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Abstract

We present the concept of runnable virtual nodes as a means to achieve pre-
dictable integration and reuse of software components in cyber-physical systems.
A runnable virtual node is a coarse-grained real-time component that provides
functional and temporal isolation with respect to its environment. Its interaction
with the environment is bounded both by a functional and a temporal interface,
and the validity of its internal temporal behavior is preserved when integrated
with other components or when reused in a new environment. Our realization
of runnable virtual nodes exploits the latest techniques for hierarchical scheduling
to achieve temporal isolation, and the principles from component-based software-
engineering to achieve functional isolation. In the paper we present a proof-of-
concept case study, implemented in the ProCom component-technology executing
on top of FreeRTOS based hierarchical scheduling framework.

1 Introduction
A contemporary Cyber-Physical System (CPS) is often required to monitor and con-
trol several disparate variables in its environment. From a development point of view,
it often makes sense to develop the different control-functions as separate software-
components [11]. Typically, these components are first developed and tested in isola-
tion, and later integrated to form the final software for the system. Furthermore, many
industrial systems are developed in an evolutionary fashion, reusing components from
previous versions or from related products. It means that the reused components are
re-integrated in new environments.

When multiple components are deployed on the same hardware node, the emerg-
ing timing behavior of each of the components is typically unpredictable. For a cyber-
physical system with real-time constraints, this means that a component that is found
correct during unit testing may fail, due to a change in temporal behavior, when inte-
grated in a system. Even if a new component is still operating correctly in the system,
the integration could cause a previously integrated (and correctly operating) component
to fail. Similarly, the temporal behavior of a component is altered if the component is
reused in a new system. Since this alteration is unpredictable as well, a previously
correct component may fail when reused.
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While using the temporal models of component behavior and requirements, some
of the problems may be mitigated by using scheduling analysis [32, 34], however these
techniques only allow very simple models; typically simple timing attributes such as
period and deadline are used. In industry, components often exhibit a too complex
behavior to be amenable for the scheduling analysis. And, even if a suitable analysis
technique should exist, such analysis requires knowledge of the temporal behavior of
all components in the system. Thus, a component cannot be deemed correct without
knowing which components it will be integrated with. Further the reuse of a component
is restricted since it is very difficult to know beforehand if the component will pass a
schedulability test in a new system.

For complex real-time CPS, methodologies and techniques are required to provide
not only functional isolation but also temporal isolation so that the run-time timing
properties could be guaranteed. Further the real-time properties of the components
should be maintained for their reuse in large-scale industrial CPS.

To remedy this situation we propose the concept of a runnable virtual node, which
is an execution-platform concept that preserves temporal properties of the software
executed in the virtual node [10]. It introduces an intermediate level between the func-
tional entities and the physical nodes. Thereby it leads to a two-level deployment pro-
cess instead of a single big-stepped deployment; i.e. deploying functional entities to
the virtual nodes and then deploying virtual nodes to the physical nodes.

The virtual node is intended for coarse-grained components for single node deploy-
ment and with potential internal multitasking. The idea is to encapsulate the real-time
properties into model-driven reusable components-based systems to achieve not only
the predictable integrations and reusability of those components [10, 19] but also main-
tenance, testing, and extendibility. To achieve this, the timing properties of the com-
ponents should be preserved so that real-time components integration and reuse can be
made predictable.

Hierarchical Scheduling Framework (HSF) [14, 20] is known as a technique for
providing temporal isolation between applications in the real-time community. Re-
cently, HSF is proposed to develop complex CPS by enabling temporal isolation and
predictable resource usage of CPS software [23]. In this paper, we integrate HSF within
a component technology for embedded real-time systems; to realize our ideas of guar-
anteeing temporal properties of real-time components, their predictable integrations
and reusability. We introduce the runnable virtual node, which includes the executable
representation of the components (i.e. a set of tasks), a resource allocation, and a real-
time scheduler to be executed within a server in the HSF. The server executes with a
guaranteed temporal behavior, using its allocated CPU bandwidth, regardless of any
other execution on the physical node. Thus, once a server has been configured for the
virtual node, its real-time properties will be preserved when the virtual node is inte-
grated with other virtual nodes on a physical node, or when a virtual node is reused in
another context.

Contributions
The work presented in this paper is within the context of ProCom component technol-
ogy [31]. The main contributions of this paper are as follows:

• We realize the concept of runnable virtual nodes by embedding the HSF imple-
mentation within the ProCom component technology for an embedded platform
running FreeRTOS operating system [16].
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• We introduce a two-level deployment process instead of a single big-stepped de-
ployment; i.e. deploying functional entities to the virtual nodes and then deploy-
ing virtual nodes to the physical nodes, thereby preserving the timing properties
within the components in addition to their functional properties.

• We provide a case study as a proof of concept and run it on an AVR 32-bit board
EVK1100 [15].

• We test the runnable virtual node’s real-time properties for temporal isolations
and reusability.

Outline: Section 2 presents the related work on component-based and model-driven
component systems. Section 3 gives an overview about the ProCom Component Model
and the HSF implementation. In Section 4, we describe the runnable virtual node and
how it is used within the ProCom technology. Section 5 presents a case-study in which
runnable virtual nodes have been used. Finally, Section 6 concludes the article.

2 Related Work
In this section, we describe some contemporary component-technologies available for
embedded systems. Especially we focus on the deployment and integration of compo-
nents and on the predictability in the time-domain of the resulting systems. The list
is by far non-exhaustive, but rather focuses on state-of-the-art within industrial appli-
cations. In the academic domain several similar concepts exist; but to the best of our
knowledge, no other technology employs a two-phase deployment process or employs
HSF to support temporal isolation, ease of integration or component reuse.

2.1 AUTOSAR
AUTomotive Open System ARchitecture (AUTOSAR) [4] is an open standard for auto-
motive electronics architectures. It is developed to deal with the increasing complexity
and to fulfil a number of future vehicle requirements (such as safety, availability, driver
assistance, infotainment etc.). The key features of AUTOSAR are modularity, config-
urability, standardized interfaces and a runtime environment.

Functional software is developed using component-based approach [1]. A compo-
nent is developed over many layers of AUTOSAR, including: Application layer, Run-
time Environment (RTE), Basic software and ECU (Electronic Control Unit, is a node
in an automotive network) hardware. A Software Component (SW-C) at ECU level
contains at least one or several runnable entities. A runnable is a small fragment of
sequential code within a component [5]. In AUTOSAR, the deployment begins when
the RTE generator maps all runnables to the OS tasks and builds inter- ECU and intra-
ECU communications among them. After mapping, the RTE generator configures each
ECU and constructs the OS tasks bodies.

A main disadvantage of AUTOSAR is that it lacks clear and well-defined timing
properties that further affect the execution semantics too. On the other hand, ProCom
puts special focus on such requirements right from the beginning of the component’s
development untill the component’s deployment. The runnable virtual nodes of Pro-
Com are reusable components preserving timing properties in them and are indepen-
dent of the platform specifics. As compared to AUTOSAR, ProCom clearly distin-
guishes between the data and control flows among ProCom components. Deployment
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in AUTOSAR is a single-stepped process and the executables are generated directly
from the components, unlike ProCom where the deployment is performed in two steps
at both modelling and synthesis levels. A tool suite to support the complete AUTOSAR
methodology for hard real-time systems is still missing.

2.2 Rubus
The Rubus Component Model (RCM) [17] is developed in cooperation between Arcti-
cus Systems [2] and Mälardalen University. It is used commercially in the automotive
industry. In many aspects RCM is similar to the ProCom: for example rubus captures
the functionality at two-levels of component hierarchy; at first level the components are
passive while at the second level they are active; manages different ports for control and
data flows. The component technology uses a graphical design tool and a scheduler for
system design, and some plug-ins to perform analysis. Finally, the run-time infrastruc-
ture is generated using Execution Models (EM) for the desired platform.

In Rubus, the real-time requirements of the components are realized by the use
of EMs, which are logical objects and are defined in the infrastructure at the run-time
environment. The RCM is not restricted to the use of a specific run-time environment as
long as the components preserve the semantics defined in them. However, the current
task set can only be executed in the RubusRTOS [3].

Its main difference from the ProCom technology is at the deployment and at the
execution levels. In Rubus, the deployment is a single-stepped process for the desired
platform. On the other hand, in Procom, the deployment is a two-stepped process.
In Rubus, the required hardware components are directly modeled in the Rubus com-
ponents, unlike ProCom where the components are developed independently from the
hardware details and the hardware specifics are taken care at the last step of the deploy-
ment process. Another difference is the platform dependence of the Rubus technology
on the underlying operating system [17]. The platform on which the component has
to be executed is modeled within the Rubus components and the final executables are
generated only for that particular platform.

2.3 AADL
Architecture Analysis and Design Language (AADL) was developed as a SAE Stan-
dard AS-5506 [29] to design and analyze software and hardware architectures of dis-
tributed real-time embedded systems. Modeling of software and hardware parts is sup-
ported by software components and execution platform components respectively [22].
Properties and new functional aspects can be attached to the elements (e.g., compo-
nents, connections) using the properties defined in the SAE standard, and communi-
cation among components is performed using component interfaces i.e., ports. Oca-
rina [18] is a tool suite that facilitates the design of AADL models and their mapping
on a hardware platform, assessment of these models, automatic code generation, and
deployment.

Deployment in AADL is supported by a middleware API called PolyORB (Poly-
ORB for code generation in Ada while PolyORB-HI for code generation in C). Runnable
entities are presented by processes. A process contains many tasks and it is a self-
contained runnable entity that executes on a hardware platform.

Unlike ProCom, the deployment in AADL is done in a single step to directly exe-
cute the generated code on the physical platform. Another type of runnable entity for
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AADL employs a hierarchical scheduling concept in a partition. A partition is a combi-
nation of several processes and a scheduler called Virtual Processor [13]. But this kind
of runnbale entity is also deployed in a single step. It provides temporal partitioning
like runnable virtual node of ProCom, but it does not consider the reusability aspect of
the runnable components.

2.4 Deployment and Configuration specification
The Deployment and Configuration specification (D&C) [26] is standardized by the
Object management Group. Its main purpose is to facilitate the deployment of component-
based applications onto target platform. It uses a Platform Independent Model (PIM)
for the model components with three level, and a Platform Specific Model (PSM) for
the CORBA Component Model (CCM).

Recently, an extension has been proposed to support the development of applica-
tions with real-time properties and provide a deployment plan, called RT-D&C [27].
The metadata about the temporal behaviour of components is added to the specifica-
tion at the PIM level to facilitate the real-time analysis of the components. However, a
RT-planner, who configures the real-time application after using the real-time analysis
tools, is required to assign the timing properties to the application which is different
from the ProCom deployment. As compared to ProCom where the timing properties
are preserved within the runnable virtual nodes, RT-D&C only preserves them till the
components development at PIM level.

3 Background
This section presents the background technologies our work uses. We provide an
overview of the ProCom component technology, followed by and introduction of the
Hierarchical Scheduling Framework, and its implementation in FreeRTOS.

3.1 ProCom Component Model
Component-Based Software Engineering (CBSE) and Model-Based Engineering (MBE)
are two emerging approaches to develop embedded control systems like software used
in trains, airplanes, cars, industrial robots, etc. The ProCom component technology
combines both CBSE and MBE techniques for the development of the system parts,
hence also exploits the advantages of both. It takes advantages of encapsulation,
reusability, and reduced testing from CBSE. From MBE, it makes use of automated
code generation and performing analysis at an earlier stage of development. In addi-
tion, ProCom achieves additional benefits of combining both approaches (like flexible
reuse, support for mixed maturity, reuse and efficiency tradeoff) [10].

The ProCom component model can be described in two distinct realms: the mod-
eling and the runnable realms as shown in Figure 1. In Modeling realm, the models are
made using CBSE and MBE while in runnable realm, the synthesis of runnable entities
is done from the model entities. Both realms are explained as follows:

3.1.1 The Modeling Realm

Modeling in ProCom is done by four discrete but related formalisms as shown in Figure
1. The first two formalisms relate to the system functionality modeling while the later
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Figure 1: An overview of the deployment modelling formalisms and synthesis arte-
facts.

two represent the deployment modeling of the system. Functionality of the system is
modeled by the ProSave and ProSys components at different levels of granularity. The
basic functionality (data and control) of a simple component is captured in ProSave
component level, which is passive in nature. At the second formalism level, many
ProSave components are mapped to make a complete subsystem called ProSys that is
active in nature. Both ProSys and ProSave allow composite components. For details
on ProSave and ProSys, including the motivation for separating the two, see [9, 31].

The deployment modeling is used to capture the deployment related design deci-
sions and then mapping the system to run on the physical platform. Many ProSys com-
ponents can be mapped together on a virtual node (many-to-one mapping) together
with a resource budget required by those components. After that many virtual nodes
could be mapped on a physical node i.e. an ECU. The relationship is again many-to-
one. This part represents all the physical nodes, their intercommunication through the
network and the type of the network etc. Details about the deployment modeling are
provided in [10].

3.1.2 The Runnable (or Executable) Realm

is the synthesis of runnables/executables from the ProCom model entities. The primi-
tive ProSave components are represented as a simple C language source code in runnable
form. From this C code, the ProSys runnables are generated which contain the collec-
tion of operating system tasks. Virtual node runnables implement the local scheduler
and contain the tasks in a server. Hence a runnable virtual node actually encapsulates
the set of tasks, resource allocations, and a real-time scheduler within a server in a two-
level hierarchical scheduling framework. Final binary image is generated by connect-
ing different virtual nodes together with a global scheduler and using the middleware
to provide intra-communications among the virtual node executables.

3.1.3 Deployment and Synthesis Activities

Rather than deploying a whole system in one big step, the deployment of the ProCom
components on the physical platform is done in the following two steps:

• First the ProSys subsystems are deployed on an intermediate node called virtual
node. The allocation of ProSys subsystems to the virtual nodes is many-to-one
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relationship. The additional information that is added at this step is the resource
budgets (CPU time).

• The virtual nodes are then deployed on the physical nodes. The relationship
is again many-to-one, which means that more than one virtual node can be de-
ployed to one physical node.

This two-steps deployment process allows not only the detailed analysis in isolation
from the other components to be deployed on the same physical node, but once checked
for correctness, it also preserves its temporal properties for further reuse of this virtual
node as an independent component. Section 4 describes this further.

The PRIDE tool supports the automatic synthesis of the components at different
levels [8]. At the ProSave level, the XML descriptions of the components is the input
and the C files are generated containing the basic functionality. At the second level,
ProSys components are assigned to the tasks to generate ProSys runnables. Since the
tasks at this level are independent of the execution platform, therefore, the only at-
tribute assigned at this stage is the period for each task; which they get from the clock
frequency that is triggering the specific component. A clock defines the periodic trig-
gering of components with a specified frequency. Components are allocated to a task
when (i) the components are triggered by the same event, (ii) when the components
have precedence relation among them to be preserved. The synthesis of the runnable
virtual nodes and final executables is given in Section 4.2.

3.2 Hierarchical Scheduling Framework
A two-level Hierarchical Scheduling Framework (HSF) [14] is used to provide the
temporal isolation among a set of subsystems. In hierarchical scheduling, the CPU
time is partitioned among many subsystems (or servers), that are scheduled by a global
(system-level) scheduler. Each server contains its own internal set of tasks that are
scheduled by a local (subsystem-level) scheduler. Hence a two-level HSF can be
viewed as a tree with one parent node (global scheduler) and many leaf nodes (lo-
cal schedulers) as illustrated in Figure 2. The parent node is a global scheduler that
schedules subsystems. Each subsystem has its own local scheduler, that schedules the
tasks within the subsystem.

The HSF gives the potential to develop and analyze subsystems in isolation from
each other [25]. As each subsystem has its own local scheduler, after satisfying the
temporal constraints, the temporal properties are saved within each subsystem. Later,
a global scheduler is used to schedule all the subsystems together without violating
the temporal constraints that are already analyzed and stored in the subsystems. Ac-
cordingly we can say that the HSF provides partitioning of the CPU between different
servers. Thus, server-functionality can be isolated from each other for, e.g., fault con-
tainment, compositional verification, validation and certification, and unit testing.

Using HSF a subsystem (runnable virtual node in our case) can be developed and
analyzed in isolation, with its own local scheduler at first step of deployment and its
temporal properties are preserved. Then at the second step of deployment, multiple vir-
tual nodes (subsystems) are integrated onto a physical node using an arbitrary global
scheduler without violating the temporal properties of the individual subsystems ana-
lyzed in isolation.
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Figure 2: Two-level Hierarchical Scheduling Framework

3.3 FreeRTOS and its HSF Implementation
In this work we use FreeRTOS as the operating system to execute both levels of the
HSF. FreeRTOS is a portable open source real-time kernel with properties like small
and scalable, support for 23 different hardware architectures, and ease to extend and
maintain.

The official release of FreeRTOS only supports a single level fixed-priority schedul-
ing. However, a recent work has been presented that implements a two-level HSF
for FreeRTOS [20] with associated primitives for hard real-time sharing of resources
both within and between servers [21]. The HSF implementation supports two kinds of
servers, idling periodic [33] and deferrable servers [35]. The implementation uses fixed
priority preemptive scheduling (FPPS) for both global and local-level scheduling. For
local resource-sharing (within a server) the Stack Resource Policy (SRP) [6] is used,
and for global resource-sharing (between servers) the Hierarchical Stack Resource Pol-
icy (HSRP) protocol [12] is used with three different overrun mechanisms to deal with
the server budget expiration within the critical section [7]. The HSF supports reserva-
tions by associating a tuple < Q,P > to each server where P is the server period and
Q (0 < Q ≤ P ) is the allocated portion of P .

The FreeRTOS has been adopted as one of the supported operating systems of
ProCom. Given Q, P , and information on resource holding times, the schedulability of
a server and/or a whole system can be calculated with the methods presented in [21].
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4 Runnable Virtual Node
The concept of runnable virtual node is used to achieve not only temporal isolation and
predictable temporal properties of real-time components but also to get better reusabil-
ity of components with real-time properties. Further it reduces efforts related to system-
level testing, validation and certification. This concept is based on a two-level deploy-
ment process. It means that the whole system is generated in two steps rather than a
single big synthesis step. At the first level of deployment, the functional properties
(functionality of components) are combined and preserved with their extra-functional
properties (timing requirement) in the runnable virtual nodes. In this way it encapsu-
lates the behavior with respect to timing and resource usage, and becomes a reusable
component in addition to the design-time components. Followed by the second level
of deployment where these runnable virtual nodes are implemented on the physical
platform along with a global scheduler.

A runnable virtual node includes the executable representation of the components
assigned to the tasks, a resource allocation (period and budget of server), and a real-
time scheduler, to be executed within a server in the hierarchical scheduling framework.

4.1 Applying Virtual Node Concept to ProCom Component Model
In ProCom, a virtual node is an integrated model concept. It means that the virtual
nodes exist both on the modeling level and on the synthesis level as shown in Figure 1.
In the synthesis realm they are called runnable virtual nodes.

At the modeling level, each virtual node contains a set of integrated ProSys com-
ponents plus the execution resources (a period and budget) required for these ProSys
components. The priorities of virtual nodes cannot be assigned at the modelling level.
The priorities of a component are relative to other components in the system. Since
virtual nodes are developed independently and are meant to be reused in different sys-
tems, therefore, the priorities are assigned to virtual nodes later during the synthesis
process at the execution level.

At the execution level, the runnable virtual node contains a set of executable tasks,
resources required to run those tasks and a real-time local scheduler to schedule these
tasks. Note that the runnable virtual node is generated as a result of first deployment
step; it is platform independent and not executable as a stand-alone entity.

4.2 The Synthesis of the Final Executables
The final executables are generated by assigning priorities to the servers and tasks in
the runnable virtual nodes, completing the task bodies with the user code, synthesiz-
ing communication among those nodes (if needed) and linking them together with the
operating system. These executables then can be downloaded and executed on a phys-
ical node. As the real-time properties of runnable virtual nodes are preserved within
the servers, therefore when integrated with other runnable virtual nodes on a physical
node, the real-time properties of the whole integrated system will be guaranteed by the
schedulability analysis of the whole system.

The communication among runnable virtual nodes is provided by a System server,
which is automatically generated for inter-node communication (if needed), at this step.
The main functionality of the server is to send and receive messages among the nodes.
It contains two tasks to achieve this purpose: a sender task and a message-port updater
task. Additionally there can be a hardware-driver tasks in it, if needed. The system
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server has the highest priority of all the servers in the system, with a very small execu-
tion time and its only functionality is to copy the messages from the sender port of one
component to the receiver port of another component.

An idle server is also generated within the two-level hierarchical scheduling to test
the temporal isolation among the runnable virtual nodes. When there is no other server
in the system to execute, then the idle server will run. It has the lowest priority of all
the other servers, i.e. 0. It contains only an idle task to execute [20]. This is useful
for maintaining and testing the temporal separation among servers and also useful in
testing system behavior. This information is useful in detecting over-reservations of
server budgets and can be used as feedback to resource management.

5 Case Study: Cruise controller and an adaptive cruise
controller

The PROGRESS Integrated Development Environment (PRIDE) tool [28] supports de-
velopment of systems using ProCom component models and it has been used for devel-
oping the examples of cruise controller (CC) and an adaptive cruise controller (ACC).
The purpose of these fictitious examples is to evaluate and demonstrate the execution-
time properties and reusability of the run-time components with real-time properties.
First, the CC system is realized and exercised to test the temporal isolations among
run-time components. Its basic functionality is to keep the vehicle at a constant speed.
Then the ACC system extends this functionality by keeping a distance from the vehicle
in front by autonomously adapting its speed to the speed of the preceding vehicle and
by providing emergency brakes to avoid collisions. To evaluate the reusability of real-
time components, the ACC system is realized by the reuse of some runnable virtual
nodes from the CC system.

In the remainder of this section we describe the development of both applications
using the ProCom component model. The ProSave, ProSys, and virtual node compo-
nents are modelled for both examples. The presentation is followed by the synthesis
of executable binaries using a hierarchical scheduling technique and the evaluation of
final executables on the target platform.

5.1 System design
The CC system is designed from two ProSys components, Cruise Controller and Ve-
hicle Controller, which are modelled and deployed on two different virtual nodes. For
the ACC system, the Cruise Controller component is replaced with the Adaptive Cruise
Controller component as shown in Figure 3. These virtual nodes communicate with
each other through input and output message ports. The detailed design of these ProSys
components is in turn shown in Figures 4, 5, and 6.

The Cruise Controller component contains three elements as shown in Figure 4: an
HMI Input to set the mode to on or off, and detecting the speed or the manual braking
signal respectively, a Control Unit to compare the current speed with the desired speed
and to send the signals to throttle or brake output port accordingly, and an HMI Output
to communicate the status to the driver via the display. The Vehicle Controller compo-
nent contains seven elements as shown in Figure 5: two Calc Max Value components:
to choose the maximum (of throttle and input message port) speeds and maximum (of
brake pedal and input message port) brakes, and to provide these values to Engine Con-
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troller and Brake Controller components respectively. The Speedometer writes current
speed to the output port periodically.
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HMI OutputClock Clock
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Figure 4: The Cruise Controller (CC) component

To extend the functionality to the ACC system, the CC virtual node is replaced
by an ACC virtual node containing the same interface as that of CC component. The
ACC system reuses the Vehicle Controller component from the CC application. The
ACC component contains the following elements in addition to the Cruise Controller’s
elements: a Distance Sensor component to evaluate the distance to a vehicle/obstacle in
front of the vehicle, a SpeedLimiter component to compute the vehicle’s desired speed
relative to the vehicle/object ahead as shown in Figure 6.

The ProSys components are then mapped to the virtual node components. Each
virtual node is assigned a period and an execution budget to be executed in a local server
within a two-level hierarchical scheduling framework. For the CC system, the Cruise
Controller component is mapped to the Virtual Node1 and the Vehicle Controller
component is mapped to the Virtual Node2. In ACC system, the Adaptive Cruise
Controller component is mapped to the Virtual Node1 while Virtual Node2
is reused from the CC system. The periods and budgets for these virtual nodes are
assigned at the modelling level as shown in Figure 7.
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5.2 Synthesis
As described in Section 4.2, the PRIDE tool automatically synthesizes the code from
the ProCom models at different stages. It takes the models as input, and generates all
low-level platform independent code.

In the first step of the final synthesis/deployment process for the case study, two
runnable virtual nodes are produced for both CC and ACC systems: one runnable
virtual node for Virtual Node1 and one for Virtual Node2. These generated
nodes contain tasks definitions in them.

One task is synthesized for each clock. For CC example, two tasks are generated for
the CC component: CCT1 task including HMI Input and Control Unit; and CCT2 task
including HMI Output component. Three tasks are generated for the VC component:
VCT1 task including Throttle pedal, Calc Max Value, and Engine Controller; VCT2
task including Brake pedal, Calc Max Value, and Brake Controller; and VCT3 task
including the Speedometer.
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Figure 7: The timing properties of the virtual node

For ACC example, three tasks are generated for the ACC component: ACCT1 task
including Distance Sensor, ACCT2 task including HMI Input, Speed Limiter, and Con-
trol Unit; and ACCT3 task including HMI Output component.
Generating Final Binaries: In the second step of the final synthesis/deployment part,
the priorities are assigned to the runnable virtual nodes (also called servers now) and
to the tasks in them. Four servers are generated for both examples.

Server CC ACC VC SYSTEM
Priority 2 2 1 7
Period 40 40 60 20
Budget 10 10 15 4

Table 1: Servers used to test the CC and ACC systems behaviors.

A System server is generated to provide communication among the runnable vir-
tual nodes. It has the highest priority of all the other servers, i.e. 7 (there are 8 different
server priorities: from lowest priority 0 to the highest 7). Note that higher number
means higher priority for both servers and tasks. The System server contains two
tasks: a Sender and a Receiver task; whose functionality is to send and receive
the data shared among virtual nodes respectively.

An Idle server is generated in the system with the lowest priority of all the other
servers, i.e. 0, containing an idle task in it. All the other servers in the system have the
priority higher than 0. This server is useful to check the temporal separation among
servers.

The CC system contains two more servers in addition to System and Idle server:
a CC server and a VC server associated with CC and VC virtual nodes respectively.
The ACC system also contains four servers: an ACC server associated with the ACC
virtual nodes. It reuses the VC, System, and Idle servers from the CC system. The
priorities, periods and budgets for these servers are given in Table 1.

All the servers in both examples are idling periodic means that the tasks in the
server execute and use the server’s capacity until it is depleted. If server has the capac-
ity but there is no task ready then it simply idles away its budget until a task becomes
ready or the budget depletes. If a task arrives before the budget depletion, it will be
served. An idle task per server is also generated that has the lowest priority and runs
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when its server has budget remaining but none of its task are ready to execute. Task
properties and their assignments to the servers are given in Tables 2 and 3.

Tasks CCT1 CCT2 ACCT1 ACCT2 ACCT3 VCT1 VCT2 VCT3

Server CC CC ACC ACC ACC V C V C V C

Priority 2 1 2 2 1 1 1 2

Period 40 60 40 40 60 60 60 40

Table 2: Tasks in the two servers.

Tasks Sender Receiver

Server System System

Priority 2 2

Period 20 20

Table 3: Tasks in the System server.

Once all the platform dependent user code is finalized, all runnable virtual nodes
that are to be deployed on the same physical node are integrated with a real-time time
scheduler, the platform dependent final binaries are generated and downloaded on an
ECU. Currently the PRIDE tool is evolving and the automatic synthesis part is not fully
mature. Hence few parts of these experiments were synthesized manually, but it is not
relevant for our experiments and does not effect our results.

5.3 Evaluation and Discussion
We have performed the experimental evaluation of the case study on an AVR-based
32-bit EVK1100 board [15]. The AVR32UC3A0512 micro-controller runs at the fre-
quency of 12MHz and its tick interrupt handler at 1ms(milli seconds). The FreeRTOS
operating system with its HSF implementation is used on the micro-controller using
idling periodic servers and FPPS scheduling policy at both levels. Its tick-handler runs
at the rate of 1ms.

Our evaluation focuses mainly to evaluate the timing properties of the real-time
components during their integration and the reuse of the components in different sys-
tems. We tested the real-time components for: (i) temporal isolation among the com-
ponents that leads to (ii) the predictable integration and (iii) increased reusability of the
components. The experiments are described below and the results are presented in the
form of visualization of servers executions in Figures 8, 9 and 10.

5.3.1 Testing temporal isolation and predictable integration

To test the temporal isolation among runnable virtual nodes and their predictable in-
tegrations, the CC system is synthesized with the previously described four servers
and task sets belonging to those servers. The final binaries are executed on the micro-
controller and the traces of executions are visualized. The servers executions (accord-
ing to their resource reservations) along with their task sets are presented in Figure 8
and Figure 9.

In these Figures, the horizontal axis represents the execution time starting from 0.
In the task’s visualization, the arrow represents task arrival and a gray rectangle means
task execution. In the server’s visualization, the numbers along the vertical axis are
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Figure 8: The trace for servers in the CC system during normal load

the server’s capacity, the diagonal line represents the server execution while the hori-
zontal line represents either the waiting time for the next activation (when budget has
depleted) or the waiting for its turn to execute (when some other server is executing).
Since these are idling periodic servers, all the servers in the system executes till budget
depletion, if no task is ready then the idle task of that server executes till its budget
depletion.

Figure 8 demonstrates the system execution under the normal load situation. The
system’s behavior is also tested during the overload situation to test the temporal iso-
lation among the runnable virtual nodes. For example, if one server (runnable virtual
node) is overloaded and its tasks miss deadlines, it should not affect the behavior of
other servers in the system.

The same example is executed to perform this test but with the increased utilization
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Figure 9: Trace showing temporal isolation during overload situation

of the CC server as shown in Figure 9. The execution times of tasks CCT1 and CCT2
are increased by adding the busy loops, hence making the CC server’s utilization greater
than 1. Therefore the low priority task CCT2 misses its deadlines at time 54. CCT2
is preempted at time 14 because of the CC server’s budget expiration, and starts it’s
execution again when next time the server is replenished. Further, the CC is never
idling because it is overloaded (Idle task of CC server is not executed in Figure 9).

The overload of CC server does not effect the behavior of any other server in the
system as obvious from Figure 9. The VC server has a lower priority than the CC,
but still it receives its allocated resources and its tasks meet their deadlines. In this
manner, the runnable virtual nodes exhibit a predictable timing behaviour that eases
their integration. It also manifests that the temporal errors are contained within the
faulty runnable virtual node only and their effects are not propagated to the other nodes
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in the system.

5.3.2 Testing component’s reusability

The purpose of this experiment is to test the reusability of the runnable virtual nodes
in a new system. The ACC system is synthesized for this purpose. It also contains four
servers: the ACC server is synthesized with its task set while the other three servers
are reused from the CC system. The trace of execution is visualized and presented in
Figure 10.

Figure 10: Trace showing reusability of runnable virtual nodes in ACC system

Since the runnable virtual nodes preserve their timing properties within them; there-
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fore, their behaviour should not be changed when integrated into a new system, as long
as their reserved resources are provided.

The task set for the ACC server is different from that of CC server. It is clear
from the Figure 10 that all the three reused servers sustain their timing behaviour.
For example, the VC server has a lower priority than ACC, still it’s behaviour is not
effected at all and remains similar to its behaviour in the CC system. It confirms the
predictable integration of real-time components on one hand, and demonstrates their
reusability on the other hand. We observed the same results on testing the ACC server
with the changed timing properties, i.e. period 40 and budget 15. As long as the
allocated budgets to servers (at the modeling level) are provided, the timing properties
are guaranteed at the execution.

Hence, by the use of runnable virtual node components and two-level deployment
process, the timing requirements are also encapsulated within the components along
with their function requirements and the temporal partitioning is provided among the
components (using HSF), that results in the increased predictability during compo-
nent’s integration and making the runnable virtual nodes a reusable entity.

6 Conclusions
We present the concept of runnable virtual nodes as a means to achieve predictable
integration and reuse of software components using a two-level deployment process
in cyber-physical systems. The virtual node is intended as a coarse-grained compo-
nent for single node deployment and with potential internal multitasking. Each phys-
ical node is used to execute one or more virtual nodes. The idea is to encapsulate
real-time properties into model-driven reusable components-based systems to achieve
predictable integration and reusability of virtual nodes, thereby facilitating the devel-
opment of complex CPS.

The notion of two-level deployment process encapsulates the timing properties and
uses the hierarchical scheduling within runnable virtual nodes that provides tempo-
ral isolation and increases the reuse of the nodes in different systems. Hence using
runnable virtual nodes, a complex CPS can be developed as a set of well defined
reusable components encapsulating functional and timing properties.

A proof-of-concept case study is presented which demonstrates temporal error con-
tainment within a virtual node as well as reuse of a virtual node in new environment
without altering its temporal behavior. Our work is based on the ProCom component-
technology [31] running on FreeRTOS which has been extended with a hierarchical
scheduling framework. The case study was executed on an ECU with an AVR based
32-bit micro-controller. However, we believe that our concept is applicable also to
commercial component technologies like AADL, AUTOSAR, Rubus [19].

For future work, we plan to support virtual communication-busses using server-
based scheduling techniques for e.g. CAN [24] and Ethernet [30]. This will allow
development, integration and reuse of distributed components using a set of virtual
nodes and buses.
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