveness of the Test-First Approach to Programmili€EE Transactions
on Software Engineerin@1:226—-237, 2005.

Thomas Flohr and Thorsten Schneider. Lessons Leamosd &n XP
Experiment with Students: Test-First Needs More Teachirigsirgen
Munch and Matias Vierimaa, edito8roduct-Focused Software Process
Improvementvolume 4034 of ecture Notes in Computer Scienpages
305-318. Springer Berlin / Heidelberg, 2006.

David S. Janzen and Hossein Saiedian. On the Influenges#fDriven
Development on Software DesigBoftware Engineering Education and
Training, Conference qrpages 141-148, 2006.

Matthias Muller and Andreas Hofer. The effect of exipace on the test-
driven development proces&mpirical Software Engineerind 2:593—
615, 2007.

David S. Janzen, Clark S. Turner, and Hossein Saiedtampirical soft-
ware engineering in industry short courses. Software E@ging Edu-
cation Conference, Proceedings, pages 89-96, 2007.

Atul Gupta and Pankaj Jalote. An Experimental Evahratf the Effec-
tiveness and Efficiency of the Test Driven DevelopmentPioceedings
of the First International Symposium on Empirical Softwregineering
and MeasurementESEM ’'07, pages 285-294, Washington, DC, USA,
2007. IEEE Computer Society.

Andreas Hofer and Marc Philipp. An Empirical Study ¢wefTDD Con-
formance of Novice and Expert Pair Programmers. In Will Aalehn

Mylopoulos, Norman M. Sadeh, Michael J. Shaw, Clemens Sa{pe
Pekka Abrahamsson, Michele Marchesi, and Frank Maureigradig-
ile Processes in Software Engineering and Extreme Progriaigyrmol-
ume 31 ofLecture Notes in Business Information Processpapes 33—
42. Springer Berlin Heidelberg, 2009.

[18] Liang Huang and Mike Holcombe. Empirical investigatimwards the
effectiveness of Test First programmingnf. Softw. Techngl.51:182—
194, January 2009.

[19] John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, anavidl S. Janzen.
Evaluating Test-Driven Developmentin an Industry-Spoedd@apstone
Project. InProceedings of the 2009 Sixth International Conference on
Information Technology: New Generatigpages 229-234, Washington,
DC, USA, 2009. IEEE Computer Society.

[20] Lech Madeyski. The impact of Test-First programmingoanch cover-
age and mutation score indicator of unit tests: An experimaf Softw.
Technol, 52:169-184, February 2010.

[21] The International Software Testing Qualifications BbaISTQB).
http://www.istgb.org.

[22] Paul Ammann and Jeff Offuttintroduction to Software TestingCam-
bridge University Press, Cambridge, UK, 2008. ISBN 0-52088-1.

[23] Eclipse. http://www.eclipse.org.
[24] jUnit Framework. http://www.junit.org.

[25] Claes Wohlin, Per Runesson, Martin Host, Magnus C.s8it, Bjorn
Regnell, and Anders WessléBxperimentation in Software Engineering
— An Introduction Kluwer Academic Publishers, 2000.

[26] Laura M. Leventhal, Barbee Teasley, Diane S. Rohimaud, léeith In-
stone. Positive Test Bias in Software Testing Among Prafesss: A
Review. InSelected papers from the Third International Conference
on Human-Computer Interactigormpages 210-218, London, UK, 1993.
Springer-Verlag.

Chapter 8

Paper D:

Redefining the role of testers
In organisational transition
to agile methodologies

AdnanCaugevi¢, A.S.M. Sajeev and Sasikumar Punnekkat
In proceedings of International Conference on Softwareyi6es & Semantic
Technologies (S3T), Sofia, Bulgaria, October, 2009

117

Abstract

Many challenges confront companies when they change theiemt software
development process to an agile development methodoldwysélchallenges
could be rather difficult but one that requires considerabitention isthe inte-
gration of testing with developmerithis is because in heavyweight processes,
as in the traditional waterfall approach, testing is a phaften conducted by
testers as part of a quality assurance team towards the e¢hd dévelopment
cycle whereas in the agile methodology testing is part ofretinaous devel-
opment activity with no specific “tester” role defined.

In this paper we consider several options for testers whesrganisation
transit to agile methodology, and propose a megject mentorole for them.
This role aims to utilize the knowledge that testers alrelaglye in both the
business domain and the development technology togetttetiveir expertise
in quality practices. This role will enhance the statureesitérs as well as
enable the company to effectively deploy the testers in #ve @nvironment.
Motivations and benefits for this role are presented in thjsgp together with
our plan for evaluation of this proposal.

8.1 Introduction 119

8.1 Introduction

Software development processes have evolved over timaenalith projects
becoming costlier and complex. The biggest change sincedr{dy proposed
the Waterfall model came with the introduction of Agile medlologies. Un-
like heavyweight processes such as the Waterfall modéé pgicesses has en-
couraged customer involvement throughout the developoyete. However,
initially agile processes were implemented in smaller gty with smaller
teams where the risk of trying out a new process was relgtiselall. In-
creasingly, larger organisations are looking at transitib their processes to
agile methodologies [2].

Testing is a prominent and continuous activity in agile psses. Paradox-
ically, however, testers who migrate from heavyweight psses could find
their role to be diminished when their organisation implats&gile processes.
The reasons for this paradox include:

o the shift from testing being a high profile quality controgse to a low
profile routine (daily build and test) activity

¢ the developers having the responsibility to test the uhiy build

e the need for regular interaction between developers ardrgeas the
system gets built incrementally

Those who transition from a heavyweight process to an agibaod some-
times feel that they are being micromanaged because of ttetatt interaction
with project leaders [3]. Testers who had the role of potidime quality of the
product could feel even more out of place in an agile enviremtyunless the
transition is gradual, made with the cooperation of theetssand with ade-
quate training. The important question to consider is nottiver we need a
role for testers when transitioning to an agile process thatwole will they
transit into.

In this paper, we study different models for the transitiéa ¢ester’s role
from a heavyweight process to an agile environment. We éhtentest the
models to assess their suitability for transitions in thed weorld. The rest of
the paper is organised as follows. In Section 8.2 we distesissues involved
in transition to agile with respect to the role of testersSkttion 8.3 we dis-
cuss two other approaches from the literature. Sectioni@gepts th@roject
mentormodel. In Section 8.5 we outline evaluation strategies tckhhe va-
lidity of the approach and finally Section 8.6 provides theailosions together
with the future work.

120 Paper D

8.2 Transition to agile

Before investigating possible options for a tester or bgsteam organisation
should define goals and parameters of transition in ordeindoge the appro-
priate option for existing testers within the company.

8.2.1 Organisational goal for transition

Organisation should clearly define its goal for the propdsaasition to agile
environment.

One of the possible goals could be to reduce the number ofogragps and
often the first target is the testing team. Every employeevisl@able asset to
the company and when observed as a resource testers are ratehatuable
than often perceived. If down-sizing is the main goal of &iian then it must
cover other teams as well and not only the testing department

Most common goal for a company would be to maintain currentimer of
employees with minimum or no investment during the traosipirocess. The
only concern for having this goal is a period of transitioattbould take longer
than necessary. Testers will have to learn and adopt to a nevegs as they
enter the transition. However, without any formal trainorgight motivation,
they could have suspicion whether agile is a correct way ofgidevelopment.

Setting up an efficient transition process as an organisatigoal would
require to have existing number of employees in place ands$tiple hire
additional experts. Most importantly, provide significarestment in training
of the personnel. This company goal will provide employesttin the whole
process of transition and raise motivation for its sucagssfplementation.

8.2.2 Parameters of transition

Different parameters should take into consideration whaking the transition
decision. Possible parameters could be:

1. To what extent: Pure agile or Hybrid?

Some companies can adopt their development process tonagfiiteod-

ology only up to certain extent. On micro level, software iaegring

can be done in agile manner, but on a macro level things magk |
like developed in stages (waterfall). Example for thisigetwould be in

companies where product development include hardware @fihdsse

parts.

8.2 Transition to agile 121

2. Physical Location/Distribution of teams

Consideration regarding physical location of the develeptrand the

testing teams is important because some options would ramdssble to

successfully implement if teams are distributed. Alsoné®f the team

itself is distributed among several locations that couthte obstacles in
implementing certain options for transition.

8.2.3 Options for testers during transition

Here we describe several options for the organisation daggtesters in tran-
sition to agile. For each of options we also describe theisand cons.

1. “Fire the testing team”

Process change should not start by firing existing employ€ks can
lead to wrong assumptions on how efficient new methodolodjyaeiu-
ally perform. Also, educating software tester and adoptingompany
context or even a project requires significant amount ofueses. If
reducing number of employees is a goal for transition practeen it
should be extended to all teams within a company.

2. “Convert them to developers”

Converting testers to active developers would be a reas®oation to
consider, but it is not reasonable to expect testers to bectavelopers
without any formal education and specially in a short timaquk Big
risk with this option is a longer period to completely acla¢ransition.

3. “Ask them to write test cases with developers”

One of the first challenges for developers transitioningditeawill be
writing unit tests and understanding test driven develagmanciples.
Putting testers to work with them could be a working solutior only
in a short term perspective.

4. “Provide them with a new role Project Mentor”

This option represent the proposal of this paper in which rgdrging to
get more added value to testers in agile environment by gimyithem
a new role of mentoring the whole project development pracdshis
option and motivation for it are explained in Section 8.4.

122 Paper D

8.3 Models for Transition of Testers

In this section, we are discussing two existing approacbesdlving tester
role while transitioning to agile environment.

8.3.1 Sumrell’'s approach

Sumrell [4] reports their experience in transitioning frovaterfall to Scrum.
One of the major issues was to decide how to transform the @# &nd their
testing strategies to the new environment. The approaemtak the QA team
is to continue to have the primary responsibility of testibgt share it with
developers and project managers. Instead of testers wyaititil the parts are
ready for test, the new approach would be a quicker buildecgol that the
QA team can do its work rather than having to wait. Retrairimgeeded
for QA personnel to be able to instrument code for testingemathan rely
on previous practices of automated testing strategies. edMery unit testing
becomes largely the responsibility of the developers.

We can identify several characteristics of this approache,@he role of
tester is somewhat diminished because some of the testimapisione by the
developer. The tester requires retraining on the techaidal The tester needs
to work more closely with developers and project managars thquiring a
higher level of group working skills. We hypothesise thasirch an environ-
ment, a tester needs to be given adequate training for #risition, otherwise,
it is likely that he or she will fail in the new environment wieethey are not in
control of quality, and becomes just another member of a team

8.3.2 Gregory-Crispin approach

Gregory and Crispin [5] discuss in detail the role of testeragile develop-
ment. Our model has some similarities with their approadteifrecommen-
dation is to make testers a part of the development team. dlaef testers is
to help clarify customer requirements, turn them into testsl help developers
understand the customer requirements better. Testeramepdak the domain
language of the customer and the technical language of tredageers.

The characteristics of this approachincludes, an inctbiade for testers as
the link between customers and developers in addition tio thke of testing.
A shift in their work environment as they move from the Qualtssurance
Division to be part of development pairs or groups. They phidp will need

8.4 Our approach 123

retraining on interpersonal skills to work closely with tursers and develop-
ers more than they are used to in the past.

8.4 Our approach

We create a new rolgaroject mentoiin the transition from a heavyweight to an
agile process. This role is different from the role of a coatiich is promoted
in some of the agile processes. While a coach’s role is to petple adopt
and implement the agile process, the role of the mentor irogegtris (1) to
interact with all stake holders, primarily the customerd davelopers and (2)
to ensure that all stake holders contribute to the qualitthefproduct under
development.

Managing the expectations of customers is a difficult tasknip software
development project. A major task of project mentors is toagge the expec-
tations of the customers and other stake holders. Thismegjdbmain knowl-
edge and the ability to speak in the language of the custométish often
programmers lack. Similarly, for managers, recognisimgitinitations of pro-
grammers is also a difficult task. Managers without a tecirbackground
often fail to understand difficulties which are faced by peogmers on a daily
basis. Project mentors, we believe, will be in a position eéttdy appreciate
these difficulties and translate them to other stake holdiéhsthe help of their
domain knowledge.

Agile processes try to improve quality by making quality simdy’s busi-
ness, not just of a quality assurance division. Testingrieagpthrough out the
development process, not just at the end of the process-chAgijile process
are sometimes called test-driven methodologies [6] fartbason. However, a
drawback of this approach is that while everyone is expedctptbduce quality,
not everyone is trained in quality assurance. A mentoris oblhelping others
to implement quality in their daily activities could cortute significantly to
the success of the project.

We argue that the testers in a heavyweight process moddialeest cate-
gory of people for this new role as project mentors in an agéasition. The
reasons are:

e As Gregory and Crispin [5], pointed out, testers have thealorknowl-
edge to interact with customers as well as the technical ledye to in-
teract with developers. They have acquired these skillsderdo imple-
ment their domain-oriented blackbox testing and the simeebriented

124 Paper D

whitebox testing strategies. Therefore, testers are inl@al position to
become the link between the customers and the programmers.

e Testers are trained to be quality assurance personnel. hy hmeavy-
weight process organisations, they are part of the quadgyrmance divi-
sion. Thus it is much easier for them to transfer their qualgsurance
skills and mentor other personnel in inculcating the muebid quality
culture in the agile process.

We believe that there are several benefits for transforneisigts as project
mentors while transitioning from a heavyweightto agileqass. Some of them
are:

e Managers sometimes express more confidence in their téisterpro-
grammers because programmers tend to sometimes promisetaie-
liver (the code is 99% complete syndrome) whereas testitnshat is
going wrong (i.e., the defects discovered).

e Testers are likely to become less effective or even densaalf they are
asked to be developers, because it may be difficult for theitetatify
themselves with this new role easily . On the other hand, &iamced
role such as project mentoring is likely to boost their meral

e The role of project mentors which includes helping custanenwrite
their acceptance tests and developers to write their usth tdilises the
testers’ talent in an appropriate manner in the new progessomment.

e Testers are no longer confined to a single location (the tyedisurance
division), instead they are made "agile” and are distridutaoughout
the project locations, consistent with the agile philogoph

8.4.1 Comparison of the models

Table 8.1 provides a comparison of the two existing modelmftiterature
and the “Project Mentor” model with respect to various atp®é concern
testers may have while transitioning from traditional heeeight to an agile
methodology. Comparison is based from a testers perspexitering follow-
ing aspects (1) Testers’ stature (2) Additional skills rexk(B) Responsibility
and (4) Mobility.

8.5 Evaluation plan 125

Aspect of concerh Sumr.ell’s Gregory-Crispin The project
experience approach mentor model
Testers’ stature Little change Slightly reduced Enhanced
Additional skills | Both technical and Mainly people skills Mainly people skillk
needed people skills

Share with developers, Share with
project managers developers
Mobility Little change Little change Enhanced

Responsibility A unique role

Table 8.1: Models Comparison on Testers role from HeavyidaAgile

8.4.2 Motivation for the new role

There are reports [7] [8] of Test Driven Development as atmaaevhich im-

prove quality and provide benefit to testing in general. Bubrider to gather
testers practice and preference in particular, an in@glstirvey [9] on software
process practices, preferences and methods is conduatatsig data from
this survey, we found out that testers preference is highignted thowards
incremental design, code and delivery of software. Testersupporting fre-
quent meetings with project members for the purpose of @pdatprogress,
but only if those meetings are planned in advance. They @@ @bsitive
thowards having test cases written prior writing code. regéngly, most of
testers agrees that managers should clearly define eachnteambers role.
We think that those testers preferences are indicating migtivating reasons
for including them in agile development with the spedjfioject mentorole.

8.5 Evaluation plan

In order to evaluate the validity of the proposed model westaeveloped the
following research hypotheses:

H1: Testers in current heavyweight processes have significentieens about
their transition to an agile process.

H2: Testers who have changed their role to developers when gamisation
moved from a heavyweight process to an agile process wereapgty
to change roles.

H3: Testers favour a role of project mentors (as defined in thigepan an
agile environmentin preference to a developer role or ateste shared
with developers.

126 Paper D

H4: Managers look favourably at testers transitioning into le af project
mentors (as defined in this paper).

To test the above hypotheses there are two approaches wakeaqaantitative
and qualitative. Quantitative analysis will be based onraesuof a sample of
the population of testers and managers. A survey instrumidrite developed
with items to assess testers’ views on the above issues.ufheydata will be
statistically analysed to test for significance.

If a quantitative approach proves to be infeasible theresaveral qualita-
tive solutions possible. One is the method of using caseestuth this case we
will choose a limited number of organisations including stteat have already
converted to agile process method and others which aredmmigj transition-
ing to agile process methods. Data gathering will involhedaminantly semi
formal interviews with predetermined questions (with tipdan of asking clar-
ifying questions).

8.6 Conclusions and future work

Agile process methodology started as a small team smakg@rojethod for
less riskier projects. Recently, the interest in the metihmgly has grown
and large organisations are seriously looking at transitigpfrom their heavy
weight processes to agile methods. One of the major chaimgthe transi-
tion of personnel is how to find appropriate roles for testdien testing is not
a stand-alone major phase in the development process.slpdiper we have
presented our views on the issue of dealing with the testiags within a
company while transitioning from a heavyweight to agileqasses. We argue
that it would be beneficial for the organisation to clearlyirke its goals and
options during the transition process. We have also predehte standard op-
tions followed by transition managers together with tworapghes proposed
recently by researchers. We have proposed a new role c&legett mentor”
for the testers in the new agile environment, and presetgeativantages. In
this role testers could effectively use their business doiki@owledge as well
as technical expertise to become the main liaison betwestormers and de-
velopers in order to manage their expectations and goalsghss assist in
both in writing test cases and testing the system as it esolde also sketched
briefly our evaluation plan which we intend to take up in outufe work. Our
ongoing work also tries to address appropriate implememtatrategies for
the proposed project mentor role.

8.6 Conclusions and future work 127

Acknowledgments

The authors would like to acknowledge the partial suppavisied by FLEXI-
ITEA2 project and PROGRESS research ceftre

http://www.flexi-itea2.org
http://www.mrtc.mdh.se/progress

Bibliography

[1] Winston W. Royce. Managing the Development of Large Bafe Sys-
tems: Concepts and TechniquesTathnical Papers of Western Electronic
Show and Convention (WesCophP70.

[2] Sridhar Nerur, RadhaKanta Mahapatra, and George Maragjal Chal-
lenges of migrating to agile methodologie€ommun. ACM48:72-78,
2005.

[3] Mike Cohn and Doris Ford. Introducing an Agile ProcessitoOrganiza-
tion. Computey 36, June 2003.

[4] Megan Sumrell. From Waterfall to Agile - How does a QA Tednan-
sition? INnAGILE '07: Proceedings of the AGILE 200@ages 291-295,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] Lisa Crispin and Janet GregoryAgile Testing: A Practical Guide for
Testers and Agile TeamAddison-Wesley Professional, 2009.

[6] Kent Beck and Cynthia AndresExtreme Programming Explained: Em-
brace Change (2nd EditionAddison-Wesley Professional, 2004.

[7] Boby George and Laurie Williams. An initial investigati of test driven
development in industry. IBAC '03: Proceedings of the 2003 ACM sym-
posium on Applied computingages 1135-1139, New York, NY, USA,
2003. ACM.

[8] David Janzen and Hossein Saiedian. Does Test-DriverelDpment Re-
ally Improve Software Design QualityfEEE Softw. 25(2):77-84, 2008.

129

[9] Adnan Causevic, lva Krasteva, Rikard Land, A. S. M. Sajesmd Daniel
Sundmark. An Industrial Survey on Software Process PestiPrefer-

ences and Methods. (ISSN 1404-3041 ISRN MDH-MRTC-233/2009
SE), March 2009.

