
Mälardalen University Licentiate Thesis
No.145

TOWARDS A
PREDICTABLE

COMPONENT-BASED
RUN-TIME SYSTEM

Rafia Inam

January 2012

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright c⃝ Rafia Inam, 2012
ISSN 1651-9256
ISBN 978-91-7485-054-3
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

In this thesis we propose a technique to preserve temporal properties of real-
time components during their integration and reuse. We propose a new concept
of runnable virtual node which is a coarse-grained real-time component that
provides functional and temporal isolation with respect to its environment. A
virtual node’s interaction with the environment is bounded by both a functional
and a temporal interface, and the validity of its internal temporal behaviour is
preserved when integrated with other components or when reused in a new
environment.

The first major contribution of this thesis is the implementation of a Hier-
archical Scheduling Framework (HSF) on an open source real-time operating
system (FreeRTOS) with the emphasis of doing minimal changes to the un-
derlying FreeRTOS kernel and keeping its API intact to support the temporal
isolation between a numbers of applications, on a single processor. Temporal
isolation between the components during runtime prevents failure propagation
between different components.

The second contribution of the thesis is with respect to the integration of
components, where we first illustrate how the concept of the runnable virtual
node can be integrated in several component technologies and, secondly, we
perform a proof-of-concept case study for the ProCom component technology
where we demonstrate the runnable virtual node’s real-time properties for tem-
poral isolations and reusability.

We have performed experimental evaluations on EVK1100 AVR based 32-
bit micro-controller and have validated the system behaviour during heavy-load
and over-load situations by visualizing execution traces in both hierarchical
scheduling and virtual node contexts. The results for the case study demon-
strate temporal error containment within a runnable virtual node as well as
reuse of the node in a new environment without altering its temporal behaviour.

i

To my husband Inam

Acknowledgments

First of all, I am grateful to my supervisors Professor Mikael Sjödin and Dr.
Jukka Mäki-Turja without whose guidance and assistance this study would not
have been successful. I specially thank Prof. Mikael Sjödin for his advices,
invaluable inputs, support and encouragement, and always finding time to help
me.

Many thanks go to Prof. Philippas Tsigas for informing me about the PhD
position and encouraging me to apply at MRTC for a position.

I have attended a number of courses during my studies. I would like to
give many thanks to Hans Hansson, Ivica Crnkovic, Mikael Sjödin, Thomas
Nolte, Emma Nehrenheim, Daniel Sundmark, and Lena Dafgård for guiding
me during my studies.

I want to thank the faculty members; Hans Hansson, Ivica Crnkovic, Paul
Pettersson, Damir Isovic, Thomas Nolte, Dag Nyström, Cristina Seceleanu,
Jan Carlson, Sasikumar Punnekkat, Björn Lisper, and Andreas Ermedahl for
giving me vision to become a better student.

I would also like to thank to the whole administrative staff, in particular
Gunnar, Malin, Susanne and Carola for their help in practical issues.

My special thanks also to all graduate friends, especially Sara D., Farhang,
Andreas G., Aida, Aneta, Séverine, Svetlana, Ana, Adnan, Andreas H., Moris,
Hüseyin, Bob (Stefan), Luis (Yue), Hang, Mikael, Nima, Jagadish, Nikola,
Federico, Saad, Mehrdad, Juraj, Luka, Leo, Josip, Barbara, Antonio, Abhilash,
Lars, Batu, Mobyen, Shahina, Giacomo, Raluca, Eduard, and others for all the
fun and memories.

I want to thank Moris, Farhang, Notle, Jan, Jiřı́, and Daniel Cederman -
whom I have enjoyed working with. I supervised the three master students,

v

vi

Mohammad, Sara A., and Wu. I wish them best of luck.

Finally, I would like to extend my deepest gratitude to my family. Many
thanks go to my parents for their support and unconditional love in my life.
My deepest gratitude goes to my husband Inam for being always positive and
supportive in all these rough and tough days and to my daughters Youmna and
Urwa for bringing endless love and happiness to our lives.

This work has been supported by the Swedish Foundation for Strategic
Research (SSF), via the research programme PROGRESS.

Rafia Inam
Västerås, January, 2012

List of Publications

Papers Included in the Licentiate Thesis1

Paper A Virtual Node – To Achieve Temporal Isolation and Predictable Inte-
gration of Real-Time Components. Rafia Inam, Jukka Mäki-Turja, Jan
Carlson, Mikael Sjödin. In the Global Science and Technology Forum:
International Journal on Computing (JoC), Vol.1, No.4, 2011.

Paper B Support for Hierarchical Scheduling in FreeRTOS. Rafia Inam, Jukka
Mäki-Turja, Mikael Sjödin, Seyed Mohammad Hossein Ashjaei, Sara
Afshar. In Proceedings of the 16th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 11), pages 1-
10, IEEE Industrial Electronics Society, Toulouse, France, September,
2011.

Paper C Hard Real-time Support for Hierarchical Scheduling in FreeRTOS.
Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Moris Behnam. In Pro-
ceedings of the 7th International Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications (OSPERT’ 11), Pages 51-
60, Porto, Portugal, July, 2011.

Paper D Run-Time Component Integration and Reuse in Cyber-Physical Sys-
tems. Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Jiřı́ Kunčar. MRTC
report ISSN 1404-3041 ISRN MDH-MRTC-256/2011-1-SE, Mälardalen
University, December, 2011.

1The included articles have been reformatted to comply with the licentiate layout.

vii

viii

Additional Papers, not Included in the Licentiate
Thesis

Conferences and Workshops
• A* Algorithm for Graphics Processors. Rafia Inam, Daniel Cederman,

Philippas Tsigas. In 3rd Swedish Workshop on Multi-core Computing
(MCC’10), Gothenburg, Sweden, 2010.

• Using Temporal Isolation to Achieve Predictable Integration of Real-
Time Components. Rafia Inam, Jukka Mäki-Turja, Jan Carlson, Mikael
Sjödin. In 22nd Euromicro Conference on Real-Time Systems (ECRTS’
10) WiP Session, Pages 17-20, Brussels, Belgium, July, 2010.

• Towards Resource Sharing by Message Passing among Real-Time Com-
ponents on Multi-cores. Farhang Nemati, Rafia Inam, Thomas Nolte,
Mikael Sjödin. In 16th IEEE International Conference on Emerging
Technology and Factory Automation (ETFA’11), Work-in-Progress ses-
sion, Toulouse, France, September, 2011

Technical reports
• An Introduction to GPGPU Programming - CUDA Architecture. Rafia

Inam. Technical Report, Mälardalen Real-Time Research Centre, Mälar
dalen University, December, 2010.

• Different Approaches used in Software Product Families. Rafia Inam.
Technical Report, Mälardalen Real-Time Research Centre, Mälardalen
University, 2010.

• Hierarchical Scheduling Framework Implementation in FreeRTOS. Rafia
Inam, Jukka Mäki-Turja, Mikael Sjödin, Seyed Mohammad Hossein
Ashjaei, Sara Afshar. Technical Report, Mälardalen Real-Time Research
Centre, Mälardalen University, April, 2011.

Contents

I Thesis 1

1 Introduction 3
1.1 Research Problem . 3
1.2 Proposal . 4

1.2.1 Runnable Virtual Node 4
1.3 Contributions . 5
1.4 Background . 7

1.4.1 ProCom Component Model 7
1.4.2 Hierarchical Scheduling Framework 9

1.5 Thesis Overview . 11

2 Research Overview 15
2.1 Research Goal . 15
2.2 Research Methodology and Research Guiding Questions . . . 15

3 Runnable Virtual Node 19
3.1 Runnable Virtual Node Concept 19
3.2 HSF Implementation in FreeRTOS 20
3.3 Applying Runnable Virtual Node in ProCom 23

3.3.1 Modeling Level . 23
3.3.2 Execution Level . 23
3.3.3 The Synthesis of the Final Executables 24

3.4 Evaluation Through a Case Study 24

4 Conclusions and Future Work 29
4.1 Summary . 29
4.2 Questions Revisited . 30

ix

x Contents

4.3 Future Research Directions 32
Bibliography . 33

II Included Papers 37

5 Paper A:
Virtual Node – To Achieve Temporal Isolation and Predictable In-
tegration of Real-Time Components 39
5.1 Introduction . 41

5.1.1 Contributions . 41
5.2 Component Technologies . 42

5.2.1 ProCom . 42
5.2.2 AUTOSAR . 45
5.2.3 AADL . 47

5.3 Virtual Node . 48
5.3.1 Hierarchical Scheduling Framework (HSF) 49
5.3.2 HSF Implementation in FreeRTOS 50

5.4 Applying Virtual Node Concept to ProCom, AUTOSAR, and
AADL . 51
5.4.1 ProCom . 52
5.4.2 AUTOSAR . 52
5.4.3 AADL . 53

5.5 Conclusions and Future Work 53
Bibliography . 55

6 Paper B:
Support for Hierarchical Scheduling in FreeRTOS 59
6.1 Introduction . 61

6.1.1 Contributions . 61
6.1.2 The Hierarchical Scheduling Framework 62

6.2 Related Work . 62
6.2.1 Hierarchical Scheduling 62
6.2.2 Implementations of Hierarchical Scheduling Framework 63

6.3 System Model . 64
6.3.1 Subsystem Model . 64
6.3.2 Task Model . 65
6.3.3 Scheduling Policy 65

6.4 FreeRTOS . 65

Contents xi

6.4.1 Background . 65
6.4.2 Support for FIFO Mechanism for Local Scheduling . . 66
6.4.3 Support for Servers 66
6.4.4 System Interfaces . 67
6.4.5 Terminology . 68
6.4.6 Design Considerations 69

6.5 Implementation . 70
6.5.1 System Design . 70
6.5.2 System Functionality 74
6.5.3 Addressing Design Considerations 75

6.6 Experimental Evaluation . 76
6.6.1 Behavior Testing . 77
6.6.2 Performance Assessments 80
6.6.3 Summary of Evaluation 83

6.7 Conclusions . 84
6.8 Appendix . 85
Bibliography . 87

7 Paper C:
Hard Real-time Support for Hierarchical Scheduling in FreeRTOS 91
7.1 Introduction . 93

7.1.1 Contributions . 93
7.1.2 Resource Sharing in Hierarchical Scheduling Framework 94

7.2 Related Work . 95
7.2.1 Local and Global Synchronization Protocols 96
7.2.2 Implementations of Resource Sharing in HSF 97

7.3 Background . 98
7.3.1 FreeRTOS . 98
7.3.2 A Review of HSF Implementation in FreeRTOS . . . 99
7.3.3 Resource Sharing in HSF 100
7.3.4 Overrun Mechanisms 101

7.4 System Model . 102
7.4.1 Subsystem Model . 102
7.4.2 Task Model . 103
7.4.3 Scheduling Policy 103
7.4.4 Design Considerations 103

7.5 Implementation . 104
7.5.1 Support for Time-Triggered Periodic Tasks 104
7.5.2 Support for Legacy System 105

xii Contents

7.5.3 Support for Resource sharing in HSF 106
7.5.4 Addressing Design Considerations 109

7.6 Schedulability analysis . 110
7.6.1 The Local Schedulability Analysis 110
7.6.2 The Global Schedulability Analysis 112
7.6.3 Implementation Overhead 113

7.7 Experimental Evaluation . 113
7.7.1 Behavior Testing . 114
7.7.2 Performance Measures 115

7.8 Conclusions . 116
7.9 Appendix . 119
Bibliography . 121

8 Paper D:
Run-Time Component Integration and Reuse in Cyber-Physical
Systems 125
8.1 Introduction . 127
8.2 Related Work . 129

8.2.1 AUTOSAR . 129
8.2.2 Rubus . 130
8.2.3 AADL . 131
8.2.4 Deployment and Configuration specification 131

8.3 Background . 132
8.3.1 ProCom Component Model 132
8.3.2 Hierarchical Scheduling Framework 135
8.3.3 FreeRTOS and its HSF Implementation 136

8.4 Runnable Virtual Node . 137
8.4.1 Applying Virtual Node Concept to ProCom Compo-

nent Model . 137
8.4.2 The Synthesis of the Final Executables 138

8.5 Case Study: Cruise controller and an adaptive cruise controller 138
8.5.1 System design . 139
8.5.2 Synthesis . 141
8.5.3 Evaluation and Discussion 144

8.6 Conclusions . 148
Bibliography . 151

I

Thesis

1

Chapter 1

Introduction

In embedded real-time electronic systems, a continuous increasing trend in size
and complexity of embedded software has observed during the last decades. To
battle this trend, modern software-development technologies are being adopted
by the real-time industry. One such technology is Component-Based Software
Engineering (CBSE), where the system is divided into a set of interconnected
components [1]. Components have well-defined functional interfaces which
define both provided and required services. However, the functional interfaces
do not capture timing behavior or temporal requirements. Further, the advent of
low cost and high performance 8, 16, and 32-bit micro-controllers, have made
possible to integrate more than one complex real-time components on a single
hardware node. For systems with real-time requirements, this integration poses
new challenges.

The aim of this thesis is to investigate techniques for predictable integra-
tion of software components with real-time requirements. Further the real-time
properties of the components should be maintained for reuse in real-time em-
bedded systems.

1.1 Research Problem

Temporal behavior of real-time software components poses difficulties in their
integration. When multiple components are deployed on the same hardware
node, the emerging timing behavior is unpredictable. This means that a com-
ponent that is found correct during unit test may fail, due to a change in tem-

3

4 Chapter 1. Introduction

poral behavior, when integrated in a system. Even if a new component is still
operating correctly in the system, the integration could cause a previously in-
tegrated (and correctly operating) component to fail. Similarly, the temporal
behavior of a component is altered if the component is reused in a new system.
Since also this alteration is unpredictable, a previously correct component may
fail when reused.

Further the reuse of a component is restricted because it is very difficult to
know beforehand if the component will pass a schedulability test in a new sys-
tem. For real-time embedded control systems, methodologies and techniques
are required to provide temporal isolation so that the run-time timing properties
could be guaranteed.

1.2 Proposal
In this thesis we address the challenges of encapsulating real-time properties
within the components, in order to make the integration of real-time compo-
nents predictable, and to ease component reuse in new systems. The purpose
is to preserve the timing properties within the components thus component in-
tegration and reuse can be made predictable.

To achieve this, the real-time properties are encapsulated into reusable
components, and hierarchical scheduling is used to provide temporal isola-
tion and predictable integration among the components that further leads to the
increased reusability of the components [2, 3, 4].

1.2.1 Runnable Virtual Node

We propose the concept of a runnable virtual node, which is an execution-
platform concept that preserves the temporal properties of software executed
in it [3]. It introduces an intermediate level between the functional entities
(e.g. components or tasks) and the physical nodes. Thereby it leads to a two-
level deployment process instead of a single big-stepped deployment; i.e. first
deploying functional entities to the virtual nodes and then deploying virtual
nodes to the physical nodes.

The virtual node is intended for coarse-grained components for single node
deployment and with potential internal multitasking. We envision a handful of
components (less than 50) per physical node. Hierarchical scheduling tech-
nique is embedded within the runnable virtual node to encapsulate the tim-
ing requirements within the components. Using an Hierarchical Scheduling

1.3 Contributions 5

Framework (HSF) a subsystem (runnable virtual node in our case) are devel-
oped and analyzed in isolation, with its own local scheduler at first step of
deployment and its temporal properties are validated. Then at the second step
of deployment, multiple subsystems are integrated onto a physical node using
a global scheduler without violating the temporal properties of the individual
subsystems.

The runnable virtual node takes the advantages of both component-based
software engineering and hierarchical scheduling approaches. It exploits en-
capsulation and reusability benefits of CBSE [1], and the temporal isolation
and concurrent development and analysis of subsystems in isolation of HSF [5].
Moreover, combining the two approaches, results in the additional benefits of
predictable integration and reuse of timing properties of the real-time compo-
nents.

1.3 Contributions
The contributions presented in this thesis can be divided into two main parts:

HSF Implementation

HSF has attained a substantial importance since introduced in 1990 by Deng
and Liu [6]. Numerous studies has been performed for the schedulability analy-
sis of HSFs [7, 8] and processor models [9, 10, 11, 12] for independent subsys-
tems. The main focus of this research has been on the schedulability analysis
and not much work has been done to implement these theories.

We present our work towards an implementation of the hierarchical schedul-
ing framework in an open source real-time operating system, FreeRTOS [13],
to support temporal isolation among realtime components. We implement
idling periodic and deferrable servers using fixed-priority preemptive schedul-
ing at both local and global scheduling levels. We focus on being consistent
with the underlying operating system and doing minimal changes to get better
utilization of the system and keeping its API intact.

Allowing tasks from different subsystems to share logical resources im-
poses more complexity for the scheduling of subsystems. A proper synchro-
nization protocol should be used to prevent unpredictable timing behavior of
the real-time system. We extend the implementation of two-level hierarchical
scheduling framework for FreeRTOS with the provision of resource sharing at
two levels: (i) local resource sharing (among the tasks of the same subsystem)

6 Chapter 1. Introduction

using the Stack Resource Policy (SRP) [14], and (ii) global resource sharing
using the Hierarchical Stack Resource Policy (HSRP) [15] with three differ-
ent methods to handle overrun (with payback, without payback, and enhanced
overrun) [16]. Moreover, we extend the HSF implementation to use in hard-
real time applications, with the possibility to include legacy applications and
components not explicitly developed for hard real-time or the HSF.

We test our implementation on EVK1100 AVR32UC3A0512 micro-contr-
oller [17]. To test the efficiency of the implementation, we measure the over-
heads imposed by the HSF implementation during heavy-load and over-load
situations. Moreover, we evaluate the overheads and behavior for different
alternative implementations of HSRP with overrun from experiments on the
board. In addition, real-time scheduling analysis with models of the overheads
of our implementation is presented.

Presentation and Realization of Runnable Virtual Node Concept

Runnable virtual node is proposed as a means to achieve predictable integration
and reuse of software components. Runnable virtual node is a coarse-grained
real-time component encapsulating the timing properties and with potential in-
ternal multitasking. We present to utilize the hierarchical scheduling within
the component-based technology to retain temporal properties, increasing pre-
dictability during components integration that further leads to the increased
reuse of the real-time components. We believe that our idea can be easily gen-
eralized. We present how it can be applied to other commercial component-
based technologies like AUTOSAR and AADL.

As a specific example, we realize the idea of runnable virtual node using
the ProCom component technology and validate that its internal temporal be-
havior is preserved when integrated with other components or when reused in
a new environment. Our realization of runnable virtual node exploits the lat-
est techniques for hierarchical scheduling to achieve temporal isolation, and
the principles from component-based software-engineering to achieve func-
tional isolation. It uses a two-level deployment process (instead of a single
big-stepped deployment) i.e. deploying functional entities to the virtual nodes
and then deploying virtual nodes to the physical nodes, thereby preserving the
timing properties within the components in addition to their functional prop-
erties. We perform a proof-of-concept case study, implemented in the Pro-
Com component-technology executing on top of FreeRTOS based hierarchical
scheduling framework to validate the temporal isolation among components
and to test the reuse of components.

1.4 Background 7

1.4 Background

This section presents the background technologies our work uses. We pro-
vide an overview of the ProCom component technology, used to realize the
runnable virtual node concept. It is followed by an introduction of the hierar-
chical scheduling framework.

1.4.1 ProCom Component Model

Component-Based Software Engineering (CBSE) and Model-Based Engineer-
ing (MBE) are two emerging approaches to develop embedded control systems
like software used in trains, airplanes, cars, industrial robots, etc. The ProCom
component technology combines both CBSE and MBE techniques for the de-
velopment of the system parts, hence also exploits the advantages of both. It
takes advantages of encapsulation, reusability, and reduced testing from CBSE.
From MBE, it makes use of automated code generation and performing analy-
sis at an earlier stage of development. In addition, ProCom achieves additional
benefits of combining both approaches (like flexible reuse, support for mixed
maturity, reuse and efficiency tradeoff) [4].

Figure 1.1: An overview of the deployment modelling formalisms and synthe-
sis artefacts.

The ProCom component model can be described in two distinct realms:
the modeling and the runnable realms as shown in Figure 1.1. In Modeling
realm, the models are made using CBSE and MBE while in runnable realm,

8 Chapter 1. Introduction

the synthesis of runnable entities is done from the model entities. Both realms
are explained as follows:

The Modeling Realm

Modeling in ProCom is done by four discrete but related formalisms as shown
in Figure 1.1. The first two formalisms relate to the system functionality mod-
eling while the later two represent the deployment modeling of the system.
Functionality of the system is modeled by the ProSave and ProSys components
at different levels of granularity. The basic functionality (data and control) of a
simple component is captured in ProSave component level, which is passive in
nature. At the second formalism level, many ProSave components are mapped
to make a complete subsystem called ProSys that is active in nature. Both
ProSave and ProSys allow composite components. For details on ProSave and
ProSys, including the motivation for separating the two, see [18, 19].

The deployment modeling is used to capture the deployment related design
decisions and then mapping the system to run on the physical platform. Many
ProSys components can be mapped together on a virtual node (many-to-one
mapping) together with a resource budget required by those components. After
that many virtual nodes could be mapped on a physical node i.e. an ECU
(Electronic Control Unit). The relationship is again many-to-one. Details about
the deployment modeling are provided in [4].

The Runnable Realm

At the runnable realm, runnables/executables are synthesized from the ProCom
model entities. The primitive ProSave components are represented as a sim-
ple C language source code in runnable form. From this C code, the ProSys
runnables are generated which contain the collection of operating system tasks.
Virtual nodes, called runnable virtual nodes here, implement the local sched-
uler and contain the tasks in a server. Hence a runnable virtual node actually
encapsulates the set of tasks, resource allocations, and a real-time scheduler
within a server in a two-level hierarchical scheduling framework. Final binary
image is generated by connecting different virtual nodes together with a global
scheduler and using the middleware to provide intra-communications among
the virtual node executables.

1.4 Background 9

Deployment and Synthesis Activities

Rather than deploying a whole system in one big step, the deployment of the
ProCom components on the physical platform is done in the following two
steps:

• First the ProSys subsystems are deployed on an intermediate node called
virtual node. The allocation of ProSys subsystems to the virtual nodes
is many-to-one relationship. The additional information that is added at
this step is the resource budgets (CPU allocation).

• The virtual nodes are then deployed on the physical nodes. The relation-
ship is again many-to-one, which means that more than one virtual node
can be deployed to one physical node.

This two-steps deployment process allows not only the detailed analysis in
isolation from the other components to be deployed on the same physical node,
but once checked for correctness, it also preserves its temporal properties for
further reuse of this virtual node as an independent component. Chapter 3
describes this further.

The PROGRESS Integrated Development Environment (PRIDE) tool [20]
supports the automatic synthesis of the components at different levels [21]. At
the ProSave level, the XML descriptions of the components is the input and the
C files are generated containing the basic functionality. At the second level,
ProSys components are assigned to the tasks to generate ProSys runnables.
Since the tasks at this level are independent of the execution platform, there-
fore, the only attribute assigned at this stage is the period for each task; which
they get from the clock frequency that is triggering the specific component.
Other task attributes like priority are dependent on the underlying platform,
hence assigned during later stages of the synthesis. A clock defines the pe-
riodic triggering of components with a specified frequency. Components are
allocated to a task when (i) the components are triggered by the same event, (ii)
when the components have precedence relation among them to be preserved.

1.4.2 Hierarchical Scheduling Framework
Hierarchical scheduling has shown to be a useful approach in supporting mod-
ularity of real-time software [22] by providing temporal partitioning among
applications. A two-level hierarchical scheduling framework [23] is used to
provide the temporal isolation among a set of subsystems. In hierarchical
scheduling, the CPU time is partitioned among many subsystems (or servers),

10 Chapter 1. Introduction

that are scheduled by a global (system-level) scheduler. Each subsystem con-
tains its own internal set of tasks that are scheduled by a local (subsystem-level)
scheduler.

Hierarchical Scheduling Framework

Global FPS

Scheduler

. . .

Global Shared Resources

SubSystem n

Local FPS

Scheduler

Task1 Taskn. . .

Local Shared Resources

S

R

P

S

R

P

SubSystem 1

Local FPS

Scheduler

Task1 Taskn. . .

Local Shared Resources

S

R

P

S

R

P

H

S

R

P

H

S

R

P

Figure 1.2: Two-level Hierarchical Scheduling Framework

Hence a two-level HSF can be viewed as a tree with one parent node (global
scheduler) and many leaf nodes (local schedulers) as illustrated in Figure 1.2.
The parent node is a global scheduler that schedules subsystems. Each subsys-
tem has its own local scheduler, that schedules the tasks within the subsystem.
The subsystem integration involves a system-level schedulability test, verifying
that all timing requirements are met.

The HSF gives the potential to develop and analyze subsystems in isolation
from each other [24]. As each subsystem has its own local scheduler, after sat-
isfying the temporal constraints, the temporal properties are saved within each

1.5 Thesis Overview 11

subsystem. Later, a global scheduler is used to schedule all the subsystems
together without violating the temporal constraints that are already analyzed
and stored in the subsystems. Accordingly we can say that the HSF provides
partitioning of the CPU between different servers. Thus, server-functionality
can be isolated from each other for, e.g., fault containment, compositional ver-
ification, validation and certification, and unit testing.

1.5 Thesis Overview
The thesis is organized in two distinctive parts. Part-I gives a summary of
the performed research. Chapter 1 describes the motivation and background
of the research. Chapter 2 formulates the main research goal, describes the
research method we used, and introduces research questions used as guideline
to perform the research. Chapter 3 describes our approach of runnable virtual
node, and some results of our research. Finally Chapter 4 concludes the thesis
by summarizing the contributions and outlining the future work.

Part-II includes three peer-reviewed scientific papers and one technical re-
port contributing to the research results. These papers are published and pre-
sented in international conference and workshop, or international journals and
are presented in Chapters 5-7. The technical report is submitted for conference
publishing and is presented in Chapter 8. A short description and contribution
of these papers and the report is given as follows:

Paper A. “Virtual Node: To Achieve Temporal Isolation and Predictable
Integration of Real-Time Components”. Rafia Inam, Jukka Mäki-Turja, Jan
Carlson, Mikael Sjödin. In the Global Science and Technology Forum: Inter-
national Journal on Computing (JoC), Vol.1, No.4, 2011.

Short Summary: This paper presents an approach of two-level deployment pro-
cess for component models used in the real-time embedded systems to achieve
predictable integration of real-time components. Our main emphasis is on the
new concept of virtual node with the use of a hierarchical scheduling tech-
nique. Virtual nodes are used as means to achieve predictable integration of
software components with real-time requirements. The hierarchical schedul-
ing framework is used to achieve temporal isolation between components (or
sets of components). Our approach permits detailed analysis, e.g., with respect
to timing, of virtual nodes and these analysis is also reusable with the reuse
of virtual node. Hence virtual node preserves real-time properties across reuse

12 Chapter 1. Introduction

and integration in different contexts.
We have presented the methods to realize the idea of virtual node concept

within the ProCom, AUTOSAR, and AADL component models.

Contribution: I initiated this journal paper. I was involved in most parts of
this paper. It has been a joint effort between me and all the authors.

Paper B. “Support for Hierarchical Scheduling in FreeRTOS”. In Proceed-
ings of the 16th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’ 11). Rafia Inam, Jukka Mäki-Turja, Mikael
Sjödin, Syed Mohammed Hussein Ashjaei, Sara Afshar. IEEE Industrial Elec-
tronics Society, Toulouse, France, September, 2011. Awarded scholarship by
IEEE Industrial Electronic Society as best student paper.

Short Summary: This paper presents the implementation of hierarchical schedul-
ing framework on an open source real-time operating system FreeRTOS to
support the temporal isolation of a number of real-time components (or appli-
cations) on a single processor. The goal is to achieve predictable integration
and reusability of independently developed components or tasks. It presents
the initial results of the HSF implementation by running it on an AVR 32-bit
board EVK1100.

The paper addresses the fixed-priority preemptive scheduling at both global
and local scheduling levels. It describes the detailed design of HSF with the
emphasis of doing minimal changes to the underlying FreeRTOS kernel and
keeping its API intact. Finally it provides (and compares) the results for the
performance measures of periodic and deferrable servers with respect to the
overhead of the implementation.

Contribution: I was the initiator and author to all parts in this paper. I have
contributed in the design of HSF implementation and have designed all the
test cases and have performed the experiments. I supervised the students Mo-
hammed and Sara who were responsible of the implementation part.

Paper C. “Hard Real-time Support for Hierarchical Scheduling in FreeR-
TOS”. Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Moris Behnam. In Pro-
ceedings of the 7th International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT’ 11), Porto, Portugal, July,
2011.

1.5 Thesis Overview 13

Short Summary: This paper presents extensions to the previous implementa-
tion of two-level Hierarchical Scheduling Framework (HSF) for FreeRTOS.
The results presented here allow the use of HSF for FreeRTOS in hard-real
time applications, with the possibility to include legacy applications and com-
ponents not explicitly developed for hard real-time or the HSF.

Specifically, we present the implementations of (i) global and local re-
source sharing using the Hierarchical Stack Resource Policy and Stack Re-
source Policy respectively, (ii) kernel support for the periodic task model, and
(iii) mapping of original FreeRTOS API to the extended FreeRTOS HSF API.
We also present evaluations of overheads and behavior for different alternative
implementations of HSRP with overrun from experiments on the AVR 32-bit
board EVK1100. In addition, real-time scheduling analysis with models of the
overheads of our implementation is presented.

Contribution: I was the initiator and the main author to majority parts in this
paper. I have contributed in the design of HSF implementation and have de-
signed all the test cases and have performed the experiments. Moris included
the implementation overheads to the schedulability analysis and wrote that sec-
tion.

Paper D. “Run-Time Component Integration and Reuse in Cyber-Physical
Systems”. Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Jiřı́ Kunčar. MRTC
report ISSN 1404-3041 ISRN MDH-MRTC-256/2011-1-SE, Mälardalen Uni-
versity, December, 2011. In submission for conference publishing (IC-
CPS’12).

Short Summary: This paper presents the concept of runnable virtual nodes as
a means to achieve predictable integration and reuse of software components
in cyber-physical systems. A runnable virtual node is a coarse-grained real-
time component that provides functional and temporal isolation with respect
to its environment. Its interaction with the environment is bounded both by
a functional and a temporal interface, and the validity of its internal temporal
behavior is preserved when integrated with other components or when reused
in a new environment.

Our realization of runnable virtual nodes exploits the latest techniques for
hierarchical scheduling to achieve temporal isolation, and the principles from
component-based software-engineering to achieve functional isolation. In the
paper we present a proof-of-concept case study, implemented in the ProCom

14 Chapter 1. Introduction

component-technology executing on top of FreeRTOS based hierarchical sche-
duling framework.

Contribution: I was the initiator and author to all parts in this paper. I have
contributed in the design of the case study. Jiřı́ was responsible of implement-
ing the case study in Progress IDE, called PRIDE, and I executed it on the target
platform using AVR Studio and performed all the tests and experiments.

Chapter 2

Research Overview

2.1 Research Goal
The aim of the thesis is to support management of real-time properties in
component-based systems by achieving predictable integrations and reusabil-
ity of those components. To achieve this, new methods and tools for embedded
real-time component based systems has to be introduced where timing proper-
ties of the components can be preserved, and real-time components integration
can be made predictable. Thus the main goal that the thesis aims is:

To provide methods to maintain the real-time properties of run-
time components during their integration with other components
and their reuse in a new environment.

The goal is broad and is sub-divided into smaller research problems to solve
it, which collectively approach the main goal as explained in the following
section.

2.2 Research Methodology and Research Guiding
Questions

This research work is carried out following the methodology based on the steps
proposed/described by Shaw [25]. The main research activities we followed
are:

15

16 Chapter 2. Research Overview

1. Identify

Research Problem

2. Refine Research

Problem

3. Propose a

Solution

4. Solve the Problem

(Implementation /

Mathematical Eq.)

5. Validate Solution

(Experiments /

Mathematical Proofs)

3. Propose

ematical Proofs)

2.

 S Sololution

Research

Refifine R

Figure 2.1: The main research steps.

1. Study of the current state-of-the-art and identification of the research
problem on current trends from real-time and component-based commu-
nities and definition of the research goal.

2. Refining the problem to research settings and defining research guiding
questions.

3. Analysis of the current state-of-the-art in the literature based on guiding
questions and proposing a solution.

4. Solving the proposed sub-problem (either by implementing a prototype
and/or by providing mathematical analysis) and presenting the research
results.

5. Illustration and validation of the research results. This is done by per-
forming experimental evaluations of the implementation, and by per-

2.2 Research Methodology and Research Guiding Questions 17

forming a case study. In case of mathematical analysis, the validation
is done by implementation/formal proofs.

In this work, a big goal is identified at step 1, which is sub-divided into
smaller research goals, and solved one at a time using steps 2 to 5. These steps
(2 - 5) are performed repeatedly unless the desired results for the overall goal
are achieved as described in Figure 2.1.

In the following section the research performed is described in brief.

• We have first identified and defined the initial problem.

• From this research, we performed some preliminary studies and formu-
lated some initial research questions. Since our main focus is on main-
taining the real-time properties within the components to attain their pre-
dictable integration, we first investigated within the real-time community
for the suitable technique. Then we explored the possibilities to combine
this technique in the component-based systems. It resulted in proposing
a preliminary idea to merge the real-time technique into the component-
based systems to achieve predictable integrations and reusability of those
components [2, 3, 4]. The research questions arise here are Q1 and Q2,
presented at the end of this section.

• Detailed study of state-of-the-art in relevant areas resulted in writing
Paper A [2, 3] in which we proposed to use HSF technique within the
virtual node component. HSF is known as a technique for providing
temporal isolation between applications in real-time community. By em-
bedding HSF within the component technology, temporal isolation and
predictable integration of components can be achieved. As a result of
this research, the runnable virtual node concept was introduced in the
ProCom component model in the synthesis realm.

• Lacking support for HSF for our intended target-platform, we realized
the need to implement HSF. This lead us to question Q3. We first imple-
mented hierarchical scheduling framework in FreeRTOS real-time oper-
ating system independently from software components. We performed a
detailed experimental evaluation on the implementation to test its tempo-
ral behavior and performance measures on the target platform an AVR-
based 32-bit EVK1100 board. It resulted in writing Paper B [26].

• From this implementation, we figured out the need for hard real-time
support in the FreeRTOS operating system. Also the resource sharing

18 Chapter 2. Research Overview

protocols for HSF were needed to be implemented in order to provide
resource sharing among components. Hence we extended our imple-
mentation with these properties and tested on the same target platform.
We also showed to include the overheads of our implementation in the
schedulability analysis of HSF. It resulted in writing Paper C [27].

• To realize the runnable virtual node, HSF implementation is integrated
within the ProCom component model as a proof of concept. We now
needed to validate our approach, as formulated by questions Q4 and Q5.
We performed an example case study on the platform and run experi-
ments to validate the temporal isolation among runnable virtual nodes,
their smooth integration and reusability. The resulted paper, Paper D
[28] is in submission.

While performing the above mentioned steps, we iteratively identified the
following research questions which we used as a guideline for our research:

Q1 Which techniques are used to achieve temporal isolations and predictable
integration within the real-time community?

Q2 How can such a technique be integrated into component-technologies
for embedded real-time systems?

Q3 How to efficiently implement hierarchical scheduling in a real-time op-
erating system?

Q4 Can we demonstrate that we have achieved predictability and temporal
isolations at run-time in real-time components and during their integra-
tion?

Q5 Can we demonstrate preservation of these temporal properties within the
components when they are reused?

Chapter 3

Runnable Virtual Node

In this chapter, we describe the runnable virtual node concept in brief and how
it is used within the ProCom technology. We also provides some details of our
HSF implementation that is used within the runnable virtual node. Finally, we
provide some of the results obtained by executing an example case study using
ProCom model as a proof-of-concept.

3.1 Runnable Virtual Node Concept

The concept of runnable virtual node is used to achieve not only temporal iso-
lation and predictable temporal properties of real-time components but also to
get better reusability of components with real-time properties. Components’
reusability further reduces efforts related to software testing, validation and
certification. This concept is based on a two-level deployment process as ex-
plained in Section 1.4.1. It indicates that the whole system is generated in
two steps rather than a single big synthesis step. At the first level of deploy-
ment, the functional properties (functionality of components) are combined
and preserved with their extra-functional properties (timing requirement) in the
runnable virtual nodes. In this way it encapsulates the behavior with respect
to timing and resource usage, and becomes a reusable component in addition
to the design-time components. Followed by the second level of deployment,
where these runnable virtual nodes are implemented on the physical platform
along with a global scheduler.

A runnable virtual node includes the executable representation of the com-

19

20 Chapter 3. Runnable Virtual Node

ponents assigned to the tasks, a resource allocation (period and budget of
server), and a real-time scheduler, to be executed within a server in the hi-
erarchical scheduling framework.

3.2 HSF Implementation in FreeRTOS
In this work we use FreeRTOS as the operating system to execute both levels of
the HSF. FreeRTOS is a portable open source real-time kernel with properties
like small and scalable, support for 23 different hardware architectures, and
ease to extend and maintain.

The official release of FreeRTOS only supports a single level fixed-priority
scheduling. However, we have implemented a two-level HSF for FreeRTOS
[26] with associated primitives for hard real-time sharing of resources both
within and between servers [27]. The HSF supports reservations by associating
a tuple < Q,P > to each server where P is the server period and Q (0 < Q ≤
P) is the allocated portion of P and is called server budget. Given Q, P , and
information on resource holding times, the schedulability of a server and/or a
whole system can be calculated with the methods presented in [27].

The HSF implementation supports two kinds of servers, idling periodic
[29] and deferrable servers [30]. An idle server is used in the system that has
the lowest priority of all the other servers, i.e. 0. It will run when no other
server in the system is ready to execute (in idling server). This is useful for
maintaining and testing the temporal separation among servers and also useful
in testing system behavior.

The implementation uses fixed priority preemptive scheduling (FPPS) for
both global and local-level scheduling. The implementation is done with the
considerations of being consistent with the underlying operating system, keep-
ing the original API semantics, and doing minimal changes in FreeRTOS ker-
nel to get minimal changes and better utilization of the system.

Server S1 S2
Priority 2 1
Period 20 40
Budget 10 15

Table 3.1: Servers used to test system behavior.

We have evaluated the performance measures for periodic and deferrable
servers on an AVR 32-bit board EVK1100. To test the correctness of the

3.2 HSF Implementation in FreeRTOS 21

Tasks T1 T2 T3
Servers S1 S1 S2
Priority 1 2 2
Period 20 15 60

Execution Time 4 2 10

Table 3.2: Tasks in both servers.

Figure 3.1: Trace for idling periodic servers

server’s behavior, the traces of the executions are visualized. The servers used
to test the system are given in Table 3.1. Task properties and their assignments
to the servers are given in Table 3.2. Note that higher number means higher

22 Chapter 3. Runnable Virtual Node

priority for both servers and tasks.

Figure 3.2: Trace showing temporal isolation among idling servers

The servers executions (according to their resource reservations) along with
their task sets are presented in Figure 3.1 and Figure 3.2. In these Figures, the
horizontal axis represents the execution time starting from 0. In the task’s
visualization, the arrow represents task arrival and a gray rectangle means task
execution. In the server’s visualization, the numbers along the vertical axis are
the server’s capacity, the diagonal line represents the server execution while the
horizontal line represents either the waiting time for the next activation (when
budget has depleted) or the waiting for its turn to execute (when some other
server is executing). Since these are idling periodic servers, all the servers in
the system executes till budget depletion, if no task is ready then the idle task
of that server executes till its budget depletion.

We have tested the system during normal load, and over loaded conditions.
Especially, we tested the system for temporal isolation: The work load of one
server was greater than 1, hence its lower priority task was missing its dead-
line. The same example is executed to perform this test but with the increased
utilization of S1. The execution times of T1 and T2 are increased to 4 and 6
respectively, hence making the server S1 utilization greater than 1. Therefore
the low priority task T1 misses its deadlines as shown by solid black lines in

3.3 Applying Runnable Virtual Node in ProCom 23

the Figure 3.2. S1 is never idling because it is overloaded. It is obvious from
Figure 3.2, that the overload of S1 does not effect the behavior of S2 even
though it has low priority.

The results for behavior testing for the deferrable server are given in Sec-
tion 6.6.1. We also measure the overhead of the implementation, like tick han-
dler, server context-switch and task context-switch. The detailed results can be
found in Section 6.6.2.

For local resource-sharing (within a server) the Stack Resource Policy (SRP)
[14] is used, and for global resource-sharing (between servers) the Hierarchi-
cal Stack Resource Policy (HSRP) protocol [15] is used with three different
overrun mechanisms to deal with the server budget expiration within the criti-
cal section: (1) basic overrun without payback (BO), (2) overrun with payback
(PO), and (3) enhanced overrun with payback (EO) [16]. The behavior test
results for the resource sharing are provided in Section 7.7.1.

3.3 Applying Runnable Virtual Node in ProCom

In ProCom, a virtual node is an integrated model concept. It means that the
virtual nodes exist both on the modeling level and on the synthesis level as
explained in Section 1.4.1. In the synthesis realm they are called runnable
virtual nodes.

3.3.1 Modeling Level

At modeling level, each virtual node contains a set of integrated ProSys com-
ponents plus the execution resources (a period and budget) required for these
ProSys components. The priorities of virtual nodes cannot be assigned at the
modeling level. The priorities of a component are relative to other components
in the system. Since virtual nodes are developed independently and are meant
to be reused in different systems, therefore, the priorities are assigned to virtual
nodes later during the synthesis process at the execution level.

3.3.2 Execution Level

At the execution level, the runnable virtual node contains a set of executable
tasks, resources required to run those tasks and a real-time local scheduler to
schedule these tasks. Note that the runnable virtual node is generated as a

24 Chapter 3. Runnable Virtual Node

result of first deployment step; it is platform independent and not executable as
a stand-alone entity.

3.3.3 The Synthesis of the Final Executables

The final executables are generated by assigning priorities to the servers and
tasks in the runnable virtual nodes, completing the task bodies with the user
code, synthesizing communication among those nodes (if needed) and linking
them together with the operating system. These executables then can be down-
loaded and executed on a physical node. As the real-time properties of runnable
virtual nodes are preserved within the servers, therefore when integrated with
other runnable virtual nodes on a physical node, the real-time properties of the
whole integrated system will be guaranteed by the schedulability analysis of
the whole system.

The communication among runnable virtual nodes is provided by a Sys-
tem server, which is automatically generated for inter-node communication (if
needed), at this step. The main functionality of the server is to send and re-
ceive messages among the nodes. It contains two tasks to achieve this purpose:
a sender task and a message-port updater task.

3.4 Evaluation Through a Case Study
The purpose of this case study is to evaluate and demonstrate the execution-
time properties and reusability of the run-time components with real-time prop-
erties. The PROGRESS Integrated Development Environment (PRIDE) tool
[20] supports development of systems using ProCom component models and
it has been used for developing the examples of Cruise Controller (CC) and an
Adaptive Cruise Controller (ACC) as shown in Figure 3.3.

First, the CC system was realized and exercised to test the temporal isola-
tions among run-time components. Its basic functionality is to keep the vehicle
at a constant speed. Then the ACC system extends this functionality by keep-
ing a distance from the vehicle in front by autonomously adapting its speed
to the speed of the preceding vehicle and by providing emergency brakes to
avoid collisions. To evaluate the reusability of real-time components, the ACC
system was realized by the reuse of some runnable virtual nodes from the CC
system.

The design, automatic synthesis, and the generation of final binaries are
described in details in Section 8.5. In the first step of deployment process,

3.4 Evaluation Through a Case Study 25

Virtual Node 2

Virtual Node 1

Cruise Controller

or

Adaptive Cruise Controller

Vehicle Controller

p
e
d
a
ls

s
p
e
e
d

b
ra
k
e

th
ro
ttle

Figure 3.3: Deploying ProSys components on virtual nodes

two runnable virtual nodes are produced for both CC and ACC systems: one
runnable virtual node for Virtual Node1 and one for Virtual Node2.
These generated nodes contain tasks definitions in them. In the second step of
the final synthesis/deployment part, the priorities are assigned to the runnable
virtual nodes (also called servers now) and to the tasks in them. Four servers
are generated for both examples. In addition to the system server and an idle
server, two other servers CC, and VC are used for the CC application while ACC,
and VC are used for the ACC application. In ACC application, the system and
VC servers are reused. The priorities, periods and budgets for these servers are
given in Table 3.3.

Server CC ACC VC SYSTEM
Priority 2 2 1 7
Period 40 40 60 20
Budget 10 10 15 4

Table 3.3: Servers used to test the CC and ACC systems behaviors.

The experiments are performed on the same EVK1100 board using the HSF
implementation on FreeRTOS to test both the applications for the temporal iso-
lations and reusability of the runnable virtual node and are provided in Section
8.5.3.

Figure 3.4 demonstrates the system execution under the overload situation
to test the temporal isolation among the runnable virtual nodes. The execu-
tion times of tasks CCT1 and CCT2 are increased by adding the busy loops,

26 Chapter 3. Runnable Virtual Node

Figure 3.4: Trace showing temporal isolation during overload situation

hence making the CC server’s utilization greater than 1. Therefore the low pri-
ority task CCT2 misses its deadlines at time 54. The CC server is never idling
because it is overloaded.

The overload of CC server does not effect the behavior of any other server
in the system as obvious from Figure 3.4. The VC server has a lower prior-

3.4 Evaluation Through a Case Study 27

Figure 3.5: Trace showing reusability of runnable virtual nodes in ACC system

ity than the CC, but still it receives its allocated resources and its tasks meet
their deadlines. In this manner, the runnable virtual nodes exhibit a predictable
timing behavior that eases their integration. It also manifests that the tempo-

28 Chapter 3. Runnable Virtual Node

ral errors are contained within the faulty runnable virtual node only and their
effects are not propagated to the other nodes in the system.

Further, to test the reusability of the runnable virtual nodes, the ACC sys-
tem is synthesized. It also contains four servers: the ACC server is synthesized
with its task set while the other three servers are reused from the CC system.

The task set for the ACC server is different from that of CC server. It is
clear from the Figure 3.5 that all the three reused servers sustain their timing
behavior. For example, the VC server has a lower priority than ACC, still it’s
behavior is not effected at all and remains similar to its behavior in the CC
system. It confirms the predictable integration of real-time components on one
hand, and demonstrates their reusability on the other hand.

We observed the same results on testing the ACC server with the changed
timing properties, i.e. period 40 and budget 15. As long as the allocated bud-
gets to servers (at the modeling level) are provided, the timing properties are
guaranteed at the execution.

Hence, by the use of runnable virtual node components and two-level de-
ployment process, the timing requirements are also encapsulated within the
components along with their function requirements and the temporal parti-
tioning is provided among the components (using HSF), that results in the in-
creased predictability during component’s integration and making the runnable
virtual nodes a reusable entity.

Chapter 4

Conclusions and Future
Work

4.1 Summary

In this thesis we have presented an idea of the runnable virtual node using
the two-level deployment process to meet the challenges of providing temporal
properties, predictable integration and reusability of components with real-time
properties. The runnable virtual node uses hierarchical scheduling mechanism
to preserve temporal properties within the components as a means to achieve
predictable integration and reuse of software in the real-time embedded sys-
tems. The runnable virtual node is intended as a coarse grained component for
single node deployment and with potential internal multitasking. Each physical
node is used to execute one or more virtual nodes.

We have implemented a two-level Hierarchical Scheduling Framework HSF
in an open source real-time operating system, FreeRTOS, to support temporal
isolation among real-time components. We have implemented idling periodic
and deferrable servers using fixed-priority preemptive scheduling at both lo-
cal and global scheduling levels of HSF. We have focused on being consistent
with the underlying operating system and doing minimal changes to get bet-
ter utilization of the system and kept the original FreeRTOS API semantics.
We have added the Stack Resource Policy (SRP) to the FreeRTOS for effi-
cient resource sharing by avoiding deadlocks. Further, we have implemented
Hierarchical Stack Resource Policy (HSRP) and overrun mechanisms (with-

29

30 Chapter 4. Conclusions and Future Work

out payback, with payback, enhanced overrun) to share global resources in a
two-level HFS implementation. We have provided a very simple and easy im-
plementation to execute a legacy system in the HSF with the use of a single
API.

We have tested our implementations and performed experimental evalu-
ations on EVK1100 AVR based 32-bit micro-controller. We have validated
the imlementations during heavy-load and over-load situations. We have com-
puted the overhead measurements (of tick handler, global scheduler, and task
context-switch) and included them into the schedulability analysis.

The notion of two-level deployment process encapsulates the timing prop-
erties and uses the hierarchical scheduling within runnable virtual nodes that
provides temporal isolation and increases the reuse of the component in differ-
ent systems. Hence using runnable virtual nodes, a complex embedded system
can be developed as a set of well defined reusable components encapsulating
functional and timing properties.

Finally, we have performed a proof-of-concept case study which demon-
strates temporal error containment within a virtual node as well as reuse of a
virtual node in new environment without altering its temporal behavior. Our
work is based on the ProCom component-technology running on HSF imple-
mentation on FreeRTOS. The case study was executed on an ECU with an AVR
based 32-bit micro-controller. However, we believe that our concept is appli-
cable also to commercial component technologies like AADL, AUTOSAR.

4.2 Questions Revisited

In this section we discuss: to which extent the research results and included
papers fulfil the goals of Section 2.2. We also comment on the validity of our
results.

Paper A addresses research questions Q1, Q2. We found that HSF is a
known technique in real-time community that not only provide temporal isola-
tion among subsystems, but also supports isolated and concurrent development
of the subsystems. Further in this paper, we propose the idea of virtual node
by integrating HSF into component technology to provide temporal isolations
among components, that eventually leads to the predictable integration of com-
ponents. We also present methods to integrate HSF within components and
methods to incorporate the idea of virtual node in three component technolo-
gies, i.e. ProCom, AUTOSAR, and AADL.
Validity: We explain how to integrate it in only three component models. We

4.2 Questions Revisited 31

cannot claim that the idea of virtual node is applicable in general.
Research question Q3 has a broad scope. We implement HSF in a real-

time operating system FreeRTOS; the details are described in Paper B and
Paper C. To have an efficient implementation of hierarchical scheduling (less
overhead of hierarchical scheduling) and to get better utilization of the system,
a number of design considerations are made as explained in Sections 6.4.6 and
7.4.4 and are addressed in Sections 6.5.3 and 7.5.4 respectively. We check our
implementation during heavy-load and over-load situations for correctness and
efficiency. It is clear from the results of the overhead measurements (of tick
handler, global scheduler, and task context-switch) that the design decisions
made and the implementations are very efficient.
Validity: We test and validate the implementation by experimental results.
Since other existing HSF implementations are either using Linux, VxWorks,
or µC/OS-II (using simulator for results), our results are difficult to compare to
them. We infer the efficiency of our results on the design decisions and on the
implementation done. In this work we have not tried to evaluate different types
of HSFs. For that reason we have implemented only two-level fixed-priority
scheduling and one resource locking protocol (HSRP).

Paper D is a proof-of-concept paper for the realization of our idea of virtual
node in the ProCom component model. It addresses Q4, Q5 by performing an
example case study and visualizing the execution traces. We test the system
for fault containments, predictability in component’s integration and reuse of
components in a new environment. Temporal isolation and thus predictable in-
tegration has become possible because of the hierarchical scheduling and two-
level deployment process. In the experiments, the task sets of each runnable
virtual node is executed within the specified budget in a server and is sched-
uled by a local scheduler. The experimental results manifest that as long as the
allocated budgets to servers (at the modeling level) are provided, the timing
properties are guaranteed at the execution. Additionaly it also provides fault
containments (i.e. temporal errors are contained within the faulty runnable vir-
tual node only and their effects are not propagated to the other nodes in the
system). All these properties contribute to the predictability of runnable vir-
tual nodes. The increased predictability during components integration further
results in making the runnable virtual nodes a reusable entity as obvious from
the results presented in Sections 3.4 (briefly) and 8.5.3 (in details) and Figures
3.4 and 3.5.
Validity: We realize our idea in only ProCom component model. Another lim-
itation is the execution of an example case study (instead of a larger industrial
one) due to the immaturity of the PRIDE tool.

32 Chapter 4. Conclusions and Future Work

4.3 Future Research Directions
This thesis work brings possibilities/issues to conduct further research in cer-
tain areas that are not thoroughly addressed and could be interesting to investi-
gate in future. Some of these possibilities could be:

Starting from general issues, in this work we realize our concept of runnable
virtual node in the ProCom component model using the PROGRESS Integrated
Development Environment (PRIDE) tool by means of a proof-of-concept case
study. Currently the PRIDE tool is evolving and the automatic synthesis part is
not fully mature. It could be interesting to do some more work on this part and
then conduct a larger industrial case study on it.

It could be interesting to support virtual communication-busses using server-
based scheduling techniques for e.g. CAN [31] and Ethernet [32] in PRIDE
tool. This will allow development, integration and reuse of distributed compo-
nents using a set of virtual nodes and buses.

We believe that our concept is applicable also to commercial component
technologies like AADL, AUTOSAR and it could be interesting to realize the
concept in those component technologies too.

In the context of hierarchical scheduling, we assume that a system is exe-
cuted in a single processor while many real-time applications are executed in a
multi-processor or multi-core architecture. It could be interesting to extend the
HSF implementation for the multi-processor systems. Further, we only worked
on temporal isolation (CPU time division) among different sub-systems in our
HSF implementation. Considering the memory isolation issues in the imple-
mentation could be another interesting direction.

Another interesting direction could be to make the hierarchical schedul-
ing adaptive in nature by implementing mode switches into the hierarchical
scheduling. We would like to start from adapting the CPU time and after that
working on the memory issues.

Some of the possibilities to be investigated in future that are specific for
each paper are presented in the papers.

Bibliography

[1] Ivica Crnkovic and Magnus Larsson, editors. Building Reliable
Component-Based Software Systems. Artech House publisher, 2002.
ISBN 1-58053-327-2.

[2] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time compo-
nents. In 22nd Euromicro Conference on Real-Time Systems (ECRTS10)
WiP Session, pages 17–20, July 2010.

[3] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Vir-
tual Node – To Achieve Temporal Isolation and Predictable Integration
of Real-Time Components. International Journal on Computing (JoC),
1(4), December 2011.

[4] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja, and Mikael Sjödin. Deploy-
ment Modelling and Synthesis in a Component Model for Distributed
Embedded Systems. In Proceedings of the 36th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA’ 10), Septem-
ber 2010.

[5] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchical
framework for component-based real-time systems. Component-Based
Software engineering, LNCS-3054(2004):209–216, May 2005.

[6] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proc. 18th IEEE Real-Time Systems Symposium (RTSS),
1997.

[7] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. In Proc. 20th IEEE Real-Time Systems Symposium
(RTSS), 1999.

33

34 Bibliography

[8] G. Lipari and S.Baruah. Efficient scheduling of real-time multi-task ap-
plications in dynamic systems. In Proc. 6th IEEE Real-Time Technology
and Applications Symposium (RTAS), pages 166–175, 2000.

[9] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:
response-time analysis and server design. In ACM Intl. Conference on
Embedded Software(EMSOFT’04), pages 95–103, 2004.

[10] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In IEEE Real-Time Systems Symposium (RTSS’02), pages 26–35, 2002.

[11] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In IEEE Real-Time Systems Symposium (RTSS’05), pages 389–398,
2005.

[12] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. 24th IEEE Real-Time Systems Symposium (RTSS),
pages 2–13, 2003.

[13] FreeRTOS web-site. http://www.freertos.org/.

[14] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[15] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In IEEE Real-Time Systems Symposium (RTSS’06),
pages 389–398, 2006.

[16] Moris Behnam, Thomas Nolte, Mikael Sjödin, and Insik Shin. Over-
run Methods and Resource Holding Times for Hierarchical Scheduling
of Semi-Independent Real-Time Systems. IEEE Transactions on Indus-
trial Informatics, 6(1), February 2010.

[17] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/tools
card.asp?tool id=4114.

[18] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

Bibliography 35

[19] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and
Ivica Crnković. A Component Model for Control-Intensive Distributed
Embedded Systems. In 11th International Symposium on Component
Based Software Engineering, pages 310–317, October 2008.

[20] PRIDE Team. PRIDE: the PROGRESS Integrated Development Envi-
ronment, 2010. ”http://www.idt.mdh.se/pride/?id=documentation”.

[21] Etienne Borde and Jan Carlson. Towards verified synthesis of procom, a
component model for real-time embedded systems. In 14th International
ACM SIGSOFT Symposium on Component Based Software Engineering
(CBSE). ACM, June 2011.

[22] I. Shin and I. Lee. Compositional real-time scheduling framework. In
proceedings of the 25th IEEE International Real-Time Systems Sympo-
sium(RTSS’04), pages 57–67, 2004.

[23] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open
environment. In IEEE Real-Time Systems Symposium(RTSS’97), pages
308–319, 1997.

[24] Thomas Nolte, Insik Shin, Moris Behnam, and Mikael Sjödin. A Syn-
chronization Protocol for Temporal Isolation of Software Components
in Vehicular Systems. IEEE Transactions on Industrial Informatics,
5(4):375–387, November 2009.

[25] Mary Shaw. The Coming-of-Age of Software Architecture Research. In
Proceedings of the 23rd International Conference on Software Engineer-
ing (ICSE’01), August 2001.

[26] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and Sara
Afshar. Hierarchical Scheduling Framework Implementation in FreeR-
TOS. In IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’ 11), pages 1–10, Tolouse, France, September
2011. IEEE Computer Society.

[27] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, and Moris Behnam. Hard
Real-time Support for Hierarchical Scheduling in FreeRTOS. In 7th An-
nual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT’ 11), pages 51–60, Porto, Portugal, 2011.

[28] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, and Jiřı́ Kunčar. Run-Time
Component Integration and Reuse in Cyber-Physical Systems. Technical
Report MRTC report ISSN 1404-3041 ISRN MDH-MRTC-256/2011-1-
SE, Mälardalen University, School of Innovation, Design and Engineer-
ing, 2011.

[29] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. IEEE Real-Time
Systems Symposium (RTSS), pages 181–191, 1986.

[30] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server algo-
rithm for Enhanced Aperiodic Responsiveness in Hard Real-time Envi-
ronments. IEEE Transactions on Computers, 44(1), 1995.

[31] Thomas Nolte, Mikael Nolin, and Hans Hansson. Real-Time Server-
Based Communication for CAN. IEEE Transaction on Industrial Elec-
tronics, 1(3):192–201, April 2005. Citations=33.

[32] Rui Santos, Paulo Pedreiras, Moris Behnam, Thomas Nolte, and
Luis Almeida. Hierarchical server-based traffic scheduling in ethernet
switches. In 3rd Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS’10), pages 69–70, December 2010.

II

Included Papers

37

Chapter 5

Paper A:
Virtual Node – To Achieve
Temporal Isolation and
Predictable Integration of
Real-Time Components

Rafia Inam, Jukka Mäki-Turja, Jan Carlson, Mikael Sjödin
In the Global Science and Technology Forum: International Journal on Com-
puting (JoC), Vol.1, No.4, 2011

39

Abstract

We present an approach of two-level deployment process for component
models used in distributed real-time embedded systems to achieve predictable
integration of real-time components. Our main emphasis is on the new concept
of virtual node with the use of a hierarchical scheduling technique. Virtual
nodes are used as means to achieve predictable integration of software com-
ponents with real-time requirements. The hierarchical scheduling framework
is used to achieve temporal isolation between components (or sets of compo-
nents). Our approach permits detailed analysis, e.g., with respect to timing, of
virtual nodes and this analysis is also reusable with the reuse of virtual nodes.
Hence virtual node preserves real-time properties across reuse and integration
in different contexts.

Index Terms - Hierarchical scheduling, real-time systems, reusability, comp-
onent-based software-engineering.

5.1 Introduction 41

5.1 Introduction
Component integration can be explained as the mechanical task of wiring com-
ponents together [1]. Since it is rare that two components perfectly match,
component integration requires more than just matching the needs and services
of one component with the needs and services of others. In real-time embed-
ded systems the components and components integration must satisfy both (1)
functional correctness and (2) extra-functional correctness, such as satisfying
timing properties.

Temporal behavior of the real-time components poses more difficulties in
their integration. When multiple components are deployed on the same hard-
ware node, the timing behavior of each of the components is typically altered
in unpredictable ways. This means that a component that is found correct dur-
ing unit testing may fail, due to a change in temporal behavior, when integrated
in a system. Even if a new component is still operating correctly in the system,
the integration could cause a previously integrated (and correctly operating)
component to fail. Similarly, the temporal behavior of a component is altered
if the component is reused in a new system. Since also this alteration is unpre-
dictable, a previously correct component may fail when reused.

Some of these problems can be solved using scheduling analysis [2, 3],
however these techniques only allow very simple models; typically simple tim-
ing attributes such as period and deadline are used. Components often exhibit
a too complex behavior to be amenable for scheduling analysis. And, even if
a suitable analysis technique should exist, such analysis requires knowledge
of the temporal behavior of all components in the system. Thus, a component
cannot be deemed correct without knowing which components it is integrated
with. As a result, the reusability of a component is restricted since it is very
difficult to know beforehand if the component will pass a schedulability test in
a new system.

For large-scale real-time embedded systems, methodologies and techniques
are required to provide temporal isolation so that the run-time timing properties
could be guaranteed. Further the real-time properties of the components should
be maintained for their reuse in large-scale industrial embedded systems.

5.1.1 Contributions
The main contributions of this paper are as follows:

• We propose the concept of a Virtual Node (VN), which is an execution-
platform concept that preserves temporal properties of the software exe-

42 Paper A

cuted in the virtual node [4, 5]. The virtual node is intended for coarse-
grained components for single node deployment and with potential in-
ternal multitasking.

• We propose to integrate hierarchical scheduling framework (HSF) [6]
within the components (virtual nodes) to realize our ideas of providing
temporal properties of real-time components, their predictable integra-
tions and reusability.

• We describe how the virtual node can be applied in the run-time in-
frastructure in three different component technologies: ProCom [7, 8],
AUTOSAR [9], and AADL [10].

Outline: Section 5.2 describes the component technologies we study in this
paper. In section 5.3, we describe the virtual node execution-mechanism and
the hierarchical scheduling framework used by the virtual node. We explain
the usage of virtual node in the above mentioned three component models in
section 5.4, in section 5.5 we conclude the paper and present the future work
to be done.

5.2 Component Technologies
Component-Based Software Engineering (CBSE) and Model-Based Engineer-
ing (MBE) are two emerging approaches to develop embedded control sys-
tems like software used in trains, airplanes, cars, industrial robots, etc. In this
section we briefly outline the component technologies we will target in our
work. We discuss three representatives of technologies that use component-
based software engineering (AUTOSAR), model-based engineering (AADL)
and a combination of CBSE and MBE (ProCom).

We present related work from the perspective of deployment of the compo-
nents on physical platform and the generation of final executables of the system
in the above mentioned technologies.

5.2.1 ProCom
ProCom component model combines both CBSE and MBE techniques for the
development of the system parts, hence also exploits the advantages of both. It
takes advantages of encapsulation, reusability, and reduced testing from CBSE.
From MBE it makes use of automated code generation and performing analysis

5.2 Component Technologies 43

at an earlier stage of development. In addition ProCom achieves additional
benefits of combining both approaches (like flexible reuse, support for mixed
maturity, reuse and efficiency tradeoff) [4].

The ProCom component model can be described in two distinct realms:
modeling and runnable realms as shown in Figure 5.1. In the modeling realm
the models are made using CBSE and MBE, while in the runnable realm the
synthesis of runnable entities is done from the model entities. Both realms are
explained as follows:

The Modeling Realm

Modeling in ProCom is done by four discrete but related formalisms as shown
in Figure 5.1. The first two formalisms relate to the system functionality mod-
eling while the later two represent the deployment modeling of the system.

Functionality of the system is modeled by the ProSave and ProSys com-
ponents at different levels of granularity. The basic functionality (data and
control) of a simple component is captured in ProSave component level, which
is passive in nature. At the second formalism level many ProSave components
are mapped to make a complete subsystem called ProSys that is active in na-
ture. Both ProSys and ProSave allow composite components. For details on
ProSave and ProSys, including the motivation for separating the two, see [7, 8].

Figure 5.1: The ProCom component model: Overview of the modeling- and
runnable realms.

The deployment modeling is used to capture the deployment related de-
sign decisions and then mapping the system to run on the physical platform.
Many ProSys components can be mapped together on a virtual node (many-
to-one mapping) together with a resource budget (i.e. CPU usage and memory

44 Paper A

requirements) required by those components.
After that many virtual nodes could be mapped on a physical node i.e.

an ECU: an electronic control unit. The relationship is again many-to-one.
This part represents all the physical nodes, their intercommunication through
the network and the type of the network etc. Figure 5.2 represents how four
virtual nodes (VN1, VN2, VN3, and VN4) are allocated to the three physical
nodes (Node1, Node2, and Node3). Details about the deployment modeling
are provided in [4].

Node 1

VN1 VN2

Node 2

VN3

Node 3

VN4

Figure 5.2: Allocation of the virtual nodes to the physical nodes.

The Runnable Realm

is the synthesis of the runnables/executables from the ProCom model enti-
ties. The primitive ProSave components are represented as simple C language
source code in runnable form. From this C code the ProSys runnables are gen-
erated which contains the collection of operating system tasks. Virtual node
runnables will implement the local scheduler and will contain the server task.
Hence virtual node runnable actually encapsulates the set of tasks, resource al-
locations, and a real-time scheduler within a server in a two-level hierarchical
scheduling framework. Final binary image will be generated by connecting
different virtual nodes together with a global scheduler and using some mid-
dleware to provide intra-communications among the virtual node executables.
As this work is going on, some of the details about the runnable realm are given
in [5].

Deployment-Two-steps Process

Rather than deploying a whole system in one big step, the deployment of the
ProCom components on the physical platform is done in the following two
steps:

5.2 Component Technologies 45

1. First the ProSys subsystems are deployed on an intermediate node called
Virtual Node. The allocation of ProSys subsystems to the virtual nodes
is many-to-one relationship. The additional information that is added at
this step is the resource budgets.

2. The virtual nodes are then deployed on the physical nodes. The rela-
tionship is again many-to-one means more than one virtual node can be
deployed to one physical node.

This two-steps deployment process allows not only the detailed analysis in
isolation from the other components to be deployed on the same physical node,
but once checked for correctness, it also preserves its temporal properties for
further reuse of this virtual node as an independent component. Section 5.3
describes this further.

5.2.2 AUTOSAR
AUTomotive Open System ARchitecture (AUTOSAR) [9] is an open standard
for automotive electronics architecture. It is developed by a number of auto-
motive manufacturers and suppliers to deal with the increasing complexity and
to fulfill a number of future vehicle requirements (such as safety and avail-
ability, driver assistance, software updates, environment, and infotainment).
The key features of AUTOSAR are modularity, configurability, standardized
interfaces and a runtime environment. It provides standardized modular soft-
ware infrastructure and basic software for embedded automotive systems. A
layered-software platform has been developed to achieve modularity, scalabil-
ity, transferability, and reusability of components. AUTOSAR methodology is
a standardized technique that describes all the major steps in a complete devel-
opment cycle of a system. It encloses all steps from the system level configu-
rations till the generation of ECU executable binaries. Functional software is
developed using component-based approach. A component is developed over
many layers of AUTOSAR, including: Application layer, Runtime Environ-
ment (RTE), Basic software and ECU hardware as shown in Figure 5.3. Some
important layers are:

• Application layer resides at the top of RTE. At this layer, an applica-
tion consists of one or many AUTOSAR software components and sen-
sor/actuator components.

• RTE connects AUTOSAR components. It is responsible for configura-
tions and communication among components. It enables both communi-

46 Paper A

Figure 5.3: AUTOSAR layered architecture [9].

cation between components on the same ECU and also communication
between components on different ECUs. Hence it makes the compo-
nents completely independent from the underlying hardware. Compo-
nents communicate with each other using ports (e.g., PPort, RPort) and
port interfaces (e.g., client-server, sender-receiver).

• Basic software (BSW) provides services to Input/ Output (I/O), com-
munication, memory, and system. It has access to hardware (e.g., sen-
sors, actuators), Internal/External memory, microcontroller onboard pe-
ripheral devices and communications. BSW consists of Internal drivers
(e.g., EEPROM, CAN, etc.), external drivers (e.g., external EEPROM,
etc.), Interfaces that offer generic API for upper layers, handlers, and
managers. BSW uses complex drivers to handle timing and functional
requirements of complex sensors and actuators.

• Microcontroller Abstraction layer resides at the bottom just above the
underlying ECUs. It separates the above layers from the hardware and
provides standardized interfaces for communication of upper layers to
the ECU.

Software component (SW-C) at ECU level contains at least one or sev-
eral runnable entities (or simply runnables). A runnable is small fragment of
sequential code within a component. Runnable entities are grouped into oper-
ating system tasks executed on ECUs. Runnables grouped onto one task may
belong to different software components. Operating system controls and sched-

5.2 Component Technologies 47

ules these tasks. These OS tasks can be of one of the categories, basic tasks
(Category1 without WaitEvent) or extended tasks (Category2 with WaitEvent).
All runnables are activated by RTEEvents.

Deployment

Deployment in AUTOSAR begins when RTE generator maps all runnables
to the OS tasks and build inter-ECU and intra-ECU communications among
them. This mapping is dependent on different extra-functional properties and
behaviors of the runnables e.g., runnable with Category1 will be mapped dif-
ferently from the runnable with Category2. Three different rules for mapping
are given in the AUTOSAR RTE specifications [11]. After mapping, RTE gen-
erator configures each ECU. In the last, the OS tasks bodies are constructed by
RTE generator.

The main disadvantage of AUTOSAR is that it lacks clear and well-defined
timing properties that further affect the execution semantics too. A tool suite
supporting the complete AUTOSAR methodology is still missing.

5.2.3 AADL

Architecture Analysis and Design Language (AADL) was developed as a SAE
Standard AS-5506 [10] in 2004 to design and analyze software and hardware
architectures of distributed real-time embedded systems. It supports MBE and
has both textual and graphical representations. It also supports syntax and se-
mantics analyses of the language. Modeling of software and hardware parts is
supported by software components (e.g., process, data, thread, thread group,
subprogram), and execution platform components (e.g., processor, memory,
bus, device) respectively. It also allows hybrid components (e.g., system) [12].
Properties and new functional aspects can be attached to the elements (e.g.,
components, connections) using the properties defined in the SAE standard,
and communication among components is performed using component inter-
faces i.e., ports. Ocarina [12] is a tool suite by Telecom Paris that facilitates
the design of AADL models and their mapping on a hardware platform, assess-
ment of these models (e.g., syntactic/semantic analysis, schedulability analysis
performed by Ocarina and Cheddar [13]), and then automatic code generation
from these models and their deployment.

48 Paper A

Deployment

Automatic code generation is done using the Ocarina compiler [12] that com-
prises of two traditional parts: the frontend and the backend.

1. The frontend is responsible for lexical checking, syntactic analysis, se-
mantic analysis and instantiation. It generates the lexems, then generates
the abstract syntax tree and add semantics to it, and at the last step pro-
duces the instance tree. It also scrutinizes all syntactic, semantic and
instance errors and warnings.

2. The backend part is responsible for code generation in three steps; first
the expansion of instance tree, second the conversion of this instance tree
into a syntactic tree of the target language (Ada or C) and the last step is
the code generation that generates the code in C or Ada language.

Ocarina supports code generation in Ada and C languages using a middle-
ware API called PolyORB (PolyORB for Ada while PolyORB-HI for C). This
middleware provides execution services and wraps the POSIX API, hence it
is POSIX compliant. Runnable entities are presented by processes. A process
contains many tasks and it is a selfcontained runnable entity that executes on
a hardware platform without any programmatic dependencies. The final exe-
cutable binaries are generated by compiling the Ocarina automatic generated
code (in C or Ada) together with the user written application code (in C or Ada)
and the AADL runtime (e.g. PolyORB, PolyORB-HI).

POK is another type of runnable entity for AADL is implemented by Julien
[14]. This technique is an extension of the first one implemented by Ocarina. It
employs a hierarchical scheduling concept in a partition. A partition is a com-
bination of several processes and a scheduler called Virtual Processor. Each
partition is isolated in terms of space and time. Each process again encloses
several tasks and a local scheduler. A local scheduler schedules all the tasks
of a particular process. Virtual Processor is then responsible for scheduling all
the processes in a particular partition.

5.3 Virtual Node
The concept of virtual node is used to achieve not only temporal isolation and
predictable temporal properties of real-time components but also to get better
reusability of components with real-time properties. Further it reduces the ef-
forts related to testing, validation and certification. This concept is based on

5.3 Virtual Node 49

two-level deployment process. It means that the whole system is generated in
two steps rather than a big synthesis step. At the first level of deployment, func-
tionality (in form of design-time components) is deployed to virtual nodes, and
virtual nodes are assigned execution resources. In this way behavior is encap-
sulated with respect to timing and resource usage and VN becomes a reusable
component in addition to the design-time components. In the second level of
deployment, these virtual nodes are deployed on a physical platform together
with a global scheduler [5].

A virtual node includes the executable representation of the components
(e.g. a set of tasks), a resource allocation, and a real-time scheduler to be ex-
ecuted within a server in the hierarchical scheduling framework. Hierarchical
scheduling is described as follow:

5.3.1 Hierarchical Scheduling Framework (HSF)
A two-level Hierarchical Scheduling Framework (HSF) [6] is used to provide
the temporal isolation among the virtual nodes. In hierarchical scheduling,
the CPU is partitioned into a set of servers, each server can use a different
scheduling policy, and are in turn scheduled by a global (system-level) sched-
uler. Hence a two-level HSF can be viewed as a tree with one parent node
(global scheduler) and many leaf nodes (local schedulers) as illustrated in Fig-
ure 5.4.

The leaf nodes contain its own internal set of tasks that are scheduled by a
local (subsystem-level) scheduler. The parent node is a global scheduler that
schedules local schedulers. Using an appropriate HSF, subsystems can be de-
veloped and analyzed in isolation from each other. As each subsystem has
its own local scheduler, after satisfying the temporal constraints, the temporal
properties are saved within each subsystem. Later, a global scheduler is used
to combine all the subsystems together without violating the temporal con-
straints that are already analyzed and stored in them. Accordingly we can say
that the HSF provides partitioning of the CPU between different servers. Thus,
server-functionality can be isolated from each other for, e.g., fault containment,
compositional verification, validation and certification, and unit testing.

Using HSF a subsystem (virtual node in our case) can be developed and an-
alyzed in isolation, with its own local scheduler at first step of deployment and
its temporal properties are preserved. Then at the second step of deployment
an arbitrary global scheduler is used for the integration of multiple subsystems
(virtual nodes) without violating the temporal properties of the individual sub-
systems analyzed in isolation. A brief overview of our hierarchical scheduling

50 Paper A

Figure 5.4: Two-level hierarchical scheduling framework.

framework implementation is given here.

5.3.2 HSF Implementation in FreeRTOS

The two-level hierarchical scheduling implementation is done independently
from components [15, 16]. We have chosen FreeRTOS [17], a portable open
source real-time scheduler for the implementation. Its main properties like
open source, small and scalable, support for 23 different hardware architec-
tures, and ease to extend and maintain makes it a perfect choice to be used
within the PROGRESS project [7, 8]. The motivations for choosing FreeRTOS
and the details about its real-time kernel are provided in [15, 16].

We have implemented time-triggered periodic tasks within the FreeRTOS
operating system to support hard real-time components. The HSF implemen-
tation supports two kinds of servers, idling periodic and deferrable servers.

5.4 Applying Virtual Node Concept to ProCom, AUTOSAR, and AADL
51

The implementation uses fixed priority preemptive scheduling (FPPS) for both
global and local-level scheduling. FPPS is flexible and simple to implement,
plus is the de-facto industrial standard for task scheduling and FreeRTOS na-
tive scheduling policy. The resource sharing policy of FreeRTOS to access
local shared resources has been improved, and the support for inter-subsystem
resource sharing to access global shared resources has been implemented in the
HSF implementation. This entails: support for Stack Resource Policy (SRP)
[18] for local resource sharing to avoid problems like priority inversions and
deadlocks, and Hierarchical Stack Resource Policy (HSRP) [19] for global re-
source sharing with three different methods to handle overrun [20] to handle
the budget expiration within the critical section. These three types of overrun
mechanisms are overrun without payback (BO), with payback (PO), and en-
hanced overrun (EO). Implementation of BO is very simple, the server simply
executes and overruns its budget, and no further action is required. For PO and
EO we need to measure the overrun amount of time to pay back at the server’s
next activation. We have also provided legacy support for existing systems or
components to be executed within our HSF implementation as a subsystem.

We have performed a detailed experimental evaluation [15, 16] on the im-
plementation to test its temporal behavior and performance measures on an
AVR-based 32-bit EVK1100 board [21]. The AVR32UC3A0512 micro-contro-
ller runs at the frequency of 12MHz and its tick interrupt handler at 1ms. We
have tested the implementation for the correct behavior of idling and deferrable
servers and of overrun mechanisms by plotting the traces of the execution of the
system. We have also evaluated the system behavior during the overload situa-
tion and tested the temporal isolation among servers. We showed that when one
server is overloaded and its tasks miss deadlines, it does not affect the behavior
of other servers in the system, even if the priority of the overloaded server is
highest; hence proves the temporal isolation and fault containment behavior of
HSF.

5.4 Applying Virtual Node Concept to ProCom,
AUTOSAR, and AADL

In the component models we are currently studying the virtual node concept to
be applied in the following way:

52 Paper A

5.4.1 ProCom

In ProCom the Virtual Node is an integrated model concept. That means that
the virtual nodes exist both on the modeling level and as executable entities as
shown in Figure 5.1. The system is generated using two-level deployment pro-
cess rather than a big synthesis step. A set of ProSys subsystems are mapped to
one virtual node which can then be integration-tested and validated for the cor-
rect temporal behavior. This virtual node preserves its temporal properties and
hence becomes a reusable entity that is ready to deploy in numerous systems
and stored for future reuse.

At the modeling level, each virtual node contains a set of integrated ProS-
ys components plus the resources (CPU budget, memory) required for these
ProSys components. At the executable level, virtual node contains the set of
executable tasks, resources required to run those tasks and a real-time local
scheduler to schedule these tasks. The local scheduler runs within a global
scheduler in a HSF.

The final executables that can be downloaded and executed on the physical
node consists of a set of virtual nodes and simple real-time scheduler linked
together. The scheduler is the top level scheduler in the hierarchical scheduling
framework, and is responsible for dispatching the servers of each virtual node
according to their bandwidth reservation. As the real-time properties of the
virtual node are preserved within the local scheduler, therefore when integrated
with other virtual nodes on a physical node, the real-time properties of the
whole integrated system will be guaranteed.

5.4.2 AUTOSAR

For AUTOSAR, we propose to map a number runnables to a virtual node.
Thus, an AUTOSAR component can be deployed to a set of virtual nodes;
the natural choice would be to use one virtual node per physical node that the
component will be distributed over. Using this approach the component can be
developed and its timing behavior tested without accounting for interference
from other AUTOSAR components deployed at the same physical nodes.

However, since the AUTOSAR component-model and methodology does
not recognize the virtual node as an entity of its own, reuse in different organi-
zations or different software architectures may be difficult. However, the vir-
tual node still provides strong encapsulation of the runnables and thus makes
the functionality robust against future changes in both the runnables and in
other components running in other virtual nodes.

5.5 Conclusions and Future Work 53

5.4.3 AADL
For AADL, we propose to map the generated code from AADL models along
with user written code to the virtual node. Hence instead of synthesizing whole
system in a single big-bang step, the synthesis will be performed in smaller
steps. The synthesis will be done at the two levels:

1. First the individual runnables will be created in isolation and timing anal-
ysis will be performed on them.

2. Then some middleware (e.g., PolyORB, PolyORB-HI) can be used for
their intra-communications and to generate a whole system.

Currently a similar concept of two level code generation has been used for
ARINC653 systems [22] using AADL. It is supported by the tool POK [14]
that uses Ocarina tool for AADL models development and Cheddar tool for
scheduling analysis. POK supports partitioning of the CPU and hierarchical
scheduling for the underlying ARINC653 systems by using virtual processor.
This approach is not generic in embedded real-time systems since ARINC653
is an avionics standard, therefore, the use of virtual processor is restricted to
the avionics only.

5.5 Conclusions and Future Work
We have described our technique of two-level deployment process to allow
predictable integration of software components with temporal requirements.
The technique is based on the concept of virtual nodes which use hierarchical
scheduling to achieve temporal isolation and predictable execution of compo-
nents allocated to the virtual nodes. The virtual node will become a real-time
executable reusable entity. We have described how this technique can be used
for three different component models: ProCom, AUTOSAR and AADL.

Future work is to do the code synthesis for generating and configuring vir-
tual nodes from ProSys subsystems in ProCom component model. It includes
the integration of our HSF implementation within the virtual node. Once these
implementation efforts are complete will have all the links in a complete de-
velopment chain for model driven engineering of component based system in
the ProCom component technology:

• Using the ProCom Integrated Development Environment (PRIDE) com-
ponents can be developed, assembled and deployed to virtual nodes.

54 Paper A

• Using scheduling analysis of hierarchically scheduled systems [20] we
can determine schedulability of both individual virtual nodes and the
final composition of multiple virtual nodes on a single physical node.

• And, with our implemented code synthesis and runtime platform we can
generate and execute the components and their applications in a pre-
dictable way.

The next step will then be to validate the generality of the virtual-node
concept by applying it to AUTOSAR and AADL technologies.

Bibliography

[1] Ivica Crnkovic and Magnus Larsson, editors. Building Reliable
Component-Based Software Systems. Artech House publisher, 2002.
ISBN 1-58053-327-2.

[2] L. Sha, T. Abdelzaher, K-E. rzn, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time Scheduling
Theory: A Historical Perspective. Real-Time Systems, 28(2/3):101–155,
2004.

[3] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo. Implications
of Classical Scheduling Results for Real-Time Systems. IEEE Computer,
pages 16–25, June 1995.

[4] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja, and Mikael Sjödin. Deploy-
ment Modelling and Synthesis in a Component Model for Distributed
Embedded Systems. In Proceedings of the 36th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA’ 10), Septem-
ber 2010.

[5] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time compo-
nents. In 22nd Euromicro Conference on Real-Time Systems (ECRTS10)
WiP Session, pages 17–20, July 2010.

[6] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open
environment. In IEEE Real-Time Systems Symposium(RTSS’97), pages
308–319, 1997.

[7] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-

55

56 Bibliography

ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

[8] Tomáš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgarakis. A
Component Model Family for Vehicular Embedded Systems. In The 3rd
International Conference on Software Engineering Advances. IEEE, Oc-
tober 2008.

[9] Autosar project-page. www.autosar.org.

[10] SAE International. AADL specification. http://www.sae.org/.

[11] AUTOSAR Partnership. Specification of RTE V2.0.1 R3.0 Rev 0001 ,
2008. http://www.autosar.org/.

[12] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. OCARINA : An Envi-
ronment for AADL Models Analysis and Automatic Code Generation for
High Integrity Applications. Springer Berlin Heidelberg, 2009. ISBN
978-3-642-01923-4.

[13] F. Singhoff, J. Legrand, L. Nana, and L. Marc. Cheddar: a flexible real
time scheduling framework. Ada Lett., XXIV(4):1–8, 2004.

[14] Julien Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, and
F. Kordon. Validate, simulate, and implement arinc653 systems using
the aadl. Ada Lett., 29(3):31–44, 2009.

[15] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and Sara
Afshar. Hierarchical Scheduling Framework Implementation in FreeR-
TOS. In IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’ 11), pages 1–10, Tolouse, France, September
2011. IEEE Computer Society.

[16] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, and Moris Behnam. Hard
Real-time Support for Hierarchical Scheduling in FreeRTOS. In 7th An-
nual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT’ 11), pages 51–60, Porto, Portugal, 2011.

[17] FreeRTOS web-site. http://www.freertos.org/.

[18] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[19] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In IEEE Real-Time Systems Symposium (RTSS’06),
pages 389–398, 2006.

[20] Moris Behnam, Thomas Nolte, Mikael Sjödin, and Insik Shin. Over-
run Methods and Resource Holding Times for Hierarchical Scheduling
of Semi-Independent Real-Time Systems. IEEE Transactions on Indus-
trial Informatics, 6(1), February 2010.

[21] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/tools
card.asp?tool id=4114.

[22] Airlines Electronic Engineering. Avionics Application Software Standard
Interface. Technical report, Aeronautical Radio, INC, 1997.

Chapter 6

Paper B:
Support for Hierarchical
Scheduling in FreeRTOS

Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Seyed Mohammad Hossein
Ashjaei, Sara Afshar
In Proceedings of the 16th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA 11), pages 1-10, IEEE Industrial
Electronics Society, Toulouse, France, September, 2011.
Awarded scholarship by IEEE Industrial Electronic Society as best stu-
dent paper.

59

60 Paper B

Abstract

This paper presents the implementation of a Hierarchical Scheduling Frame-
work (HSF) on an open source real-time operating system (FreeRTOS) to sup-
port the temporal isolation between a number of applications, on a single pro-
cessor. The goal is to achieve predictable integration and reusability of inde-
pendently developed components or applications. We present the initial results
of the HSF implementation by running it on an AVR 32-bit board EVK1100.

The paper addresses the fixed-priority preemptive scheduling at both global
and local scheduling levels. It describes the detailed design of HSF with the
emphasis of doing minimal changes to the underlying FreeRTOS kernel and
keeping its API intact. Finally it provides (and compares) the results for the
performance measures of idling and deferrable servers with respect to the over-
head of the implementation.

6.1 Introduction 61

6.1 Introduction
In real-time embedded systems, the components and component integration
must satisfy both (1) functional correctness and (2) extra-functional correct-
ness, such as satisfying timing properties. Temporal behavior of real-time
components poses more difficulties in their integration. The scheduling anal-
ysis [1, 2] can be used to solve some of these problems, however these tech-
niques only allow very simple models; typically simple timing attributes such
as period and deadline are used. In addition, for large-scale real-time embed-
ded systems, methodologies and techniques are required to provide not only
spatial isolation but also temporal isolation so that the run-time timing proper-
ties could be guaranteed.

The Hierarchical Scheduling Framework (HSF) [3] is a promising tech-
nique for integrating complex real-time components on a single processor to
overcome these deficiencies. It supplies an efficient mechanism to provide
temporal partitioning among components and supports independent develop-
ment and analysis of real-time systems. In HSF, the CPU is partitioned into a
number of subsystems. Each subsystem contains a set of tasks which typically
would implement an application or a set of components. Each task is mapped
to a subsystem that contains a local scheduler to schedule the internal tasks of
the subsystem. Each subsystem can use a different scheduling policy, and is
scheduled by a global (system-level) scheduler.

We have chosen FreeRTOS [4] (a portable open source real-time scheduler)
to implement hierarchical scheduling framework. Its main properties like open
source, small footprint, scalable, extensive support for different hardware ar-
chitectures, and easily extendable and maintainable, makes it a perfect choice
to be used within the PROGRESS project [5].

6.1.1 Contributions
The main contributions of this paper are as follows:

• We have provided a two-level hierarchical scheduling support for FreeR-
TOS. We provide the support for a fixed-priority preemptive global sched-
uler used to schedule the servers and the support for idling and deferrable
servers, using fixed-priority preemptive scheduling.

• We describe the detailed design of our implementation with the consid-
erations of doing minimal changes in FreeRTOS kernel and keeping the
original API semantics.

62 Paper B

• We have evaluated the performance measures for periodic and deferrable
servers on an AVR 32-bit board EVK1100 [6]. We also measure the
overhead of the implementation, like tick handler, server context-switch
and task context-switch.

6.1.2 The Hierarchical Scheduling Framework
A two-level HSF [7] can be viewed as a tree with one parent node (global
scheduler) and many leaf nodes (local schedulers) as illustrated in Figure 6.1.
A leaf node contains its own internal set of tasks that are scheduled by a local
(subsystem-level) scheduler. The parent node is a global scheduler and is re-
sponsible for dispatching the servers according to their bandwidth reservation.
A major benefit of HSF is that subsystems can be developed and analyzed in
isolation from each other [8]. As each subsystem has its own local scheduler,
after satisfying the temporal constraints of the subsystem, the temporal prop-
erties are saved within each subsystem. Later, the global scheduler is used
to combine all the subsystems together without violating the temporal con-
straints that are already analyzed and stored in them. Accordingly we can say
that the HSF provides partitioning of the CPU between different servers. Thus,
server-functionality can be isolated from each other for, e.g., fault containment,
compositional verification, validation and certification, and unit testing.
Outline: Section 6.2 presents the related work on hierarchical scheduler and
its implementations. In section 6.3 we provide our system model. Section
6.4 gives an overview of FreeRTOS and the requirements to be incorporated
into our design of HSF. We explain the implementation details of fixed-priority
servers and hierarchical scheduler in section 6.5. In section 6.6 we test the be-
havior and evaluate the performance of our implementation, and in section 6.7
we conclude the paper. We provide the API of our implementation in Appendix
6.8.

6.2 Related Work

6.2.1 Hierarchical Scheduling
HSF has attained a substantial importance since introduced in 1990 by Deng
and Liu [3]. Numerous studies has been performed for the schedulability anal-
ysis of HSFs [9, 10] and processor models [11, 12, 13, 8] for independent
subsystems. The main focus of this research has been on the schedulability
analysis and not much work has been done to implement these theories.

6.2 Related Work 63

Hierarchical Scheduling Framework

Global FPS

Scheduler

SubSystem n

Local FPS

Scheduler

. . .

. . .

TasknTask1

SubSystem 1

Local FPS

Scheduler

. . . TasknTask1

Figure 6.1: Two-level Hierarchical Scheduling Framework

6.2.2 Implementations of Hierarchical Scheduling Framework
Saewong and Rajkumar [14] implemented and analyzed HSF in CMU’s Linux/
RK with deferrable and sporadic servers using hierarchical deadline monotonic
scheduling.

Buttazzo and Gai [15] present an HSF implementation based on Implicit
Circular Timer Overflow Handler (ICTOH) using EDF scheduling for an open
source RTOS, ERIKA Enterprise kernel.

A micro kernel called SPIRIT-µKernel is proposed by Kim et al. [7] based
on two-level hierarchical scheduling. They also demonstrate the concept, by
porting two different application level RTOS, VxWorks and eCos, on top of
the SPIRIT-µKernel. The main focus is on providing a software platform for
strongly partitioned real-time systems and lowering the overheads of kernel.

64 Paper B

It uses an offline scheduler at global level and the fixed-priority scheduling at
local level to schedule the partitions and tasks respectively.

Behnam et al. [16] present an implementation of a two-level HSF in a com-
mercial operating system VxWorks with the emphasis on not modifying the
underlying kernel. The implementation supports both FPS and EDF at both
global and local level of scheduling and a one-shot timer is used to trigger
schedulers. The work presented in this paper is different from that of [16]. Our
implementation aims at efficiency while modifying the kernel with the consid-
eration of being consistent with the FreeRTOS API.

More recently, Holenderski et al. [17] implemented a two-level fixed pri-
ority HSF in µC/OS-II, a commercial real-time operating system. This im-
plementation is based on Relative Timed Event Queues (RELTEQ) [18] and
virtual timers [19] and stopwatch queues on the top of RELTEQ to trigger
timed events. They incorporated RELTEQ queues, virtual timers, and stop-
watch queues within the operating system kernel and provided interfaces for
it. Their HSF implementation uses these interfaces. Our implementation is
different from that of [17] in the sense that we only extend the functionality of
the operating system by providing support for HSF, and not changing or mod-
ifying the data structures used by the underlying kernel. We aim at efficiency,
simplicity in design, and understandability and keeping the FreeRTOS origi-
nal API intact. Also our queue management is very efficient and simple that
eventually reduces the overhead.

6.3 System Model
In this paper, we consider a two-level hierarchical scheduling framework, in
which a global scheduler schedules a system S that consists of a set of inde-
pendently developed subsystems Ss, where each subsystem Ss consists of a
local scheduler along with a set of tasks.

6.3.1 Subsystem Model

Our subsystem model conforms to the periodic processor resource model pro-
posed by Shin and Lee [8]. Each subsystem Ss, also called server, is specified
by a subsystem timing interface Ss(Ps, Qs), where Ps is the period for that
subsystem (Ps > 0), and Qs is the capacity allocated periodically to the sub-
system (0 < Qs ≤ Ps). At any point in time, Bs represents the remaining
budget during the runtime of subsystem. During execution of a subsystem, Bs

6.4 FreeRTOS 65

is decremented by one at every time unit until it depletes. If Bs = 0, the budget
is depleted and Ss will be suspended until its next period where Bs is replen-
ished with Qs. Each server Ss has a unique priority ps. There are 8 different
subsystem priorities (from lowest priority 1 to the highest 7). Only idle server
has priority 0. In the rest of this paper, we use the term subsystem and server
interchangeably.

6.3.2 Task Model
In the current implementation, we use a very simple task model, where each
task τi is characterized only by its priority ρi. A task, τi has a higher priority
than another task, τj , if ρi > ρj . There can be 256 different task priorities,
from lowest priority 1 (only idle task has priority 0) to the highest 255.

The local-level resource sharing among tasks of the same subsystem uses
the FreeRTOS resource sharing methods. For the global-level resource sharing
user should use some traditional waitfree [20] technique.

6.3.3 Scheduling Policy
We use a fixed-priority scheduling, FPS, at both the global and the local levels.
FPS is the native scheduling of FreeRTOS, and also the predominant schedul-
ing policy used in embedded systems industry. We use the First In First Out,
FIFO, mechanism to schedule servers and tasks under FPS when they have
equal priorities.

6.4 FreeRTOS

6.4.1 Background
FreeRTOS is a portable, open source (licensed under a modified GPL), mini
real-time operating system developed by Real Time Engineers Ltd. It is ported
to 23 hardware architectures ranging from 8-bit to 32-bit micro-controllers,
and supports many development tools. Its main advantages are portability,
scalability and simplicity. The core kernel is simple and small, consisting of
three or four (depends on the usage of coroutines) C files with a few assembler
functions, with a binary image between 4 to 9KB.

Since most of the source code is in C language, it is readable, portable,
and easily expandable and maintainable. Features like ease of use and under-
standability makes it very popular. More than 77, 500 official downloads in

66 Paper B

2009 [21], and the survey result performed by professional engineers in 2010
puts the FreeRTOS at the top for the question ”which kernel are you consider-
ing using this year” [22] showing its increasing popularity.

The FreeRTOS kernel supports preemptive, cooperative, and hybrid schedu-
ling. In the fixed-priority preemptive scheduling, tasks with the same priority
are scheduled using the Round-Robin (RR) policy. It supports any number of
tasks and very efficient context-switching. FreeRTOS supports both static and
dynamic (changed at run-time) priorities of the tasks. It has binary, counting
and recursive semaphores and the mutexes for resource protection and syn-
chronization, and queues for message passing among tasks. Its scheduler runs
at the rate of one tick per milli-second by default, but it can be changed to
any other value easily by setting the value of configTICK RATE HZ in the
FreeRTOSConfig.h file.

We have extended FreeRTOS with a two-level hierarchical scheduling frame-
work. The implementation is made under consideration of not changing the un-
derlying operating system kernel unless vital and keeping the semantics of the
original API. Hence the hierarchical scheduling of tasks is implemented with
intention of doing as few modifications to the FreeRTOS kernel as possible.

6.4.2 Support for FIFO Mechanism for Local Scheduling

Like many other real-time operating systems, FreeRTOS uses round robin
scheduling for tasks with equal priorities. FreeRTOS uses listGET OWNER
OF NEXT ENTRY macro to get the next task from the list to execute them in
RR fashion. We change it to the FIFO policy to schedule tasks at local-level.
We use listGET OWNER OF HEAD ENTRY macro to execute the current
task until its completion. At global-level the servers are also scheduled using
the FIFO policy.

6.4.3 Support for Servers

In this paper we implement the idling periodic [23] and deferrable servers [24].
We need periodic activation of local servers to follow the periodic resource
model [8]. To implement periodic activation of local servers our servers behave
like periodic tasks, i.e. they replenish their budget Qs every constant period
Ps. A higher priority server can preempt and the execution of lower priority
servers.

6.4 FreeRTOS 67

Support for Idling Periodic Server

In the idling periodic server, the tasks execute and use the server’s capacity
until it is depleted. If server has the capacity but there is no task ready then it
simply idles away its budget until a task becomes ready or the budget depletes.
If a task arrives before the budget depletion, it will be served. One idle task per
server is used to run when no other task is ready.

Support for Deferrable Server

In the deferrable server, the tasks execute and use the server’s capacity until
it is depleted. If the server has capacity left but there is no task ready then it
suspends its execution and preserves its remaining budget until its period ends.
If a task arrives later before the end of server’s period, it will be served and
consumes server’s capacity until the capacity depletes or the server’s period
ends. If the capacity is not used till the period end, then it is lost. In case there
is no task (of any server) ready in the whole system, an idle server with an idle
task will run instead.

Support for Idle Server

When there is no other server in the system to execute, then an idle server will
run. It has the lowest priority of all the other servers, i.e. 0. It contains only an
idle task to execute.

6.4.4 System Interfaces
We have designed the API with the consideration of being consistent in struc-
ture and naming with the original API of FreeRTOS.

Server Interface

A server is created using the function vServerCreate(period, budget,
priority, *serverHandle). A macro is used to specify the server type
as idling periodic or deferrable server in the config file.

Task Interface

A task is created and assigned to the specific server by using the function
xServerTaskCreate(). In addition to the usual task parameters passed to

68 Paper B

create a task in FreeRTOS, a handle to the server serverHandle is passed to
this function to register the newly created task to its parent server. The original
FreeRTOS API to create the task cannot be used in HSF.

6.4.5 Terminology

The following terms are used in this paper:

• Active servers: Those servers whose remaining budget (Bs) is greater
than zero. They are in the ready-server list.

• Inactive servers: Those servers whose budget has been depleted and
waiting for their next activation when their budget will be replenished.
They are in the release-server list.

• Ready-server list: A priority queue containing all the active servers.

• Release-server list: A priority queue containing all the inactive servers.
It keeps track of system event: replenishment of periodic servers.

• Running server: The only server from the ready-server list that is cur-
rently running. At every system tick, its remaining budget is decreased
by one time unit, until it exhausts.

• Idle server: The lowest priority server that runs when no other server
is active. In the deferrable server, it runs when there is no ready task in
the system. This is useful for maintaining and testing the temporal sep-
aration among servers and also useful in testing system behavior. This
information is useful in detecting over-reservations of server budgets and
can be used as feedback to resource management.

• Ready-task list: Each subsystem maintains a separate ready-task list to
keep track of its ready tasks. Only one ready-task list will be active at
any time in the system: the ready list of the running server.

• Idle task: A lowest priority task existing in each server. It runs when its
server has budget remaining but none of its task are ready to execute (in
idling server). In deferrable server, the idle task of idle server will run
instead.

6.4 FreeRTOS 69

6.4.6 Design Considerations

Here we present the challenges and goals of a HSF implementation that our
implementation on FreeRTOS should satisfy:

1. The use of HSF and the original FreeRTOS operating system: User
should be able to make a choice for using the HSF or the original FreeR-
TOS scheduler.

2. Consistency with the FreeRTOS kernel and keeping its API intact:
To get minimal changes and better utilization of the system, it will be
good to match the design of the HSF implementation with the underlying
FreeRTOS operating system. This includes consistency from the naming
conventions to API, data structures and the coding style. To increase the
usability and understandability of HSF implementation for FreeRTOS
users, major changes should not be made in the underlying kernel.

3. Enforcement: Enforcing server preemption at budget depletion; its cur-
rently executing task (if any) must be preempted and the server should be
switched out. And similarly at budget replenishment, the server should
become active; if its priority is highest among all the active servers then
a server context-switch should be made and this server should execute.

4. Monitoring budget consumption: The budget consumption of servers
should be monitored to properly handle server budget depletion (the
tasks of the server should execute until its budget depletion).

5. The temporal isolation among servers must be guaranteed: When
one server is overloaded and its task miss the deadlines, it must not affect
the execution of other servers. Also when no task is active to consume
its server’s capacity; in the idling server this capacity should idle away
while in deferrable server it should be preserved.

6. Protecting against interference from inactive servers: The inactive
servers should not interfere in the execution of active servers.

7. Minimizing the overhead of server context-switch and tick handler:
For an efficient implementation, design considerations should be made
to reduce these overheads.

70 Paper B

6.5 Implementation
The user needs to set a macro configHIERARCHICAL SCHEDULING as
1 or 0 in the configuration file FreeRTOSConfig.h of the FreeRTOS to
start the hierarchical scheduler or the original FreeRTOS scheduler. The server
type can be set via macro configGLOBAL SERVER MODE in the configu-
ration file, which can be idling periodic or deferrable server. We are using
FPS with the FIFO (to break ties between equal priorities) at both levels. We
have changed the FreeRTOS RR policy to FIFO for the local schedulers, in
order to use HSF-analysis in future. Further RR is costly in terms of overhead
(increased number of context switches).

Each server has a server control block, subSCB, containing the server’s pa-
rameters and lists. The servers are created by calling the API xServerCreate()
that creates an idling or deferrable server depending on the server type macro
value, and do the server initializations which includes subSCB value’s ini-
tialization, and initialization of server lists. It also creates an idle task in that
server. An idle server with an idle task is also created to setup the system.
The scheduler is started by calling vTaskStartScheduler() (typically
at the end of the main() function), which is a non-returning function. De-
pending on the value of the configHIERARCHICAL SCHEDULING macro,
either the original FreeRTOS scheduler or the hierarchical scheduler will start
execution. vTaskStartScheduler() then initializes the system-time to
0 by setting up the timer in hardware.

6.5.1 System Design

Here we describe the details of design, implementation, and functionality of
the two-level HSF in FreeRTOS.

The Design of the Scheduling Hierarchy

The global scheduler maintains a running server pointer and two lists to sched-
ule servers: a ready-server list and a release-server list. A server can be either
in ready-server or release-server list at any time, and is implied as active or
inactive respectively. Only one server from the ready-server list runs at a time.
Running server: The running server is identified by a pointer. This server has
the highest priority among all the currently ready servers in the system.

At any time instance, only the tasks of the currently running server will run
according to the fixed-priority scheduling policy. When a server context-switch

6.5 Implementation 71

2-Level Hierarchical

Scheduling System

. . .

. . .
Running Server

Ready Server List

Release Server List

Server Control Block

Period

Budget

Remaining Budget

Priority

currentTCB

Ready Task List

Delayed Task List

Figure 6.2: Data structures for active and inactive servers

occurs, the running server pointer is changed to the newly running server and
all the tasks of the new running server become ready for execution.

Ready-server list: contains all the servers that are active (whose remaining
budgets are greater than zero). This list is maintained as a double linked
list. The ListEnd node contains two pointers; ListEnd.previous and
ListEnd.next that point to the last node and first node of the list respec-
tively as shown in Figure 6.3. It is the FreeRTOS structure of list, and provides
a quick access to list elements, and very fast modifications of the list. It is
ordered by the priority of servers, the highest priority ready server is the first
node of the list.

. . .Server 1 Server 2 Server n ListEnd

Figure 6.3: The structure of ready-server and release-server lists

Release-server list: contains all the inactive servers whose budget has de-
pleted (their remaining budget is zero), and will be activated again at their next
activation periods. This list is maintained as a double linked list as shown in
Figure 6.3 and is ordered by the next replenishment time of servers, which is
the absolute time when the server will become active again.

72 Paper B

The Design of the Server

The local scheduler schedules the tasks that belong to a server in a fixed-
priority scheduling manner. Each server is specified by a server Control Block,
called subSCB, that contains all information needed by a server to run in the
hierarchical scheduling, i.e. the period, budget, remaining budget, priority and
the queues as presented in Figure 6.4.

Each server maintains a currently running task and two lists to schedule its
tasks: a ready-task list, and a delayed-task list. Ready task and delayed task
lists have the same structure as the FreeRTOS scheduler has. Delayed-task list
is the FreeRTOS list and is used by the tasks that are delayed because of the
FreeRTOS vTaskDelay or vTaskDelayUntil functions.

. . .

Server Control Block

Period

Budget

Remaining Budget

Priority

currentTCB

Ready Task List

Delayed Task List

Task Control

Block

FreeRTOS TCB

Local Server

Figure 6.4: Data structures for ready and delayed tasks

Current running task: currentTCB is a FreeRTOS pointer that always
points to the currently running task in the system. This is the task with the
highest priority among all the currently ready tasks of the running server’s
ready task list.
Ready-task list: Each server maintains a separate ready-task list to keep
track of its ready tasks. Only one ready-task list will be active at any time in
the system: the ready list of the currently running server. When a server starts
executing, its ready-task list becomes active, and currentTCB points to the
highest priority task. This list is maintained in a similar way as FreeRTOS
ready list, because we do not want to make major changes in the underlying
operating system.

6.5 Implementation 73

A separate ready-task list for each server reduces the server context-switch
overhead, since the tasks swapping at every server context-switch is very costly.
Further it also keeps our implementation consistent with the FreeRTOS.

The ready task list is an array of circular double linked lists of the tasks.
The index of the array presents the priorities of tasks within a subsystem as
shown by the gray color in Figure 6.5. By default, FreeRTOS uses 8 different
priority levels for the tasks from lowest priority 1 (only idle task has priority
0) to the highest 7. (User can change it till the maximum 256 different task
priorities). The tasks of the same priority are placed as a double linked list at
the index of that particular priority. The last node of the double linked list at
each index is End pointer that points to the previous (the last node of the list)
and to the next (the first node of the list) as shown in the Figure 6.5.

For insertions the efficiency is O(1), and for searching it is O(n) in the
worst case, where n is the maximum allowed priority for tasks in the subsys-
tem.

. . .Task 1 Task 2 Task 3 Task n

Task 1 Task 2

. . .Task 1 Task 2 Task n

.

.

.

1

n-1

n-2

ListEnd

ListEnd

ListEnd

Figure 6.5: The structure of ready-task list

Tasks: We added a pointer to the task TCB, that points to its parent server con-
trol block to which this task belongs. This is the only addition done to the TCB
of FreeRTOS to adopt it to the two-level hierarchical scheduling framework.
Server context-switch: Since each subsystem has its own ready list for its
tasks, the server context switch is very light-weight. It is only the change of
a pointer, i.e. from the task list of the currently executing server to the ready-
task list of the newly running server. At this point, the ready-task list of the
newly running server is activated and all the tasks of the list become ready for
execution.
Task context-switch: We are using the FreeRTOS task context-switch which
is very fast and efficient as evaluated in Section 6.6.2. At this point, the ready-

74 Paper B

task list of the newly running server is activated and all the tasks of the list
become ready for execution.

6.5.2 System Functionality
The Functionality of the Tick Handler

The tick handler is executed at each system tick (1ms be default). At each tick
interrupt:

• The system tick is incremented.

• Check for the server activation events. Here the activation time of (one
or more) servers is checked and if it is equal to the system time then
the server is replenished with its maximum budget and is moved to the
ready-server list.

• The global scheduler is called to incorporate the server events.

• The local scheduler is called to incorporate the task events.

The Functionality of the Global Scheduler

In a two-level hierarchical scheduling system, a global scheduler schedules the
servers (subsystems) in a similar fashion as the tasks are scheduled by a simple
scheduler. The global scheduler is called by the prvScheduleServers()
kernel function from within the tick-handler. The global scheduler performs
the following functionality:

• At each tick interrupt, the global scheduler decrements the remaining
budget Bs of the running server by one and handles budget expiration
event (i.e. at the budget depletion, the server is moved from the ready-
server list to the release-server list).

• Selects the highest priority ready server to run and makes a server context-
switch if required. prvChooseNextIdlingServer() or prvChoo
seNextDeferrableServer() is called to select idling or deferrable
server, depending on the configGLOBAL SERVER MODE macro. All
the events that occurred during inactive state of the server (tasks activa-
tions) are handled here.

• prvAdjustServerNextReadyTime(pxServer) is called to set
up the next activation time to activate the server periodically.

6.5 Implementation 75

In idling server, prvChooseNextIdlingServer() simply selects the
first node (with highest priority) from the ready-server list and makes it the cur-
rent running server. While in case of deferrable server, the prvChooseNext
DeferrableServer() function checks in the ready-server list for the next
ready server that has any task ready to execute even if the currently running
server has no ready task and its budget has not exhausted. It also handles the
situation when the server’s remaining budget is greater than 0, but its period
ends, in this case the server is replenished with its full capacity.

The Functionality of the Local Scheduler

The local scheduler is called from within the tick interrupt using the adopted
FreeRTOS kernel function vTaskSwitchContext(). The local scheduler
is the original FreeRTOS scheduler with the following modifications:

• The round robin scheduling policy among equal priority tasks is changed
to FIFO policy.

• Instead of a single ready-task or delayed-task list (as in original FreeR-
TOS), now the local scheduler accesses a separate ready-task and delayed-
task list for each server.

6.5.3 Addressing Design Considerations
Here we address how we achieve the design requirements that are presented in
Section 6.4.6.

1. The use of HSF and the original FreeRTOS operating system: We
have kept all the original API of FreeRTOS, and the user can choose
to run either the original FreeRTOS operating system or the HSF by
just setting a macro configHIERARCHICAL SCHEDULING to 0 or 1
respectively in the configuration file.

2. Consistency with the FreeRTOS kernel and keeping its API intact:
We have kept consistency with the FreeRTOS from the naming conven-
tions to the data structures used in our implementations; for example
ready-task list, ready and release server lists. These lists are maintained
in a similar way as of FreeRTOS. We have kept the original seman-
tics of the API and the user can run the original FreeRTOS by setting
configHIERARCHICAL SCHEDULING macro to 0.

76 Paper B

3. Enforcement: At each tick interrupt, the remaining budget of the run-
ning server is checked and at budget depletion (remaining budget be-
comes 0), the server is moved from active (ready-server list) to the in-
active (release-server list) state. Moreover, release-server list is also
checked for the periodic activation of servers at each system tick and
at budget replenishment of any server, it is moved from inactive to active
state. Preemptive scheduling policy makes it possible.

4. Monitoring budget consumption: The remaining budget variable of
each server’s subSCB is used to monitor the consumption. At each
system tick, the remaining budget of the running server is decremented
by one, and when it exhausts the server is moved from active to the
inactive state.

5. The temporal isolation among servers must be guaranteed: We tested
the system and an idle task runs when there is no task ready to execute.
To test the temporal isolation among servers, we use an Idle server that
runs when no other server is active. It is used in testing the temporal
isolation among servers. Section 6.6.1 illustrates the temporal isolation.

6. Protecting against interference from inactive servers: The separation
of active and inactive servers in separate server queues prevents the in-
terference from inactive servers and also poses less overhead in handling
system tick interrupts.

7. Minimizing the overhead of server context-switch and tick handler:
A separate ready-task list for each subsystem reduces the task swapping
overhead to only the change of a pointer. Therefore, the server context-
switch is very light-weight. The access to such a structure of ready list is
fast and efficient especially in both inserting and searching for elements.
Further the tasks swapping at every server context-switch is very heavy
in such a structure.

6.6 Experimental Evaluation
In this section, we present the evaluation of behavior and performance of our
HSF implementation. All measurements are performed on the target platform
EVK1100 [6]. The AVR32UC3A0512 micro-controller runs at the frequency
of 12MHz and its tick interrupt handler at 1ms.

6.6 Experimental Evaluation 77

6.6.1 Behavior Testing
In this section we perform two experiments to test the behavior our implemen-
tation. Two servers S1, and S2 are used in the system, plus an idle server is
created. The servers used to test the system are given in Table 6.1.

Server S1 S2
Priority 2 1
Period 20 40
Budget 10 15

Table 6.1: Servers used to test system behavior.

Test1: This test is performed to check the behavior of idling periodic and
deferrable servers by means of a trace of the execution. Task properties and
their assignments to the servers is given in Table 6.2. Note that higher number
means higher priority for both servers and tasks. The visualization of the exe-
cution for idling and deferrable servers is presented in Figure 6.6 and Figure 6.7
respectively.

Tasks T1 T2 T3
Servers S1 S1 S2
Priority 1 2 2
Period 20 15 60

Execution Time 4 2 10

Table 6.2: Tasks in both servers.

In the diagram, the horizontal axis represents the execution time starting
from 0. In the task’s visualization, the arrow represents task arrival, a gray
rectangle means task execution, a solid white rectangle represents either local
preemption by another task in the server or budget depletion, and a dashed
white rectangle means the global preemption. In the server’s visualization,
the numbers along the vertical axis are the server’s capacity, the diagonal line
represents the server execution while the horizontal line represents either the
waiting time for the next activation (when budget has depleted) or the waiting
for its turn to execute (when some other server is executing).

The difference in idling and deferrable servers is clear from these Figures.
In idling periodic servers, all the servers in the system executes till budget
depletion, if no task is ready then the idle task of that server executes till its

78 Paper B

Figure 6.6: Trace for idling periodic servers

budget depletion. While in deferrable servers, when no task is ready in the
server even if it has the capacity, the server will give the chance to another
server to execute and preserves its capacity. Thats why there is no idle task (of
S1 and S2) execution in deferrable servers as obvious from Figure 6.7. When
no task is ready to execute in the system, then idle task of idle server will
execute.
Test2: The purpose of this test is to evaluate the system behavior during the
overload situation and to test the temporal isolation among the servers. For
example, if one server is overloaded and its tasks miss deadlines, it must not
affect the behavior of other servers in the system.

The same example is executed to perform this test but with the increased

6.6 Experimental Evaluation 79

Figure 6.7: Trace for deferrable servers

utilization of S1. The execution times of T1 and T2 are increased to 4 and 6
respectively, hence making the server S1 utilization greater than 1. Therefore
the low priority task T1 misses its deadlines as shown by solid black lines in
the Figure 6.8. S1 is never idling because it is overloaded. It is obvious from
Figure 6.8, that the overload of S1 does not effect the behavior of S2 even
though it has low priority.

80 Paper B

Figure 6.8: Trace showing temporal isolation among idling servers

6.6.2 Performance Assessments
Here we present the results of the overhead measurements for the idling and
deferrable servers. The time required to run the global scheduler (to schedule
the server) is the first extra functionality needed to be measured; it includes
the overhead of server context-switch. The tick interrupt handler is the sec-
ond function to be measured; it encapsulated the global scheduler within it,
hence the overhead measurement for tick interrupt represents the sum of tick-
increasing time and global scheduler time. The third overhead needed to be
assessed is the task context-switch.

Two test scenarios are performed to evaluate the performance for both
idling and deferrable servers. For each measure, a total of 1000 values are
computed. The minimum, maximum, average and standard deviation on these
values are calculated and presented for both types of servers. All the values are
given in micro-seconds (µs).

Test Scenario 1

For the first performance test, 3 servers, S1, S2, and S3 are created with a total
of 7 tasks. S1 contains 3 tasks while S2 and S3 has 2 tasks each. The measure-

6.6 Experimental Evaluation 81

ments are extracted for task and server context-switches, global scheduler and
tick interrupt handler and are reported below.
Task context switch: The FreeRTOS context-switch is used for doing task-
level switching. We found it very efficient, consistent and light-weight, i.e.
10µs always as obvious from Table 6.3.

Server type Min. Max. Average St. Deviation
Idling 10 10 10 0

Deferrable 10 10 10 0

Table 6.3: The task context-switch measures for both servers.

Choosing next server: It is fetching the highest priority server (first node
from the server ready queue), and it is very fast for both types of servers as
given in Table 6.4. Note that the situations where there is no need to change
the server, it becomes 0 and this situation is excluded from these results.

Server type Min. Max. Average St. Deviation
Idling 10 10 10 0

Deferrable 10 32 14.06593 5.6222458

Table 6.4: The server context-switch measures for both servers.

The deferrable overhead is greater than idling server because of the in-
creased functionality, as explained in Section 6.5.2.
Global scheduler: The WCET of the global scheduler is dependent on the
number of events it handles. As explained in Section 6.5.2, the global scheduler
handles the server activation events and the events which has been postponed
during inactive time in this server, therefore, its execution time depends on
the number of events. The overhead measures for global scheduler function to
execute for both types of servers are given in Table 6.5.

Server type Min. Max. Average St. Deviation
Idling 10 53 12.33666 6.0853549

Deferrable 10 42 13.34865 7.5724052

Table 6.5: The global scheduler overhead measures for both servers.

Tick interrupt handler: It includes the functionality of global and local
schedulers. The WCET of the tick handler is dependent on the number of

82 Paper B

servers and tasks in the system. Note that the task context-switch time is ex-
cluded from this measurement.

Server type Min. Max. Average St. Deviation
Idling 32 74 37.96903 7.00257381

Deferrable 32 85 41.17582 10.9624383

Table 6.6: The tick interrupt overhead measures for both servers.

Again the deferrable overhead is greater than that of the idling server be-
cause of the increased functionality and increased number of server context-
switches at run-time.

Test Scenario 2

The experiments are run to check heavy system loads. The setup includes
10, 20, 30, and 40 servers in the system, each running a single task in it. We
cannot create more than 40 idling servers, and more than 30 deferrable servers
due to memory limitations on our hardware platform. For this test scenario
we only measured the overheads for the global scheduler and the tick interrupt
handler, because choosing next server is part of global scheduler and because
the time to execute task context-switch is not affected by the increase of number
of servers in the system.
Global scheduler: The values for idling and deferrable servers are presented
in Table 6.7 and 6.8 respectively.

Number of servers Min. Max. Average St. Deviation
10 10 21 10.0439 0.694309682
20 10 32 10.1538 1.467756006
30 10 32 10.3956 2.572807933
40 10 32 10.3186 2.258614766

Table 6.7: The global scheduler overhead measures for idling server.

The global scheduler’s overhead measures are dependent on the number of
events it handles as explained in Section 6.5.2. In this test scenario, there is
only one task per server, that reduces the number of events to be handled by
the global scheduler, therefore, the maximum overhead values in Table 6.7 are
less than from those of Table 6.5. The same reasoning stands for deferrable
server too.

6.6 Experimental Evaluation 83

Number of servers Min. Max. Average St. Deviation
10 10 53 25.84 8.950729331
20 10 53 25.8434 11.90195638
30 10 53 27.15 9.956851354

Table 6.8: The global scheduler overhead measures for deferrable server.

Tick interrupt handler: The measured overheads for idling and deferrable
servers are reported in Table 6.9 and 6.10 respectively. These do not include
the task context-switch time.

Number of servers Min. Max. Average St. Deviation
10 53 96 64.57742 4.656420272
20 96 106 98.35764 4.246876974
30 128 138 132.2058 4.938988398
40 160 181 164.8022 5.986888605

Table 6.9: The tick interrupt overhead measures for idling servers.

From Tables 6.6, 6.9, 6.10 it is clear that the tick interrupt overhead in-
creases with the increase in the number of servers in the system.

Number of servers Min. Max. Average St. Deviation
10 106 128 126.2574 4.325860528
20 140 149 144.5446 4.522222357
30 172 181 178.7723 3.903539901

Table 6.10: The tick interrupt overhead measures for deferrable servers.

6.6.3 Summary of Evaluation
We have evaluated our implementation on an actual real environment i.e. a
32-bit EVK1100 board hence our results are more valid than simulated results
like [17] where the simulation experiments are simulated for OpenRisc 1000
architecture and hence having a very precise environmental behavior. We have
evaluated the behavior and performance of our implementation for resource al-
location during heavy load, and overload situations, and found that it behaves
correctly and gives very consistent results.

84 Paper B

We have also evaluated the efficiency of our implementation, i.e. the effi-
ciency of task context-switch, global scheduler, and tick handler. Searching for
the highest priority server and task the efficiencies are O(1) and O(n) respec-
tively, where n is the maximum allowed priority for tasks in the subsystem.
For insertions, it is O(m) and O(1) for the server and task respectively, where
m is the number of servers in the system in the worst case. Our results for task
context-switch, and choosing scheduler conforms this efficiency as compared
to [17], where the efficiency is also dependent on dummy events in the REL-
TEQ queues. These dummy events are not related to the scheduler or tasks, but
to the RELTEQ queue management.

6.7 Conclusions
In this paper, we have implemented a two-level hierarchical scheduling support
in an open source real-time operating system, FreeRTOS, to support temporal
isolation among real-time components. We have implemented idling periodic
and deferrable servers using fixed-priority preemptive scheduling at both local
and global scheduling levels. We focused on being consistent with the underly-
ing operating system and doing minimal changes to get better utilization of the
system. We presented our design details of two-level HSF and kept the original
FreeRTOS API semantics.

We have tested our implementations and presented our experimental eval-
uations performed on EVK1100 AVR32UC3A0512 micro-controller. We have
checked it during heavy-load and over-load situations and have reported our
results. It is obvious from the results of the overhead measurements (of tick
handler, global scheduler, and task context-switch) that the design decisions
made and the implementation is very efficient.

In the future we plan to implement support for legacy code in our HSF
implementation for the FreeRTOS i.e. to map the FreeRTOS API to the new
API, so that the user can run her/his old code in a subsystem within the HSF.
We will implement the periodic task model and a lock-based synchronization
protocol [25] for global resource sharing among servers. We also want to im-
prove the current Priority Inheritance Protocol for local resource sharing of
FreeRTOS by implementing Stack Resource Protocol. And finally we want to
integrate this work within the virtual node concept [5].

6.8 Appendix 85

6.8 Appendix
A synopsis of the application program interface of HSF implementation is pre-
sented below. The names of these API and macros are self-explanatory.
The newly added user API and macro are the following:

1. signed portBASE TYPE xServerCreate(xPeriod, xBudget,
uxPriority, *pxCreatedServer);

2. signed portBASE TYPE xServerTaskGenericCreate(pxTaskCode,
pcName, usStackDepth, *pvParameters, uxPriority, *pxCreatedTask,
pxCreatedServer, *puxStackBuffer, xRegions) PRIVILEGED FUNCTION;

3. #define xServerTaskCreate(pvTaskCode, pcName, usStackDepth,
pvParameters, uxPriority, pxCreatedTask, pxCreatedServer)
xServerTaskGenericCreate((pvTaskCode), (pcName), (usStackDepth),
(pvParameters), (uxPriority), (pxCreatedTask), (pxCreatedServer),
(NULL), (NULL))

4. portTickType xServerGetRemainingBudget(void);

The newly added private functions and macros are as follows:

1. #define prvAddServerToReadyQueue(pxSCB)

2. #define prvAddServerToReleaseQueue(pxSCB)

3. #define prvAddServerToOverflowReleaseQueue(pxSCB)

4. #define prvChooseNextDeferrableServer(void)

5. #define prvChooseNextIdlingServer(void)

6. static inline void prvAdjustServerNextReadyTime(*pxServer);

7. static void prvInitialiseServerTaskLists(*pxServer);

8. static void prvInitialiseGlobalLists(void);

9. static signed portBASE TYPE prxRegisterTasktoServer(* pxNewTCB,

*pxServer);

10. static signed portBASE TYPE prxServerInit(* pxNewSCB);

11. static signed portBASE TYPE xIdleServerCreate(void);

12. static void prvScheduleServers(void);

13. static void prvSwitchServersOverflowDelayQueue(* pxServerList);

14. static void prvCheckServersDelayQueue(* pxServerList);

86 Paper B

We adopted the following user APIs to incorporate HSF implementation.
The original semantics of these API is kept and used when the user run the orig-
inal FreeRTOS by setting configHIERARCHICAL SCHEDULING macro to
0.

1. signed portBASE TYPE xTaskGenericCreate(pxTaskCode, pcName,
usStackDepth, *pvParameters, uxPriority, *pxCreatedTask,

*puxStackBuffer, xRegions);

2. void vTaskStartScheduler(void);

3. void vTaskStartScheduler (void);

4. void vTaskDelay(xTicksToDelay);

5. void vTaskDelayUntil(pxPreviousWakeTime, xTimeIncrement);

and adopted private functions and macros:

1. #define prvCheckDelayedTasks(pxServer)

2. #define prvAddTaskToReadyQueue(pxTCB)

3. void vTaskIncrementTick(void);

4. void vTaskSwitchContext(void);

Bibliography

[1] L. Sha, T. Abdelzaher, K-E. rzn, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time Scheduling
Theory: A Historical Perspective. Real-Time Systems, 28(2/3):101–155,
2004.

[2] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo. Implications
of Classical Scheduling Results for Real-Time Systems. IEEE Computer,
pages 16–25, June 1995.

[3] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proc. 18th IEEE Real-Time Systems Symposium (RTSS),
1997.

[4] FreeRTOS web-site. http://www.freertos.org/.

[5] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time compo-
nents. In 22nd Euromicro Conference on Real-Time Systems (ECRTS10)
WiP Session, pages 17–20, July 2010.

[6] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/tools
card.asp?tool id=4114.

[7] Daeyoung Kim, Yann-Hang Lee, and M. Younis. Spirit-ukernel for
strongly partitione real-time systems. In Proc. of the 7th Interna-
tional conference on Real-Time Computing Systems and Applications
(RTCSA’00), 2000.

[8] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. 24th IEEE Real-Time Systems Symposium (RTSS),
pages 2–13, 2003.

87

88 Bibliography

[9] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. In Proc. 20th IEEE Real-Time Systems Symposium
(RTSS), 1999.

[10] G. Lipari and S.Baruah. Efficient scheduling of real-time multi-task ap-
plications in dynamic systems. In Proc. 6th IEEE Real-Time Technology
and Applications Symposium (RTAS), pages 166–175, 2000.

[11] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:
response-time analysis and server design. In ACM Intl. Conference on
Embedded Software(EMSOFT’04), pages 95–103, 2004.

[12] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.
In IEEE Real-Time Systems Symposium (RTSS’02), pages 26–35, 2002.

[13] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In IEEE Real-Time Systems Symposium (RTSS’05), pages 389–398,
2005.

[14] S. Saewong and R. Rajkumar. Hierarchical reservation support in re-
source kernels. In Proc. 22th IEEE Real-Time Systems Symposium
(RTSS), 2001.

[15] G. Buttazzo and P. Gai. Efficient edf implementation for small embedded
systems. In International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT’06), 2006.

[16] Moris Behnam, Thomas Nolte, Insik Shin, Mikael Åsberg, and Reinder J.
Bril. Towards hierarchical scheduling on top of vxworks. In Proceedings
of the Fourth International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT’08), pages 63–72, July
2008.

[17] Mike Holenderski, Wim Cools, Reinder J. Bril, and J. J. Lukkien. Ex-
tending an Open-source Real-time Operating System with Hierarchical
Scheduling. Technical Report, Eindhoven University, 2010.

[18] Mike Holenderski, Wim Cools, Reinder J. Bril, and J. J. Lukkien. Mul-
tiplexing Real-time Timed Events. In Work in Progress session of the
IEEE International Conference on Emerging Techonologies and Factory
Automation (ETFA09), 2009.

[19] M.M.H.P. van den Heuvel, Mike Holenderski, Wim Cools, Reinder J.
Bril, and Johan J. Lukkien. Virtual Timers in Hierarchical Real-time
Systems. In Work in Progress Session of the IEEE Real-Time Systems
Symposium (RTSS09), December 2009.

[20] Håkan Sundell and Philippas Tsigas. Simple Wait-Free Snapshots for
Real-Time Systems with Sporadic Tasks. In Proceedings of the (RTCSA
2004), pages 325–240.

[21] Microchip web-site.

[22] EE TIMES web-site. http://www.eetimes.com/design/embedded/4008920/
The-results-for-2010-are-in-.

[23] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. IEEE Real-Time
Systems Symposium (RTSS), pages 181–191, 1986.

[24] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server algo-
rithm for Enhanced Aperiodic Responsiveness in Hard Real-time Envi-
ronments. IEEE Transactions on Computers, 44(1), 1995.

[25] Moris Behnam, Thomas Nolte, Mikael Sjödin, and Insik Shin. Over-
run Methods and Resource Holding Times for Hierarchical Scheduling
of Semi-Independent Real-Time Systems. IEEE Transactions on Indus-
trial Informatics, 6(1), February 2010.

Chapter 7

Paper C:
Hard Real-time Support for
Hierarchical Scheduling in
FreeRTOS

Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Moris Behnam
In Proceedings of the 7th International Workshop on Operating Systems Plat-
forms for Embedded Real-Time Applications (OSPERT’ 11), Pages 51-60,
Porto, Portugal, July, 2011.

91

92 Paper C

Abstract

This paper presents extensions to the previous implementation of two-level
Hierarchical Scheduling Framework (HSF) for FreeRTOS. The results pre-
sented here allow the use of HSF for FreeRTOS in hard-real time applications,
with the possibility to include legacy applications and components not explic-
itly developed for hard real-time or the HSF.

Specifically, we present the implementations of (i) global and local re-
source sharing using the Hierarchical Stack Resource Policy and Stack Re-
source Policy respectively, (ii) kernel support for the periodic task model, and
(iii) mapping of original FreeRTOS API to the extended FreeRTOS HSF API.
We also present evaluations of overheads and behavior for different alternative
implementations of HSRP with overrun from experiments on the AVR 32-bit
board EVK1100. In addition, real-time scheduling analysis with models of the
overheads of our implementation is presented.

7.1 Introduction 93

7.1 Introduction
In real-time embedded systems the components and components integration
must satisfy both (1) functional correctness and (2) extra-functional correct-
ness, such as satisfying timing properties. Hierarchical Scheduling Framework
(HSF) [1] has emerged as a promising technique in satisfying timing properties
while integrating complex real-time components on a single node. It supplies
an effective mechanism to provide temporal partitioning among components
and supports independent development and analysis of real-time systems [2].
In HSF, the CPU is partitioned into a number of subsystems (servers or ap-
plications); each real-time component is mapped to a subsystem that contains
a local scheduler to schedule the internal tasks of the subsystem. Each sub-
system performes its own task scheduling, and the subsystems are scheduled
by a global (system-level) scheduler. Two different synchronization mecha-
nisms overrun [3] and skipping [4] have been proposed and analyzed for inter-
subsystem resource sharing, but not much work has been performed for their
practical implementations.

We have chosen FreeRTOS [5], a portable open source real-time sched-
uler to implement hierarchical scheduling framework. The goal is to use the
HSF-enabled FreeRTOS to implement the virtual node concept in the ProCom
component-model [6, 7]. FreeRTOS has been chosen due to its main features,
like it’s open source nature, small size and scalability, and support of many dif-
ferent hardware architectures allowing it to be easily extended and maintained.
Our HSF implementation [8] on FreeRTOS for idling periodic and deferrable
servers uses fixed priority preemptive scheduling (FPPS) for both global and
local-level scheduling. FPPS is flexible and simple to implement, plus is the
de-facto industrial standard for task scheduling. In this paper we extend our
implementation of HSF to support hard real-time components. We implement
time-triggered periodic tasks within the FreeRTOS operating system. We im-
prove the resource sharing policy of FreeRTOS, and implement support for
inter-subsystem resource sharing for our HSF implementation. We also pro-
vide legacy support for existing systems or components to be executed within
our HSF implementation as a subsystem.

7.1.1 Contributions
The main contributions of this paper are:

• We have supported periodic task model within the FreeRTOS operating
system.

94 Paper C

• We have provided a legacy support in our HSF implementation and have
mapped the old FreeRTOS API to the new API so that the user can very
easily use an old system into a server within a two-level HSF.

• We have provided an efficient implementation for resource sharing for
our HSF implementation. This entails: support for Stack Resource Policy
for local resource sharing, and Hierarchical Stack Resource Policy for
global resource sharing with three diferent methods to handle overrun.

• We have included the runtime overhead for local and global schedula-
bility analysis of our implementation.

• We describe the detailed design of all the above mentioned improve-
ments in our HSF implementations with the consideration of minimal
modifications in underlying FreeRTOS kernel.

• And finally, we have tested and calculated the performance measures for
our implementations on an AVR-based 32-bit board EVK1100 [9].

7.1.2 Resource Sharing in Hierarchical Scheduling Frame-
work

A two-level HSF [10] can be viewed as a tree with one parent node (global
scheduler) and many leaf nodes (local schedulers) as illustrated in Figure 7.1.
The leaf nodes contain its own internal set of tasks that are scheduled by a lo-
cal (subsystem-level) scheduler. The parent node is a global scheduler and is
responsible for dispatching the subsystems according to their resource reserva-
tions. Using HSF, subsystems can be developed and analyzed in isolation from
each other.

In a two-level HSF the resources can be shared among tasks of the same
subsystem (or intra-subsystem), normally referred as local shared resource.
The resources can also be shared among tasks of different subsystems (or inter-
subsystem) called global shared resources as shown in Figure 7.1.

Different synchronization protocols are required to share resources at local
and global levels, for example, Stack Resource Policy (SRP) [11] can be used
at local level with FPPS, and to implement SRP-based overrun mechanism at
global level, Hierarchical Stack Resource Policy (HSRP) [3] can be used.
Organisation: Section 7.2 presents the related work on hierarchical scheduler
implementations. Section 7.3 gives a background on FreeRTOS in 7.3.1, a
review of our HSF implementation in FreeRTOS in 7.3.2, and resource shar-
ing techniques in HSF in section 7.3.3. In section 7.4 we provide our system

7.2 Related Work 95

Resource Sharing in HSF

Global FPS

Scheduler

. . .

Global Shared Resources

SubSystem n

Local FPS

Scheduler

Task1 Taskn. . .

Local Shared Resources

S

R

P

S

R

P

SubSystem 1

Local FPS

Scheduler

Task1 Taskn. . .

Local Shared Resources

S

R

P

S

R

P

H

S

R

P

H

S

R

P

Figure 7.1: Two-level Hierarchical Scheduling Framework

model. We explain the implementation details of periodic task model, legacy
support, and resource sharing in section 7.5. In section 7.6 we provide schedul-
ing analysis and in section 7.7 we present the behavior of implementation and
some performance measures. In section 7.8 we conclude the paper. The API
for the local and the global resource sharing in HSF is given in Appendix.

7.2 Related Work

HSF has attained a substantial importance since introduced in 1990 by Deng
and Liu [1]. Saewong and Rajkumar [12] implemented and analyzed HSF
in CMU’s Linux/RK with deferrable and sporadic servers using hierarchical

96 Paper C

deadline monotonic scheduling. Buttazzo and Gai [13] present an HSF imple-
mentation based on Implicit Circular Timer Overflow Handler (ICTOH) using
EDF scheduling for an open source RTOS, ERIKA Enterprise kernel. A mi-
cro kernel called SPIRIT-µKernel is proposed by Kim et al. [10] based on
two-level hierarchical scheduling methodology and demonstrate the concept,
by porting two different application level RTOS, VxWorks and eCos, on top
of the SPIRIT-µKernel. It uses an offline scheduler at global level and the
fixed-priority scheduling at local level to schedule the partitions and tasks re-
spectively. A detailed related work on HSF implementation without resource
sharing is presented in [8].

7.2.1 Local and Global Synchronization Protocols

Local synchronization protocols

Priority inheritance protocol (PIP) [14] was developed to solve the priority in-
version problem but it does not solve the chained blocking and deadlock prob-
lems. Sha et al. proposed the priority ceiling protocol (PCP) [14] to solve these
problems. A slightly different alternative to PCP is the immediate inheritance
protocol (IIP). Baker presented the stack resource policy (SRP) [11] that sup-
ports dynamic priority scheduling policies. For fixed-priority scheduling, SRP
has the same behavior as IIP. SRP reduces the number of context-switches and
the resource holding time as compared to PCP. Like most real-time operating
systems, FreeRTOS only support an FPPS scheduler with PIP protocol for re-
source sharing. We provide support for SRP for local-level resource sharing in
HSF.

Global synchronization protocols

For global resource sharing some additional protocols have been proposed.
Fisher et al. proposed Bounded delay Resource Open Environment (BROE)
[15] protocol for global resource sharing under EDF scheduling. Hierarchical
Stack Resource Policy (HSRP) [3] uses the overrun mechanism to deal with
the subsystem budget expiration within the critical section and uses two mech-
anisms (with pay back and without payback) to deal with the overrun. Subsys-
tem Integration and Resource Allocation Policy (SIRAP) [4] uses the skipping
mechanism to avoid the problem of subsystem budget expiration within the
critical section. Both HSRP and SIRAP assume FPPS. The original HSRP
[3] does not support the independent subsystem development for its analysis.

7.2 Related Work 97

Behnam et al. [16] not only extended the analysis for the independent subsys-
tem development, but also proposed a third form of overrun mechanism called
extended overrun. In this paper we use HSRP for global resource sharing and
implement all the three forms of the overrun protocol.

7.2.2 Implementations of Resource Sharing in HSF

Behnam et al. [17] present an implementation of a two-level HSF in the com-
mercial operating system VxWorks with the emphasis of not modifying the
underlying kernel. The implementation supports both FPS and EDF at both
global and local level of scheduling and a one-shot timer is used to trigger
schedulers. In [18], they implemented overrun and skipping techniques at the
top of their FPS HSF implementation and compared the two techniques.

Holenderski et al. implemented a two-level fixed-priority HSF in µC/OS-
II, a commercial real-time operating system [19]. This implementation is based
on Relative Timed Event Queues (RELTEQ) [20] and virtual timers [21] on the
top of RELTEQ to trigger timed events. They incorporated RELTEQ queues
and virtual timers within the operating system kernel and provided interfaces
for it and HSF implementation uses these interfaces. More recently, they ex-
tended the HSF with resource sharing support [22] by implementing SIRAP
and HSRP (with and without payback). They measured and compared the sys-
tem overheads of both primitives.

The work presented in this paper is different from that of [18] in the sense
that we implement resource sharing in a two-level HSF with the aim of simpli-
fied implementation while adopting the kernel with the consideration of being
consistent with the FreeRTOS. The user should be able to choose the original
FreeRTOS or HSF implementation to execute, and also able to run legacy code
within HSF with doing minimal changes in it. The work of this paper is differ-
ent from that of [22] in the sense that we only extend the functionality of the
operating system by providing support for HSF, and not changing or modifying
the internal data structures. It aims at simplified implementation while mini-
mizing the modifications of the underlying operating system. Our implementa-
tion is simpler than both [18, 22] since we strictly follow the rules of HSRP [3].
We do not have local ceilings for the global shared resources (as in [18, 22])
which simplifies the implementation. We do not allow local preemptions while
holding the global resources which reduces the resource holding times as com-
pared to [18, 22]. Another difference is that both [18, 22] implemented SIRAP
and HSRP (with and without payback) while we implement all the three forms
of overrun (with payback, without payback, and enhanced overrun). We do not

98 Paper C

support SIRAP because it is more difficult to use; the application programmer
needs to know the WCET of each critical section to use SIRAP. Further neither
implementation does provide analysis for their implementations.

7.3 Background

7.3.1 FreeRTOS

FreeRTOS is a portable, open source (licensed under a modified GPL), mini
real-time operating system developed by Real Time Engineers Ltd. It is ported
to 23 hardware architectures ranging from 8-bit to 32-bit micro-controllers,
and supports many development tools. Its main advantages are portability,
scalability and simplicity. The core kernel is simple and small, consisting of
three or four (depends on the usage of coroutines) C files with a few assembler
functions, with a binary image between 4 to 9KB.

Since most of the source code is in C language, it is readable, portable,
and easily expandable and maintainable. Features like ease of use and under-
standability makes it very popular. More than 77, 500 official downloads in
2009 [23], and the survey result performed by professional engineers in 2010
puts the FreeRTOS at the top for the question ”which kernel are you consider-
ing using this year” [24] showing its increasing popularity.

FreeRTOS kernel supports preemptive, cooperative, and hybrid scheduling.
In the fixed-priority preemptive scheduling, the tasks with the same priority are
scheduled using the round-robin policy. It supports both tasks and subroutines;
the tasks with maximum 256 different priorities, any number of tasks and very
efficient context switch. FreeRTOS supports both static and dynamic (changed
at run-time) priorities of the tasks. It has semaphores and mutexes for resource
sharing and synchronization, and queues for message passing among tasks. Its
scheduler runs at the rate of one tick per milli-second by default.
FreeRTOS Synchronization Protocol: FreeRTOS supports basic synchro-
nization primitives like binary, counting and recursive semaphore, and mu-
texes. The mutexes employ priority inheritance protocol, that means that when
a higher priority task attempts to obtain a mutex that is already blocked by a
lower priority task, then the lower priority task temporarily inherits the priority
of higher priority task. After returning the mutex, the task’s priority is low-
ered back to its original priority. Priority inheritance mechanism minimizes
the priority inversion but it cannot cure deadlock.

7.3 Background 99

7.3.2 A Review of HSF Implementation in FreeRTOS
A brief overview of our two-level hierarchical scheduling framework imple-
mentation [8] in FreeRTOS is given here.

Both global and local schedulers support fixed-priority preemptive schedul-
ing (FPPS). Each subsystem is executed by a server Ss, which is specified by
a timing interface Ss(Ps, Qs), where Ps is the period for that server (Ps > 0),
and Qs is the capacity allocated periodically to the server (0 < Qs ≤ Ps).
Each server has a unique priority ps and a remaining budget during the runtime
of subsystem Bs. Since the previous implementation not focus on real-time,
we only characterize each task τi by its priority ρi.

The global scheduler maintains a pointer, running server, that points to the
currently running server.

The system maintains two priority-based lists. First is the ready-server
list that contains all the servers that are ready (their remaining budgets are
greater than zero) and is arranged according to the server’s priority, and second
is the release-server list that contains all the inactive servers whose budget
has depleted (their remaining budget is zero), and will be activated again at
their next activation periods and is arranged according to the server’s activation
times.

Each server within the system also maintains two lists. First is the ready-
task list that keeps track of all the ready tasks of that server, only the ready
list of the currently running server will be active at any time, and second is the
delayed-task list of FreeRTOS that is used to maintain the tasks when they are
not ready and waiting for their activation.

The hierarchical scheduler starts by calling vTaskStartScheduler() API
and the tasks of the highest priority ready server starts execution. At each tick
interrupt,

• The system tick is incremented.

• Check for the server activation events. The newly activated server is
replenished with its maximum budget and is moved to the ready-server
list.

• The global scheduler is called to handle the server events.

• The local scheduler is called to handle the task events.

The Functionality of the Global Scheduler

The global scheduler performs the following functionality:

100 Paper C

• At each tick interrupt, the global scheduler decrements the remaining
budget Bs of the running server by one and handles budget expiration
event (i.e. at the budget depletion, the server is moved from the ready-
server list to the release-server list).

• Selects the highest priority ready server to run and makes a server context-
switch if required. Either prvChooseNextIdlingServer() or prvChoose
NextDeferrableServer() is called to select idling or deferrable server,
depending on the value of the configGLOBAL SERVER MODE macro in the
FreeRTOSConfig.h file.

• prvAdjustServerNextReadyTime(pxServer) is called to set up the next
activation time to activate the server periodically.

In idling server, the prvChooseNextIdlingServer() function selects the
first node (with highest priority) from the ready-server list and makes it the cur-
rent running server. While in case of deferrable server, the prvChooseNextDefe
rrableServer() function checks in the ready-server list for the next ready
server that has any task ready to execute when the currently running server
has no ready task even if it’s budget is not exhausted. It also handles the situ-
ation when the server’s remaining budget is greater than 0, but its period ends,
in this case the server is replenished with its full capacity.

The Functionality of the Local Scheduler

The local scheduler is called from within the tick interrupt using the adopted
FreeRTOS kernel function vTaskSwitchContext(). The local scheduler is the
original FreeRTOS scheduler with the following modifications:

• The round robin scheduling policy among equal priority tasks is changed
to FIFO policy to reduce the number of task context-switches.

• Instead of a single ready-task or delayed-task list (as in original FreeR-
TOS), now the local scheduler accesses a separate ready-task and delayed-
task list for each server.

7.3.3 Resource Sharing in HSF
Stack Resource Policy at global and local levels: We have implemented
the HSRP [3] which extends SRP to HSRP. The SRP terms are extended as
follows:

7.3 Background 101

• Priority. Each task has a priority ρi. Similarly, each subsystem has an
associated priority ps.

• Resource ceiling. Each globally shared resource Rj is associated with a
resource ceiling for global scheduling. This global ceiling is the highest
priority of any subsystem whose task is accessing the global resource.
Similarly each locally shared resource also has a resource ceiling for
local scheduling. This local ceiling is the highest priority of any task
(within the subsystem) using the resource.

• System/subsystem ceilings. System/subsystem ceilings are dynamic pa-
rameters that change during runtime. The system/subsystem ceiling is
equal to the currently locked highest global/local resource ceiling in the
system/subsystem.

Following the rules of SRP, a task τi can preempt the currently executing
task within a subsystem only if τi has a priority higher than that of running task
and, at the same time, the priority of τi is greater than the current subsystem
ceiling.

Following the rules of HSRP, a task τi of the subsystem Si can preempt
the currently executing task of another subsystem Sj only if Si has a priority
higher than that of Sj and, at the same time, the priority of Si is greater than
the current system ceiling. Moreover, whilst a task τi of the subsystem Si is
accessing a global resource, no other task of the same subsystem can preempt
τi.

7.3.4 Overrun Mechanisms
This section explains three overrun mechanisms that can be used to handle bud-
get expiry during a critical section in the HSF. Consider a global scheduler that
schedules subsystems according to their periodic interfaces . The subsystem
budget Qs is said to expire at the point when one or more internal tasks have
executed a total of Qs time units within the subsystem period Ps. Once the
budget is expired, no new task within the same subsystem can initiate its exe-
cution until the subsystems budget is replenished at the start of next subsystem
period.

To prevent excessive priority inversion due to global resource lock its de-
sirable to prevent subsystem rescheduling during critical sections of global re-
sources. In this paper, we employ the overrun strategy to prevent such reschedul-
ing. Using overrun, when the budget of subsystem expires and it has a task that

102 Paper C

is still locking a global shared resource, the task continues its execution until
it releases the resource. The extra time needed to execute after the budget ex-
piration is denoted as overrun time θ. We implement three different overrun
mechanisms [16]:

1. The basic overrun mechanism without payback, denoted as BO: here no
further actions will be taken after the event of an overrun.

2. The overrun mechanism with payback, denoted as PO: whenever overrun
happens, the subsystem Ss pays back in its next execution instant, i.e.,
the subsystem budget Qs will be decreased by θs i.e. (Qs − θs) for the
subsystems execution instant following the overrun (note that only the
instant following the overrun is affected even if θs > Qs).

3. The enhanced overrun mechanism with payback, denoted as EO: It is
based on imposing an offset (delaying the budget replenishment of sub-
system) equal to the amount of the overrun θs to the execution instant
that follows a subsystem overrun, at this instant, the subsystem budget is
replenished with Qs − θs.

7.4 System Model

In this paper, we consider a two-level hierarchical scheduling framework, in
which a global scheduler schedules a system S that consists of a set of in-
dependently developed and analyzed subsystems Ss, where each subsystem
Ss consists of a local scheduler along with a set of tasks. A system have a
set of globally shared resource (lockable by any task in the system), and each
subsystem has a set of local shared resource (only lockable by tasks in that
subsystem).

7.4.1 Subsystem Model

For each subsystem Ss is specified by a subsystem (a.k.a. server) timing inter-
face Ss = ⟨Ps, Qs, ps, Bs, Xs⟩, where Ps is the period and Qs is the capacity
allocated periodically to the subsystem where 0 < Qs ≤ Ps and Xs is the
maximum execution-time that any subsystem-internal task may lock a shared
global resource. Each server Ss has a unique priority ps and at each instant
during run-time a remaining budget Bs.

7.4 System Model 103

It should be noted that Xs is used for schedulability analysis only and our
HSRP-implementation does not depend on the availability of this attribute. In
the rest of this paper, we use the term subsystem and server interchangeably.

7.4.2 Task Model

For hard real-time systems, we are considering a simple periodic task model
represented by a set Γ of n number of tasks. Each task τi is represented as
τi = ⟨Ti, Ci, ρi, bi⟩, where Ti denotes the period of task τi with worst-case
execution time Ci, ρi as its priority, and bi its worst case local blocking. bi
is the longest execution-time inside a critical section with a resource-ceiling
equal to or higher than ρ amongst all lower priority task inside the server of τi.
A task, τi has a higher priority than another task, τj , if ρi > ρj . For simplicity,
the deadline for each task is equal to Ti.

7.4.3 Scheduling Policy

We are using a fixed-priority scheduling FPS at the both global and local level.
FPS is the de-facto standard used in industry. For hard-real time analysis we
assume unique priorities for each server and unique priorities for each task
within a server. However, our implementation support shared priorities, which
are then handled in FIFO order (both at global and local scheduling).

7.4.4 Design Considerations

Here we present the challenges and goals that our implementation should sat-
isfy:

1. The use of HSF with resource sharing and the overrun mechanism:
User should be able to make a choice for using the HSF with resource
sharing or the simple HSF without using shared resources. Further, user
should be able to make a choice for selecting one of the overrun mecha-
nisms, BO, PO, or EO.

2. Consistency with the FreeRTOS kernel and keeping its API intact:
To embed the legacy code easily within a server in a two-level HSF, and
to get minimal changes of the legacy system, it will be good to match
the design of implementation with the underlying FreeRTOS operating

104 Paper C

system. To increase the usability and understandability of HSF imple-
mentation for FreeRTOS users, major changes should not be made in the
underlying kernel.

3. Managing local/global system ceilings: To ensure the correct access of
shared resources at both local and global levels, the local and global sys-
tem ceilings should be updated properly upon the locking and unlocking
of those resources.

4. Enforcement: Enforcing server execution even at it’s budget depletion
while accessing a global shared resource; its currently executing task
should not be preempted and the server should not be switched out by
any other higher priority server (whose priority is not greater than the
systemceiling) until the task releases the resource.

5. Calculating and deducting overrun time of a server for PO and EO:
In case of payback (PO and EO), the overrun time of the server should
be calculated and deducted from the budget at the next server activation.

6. Protection of shared data structures: The shared data structures that
are used to lock and unlock both local and global shared resources should
be accessed in a mutual exclusive manner with respect to the scheduler.

7.5 Implementation

7.5.1 Support for Time-Triggered Periodic Tasks

Since we are following the periodic resource model [25], we need the pe-
riodic task behavior implemented within the operating system. Like many
other real-time operating systems, FreeRTOS does not directly support the pe-
riodic task activation. We incorporated the periodic task activation as given
in Figure 7.2. To do minimal changes in the underlying operating system and
save memory, we add only one additional variable readyTime to the task
TCB, that describes the time when the task will become ready. A user API
vTaskWaitforNextPeriod(period) is implemented to activate the task peri-
odically. The FreeRTOS delayed-task list used to maintain the periodic tasks
when they are not ready and waiting for their next activation period to start.
Since FreeRTOS uses ticks, period of the task is given in number of ticks.

7.5 Implementation 105

// task function
while (TRUE) do {

taskbody();
vTaskWaitforNextPeriod(period);

end while

Figure 7.2: Pseudo-code for periodic task model implementation

7.5.2 Support for Legacy System

To implement legacy applications support in HSF implementation for the FreeR-
TOS users, we need to map the original FreeRTOS API to the new API, so
that the user can run its old code in a subsystem within the HSF. A macro
configHIERARCHICAL LEGACY must be set in the config file to utilize legacy
support. The user should rename the old main() function, and remove the
vTaskStartScheduler() API from legacy code.

The legacy code is created in a separate server, and in addition to the
server parameters like period, budget, priority, user also provides a function
pointer of the legacy code (the old main function that has been renamed).
xLegacyServerCreate(period, budget, priority, *serverHandle,

*functionPointer) API is provided for this purpose. The function first cre-
ates a server and then creates a task called vLegacyTask(*functionPointer)

that runs only once and performs the initialization of the legacy code (executes
the old main function which create the initial set of tasks for the legacy appli-
cation), and destroys itself. When the legacy server is replenished first time,
all the tasks of the legacy code are created dynamically within the currently
running legacy server and start executing.

We have adopted the original FreeRTOS xTaskGenericCreate function
to provide legacy support. If configHIERARCHICAL SCHEDULING and config-

HIERARCHICAL LEGACY macros are set then xServerTaskGenericCreate func-
tion is called that creates the task in the currently executing server instead of
executing the original code of xTaskGenericCreate function.

This implementation is very simple and easy to use, user only needs to
rename old main(), remove vTaskStartScheduler() from legacy code, and
use a single API to create the legacy server. It should be noted that the HSF
guarantees separation between servers; thus a legacy non/soft real-time server
(which e.g. is not analyzed for schedulability or not use predictable resource

106 Paper C

locking) can co-exists with hard real-time servers.

7.5.3 Support for Resource sharing in HSF
Here we describe the implementation details of the resource sharing in two-
level hierarchical scheduling framework. We implement the local and global
resource sharing as defined by Davis and Burns [3]. For local resource sharing
SRP is used and for global resource sharing HSRP is used. Further all the
three forms of overrun as given by Behnam et al. [16] are implemented. The
resource sharing is activated by setting the macro configGLOBAL SRP in
the configuration file.

Support for SRP

For local resource sharing we implement SRP to avoid problems like priority
inversions and deadlocks.
The data structures for the local SRP: Each local resource is represented by
the structure localResource that stores the resource ceiling and the task
that currently holds the resource as shown in Figure 7.3. The locked resources
are stacked onto the localSRPList; the FreeRTOS list structure is used to
implement the SRP stack. The list is ordered according to the resource ceiling,
and the first element of list has the highest resource ceiling, and represents the
local system ceiling.
The extended functionality of the local scheduler with SRP: The only func-
tionality extended is the searching for the next ready task to execute. Now the
scheduler selects a task to execute if the task has the highest priority among all
the ready tasks and its priority is greater than the current system ceiling, other-
wise the task that has locked the highest (top) resource in the localSRPList
is selected to execute. The API list for the local SRP is provided in the Ap-
pendix.

Support for HSRP

HSRP is implemented to provide global resource sharing among servers. The
resource sharing among servers at the global level can be considered the same
as sharing local resources among tasks at the local level. The details are as
follows:
The data structures for the global HSRP: Each global resource is repre-
sented by the structure globalResource that stores the global-resource

7.5 Implementation 107

SubSystem Control

Block

Period

Budget

Remaining Budget

Priority

TaskNumInReadyQueue

CurrentNumberOfTasks

ReadyTime

currentTCB

Ready Task List

Delayed Task List

Local SRP List

OverrunReadytimeOffset

SystemCeiling

GlobalSRPTakenNum

PayBackBudget

. . .

Task Control

Block

Ready Time

ReadyQueueFlag

Local Server

. . .

LocalResource

SRPListItem

ResourceCeiling

OwnerTask

Figure 7.3: Data structures to implement SRP

ceiling and the server that currently holds the resource as shown in Figure 7.4.
The locked resources are stacked onto the globalHSRPList; the FreeRTOS
list structure is used to implement the HSRP stack. The list is ordered accord-
ing to the resource ceiling, the first element of the list has the highest resource
ceiling and represents the GlobalSystemCeiling.
The extended functionality of the global scheduler with HSRP: To incor-
porate HSRP into the global scheduler, prvChooseNextIdlingServer() and
prvChooseNextDeferrableServer() macros are appended with the following
functionality: The global scheduler selects a server if the server has the highest
priority among all the ready servers and the server’s priority is greater than the
current GlobalSystemCeiling, otherwise the server that has locked the high-
est(top) resource in the HSRPList is selected to execute. The API list for the
global HSRP is provided in Appendix.

Support for Overrun Protocol

We have implemented three types of overrun mechanisms; without payback
(BO), with payback (PO), and enhanced overrun (EO). Implementation of BO
is very simple, the server simply executes and overruns its budget, and no fur-
ther action is required. For PO and EO we need to measure the overrun amount

108 Paper C

2-Level Hierarchical

Scheduling System

. . .

. . .
Running Server

Ready Server List

Release Server List

HSRP List

SubSystem Control

Block

Period

Budget

Remaining Budget

Priority

TaskNumInReadyQueue

CurrentNumberOfTasks

ReadyTime

currentTCB

Ready Task List

Delayed Task List

Local SRP List

OverrunReadytimeOffset

SystemCeiling

GlobalSRPTakenNum

PayBackBudget

. . .

GlobalResource

HSRPListItem

GResourceCeiling

OwnerServer

Figure 7.4: Data structures to implement HSRP

of time to pay back at the server’s next activation.

The data for the PO and EO overrun mechanisms: Two variables PayBack
Budget and OverrunReadytimeOffset are added to the subsystem structure
subSCB to keep a record of the overrun amount to be deducted from the next
budget of the server as shown in Figure 7.4. The overrun time is measured and
stored in PayBackBudget. OverrunReadytimeOffset is used in EO mechanism
to impose an offset in the next activation of server.

The extended functionality of the global scheduler with overrun: A new
API prvOverrunAdjustServerNextReadyTime(*pxServer) is used to embed
overrun functionality (PO and EO) into the global scheduler. For both PO
and EO, the amount of overrun, i.e. PayBackBudget is deducted from the
server RemainingBudget at the next activation period of the server, i.e. Bs =
Qs − θs. For EO, in addition to this, an offset (Os) is calculated that is
equal to the amount of overrun, i.e. Os = θs. The server’s next activa-
tion time (the budget replenishment of subsystem) is delayed by this offset.
OverrunReadytimeOffset variable is used to store the offset for next activa-
tion of the server.

7.5 Implementation 109

Safety Measure

We have modified vTaskDelete function in order to prevent the system from
crashing when users delete a task which still holds a local SRP or a global
HSRP resource. Now it also executes two private functions prvRemoveLocalRe
sourceFromList (*pxTaskToDelete), and prvRemoveGlobalResourceFromLi

st (*pxTaskToDelete), before the task is deleted.

7.5.4 Addressing Design Considerations
Here we address how we achieve the design requirements that are presented in
Section 7.4.4.

1. The use of HSF with resource sharing and the overrun mechanism:
The resource sharing is activated by setting the macro configGLOBAL SRP

in the configuration file. The type of overrun can be selected by set-
ting the macro configOVERRUN PROTOCOL MODE to one of the three values:
OVERRUN WITHOUT PAYBACK, OVERRUN PAYBACK, or OVERRUN PAYBACK ENH

ANCED.

2. Consistency with the FreeRTOS kernel and keeping its API intact:
We have kept consistence with the FreeRTOS from the naming conven-
tions to API, data structures and the coding style used in our implementa-
tions; for example all the lists used in our implementation are maintained
in a similar way as of FreeRTOS.

3. Managing local/global system ceilings: The correct access of the shared
resources at both local and global levels is implemented within the func-
tionality of the API used to lock and unlock those resources.

When a task locks a local/global resource whose ceiling is higher than
the subsystem/system ceiling, the resource mutex is inserted as the first
element onto the localSRPList/HSRPList, the systemceiling /GlobalSy
stemCeiling is updated, and this task/server becomes the owner of this
local/global resource respectively. Each time a global resource is locked,
the GlobalResourceTakenNum is incremented.

Similarly upon unlocking a local/global resource, that resource is simply
removed from the top of the localSRPList/HSRPList, the systemceiling
/GlobalSystemCeiling is updated, and the owner of this resource is set
to NULL. For global resource, the GlobalResourceTakenNum is decre-
mented.

110 Paper C

4. Enforcement: GlobalResourceTakenNum is used as an overrun flag, and
when its value is greater than zero (means a task of the currently execut-
ing server has locked a global resource), no other higher priority server
(whose priority is not greater than the systemceiling) can preempt
this server even if its budget depletes.

5. Overrun time of a server for PO and EO: prvOverrunAdjustServer

NextReadyTime API is used to embed the overrun functionality into the
global scheduler as explained in section 7.5.3.

6. Protection of shared data structures: All the functionality of the APIs
(for locking and unlocking both local and global shared resources) is
executed within the FreeRTOS macros portENTER CRITICAL() and port

EXIT CRITICAL() to protect the shared data structures.

7.6 Schedulability analysis
This section presents the schedulability analysis of the HSF, starting with lo-
cal schedulability analysis (i.e. checking the schedulability of each task within
a server, given the servers timing interface), followed by global schedulabil-
ity analysis (i.e., checking that each server will receive its capacity within its
period given the set of all servers in a system).

7.6.1 The Local Schedulability Analysis

The local schedulability analysis can be evaluated as follows [25]:

∀τi ∃t : 0 < t ≤ Di, rbf(i, t) ≤ sbf(t), (7.1)

where sbf is the supply bound function, based on the periodic resource model
presented in [25], that computes the minimum possible CPU supply to Ss for
every time interval length t, and rbf(i, t) denotes the request bound function
of a task τi which computes the maximum cumulative execution requests that
could be generated from the time that τi is released up to time t and is computed
as follows:

rbf(i, t) = Ci + bi +
∑

τk∈HP(i)

⌈
t

Tk

⌉
· Ck, (7.2)

7.6 Schedulability analysis 111

where HP(i) is the set of tasks with priorities higher than that of τi and bi is the
maximum local blocking.

The evaluation of sbf depends on the type of the overrun mechanism;

Overrun without payback

sbf(t) =

{
t− (k + 1)(Ps −Qs) if t ∈ W (k)

(k − 1)Qs otherwise,
(7.3)

where k = max
(⌈(

t − (Ps − Qs)
)
/Ps

⌉
, 1
)

and W (k) denotes an interval
[(k + 1)Ps − 2Qs, (k + 1)Ps −Qs].

Overrun with payback [16]

sbf(t) = max
(
min

(
f1(t), f2(t)

)
, 0
)
, (7.4)

where f1(t) is

f1(t) =

{
t− (k + 1)(Ps −Qs)−Xs if t ∈ W (k)

(k − 1)Qs otherwise,
(7.5)

where k = max
(⌈(

t−(Ps−Qs)−Xs

)
/Ps

⌉
, 1
)

and W (k) denotes an interval
[(k + 1)Ps − 2Qs +Xs, (k + 1)Ps −Qs +Xs], and f2(t) is

f2(t) =

 t− (2)(Ps −Qs) if t ∈ V (k)

t− (k + 1)(Ps −Qs)−Xs if t ∈ Z(k)

(k − 1)Qs −Xs otherwise,
(7.6)

where k = max
(⌈(

t− (Ps −Qs)
)
/Ps

⌉
, 1
)

, V (k) denotes an interval [2Ps −
2Qs, 2Ps − Qs − Xs], and Z(k) denotes an interval [(k + 2)Ps − 2Qs, (k +
2)Ps −Qs].

Enhanced overrun
sbf(t) = max

(
f2(t), 0

)
. (7.7)

112 Paper C

7.6.2 The Global Schedulability Analysis
A global schedulability condition is

∀Ss ∃t : 0 < t ≤ Ps, RBFs(t) ≤ t. (7.8)

where RBFs(t) is the request bound function and it is evaluated depending on
the type of server (deferrable or idling) and type of the overrun mechanism
(see [16] for more details). First, we will assume the idling server and later we
will generalize our analysis to include deferrable server.

Overrun without payback

RBFs(t) = (Qs +Xs +Bls) +
∑

Sk∈HPS(s)

⌈
t

Pk

⌉
· (Qk +Xk). (7.9)

where HPS(s) is the set of subsystems with priority higher than that of Ss.
Let Bls denote the maximum blocking imposed to a subsystem Ss, when it is
blocked by lower-priority subsystems.

Bls = max{Xj | Sj ∈ LPS(Ss)}, (7.10)

where LPS(Ss) is the set of subsystems with priority lower than that of Ss.

Overrun with payback

RBFs(t) = (Qs +Xs +Bls) +
∑

Sk∈HPS(s)

(⌈
t

Pk

⌉
(Qk) +Xk

)
. (7.11)

Enhanced overrun

RBFs(t) = (Qs +Xs +Bls) +
∑

Sk∈HPS(s)

(⌈
t+ Jk
Pk

⌉
(Qk) +Xk

)
. (7.12)

Where Js = Xs and the schedulability analysis for this type is

∀Ss, 0 < ∃t ≤ Ps −Xs, RBFs(t) ≤ t, (7.13)

For deferrable server, a higher priority server may execute at the end of its
period and then at the beginning of the next period. To model such behavior a
jitter (equal to Pk − (Ok +Xk)) is added to the ceiling in equations 7.9, 7.11
and 7.12.

7.7 Experimental Evaluation 113

7.6.3 Implementation Overhead

In this section we will explain how to include the implementation overheads in
the global schedulability analysis.

Looking at the implementation we can distinguish two types of runtime
overhead associated with the system tick: (1) a repeated overhead every sys-
tem tick independently if it will release a new server or not, and (2) an over-
head which occurs whenever a server is activated and it includes the overhead
of scheduling, maybe context switch, budget depletion after consuming the
budget then another context switch and scheduling and finally it includes the
overrun overhead.

(1) Is called fixed overhead (fo) and it is the result of updating the system
tick and perform some checking and its value is always fixed. This overhead
can be added to equation 7.8. This equation assumes that the processor can
provide all CPU time to the servers (t in the right side of the equation) now we
assume that every system tick (st), a part will be consumed by the operating
system (fo) and then instead of using t in the right side of equation 7.8, we can
use (1− fo/st)× t to include the fixed overhead. (st defaults to 1ms for our
implementation.)

(2) Is called server overhead (so) and repeats periodically for every server,
i.e. with a period Pi. Since the server overhead is executed by the kernel its
not enough to model it as extra execution demand from the server. Instead the
overhead should be modeled as a separate server So (one server So correspond-
ing to each real server Si) executing at a priority higher that of any real server
with parameters Po = Pi, Qo = so, and Xo = 0.

The overhead-parameters are dependent on the number of servers, tasks and
priority levels, etc. and should be quantified with static WCET-analysis which
is beyond the scope of this paper; however some small test cases reported in [8]
the measured worst-case for idling servers are fo = 32µs and so = 74µs, and
for deferrable servers they are fo = 32µs and so = 85µs for three servers
with total seven tasks.

7.7 Experimental Evaluation

In this section, we report the evaluation of behavior and performance of the
resource sharing in HSF implementation. All measurements are performed
on the target platform EVK1100 [9]. The AVR32UC3A0512 micro-controller
runs at the frequency of 12MHz and its tick interrupt handler at 1ms.

114 Paper C

7.7.1 Behavior Testing
In this section we perform an experiment to test the behavior of overrun in
case of global resource sharing in HSF implementation. The experiment is
performed to check the overrun behavior in idling periodic server by means of
a trace of the execution. Two servers S1, and S2 are used in the system, plus
idle server is created. The servers used to test the system are given in Table 8.1.

Server S1 S2
Priority 2 1
Period 20 40
Budget 10 15

Table 7.1: Servers used to test system behavior.

Note that higher number means higher priority. Task properties and their
assignments to the servers is given in Table 8.2. T2 and T3 share a global
resource. The execution time of T2 is (3 + 3) that means a normal execution
for initial 3 time units and the critical section execution for the next 3 time
units, similarly T3 (10 + 8) executes for 10 time units before critical section
and executes for 8 time units within critical section. The visualization of the
executions of budget overrun without payback (BO) and with payback (PO) for
idling periodic server are presented in Figure 7.5 and Figure 7.6 respectively.

Tasks T1 T2 T3
Servers S1 S1 S2
Priority 2 1 1
Period 15 20 60

Execution Time 3 (3 + 3) (10 + 9)

Table 7.2: Tasks in both servers.

In the visualization, the arrow represents task arrival, a gray rectangle means
task execution. In Figure 7.5 at time 20, the high priority server S1 is replen-
ished, but its priority is not higher than the global system ceiling, therefore, it
cannot preempt server S2 which is in the critical section. S2 depletes its bud-
get at time 25, but continues to executes in its critical section until it unlocks
the global resource at time 29. The execution of S1 is delayed by 9 time units.

In case of overrun with payback, the overrun time is deducted from the

7.7 Experimental Evaluation 115

Figure 7.5: Trace of budget overrun without payback (BO) for Idling server

budget at the next server activation, as shown in Figure 7.6. At time 40 the
server S2 is replenished with a reduced budget, while in case of overrun with-
out payback the server is always replenished with its full budget as obvious
from Figure 7.5.

7.7.2 Performance Measures
Here we report the performance measures of lock and unlock functions for both
global and local shared resources.

The execution time of functions to lock and unlock global and local re-
sources is presented in Table 7.3. For each measure, a total of 1000 values are
computed. The minimum, maximum, average and standard deviation on these

116 Paper C

Figure 7.6: Trace of budget overrun with payback (PO) for Idling server

values are calculated and presented for both types of resource sharing.

7.8 Conclusions

In this paper, we have provided a hard real-time support for a two-level HSF
implementation in an open source real-time operating system FreeRTOS. We
have implemented the periodic task model within the FreeRTOS kernel. We
have provided a very simple and easy implementation to execute a legacy sys-
tem in the HSF with the use of a single API. We have added the SRP to the
FreeRTOS for efficient resource sharing by avoiding deadlocks. Further we

7.8 Conclusions 117

Function Min. Max. Average St. Dev.
vGlobalResourceLock 21 21 21 0

vGlobalResourceUnlock 32 32 32 0
vLocalResourceLock 21 32 26.48 5.51

vLocalResourceUnlock 21 21 21 0

Table 7.3: The execution time (in micro-seconds (µs)) of global and local lock
and unlock function.

implemented HSRP and overrun mechanisms (BO, PO, EO) to share global
resources in a two-level HFS implementation. Under assumption of nested
locking, the overrun is bounded and is equal to the longest resource-holding
time. Hence, the temporal isolation of HSF is subject to the bounded resource-
holding time.

We have focused on doing minimal modifications in the kernel to keep the
implementation simple and keeping the original FreeRTOS API intact. We
have presented the design and implementation details and have tested our im-
plementations on the EVK1100 board. We have included the overheads for
local-level and global-level resource sharing into the schedulability analysis.
In future we plan to integrate the virtual node concept of ProCom model on-
top of the presented HSF [6, 7].

7.9 Appendix 119

7.9 Appendix
A synopsis of the application program interface to implement resource sharing
in HSF implementation is presented below. The names of these API are self-
explanatory.

1. xLocalResourcehandle xLocalResourceCreate(uxCeiling)

2. void vLocalResourceDestroy(xLocalResourcehandle)

3. void vLocalResourceLock(xLocalResourcehandle)

4. void vLocalResourceUnLock(xLocalResourcehandle)

5. xGlobalResourcehandle xGlobalResourceCreate (uxCeiling)

6. void vGlobalResourceDestroy(xGlobalResourcehandle)

7. void vGlobalResourceLock(xGlobalResourcehandle)

8. void vGlobalResourceUnLock(xGlobalResourcehandle)

Bibliography

[1] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proc. 18th IEEE Real-Time Systems Symposium (RTSS),
1997.

[2] G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti. A hierarchical
framework for component-based real-time systems. Component-Based
Software engineering, LNCS-3054(2004):209–216, May 2005.

[3] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In IEEE Real-Time Systems Symposium (RTSS’06),
pages 389–398, 2006.

[4] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a synchronization
protocol for hierarchical resource sharing in real-time open systems. In
ACM & IEEE conference on Embedded software (EMSOFT’07), pages
279–288, 2007.

[5] FreeRTOS web-site. http://www.freertos.org/.

[6] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja, and Mikael Sjödin. Deploy-
ment Modelling and Synthesis in a Component Model for Distributed
Embedded Systems. In Proceedings of the 36th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA’ 10), Septem-
ber 2010.

[7] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time compo-
nents. In 22nd Euromicro Conference on Real-Time Systems (ECRTS10)
WiP Session, pages 17–20, July 2010.

121

122 Bibliography

[8] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and Sara
Afshar. Hierarchical scheduling framework implementation in freertos.
Technical Report, Mälardalen University, April 2011.

[9] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/tools
card.asp?tool id=4114.

[10] Daeyoung Kim, Yann-Hang Lee, and M. Younis. Spirit-ukernel for
strongly partitione real-time systems. In Proc. of the 7th Interna-
tional conference on Real-Time Computing Systems and Applications
(RTCSA’00), 2000.

[11] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[12] S. Saewong and R. Rajkumar. Hierarchical reservation support in re-
source kernels. In Proc. 22th IEEE Real-Time Systems Symposium
(RTSS), 2001.

[13] G. Buttazzo and P. Gai. Efficient edf implementation for small embedded
systems. In International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT’06), 2006.

[14] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. Journal of IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[15] N. Fisher, M. Bertogna, and S. Baruah. The design of an edf-scheduled
resource-sharing open environment. In IEEE Real-Time Systems Sympo-
sium(RTSS’07), pages 83–92, 2004.

[16] Moris Behnam, Thomas Nolte, Mikael Sjödin, and Insik Shin. Over-
run Methods and Resource Holding Times for Hierarchical Scheduling
of Semi-Independent Real-Time Systems. IEEE Transactions on Indus-
trial Informatics, 6(1), February 2010.

[17] Moris Behnam, Thomas Nolte, Insik Shin, Mikael Åsberg, and Reinder J.
Bril. Towards hierarchical scheduling on top of vxworks. In Proceedings
of the Fourth International Workshop on Operating Systems Platforms
for Embedded Real-Time Applications (OSPERT’08), pages 63–72, July
2008.

[18] Mikael Åsberg, Moris Behnam, Thomas Nolte, and Reinder J. Bril. Im-
plementation of Overrun and Skipping in VxWorks. In Proceedings of
the 6th International Workshop (OSPERT10), 2010.

[19] Mike Holenderski, Wim Cools, Reinder J. Bril, and J. J. Lukkien. Ex-
tending an Open-source Real-time Operating System with Hierarchical
Scheduling. Technical Report, Eindhoven University, 2010.

[20] Mike Holenderski, Wim Cools, Reinder J. Bril, and J. J. Lukkien. Mul-
tiplexing Real-time Timed Events. In Work in Progress session of the
IEEE International Conference on Emerging Techonologies and Factory
Automation (ETFA09), 2009.

[21] M.M.H.P. van den Heuvel, Mike Holenderski, Wim Cools, Reinder J.
Bril, and Johan J. Lukkien. Virtual Timers in Hierarchical Real-time
Systems. In Work in Progress Session of the IEEE Real-Time Systems
Symposium (RTSS09), December 2009.

[22] M.M.H.P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and J. J.
Lukkien. Extending an HSF-enabled Open-Source Real-Time Operating
System with Resource sharing. In (OSPERT10), 2010.

[23] Microchip web-site.

[24] EE TIMES web-site. http://www.eetimes.com/design/embedded/4008920/
The-results-for-2010-are-in-.

[25] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. 24th IEEE Real-Time Systems Symposium (RTSS),
pages 2–13, 2003.

Chapter 8

Paper D:
Run-Time Component
Integration and Reuse in
Cyber-Physical Systems

Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Jiřı́ Kunčar
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-256/2011-1-SE,
Mälardalen University, December, 2011.
In submission for conference publishing (ICCPS’ 12).

125

Abstract

We present the concept of runnable virtual nodes as a means to achieve pre-
dictable integration and reuse of software components in cyber-physical sys-
tems. A runnable virtual node is a coarse-grained real-time component that
provides functional and temporal isolation with respect to its environment. Its
interaction with the environment is bounded both by a functional and a tempo-
ral interface, and the validity of its internal temporal behavior is preserved
when integrated with other components or when reused in a new environ-
ment. Our realization of runnable virtual nodes exploits the latest techniques
for hierarchical scheduling to achieve temporal isolation, and the principles
from component-based software-engineering to achieve functional isolation.
In the report we present a proof-of-concept case study, implemented in the Pro-
Com component-technology executing on top of FreeRTOS based hierarchical
scheduling framework.

8.1 Introduction 127

8.1 Introduction

A contemporary Cyber-Physical System (CPS) is often required to monitor
and control several disparate variables in its environment. From a development
point of view, it often makes sense to develop the different control-functions
as separate software-components [1]. Typically, these components are first de-
veloped and tested in isolation, and later integrated to form the final software
for the system. Furthermore, many industrial systems are developed in an evo-
lutionary fashion, reusing components from previous versions or from related
products. It means that the reused components are re-integrated in new envi-
ronments.

When multiple components are deployed on the same hardware node, the
emerging timing behavior of each of the components is typically unpredictable.
For a cyber-physical system with real-time constraints, this means that a com-
ponent that is found correct during unit testing may fail, due to a change in
temporal behavior, when integrated in a system. Even if a new component is
still operating correctly in the system, the integration could cause a previously
integrated (and correctly operating) component to fail. Similarly, the temporal
behavior of a component is altered if the component is reused in a new system.
Since this alteration is unpredictable as well, a previously correct component
may fail when reused.

While using the temporal models of component behavior and requirements,
some of the problems may be mitigated by using scheduling analysis [2, 3],
however these techniques only allow very simple models; typically simple tim-
ing attributes such as period and deadline are used. In industry, components of-
ten exhibit a too complex behavior to be amenable for the scheduling analysis.
And, even if a suitable analysis technique should exist, such analysis requires
knowledge of the temporal behavior of all components in the system. Thus,
a component cannot be deemed correct without knowing which components it
will be integrated with. Further the reuse of a component is restricted since it
is very difficult to know beforehand if the component will pass a schedulability
test in a new system.

For complex real-time CPS, methodologies and techniques are required to
provide not only functional isolation but also temporal isolation so that the run-
time timing properties could be guaranteed. Further the real-time properties of
the components should be maintained for their reuse in large-scale industrial
CPS.

To remedy this situation we propose the concept of a runnable virtual node,
which is an execution-platform concept that preserves temporal properties of

128 Paper D

the software executed in the virtual node [4]. It introduces an intermediate
level between the functional entities and the physical nodes. Thereby it leads
to a two-level deployment process instead of a single big-stepped deployment;
i.e. deploying functional entities to the virtual nodes and then deploying virtual
nodes to the physical nodes.

The virtual node is intended for coarse-grained components for single node
deployment and with potential internal multitasking. The idea is to encapsulate
the real-time properties into model-driven reusable components-based systems
to achieve not only the predictable integrations and reusability of those com-
ponents [4, 5] but also maintenance, testing, and extendibility. To achieve this,
the timing properties of the components should be preserved so that real-time
components integration and reuse can be made predictable.

Hierarchical Scheduling Framework (HSF) [6, 7] is known as a technique
for providing temporal isolation between applications in the real-time commu-
nity. Recently, HSF is proposed to develop complex CPS by enabling tem-
poral isolation and predictable resource usage of CPS software [8]. In this
report, we integrate HSF within a component technology for embedded real-
time systems; to realize our ideas of guaranteeing temporal properties of real-
time components, their predictable integrations and reusability. We introduce
the runnable virtual node, which includes the executable representation of the
components (i.e. a set of tasks), a resource allocation, and a real-time scheduler
to be executed within a server in the HSF. The server executes with a guaran-
teed temporal behavior, using its allocated CPU bandwidth, regardless of any
other execution on the physical node. Thus, once a server has been configured
for the virtual node, its real-time properties will be preserved when the virtual
node is integrated with other virtual nodes on a physical node, or when a virtual
node is reused in another context.

Contributions
The work presented in this report is within the context of ProCom component
technology [9]. The main contributions are as follows:

• We realize the concept of runnable virtual nodes by embedding the HSF
implementation within the ProCom component technology for an em-
bedded platform running FreeRTOS operating system [10].

• We introduce a two-level deployment process instead of a single big-
stepped deployment; i.e. deploying functional entities to the virtual
nodes and then deploying virtual nodes to the physical nodes, thereby

8.2 Related Work 129

preserving the timing properties within the components in addition to
their functional properties.

• We provide a case study as a proof of concept and run it on an AVR
32-bit board EVK1100 [11].

• We test the runnable virtual node’s real-time properties for temporal
isolations and reusability.

Outline: Section 8.2 presents the related work on component-based and
model-driven component systems. Section 8.3 gives an overview about the
ProCom Component Model and the HSF implementation. In Section 8.4, we
describe the runnable virtual node and how it is used within the ProCom tech-
nology. Section 8.5 presents a case-study in which runnable virtual nodes have
been used. Finally, Section 8.6 concludes the article.

8.2 Related Work
In this section, we describe some contemporary component-technologies avail-
able for embedded systems. Especially we focus on the deployment and in-
tegration of components and on the predictability in the time-domain of the
resulting systems. The list is by far non-exhaustive, but rather focuses on
state-of-the-art within industrial applications. In the academic domain several
similar concepts exist; but to the best of our knowledge, no other technology
employs a two-phase deployment process or employs HSF to support temporal
isolation, ease of integration or component reuse.

8.2.1 AUTOSAR
AUTomotive Open System ARchitecture (AUTOSAR) [12] is an open stan-
dard for automotive electronics architectures. It is developed to deal with the
increasing complexity and to fulfil a number of future vehicle requirements
(such as safety, availability, driver assistance, infotainment etc.). The key fea-
tures of AUTOSAR are modularity, configurability, standardized interfaces and
a runtime environment.

Functional software is developed using component-based approach [13].
A component is developed over many layers of AUTOSAR, including: Ap-
plication layer, Runtime Environment (RTE), Basic software and ECU (Elec-
tronic Control Unit, is a node in an automotive network) hardware. A Software

130 Paper D

Component (SW-C) at ECU level contains at least one or several runnable
entities. A runnable is a small fragment of sequential code within a compo-
nent [14]. In AUTOSAR, the deployment begins when the RTE generator maps
all runnables to the OS tasks and builds inter- ECU and intra-ECU communi-
cations among them. After mapping, the RTE generator configures each ECU
and constructs the OS tasks bodies.

A main disadvantage of AUTOSAR is that it lacks clear and well-defined
timing properties that further affect the execution semantics too. On the other
hand, ProCom puts special focus on such requirements right from the begin-
ning of the component’s development untill the component’s deployment. The
runnable virtual nodes of ProCom are reusable components preserving timing
properties in them and are independent of the platform specifics. As com-
pared to AUTOSAR, ProCom clearly distinguishes between the data and con-
trol flows among ProCom components. Deployment in AUTOSAR is a single-
stepped process and the executables are generated directly from the compo-
nents, unlike ProCom where the deployment is performed in two steps at both
modelling and synthesis levels. A tool suite to support the complete AU-
TOSAR methodology for hard real-time systems is still missing.

8.2.2 Rubus
The Rubus Component Model (RCM) [15] is developed in cooperation be-
tween Arcticus Systems [16] and Mälardalen University. It is used commer-
cially in the automotive industry. In many aspects RCM is similar to the Pro-
Com: for example rubus captures the functionality at two-levels of component
hierarchy; at first level the components are passive while at the second level
they are active; manages different ports for control and data flows. The compo-
nent technology uses a graphical design tool and a scheduler for system design,
and some plug-ins to perform analysis. Finally, the run-time infrastructure is
generated using Execution Models (EM) for the desired platform.

In Rubus, the real-time requirements of the components are realized by
the use of EMs, which are logical objects and are defined in the infrastructure
at the run-time environment. The RCM is not restricted to the use of a spe-
cific run-time environment as long as the components preserve the semantics
defined in them. However, the current task set can only be executed in the
RubusRTOS [17].

Its main difference from the ProCom technology is at the deployment and
at the execution levels. In Rubus, the deployment is a single-stepped process
for the desired platform. On the other hand, in Procom, the deployment is a

8.2 Related Work 131

two-stepped process. In Rubus, the required hardware components are directly
modeled in the Rubus components, unlike ProCom where the components are
developed independently from the hardware details and the hardware specifics
are taken care at the last step of the deployment process. Another difference is
the platform dependence of the Rubus technology on the underlying operating
system [15]. The platform on which the component has to be executed is mod-
eled within the Rubus components and the final executables are generated only
for that particular platform.

8.2.3 AADL
Architecture Analysis and Design Language (AADL) was developed as a SAE
Standard AS-5506 [18] to design and analyze software and hardware architec-
tures of distributed real-time embedded systems. Modeling of software and
hardware parts is supported by software components and execution platform
components respectively [19]. Properties and new functional aspects can be
attached to the elements (e.g., components, connections) using the properties
defined in the SAE standard, and communication among components is per-
formed using component interfaces i.e., ports. Ocarina [20] is a tool suite that
facilitates the design of AADL models and their mapping on a hardware plat-
form, assessment of these models, automatic code generation, and deployment.

Deployment in AADL is supported by a middleware API called PolyORB
(PolyORB for code generation in Ada while PolyORB-HI for code generation
in C). Runnable entities are presented by processes. A process contains many
tasks and it is a self-contained runnable entity that executes on a hardware
platform.

Unlike ProCom, the deployment in AADL is done in a single step to di-
rectly execute the generated code on the physical platform. Another type of
runnable entity for AADL employs a hierarchical scheduling concept in a par-
tition. A partition is a combination of several processes and a scheduler called
Virtual Processor [21]. But this kind of runnbale entity is also deployed in
a single step. It provides temporal partitioning like runnable virtual node of
ProCom, but it does not consider the reusability aspect of the runnable compo-
nents.

8.2.4 Deployment and Configuration specification
The Deployment and Configuration specification (D&C) [22] is standardized
by the Object management Group. Its main purpose is to facilitate the deploy-

132 Paper D

ment of component-based applications onto target platform. It uses a Platform
Independent Model (PIM) for the model components with three level, and a
Platform Specific Model (PSM) for the CORBA Component Model (CCM).

Recently, an extension has been proposed to support the development of
applications with real-time properties and provide a deployment plan, called
RT-D&C [23]. The metadata about the temporal behaviour of components is
added to the specification at the PIM level to facilitate the real-time analysis of
the components. However, a RT-planner, who configures the real-time appli-
cation after using the real-time analysis tools, is required to assign the timing
properties to the application which is different from the ProCom deployment.
As compared to ProCom where the timing properties are preserved within the
runnable virtual nodes, RT-D&C only preserves them till the components de-
velopment at PIM level.

8.3 Background
This section presents the background technologies our work uses. We provide
an overview of the ProCom component technology, followed by and intro-
duction of the Hierarchical Scheduling Framework, and its implementation in
FreeRTOS.

8.3.1 ProCom Component Model

Component-Based Software Engineering (CBSE) and Model-Based Engineer-
ing (MBE) are two emerging approaches to develop embedded control systems
like software used in trains, airplanes, cars, industrial robots, etc. The ProCom
component technology combines both CBSE and MBE techniques for the de-
velopment of the system parts, hence also exploits the advantages of both. It
takes advantages of encapsulation, reusability, and reduced testing from CBSE.
From MBE, it makes use of automated code generation and performing analy-
sis at an earlier stage of development. In addition, ProCom achieves additional
benefits of combining both approaches (like flexible reuse, support for mixed
maturity, reuse and efficiency tradeoff) [4].

The ProCom component model can be described in two distinct realms:
the modeling and the runnable realms as shown in Figure 8.1. In Modeling
realm, the models are made using CBSE and MBE while in runnable realm,
the synthesis of runnable entities is done from the model entities. Both realms
are explained as follows:

8.3 Background 133

Figure 8.1: An overview of the deployment modelling formalisms and synthe-
sis artefacts.

The Modeling Realm

Modeling in ProCom is done by four discrete but related formalisms as shown
in Figure 1. The first two formalisms relate to the system functionality mod-
eling while the later two represent the deployment modeling of the system.
Functionality of the system is modeled by the ProSave and ProSys components
at different levels of granularity. The basic functionality (data and control) of a
simple component is captured in ProSave component level, which is passive in
nature. At the second formalism level, many ProSave components are mapped
to make a complete subsystem called ProSys that is active in nature. Both
ProSys and ProSave allow composite components. For details on ProSave and
ProSys, including the motivation for separating the two, see [24, 9].

The deployment modeling is used to capture the deployment related design
decisions and then mapping the system to run on the physical platform. Many
ProSys components can be mapped together on a virtual node (many-to-one
mapping) together with a resource budget required by those components. After
that many virtual nodes could be mapped on a physical node i.e. an ECU. The
relationship is again many-to-one. This part represents all the physical nodes,
their intercommunication through the network and the type of the network etc.
Details about the deployment modeling are provided in [4].

The Runnable (or Executable) Realm

is the synthesis of runnables/executables from the ProCom model entities. The
primitive ProSave components are represented as a simple C language source
code in runnable form. From this C code, the ProSys runnables are gener-

134 Paper D

ated which contain the collection of operating system tasks. Virtual node
runnables implement the local scheduler and contain the tasks in a server.
Hence a runnable virtual node actually encapsulates the set of tasks, resource
allocations, and a real-time scheduler within a server in a two-level hierarchical
scheduling framework. Final binary image is generated by connecting differ-
ent virtual nodes together with a global scheduler and using the middleware to
provide intra-communications among the virtual node executables.

Deployment and Synthesis Activities

Rather than deploying a whole system in one big step, the deployment of the
ProCom components on the physical platform is done in the following two
steps:

• First the ProSys subsystems are deployed on an intermediate node called
virtual node. The allocation of ProSys subsystems to the virtual nodes
is many-to-one relationship. The additional information that is added at
this step is the resource budgets (CPU time).

• The virtual nodes are then deployed on the physical nodes. The relation-
ship is again many-to-one, which means that more than one virtual node
can be deployed to one physical node.

This two-steps deployment process allows not only the detailed analysis in
isolation from the other components to be deployed on the same physical node,
but once checked for correctness, it also preserves its temporal properties for
further reuse of this virtual node as an independent component. Section 8.4
describes this further.

The PRIDE tool supports the automatic synthesis of the components at
different levels [25]. At the ProSave level, the XML descriptions of the com-
ponents is the input and the C files are generated containing the basic func-
tionality. At the second level, ProSys components are assigned to the tasks to
generate ProSys runnables. Since the tasks at this level are independent of the
execution platform, therefore, the only attribute assigned at this stage is the
period for each task; which they get from the clock frequency that is triggering
the specific component. A clock defines the periodic triggering of components
with a specified frequency. Components are allocated to a task when (i) the
components are triggered by the same event, (ii) when the components have
precedence relation among them to be preserved. The synthesis of the runnable
virtual nodes and final executables is given in Section 8.4.2.

8.3 Background 135

8.3.2 Hierarchical Scheduling Framework
A two-level Hierarchical Scheduling Framework (HSF) [6] is used to provide
the temporal isolation among a set of subsystems. In hierarchical schedul-
ing, the CPU time is partitioned among many subsystems (or servers), that are
scheduled by a global (system-level) scheduler. Each server contains its own
internal set of tasks that are scheduled by a local (subsystem-level) scheduler.
Hence a two-level HSF can be viewed as a tree with one parent node (global
scheduler) and many leaf nodes (local schedulers) as illustrated in Figure 8.2.
The parent node is a global scheduler that schedules subsystems. Each subsys-
tem has its own local scheduler, that schedules the tasks within the subsystem.

Hierarchical Scheduling Framework

Global FPS

Scheduler

. . .

Global Shared Resources

SubSystem n

Local FPS

Scheduler

Task1 Taskn. . .

Local Shared Resources

S

R

P

S

R

P

SubSystem 1

Local FPS

Scheduler

Task1 Taskn. . .

Local Shared Resources

S

R

P

S

R

P

H

S

R

P

H

S

R

P

Figure 8.2: Two-level Hierarchical Scheduling Framework

The HSF gives the potential to develop and analyze subsystems in isolation
from each other [26]. As each subsystem has its own local scheduler, after sat-
isfying the temporal constraints, the temporal properties are saved within each
subsystem. Later, a global scheduler is used to schedule all the subsystems

136 Paper D

together without violating the temporal constraints that are already analyzed
and stored in the subsystems. Accordingly we can say that the HSF provides
partitioning of the CPU between different servers. Thus, server-functionality
can be isolated from each other for, e.g., fault containment, compositional ver-
ification, validation and certification, and unit testing.

Using HSF a subsystem (runnable virtual node in our case) can be devel-
oped and analyzed in isolation, with its own local scheduler at first step of
deployment and its temporal properties are preserved. Then at the second step
of deployment, multiple virtual nodes (subsystems) are integrated onto a phys-
ical node using an arbitrary global scheduler without violating the temporal
properties of the individual subsystems analyzed in isolation.

8.3.3 FreeRTOS and its HSF Implementation

In this work we use FreeRTOS as the operating system to execute both levels of
the HSF. FreeRTOS is a portable open source real-time kernel with properties
like small and scalable, support for 23 different hardware architectures, and
ease to extend and maintain.

The official release of FreeRTOS only supports a single level fixed-priority
scheduling. However, a recent work has been presented that implements a
two-level HSF for FreeRTOS [7] with associated primitives for hard real-time
sharing of resources both within and between servers [27]. The HSF imple-
mentation supports two kinds of servers, idling periodic [28] and deferrable
servers [29]. The implementation uses fixed priority preemptive scheduling
(FPPS) for both global and local-level scheduling. For local resource-sharing
(within a server) the Stack Resource Policy (SRP) [30] is used, and for global
resource-sharing (between servers) the Hierarchical Stack Resource Policy (HSRP)
protocol [31] is used with three different overrun mechanisms to deal with the
server budget expiration within the critical section [32]. The HSF supports
reservations by associating a tuple < Q,P > to each server where P is the
server period and Q (0 < Q ≤ P) is the allocated portion of P .

The FreeRTOS has been adopted as one of the supported operating sys-
tems of ProCom. Given Q, P , and information on resource holding times, the
schedulability of a server and/or a whole system can be calculated with the
methods presented in [27].

8.4 Runnable Virtual Node 137

8.4 Runnable Virtual Node
The concept of runnable virtual node is used to achieve not only temporal iso-
lation and predictable temporal properties of real-time components but also to
get better reusability of components with real-time properties. Further it re-
duces efforts related to system-level testing, validation and certification. This
concept is based on a two-level deployment process. It means that the whole
system is generated in two steps rather than a single big synthesis step. At
the first level of deployment, the functional properties (functionality of compo-
nents) are combined and preserved with their extra-functional properties (tim-
ing requirement) in the runnable virtual nodes. In this way it encapsulates the
behavior with respect to timing and resource usage, and becomes a reusable
component in addition to the design-time components. Followed by the sec-
ond level of deployment where these runnable virtual nodes are implemented
on the physical platform along with a global scheduler.

A runnable virtual node includes the executable representation of the com-
ponents assigned to the tasks, a resource allocation (period and budget of
server), and a real-time scheduler, to be executed within a server in the hi-
erarchical scheduling framework.

8.4.1 Applying Virtual Node Concept to ProCom Compo-
nent Model

In ProCom, a virtual node is an integrated model concept. It means that the
virtual nodes exist both on the modeling level and on the synthesis level as
shown in Figure 8.1. In the synthesis realm they are called runnable virtual
nodes.

At the modeling level, each virtual node contains a set of integrated ProSys
components plus the execution resources (a period and budget) required for
these ProSys components. The priorities of virtual nodes cannot be assigned at
the modelling level. The priorities of a component are relative to other compo-
nents in the system. Since virtual nodes are developed independently and are
meant to be reused in different systems, therefore, the priorities are assigned to
virtual nodes later during the synthesis process at the execution level.

At the execution level, the runnable virtual node contains a set of executable
tasks, resources required to run those tasks and a real-time local scheduler to
schedule these tasks. Note that the runnable virtual node is generated as a
result of first deployment step; it is platform independent and not executable as
a stand-alone entity.

138 Paper D

8.4.2 The Synthesis of the Final Executables

The final executables are generated by assigning priorities to the servers and
tasks in the runnable virtual nodes, completing the task bodies with the user
code, synthesizing communication among those nodes (if needed) and linking
them together with the operating system. These executables then can be down-
loaded and executed on a physical node. As the real-time properties of runnable
virtual nodes are preserved within the servers, therefore when integrated with
other runnable virtual nodes on a physical node, the real-time properties of the
whole integrated system will be guaranteed by the schedulability analysis of
the whole system.

The communication among runnable virtual nodes is provided by a Sys-
tem server, which is automatically generated for inter-node communication (if
needed), at this step. The main functionality of the server is to send and re-
ceive messages among the nodes. It contains two tasks to achieve this purpose:
a sender task and a message-port updater task. Additionally there can be a
hardware-driver tasks in it, if needed. The system server has the highest prior-
ity of all the servers in the system, with a very small execution time and its only
functionality is to copy the messages from the sender port of one component
to the receiver port of another component.

An idle server is also generated within the two-level hierarchical scheduling
to test the temporal isolation among the runnable virtual nodes. When there is
no other server in the system to execute, then the idle server will run. It has the
lowest priority of all the other servers, i.e. 0. It contains only an idle task to
execute [7]. This is useful for maintaining and testing the temporal separation
among servers and also useful in testing system behavior. This information
is useful in detecting over-reservations of server budgets and can be used as
feedback to resource management.

8.5 Case Study: Cruise controller and an adaptive
cruise controller

The PROGRESS Integrated Development Environment (PRIDE) tool [33] sup-
ports development of systems using ProCom component models and it has been
used for developing the examples of cruise controller (CC) and an adaptive
cruise controller (ACC). The purpose of these fictitious examples is to evaluate
and demonstrate the execution-time properties and reusability of the run-time
components with real-time properties. First, the CC system is realized and ex-

8.5 Case Study: Cruise controller and an adaptive cruise controller
139

ercised to test the temporal isolations among run-time components. Its basic
functionality is to keep the vehicle at a constant speed. Then the ACC sys-
tem extends this functionality by keeping a distance from the vehicle in front
by autonomously adapting its speed to the speed of the preceding vehicle and
by providing emergency brakes to avoid collisions. To evaluate the reusabil-
ity of real-time components, the ACC system is realized by the reuse of some
runnable virtual nodes from the CC system.

In the remainder of this section we describe the development of both ap-
plications using the ProCom component model. The ProSave, ProSys, and
virtual node components are modeled for both examples. The presentation is
followed by the synthesis of executable binaries using a hierarchical scheduling
technique and the evaluation of final executables on the target platform.

8.5.1 System design

The CC system is designed from two ProSys components, Cruise Controller
and Vehicle Controller, which are modelled and deployed on two different vir-
tual nodes. For the ACC system, the Cruise Controller component is replaced
with the Adaptive Cruise Controller component as shown in Figure 8.3. These
virtual nodes communicate with each other through input and output message
ports. The detailed design of these ProSys components is in turn shown in
Figures 8.4, 8.5, and 8.6.

Virtual Node 2

Virtual Node 1

Cruise Controller

or

Adaptive Cruise Controller

Vehicle Controller

p
e
d
a
ls

s
p
e
e
d

b
ra
k
e

th
ro
ttle

Figure 8.3: Deploying ProSys components on virtual nodes

The Cruise Controller component contains three elements as shown in Fig-
ure 8.4: an HMI Input to set the mode to on or off, and detecting the speed or

140 Paper D

the manual braking signal respectively, a Control Unit to compare the current
speed with the desired speed and to send the signals to throttle or brake output
port accordingly, and an HMI Output to communicate the status to the driver
via the display. The Vehicle Controller component contains seven elements as
shown in Figure 8.5: two Calc Max Value components: to choose the maxi-
mum (of throttle and input message port) speeds and maximum (of brake pedal
and input message port) brakes, and to provide these values to Engine Con-
troller and Brake Controller components respectively. The Speedometer writes
current speed to the output port periodically.

Control UnitHMI Input

HMI OutputClock Clock

brake

current

speed

mode

desired speed

current speed

current speed

mode

desired speed

current speed

throttle

brake

brake

Figure 8.4: The Cruise Controller (CC) component

To extend the functionality to the ACC system, the CC virtual node is re-
placed by an ACC virtual node containing the same interface as that of CC
component. The ACC system reuses the Vehicle Controller component from
the CC application. The ACC component contains the following elements in
addition to the Cruise Controller’s elements: a Distance Sensor component to
evaluate the distance to a vehicle/obstacle in front of the vehicle, a SpeedLim-
iter component to compute the vehicle’s desired speed relative to the vehi-
cle/object ahead as shown in Figure 8.6.

The ProSys components are then mapped to the virtual node components.
Each virtual node is assigned a period and an execution budget to be executed
in a local server within a two-level hierarchical scheduling framework. For
the CC system, the Cruise Controller component is mapped to the Virtual
Node1 and the Vehicle Controller component is mapped to the Virtual
Node2. In ACC system, the Adaptive Cruise Controller component is mapped
to the Virtual Node1while Virtual Node2 is reused from the CC sys-

8.5 Case Study: Cruise controller and an adaptive cruise controller
141

brake

current

speed

brake

Clock

th
ro

ttle

Clock

Throttle pedal

Brake pedal

Speedometer

Engine
controller

Brake
controller

Clock

Calc Max
Value

Calc Max
Value

external input

external input

Figure 8.5: The Vehicle Controller (VC) component

Control UnitHMI Input

HMI Output

Clock

Clock

brake

current

speed

mode

desired speed

current speed

current speed

mode

desired speed

current speed

throttle

brake

brake

Speed Limiter
Distance

Sensor

Clock

distance

desired speed

Figure 8.6: The Adaptive Cruise Controller (ACC) component

tem. The periods and budgets for these virtual nodes are assigned at the mod-
elling level as shown in Figure 8.7.

8.5.2 Synthesis
As described in Section 8.4.2, the PRIDE tool automatically synthesizes the
code from the ProCom models at different stages. It takes the models as input,

142 Paper D

Figure 8.7: The timing properties of the virtual node

and generates all low-level platform independent code.
In the first step of the final synthesis/deployment process for the case study,

two runnable virtual nodes are produced for both CC and ACC systems: one
runnable virtual node for Virtual Node1 and one for Virtual Node2.
These generated nodes contain tasks definitions in them.

One task is synthesized for each clock. For CC example, two tasks are
generated for the CC component: CCT1 task including HMI Input and Control
Unit; and CCT2 task including HMI Output component. Three tasks are gen-
erated for the VC component: VCT1 task including Throttle pedal, Calc Max
Value, and Engine Controller; VCT2 task including Brake pedal, Calc Max
Value, and Brake Controller; and VCT3 task including the Speedometer.

For ACC example, three tasks are generated for the ACC component: ACCT1
task including Distance Sensor, ACCT2 task including HMI Input, Speed Lim-
iter, and Control Unit; and ACCT3 task including HMI Output component.
Generating Final Binaries: In the second step of the final synthesis/deployment
part, the priorities are assigned to the runnable virtual nodes (also called servers
now) and to the tasks in them. Four servers are generated for both examples.

Server CC ACC VC SYSTEM
Priority 2 2 1 7
Period 40 40 60 20
Budget 10 10 15 4

Table 8.1: Servers used to test the CC and ACC systems behaviors.

8.5 Case Study: Cruise controller and an adaptive cruise controller
143

A System server is generated to provide communication among the runnable
virtual nodes. It has the highest priority of all the other servers, i.e. 7 (there are
8 different server priorities: from lowest priority 0 to the highest 7). Note that
higher number means higher priority for both servers and tasks. The System
server contains two tasks: a Sender and a Receiver task; whose function-
ality is to send and receive the data shared among virtual nodes respectively.

An Idle server is generated in the system with the lowest priority of all
the other servers, i.e. 0, containing an idle task in it. All the other servers in
the system have the priority higher than 0. This server is useful to check the
temporal separation among servers.

The CC system contains two more servers in addition to System and
Idle server: a CC server and a VC server associated with CC and VC vir-
tual nodes respectively. The ACC system also contains four servers: an ACC
server associated with the ACC virtual nodes. It reuses the VC, System, and
Idle servers from the CC system. The priorities, periods and budgets for
these servers are given in Table 8.1.

All the servers in both examples are idling periodic means that the tasks in
the server execute and use the server’s capacity until it is depleted. If server
has the capacity but there is no task ready then it simply idles away its budget
until a task becomes ready or the budget depletes. If a task arrives before the
budget depletion, it will be served. An idle task per server is also generated
that has the lowest priority and runs when its server has budget remaining but
none of its task are ready to execute. Task properties and their assignments to
the servers are given in Tables 8.2 and 8.3.

Tasks CCT1 CCT2 ACCT1 ACCT2 ACCT3 VCT1 VCT2 VCT3

Server CC CC ACC ACC ACC V C V C V C

Priority 2 1 2 2 1 1 1 2

Period 40 60 40 40 60 60 60 40

Table 8.2: Tasks in the two servers.

Tasks Sender Receiver

Server System System

Priority 2 2

Period 20 20

Table 8.3: Tasks in the System server.

144 Paper D

Once all the platform dependent user code is finalized, all runnable virtual
nodes that are to be deployed on the same physical node are integrated with
a real-time time scheduler, the platform dependent final binaries are generated
and downloaded on an ECU. Currently the PRIDE tool is evolving and the au-
tomatic synthesis part is not fully mature. Hence few parts of these experiments
were synthesized manually, but it is not relevant for our experiments and does
not effect our results.

8.5.3 Evaluation and Discussion
We have performed the experimental evaluation of the case study on an AVR-
based 32-bit EVK1100 board [11]. The AVR32UC3A0512 micro-controller
runs at the frequency of 12MHz and its tick interrupt handler at 1ms(milli
seconds). The FreeRTOS operating system with its HSF implementation is
used on the micro-controller using idling periodic servers and FPPS scheduling
policy at both levels. Its tick-handler runs at the rate of 1ms.

Our evaluation focuses mainly to evaluate the timing properties of the real-
time components during their integration and the reuse of the components in
different systems. We tested the real-time components for: (i) temporal isola-
tion among the components that leads to (ii) the predictable integration and (iii)
increased reusability of the components. The experiments are described below
and the results are presented in the form of visualization of servers executions
in Figures 8.8, 8.9 and 8.10.

Testing temporal isolation and predictable integration

To test the temporal isolation among runnable virtual nodes and their pre-
dictable integrations, the CC system is synthesized with the previously de-
scribed four servers and task sets belonging to those servers. The final binaries
are executed on the micro-controller and the traces of executions are visual-
ized. The servers executions (according to their resource reservations) along
with their task sets are presented in Figure 8.8 and Figure 8.9.

In these Figures, the horizontal axis represents the execution time start-
ing from 0. In the task’s visualization, the arrow represents task arrival and a
gray rectangle means task execution. In the server’s visualization, the numbers
along the vertical axis are the server’s capacity, the diagonal line represents
the server execution while the horizontal line represents either the waiting time
for the next activation (when budget has depleted) or the waiting for its turn to
execute (when some other server is executing). Since these are idling periodic

8.5 Case Study: Cruise controller and an adaptive cruise controller
145

Figure 8.8: The trace for servers in the CC system during normal load

servers, all the servers in the system executes till budget depletion, if no task is
ready then the idle task of that server executes till its budget depletion.

Figure 8.8 demonstrates the system execution under the normal load sit-
uation. The system’s behavior is also tested during the overload situation to
test the temporal isolation among the runnable virtual nodes. For example, if

146 Paper D

one server (runnable virtual node) is overloaded and its tasks miss deadlines, it
should not affect the behavior of other servers in the system.

Figure 8.9: Trace showing temporal isolation during overload situation

The same example is executed to perform this test but with the increased
utilization of the CC server as shown in Figure 8.9. The execution times of
tasks CCT1 and CCT2 are increased by adding the busy loops, hence making

8.5 Case Study: Cruise controller and an adaptive cruise controller
147

the CC server’s utilization greater than 1. Therefore the low priority task CCT2
misses its deadlines at time 54. CCT2 is preempted at time 14 because of the
CC server’s budget expiration, and starts it’s execution again when next time the
server is replenished. Further, the CC is never idling because it is overloaded
(Idle task of CC server is not executed in Figure 8.9).

The overload of CC server does not effect the behavior of any other server
in the system as obvious from Figure 8.9. The VC server has a lower prior-
ity than the CC, but still it receives its allocated resources and its tasks meet
their deadlines. In this manner, the runnable virtual nodes exhibit a predictable
timing behaviour that eases their integration. It also manifests that the tempo-
ral errors are contained within the faulty runnable virtual node only and their
effects are not propagated to the other nodes in the system.

Testing component’s reusability

The purpose of this experiment is to test the reusability of the runnable virtual
nodes in a new system. The ACC system is synthesized for this purpose. It
also contains four servers: the ACC server is synthesized with its task set while
the other three servers are reused from the CC system. The trace of execution
is visualized and presented in Figure 8.10.

Since the runnable virtual nodes preserve their timing properties within
them; therefore, their behaviour should not be changed when integrated into a
new system, as long as their reserved resources are provided.

The task set for the ACC server is different from that of CC server. It is
clear from the Figure 8.10 that all the three reused servers sustain their timing
behaviour. For example, the VC server has a lower priority than ACC, still
it’s behaviour is not effected at all and remains similar to its behaviour in the
CC system. It confirms the predictable integration of real-time components on
one hand, and demonstrates their reusability on the other hand. We observed
the same results on testing the ACC server with the changed timing properties,
i.e. period 40 and budget 15. As long as the allocated budgets to servers (at
the modeling level) are provided, the timing properties are guaranteed at the
execution.

Hence, by the use of runnable virtual node components and two-level de-
ployment process, the timing requirements are also encapsulated within the
components along with their function requirements and the temporal parti-
tioning is provided among the components (using HSF), that results in the in-
creased predictability during component’s integration and making the runnable
virtual nodes a reusable entity.

148 Paper D

Figure 8.10: Trace showing reusability of runnable virtual nodes in ACC sys-
tem

8.6 Conclusions
We present the concept of runnable virtual nodes as a means to achieve pre-
dictable integration and reuse of software components using a two-level de-

8.6 Conclusions 149

ployment process in cyber-physical systems. The virtual node is intended as
a coarse-grained component for single node deployment and with potential
internal multitasking. Each physical node is used to execute one or more
virtual nodes. The idea is to encapsulate real-time properties into model-
driven reusable components-based systems to achieve predictable integration
and reusability of virtual nodes, thereby facilitating the development of com-
plex CPS.

The notion of two-level deployment process encapsulates the timing prop-
erties and uses the hierarchical scheduling within runnable virtual nodes that
provides temporal isolation and increases the reuse of the nodes in different
systems. Hence using runnable virtual nodes, a complex CPS can be devel-
oped as a set of well defined reusable components encapsulating functional
and timing properties.

A proof-of-concept case study is presented which demonstrates temporal
error containment within a virtual node as well as reuse of a virtual node in
new environment without altering its temporal behavior. Our work is based on
the ProCom component-technology [9] running on FreeRTOS which has been
extended with a hierarchical scheduling framework. The case study was ex-
ecuted on an ECU with an AVR based 32-bit micro-controller. However, we
believe that our concept is applicable also to commercial component technolo-
gies like AADL, AUTOSAR, Rubus [5].

For future work, we plan to support virtual communication-busses using
server-based scheduling techniques for e.g. CAN [34] and Ethernet [35]. This
will allow development, integration and reuse of distributed components using
a set of virtual nodes and buses.

Bibliography

[1] Ivica Crnkovic and Magnus Larsson, editors. Building Reliable
Component-Based Software Systems. Artech House publisher, 2002.
ISBN 1-58053-327-2.

[2] L. Sha, T. Abdelzaher, K-E. rzn, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time Scheduling
Theory: A Historical Perspective. Real-Time Systems, 28(2/3):101–155,
2004.

[3] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo. Implications
of Classical Scheduling Results for Real-Time Systems. IEEE Computer,
pages 16–25, June 1995.

[4] Jan Carlson, Juraj Feljan, Jukka Mäki-Turja, and Mikael Sjödin. Deploy-
ment Modelling and Synthesis in a Component Model for Distributed
Embedded Systems. In Proceedings of the 36th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA’ 10), Septem-
ber 2010.

[5] Rafia Inam, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin. Using
temporal isolation to achieve predictable integration of real-time compo-
nents. In 22nd Euromicro Conference on Real-Time Systems (ECRTS10)
WiP Session, pages 17–20, July 2010.

[6] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open
environment. In IEEE Real-Time Systems Symposium(RTSS’97), pages
308–319, 1997.

[7] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei, and Sara
Afshar. Hierarchical Scheduling Framework Implementation in FreeR-
TOS. In IEEE International Conference on Emerging Technologies and

151

152 Bibliography

Factory Automation (ETFA’ 11), pages 1–10, Tolouse, France, September
2011. IEEE Computer Society.

[8] Thomas Nolte. Compositionality and CPS from a Platform Perspective.
In Proceedings of the 1st International Workshop on Cyber-Physical Sys-
tems, Networks, and Applications (CPSNA’11), satellite workshop of 17th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’11), August 2011.

[9] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and
Ivica Crnković. A Component Model for Control-Intensive Distributed
Embedded Systems. In 11th International Symposium on Component
Based Software Engineering, pages 310–317, October 2008.

[10] FreeRTOS web-site. http://www.freertos.org/.

[11] ATMEL EVK1100 product page. http://www.atmel.com/dyn/Products/tools
card.asp?tool id=4114.

[12] AUTOSAR GbR. Specification of Operating System, 2008.

[13] Thierry Rolina. Past, Present, and Future of real-time embedded automo-
tive software: a close look at basic concepts of AUTOSAR. In SAE World
Congress and Exhibiion, Session: In-Vehicle software, 2006.

[14] AUTOSAR Partnership. Specification of RTE V2.0.1 R3.0 Rev 0001 ,
2008. http://www.autosar.org/.

[15] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John
Lundbäck, and Kurt-Lennart Lundbäck. The Rubus Component Model
for Resource Constrained Real-Time Systems. In 3rd International Sym-
posium on Industrial Embedded Systems, 2008.

[16] Arcticus Systems Web-Page. http://www.arcticus.se.

[17] Arcticus Systems. The Rubus Operating System. http://www.arcticus.se.

[18] SAE International. AADL specification. http://www.sae.org/.

[19] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues. OCARINA : An Envi-
ronment for AADL Models Analysis and Automatic Code Generation for
High Integrity Applications. Springer Berlin Heidelberg, 2009. ISBN
978-3-642-01923-4.

Bibliography 153

[20] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to
the final embedded system using the ocarina aadl tool suite. ACM Trans.
Embed. Comput. Syst., 7(4):1–25, 2008.

[21] Julien Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, and
F. Kordon. Validate, simulate, and implement arinc653 systems using
the aadl. Ada Lett., 29(3):31–44, 2009.

[22] Object Management Group. Deployment and Configuration of
Component-based Distributed Applications Specification, 2006. v4.0.

[23] Patricia Lopez Martinez and Cesar Cuevas and Jose M. Drake. RT-
D&C: Deployment Specification of Real-time Component-based Appli-
cations. In 36th EUROMICRO Conference on Software Engineering an
dAdvanced Applications (SEAA’10), pages 147–155, 2010.

[24] Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and
Aneta Vulgarakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-230/2008-1-
SE, Mälardalen University, June 2008.

[25] Etienne Borde and Jan Carlson. Towards verified synthesis of procom, a
component model for real-time embedded systems. In 14th International
ACM SIGSOFT Symposium on Component Based Software Engineering
(CBSE). ACM, June 2011.

[26] Thomas Nolte, Insik Shin, Moris Behnam, and Mikael Sjödin. A Syn-
chronization Protocol for Temporal Isolation of Software Components
in Vehicular Systems. IEEE Transactions on Industrial Informatics,
5(4):375–387, November 2009.

[27] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, and Moris Behnam. Hard
Real-time Support for Hierarchical Scheduling in FreeRTOS. In 7th An-
nual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT’ 11), pages 51–60, Porto, Portugal, 2011.

[28] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. IEEE Real-Time
Systems Symposium (RTSS), pages 181–191, 1986.

[29] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server algo-
rithm for Enhanced Aperiodic Responsiveness in Hard Real-time Envi-
ronments. IEEE Transactions on Computers, 44(1), 1995.

[30] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[31] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority
pre-emptive systems. In IEEE Real-Time Systems Symposium (RTSS’06),
pages 389–398, 2006.

[32] Moris Behnam, Thomas Nolte, Mikael Sjödin, and Insik Shin. Over-
run Methods and Resource Holding Times for Hierarchical Scheduling
of Semi-Independent Real-Time Systems. IEEE Transactions on Indus-
trial Informatics, 6(1), February 2010.

[33] PRIDE Team. PRIDE: the PROGRESS Integrated Development Envi-
ronment, 2010. ”http://www.idt.mdh.se/pride/?id=documentation”.

[34] Thomas Nolte, Mikael Nolin, and Hans Hansson. Real-Time Server-
Based Communication for CAN. IEEE Transaction on Industrial Elec-
tronics, 1(3):192–201, April 2005. Citations=33.

[35] Rui Santos, Paulo Pedreiras, Moris Behnam, Thomas Nolte, and
Luis Almeida. Hierarchical server-based traffic scheduling in ethernet
switches. In 3rd Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems (CRTS’10), pages 69–70, December 2010.

