
Mälardalen University Press Licentiate Theses
No. 146

MODELING AND TIMING ANALYSIS OF INDUSTRIAL COMPONENT-
BASED DISTRIBUTED REAL-TIME EMBEDDED SYSTEMS

Saad Mubeen

2012

School of Innovation, Design and Engineering



Copyright © Saad Mubeen, 2012
ISBN 978-91-7485-055-0
ISSN 1651-9256
Printed by Mälardalen University, Västerås, Sweden



Abstract

The model- and component-based development approach has emerged as an at-

tractive option for the development of Distributed Real-time Embedded (DRE)

systems. Within this context we target issues related to modeling of legacy

communication, extraction of end-to-end timing models and support for holis-

tic response-time analysis of industrial DRE control systems.

We introduce a new approach for modeling legacy network communica-

tion in component-based DRE systems. By introducing special-purpose com-

ponents to encapsulate and abstract the communication protocols in DRE sys-

tems, we allow the use of legacy nodes and legacy protocols in a component-

and model-based software engineering environment. The proposed approach

also supports the state-of-the-practice development of component-based DRE

systems. Because an end-to-end timing model should be available to perform

the holistic response-time analysis, we present a method to extract the end-to-

end timing models from component-based DRE systems.

The Controller Area Network (CAN) is one of the widely used real-time

networks in DRE systems especially in automotive domain. We identify that

the existing analysis of CAN does not support common message transmission

patterns which are implemented by some high-level protocols used in the in-

dustry. Consequently, we extend the existing analysis to facilitate the worst-

case response-time calculation of these transmission patterns. The extended

analysis is generally applicable to any high-level protocol for CAN that uses

periodic, sporadic, and both periodic and sporadic transmission of messages.

In order to show the applicability of our modeling techniques and extended

analysis, we provide a proof of concept by extending the existing industrial

component model (Rubus Component Model), implementing the holistic re-

sponse-time analysis along with the extended analysis of CAN in the industrial

tool suite (Rubus-ICE), and conducting an automotive-application case study.

i





To my mother





Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisors

Professor Mikael Sjödin and Dr. Jukka Mäki-Turja. The work presented in

this thesis would not have been possible without their expert guidance, persis-

tent help and tremendous encouragement. I am grateful to them for providing

valuable and useful suggestions for improvement of this thesis. I had a great

opportunity of learning so many new things from them during our meetings

and discussions.

Many thanks to the people from industry who were involved in the work

presented in this thesis. Thank you Kurt-Lennart Lundbäck, John Lundbäck,

Staffan Sandberg and Jimmy Westerlund.

I would like to thank Dr. Jan Carlson for co-authoring a paper and provid-

ing me useful feedback on my thesis proposal. I also thank Farhang Nemati for

providing me useful tips on the structure of my thesis.

I attended several courses during my Licentiate studies. I thank Hans Hans-

son, Thomas Nolte, Emma Nehrenheim, Mikael Sjödin, Jukka Mäki-Turja,

Ivica Crnkovic, Jan Torin, Sasikumar Punnekkat, and Kristina Lundqvist for

their guidance during my studies. I want to also thank other faculty members

Paul Pettersson, Jan Gustafsson, Björn Lisper, Mats Björkman, Jan Carlson,

Damir Isovic, Dag Nyström, Cristina Seceleanu, Gordana Dodig-Crnkovic,

Mikael Ekström, Andreas Ermedahl. You all have been a source of inspira-

tion for me.

I would also like to thank my friends and colleagues at the department

for all the fun we had during my studies, conference trips, coffee breaks and

parties. I wish to thank Abhilash, Adam, Adnan, Aida, Amine,Ana, Andreas

G., Andreas H., Andreas J., Aneta, Antonio, Barbara, Batu, Bob (Stefan), Da-

nial, Eduard, Etienne, Farhang, Federico, Frank, Giacomo, Hang, Huseyin,

Jagadish, Johan, Josip, Juraj, Jörgen, Lars, Leo, Luis (Yue), Luka, Mehrdad,

Mikael Å, Mobyen, Moris, Nikola, Nima, Ning, Radu, Rafia, Raluca, Sara D.,

v



vi

Severine, Shahina, Stefan B., Svetlana, Thomas L., Tibi, and others for all the

fun and memories.

I also thank all the administrative staff, in particular Gunnar Widforss, Ma-

lin Rosqvist, Åsa Lundkvist, Carola Ryttersson, Sussane Fronnå for making

many things easier.

Last but not least, I would like to thank my family. I thank my parents

for their endless love, support and encouragement throughout my life. I am

thankful to my wife for her care, support and cooperation.

This work has been supported by the Swedish Knowledge Foundation (KKS)

within the project EEMDEF and the Swedish Foundation for Strategic Re-

search (SSF) with the centre PROGRESS. I would like to thank the industrial

partners Arcticus Systems and BAE Systems Hägglunds.

Saad Mubeen

Västerås, January, 2012



List of Publications

Papers Included in the Licentiate Thesis1

Paper A Analyzable Modeling of Legacy Communication in Component Based

Distributed Embedded Systems. Saad Mubeen, Jukka Mäki-Turja, Mikael

Sjödin and Jan Carlson. In proceedings of the 37th Euromicro Con-

ference on Software Engineering and Advanced Applications (SEAA),

pages 229-238, Oulu, Finland, September, 2011.

Paper B Extraction of End-to-end Timing Model from Component- Based Dis-

tributed Real-Time Embedded Systems. Saad Mubeen, Jukka Mäki-Turja

and Mikael Sjödin. In proceedings of the International Workshop on

Time Analysis and Model-Based Design, from Functional Models to

Distributed Deployments (TiMoBD) located at Embedded Systems Week,

Taipei, Taiwan, October, 2011.

Paper C Extending Schedulability Analysis of Controller Area Network (CAN)

for Mixed (Periodic/Sporadic) Messages. Saad Mubeen, Jukka Mäki-

Turja and Mikael Sjödin. In proceedings of the 16th IEEE Conference

on Emerging Technologies and Factory Automation (ETFA), pages 1-10,

Toulouse, France, September, 2011.

Paper D Support for Holistic Response-time Analysis in an Industrial Tool

Suite: Implementation Issues, Experiences and a Case Study. Saad

Mubeen, Jukka Mäki-Turja and Mikael Sjödin. Accepted for publication

in proceedings of the 19th IEEE Conference on Engineering of Com-

puter Based Systems (ECBS), Novi Sad, Serbia, April, 2012.

1The included articles have been reformatted to comply with the licentiate layout

vii



viii

Additional Papers, Not Included in the Licentiate

Thesis

Journals

• Introducing Components for Modeling Real-Time Network Communica-

tion in the Rubus Component Model. Saad Mubeen, Jukka Mäki-Turja

and Mikael Sjödin. Accepted for publication in the Information Journal,

International Information Institute, March, 2012.

• Tracing Event Chains for Holistic Response-Time Analysis of Compo-

nent Based Distributed Real-Time Systems. Saad Mubeen, Jukka Mäki-

Turja and Mikael Sjödin. In the ACM SIGBED Review, vol. 8, issue 3,

pages 48-51, ACM, September, 2011.

Conferences

• Response-Time Analysis of Mixed Messages in Controller Area Network

with Priority- and FIFO-Queued Nodes. Saad Mubeen, Jukka Mäki-

Turja and Mikael Sjödin. In submission.

• Towards Modeling and Holistic Timing Analysis of Industrial Compo-

nent Based DRE Systems. Saad Mubeen, Jukka Mäki-Turja and Mikael

Sjödin. Accepted for publication in proceedings of the 19th IEEE Con-

ference on Engineering of Computer Based Systems (ECBS), Novi Sad,

Serbia, April, 2012.

• Implementation of Holistic Response-Time Analysis in Rubus-ICE: Pre-

liminary Findings, Issues and Experiences. Saad Mubeen, Jukka Mäki-

Turja and Mikael Sjödin. In proceedings of the 32nd IEEE Real-Time

Systems Symposium (RTSS), WIP, pages 9-12, Vienna, Austria, Decem-

ber, 2011.

• Extending Response-Time Analysis of Controller Area Network (CAN)

with FIFO Queues for Mixed Messages. Saad Mubeen, Jukka Mäki-

Turja and Mikael Sjödin. In proceedings of the 16th IEEE Conference

on Emerging Technologies and Factory Automation (ETFA), pages 1-4,

Toulouse, France, September, 2011.



ix

• Exploring Options for Modeling of Real-Time Network Communication

in an Industrial Component Model for Distributed Embedded Systems.

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin. In the Lecture

Notes in Electrical Engineering (LNEE), Vol. 102, Springer, pages 441-

458, August, 2011.

• Designing Efficient Source Routing for Mesh Topology Network on Chip

Platforms. Saad Mubeen and Shashi Kumar. In proceedings of the 13th

Euromicro Conference on Digital System Design, Architectures, Meth-

ods and Tools (DSD), pages 181-188, Lille, France, September, 2010.

• High Precision Response Time Analysis of Tasks with Precedence Chains.

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin. In proceedings of

the 22nd Euromicro Conference on Real-Time Systems (ECRTS), WIP,

pages 21-24, Brussels, Belgium, July, 2010.

Workshop

• Modeling of Legacy Communication in Distributed Embedded Systems.

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin. In proceedings

of the 2nd Workshop on Model Based Engineering for Embedded Sys-

tems Design (M-BED), located at Design, Automation & Test in Europe

(DATE) Conference, pages 1-6, Grenoble, France, March, 2011.

MRTC reports

• Implementation of Holistic Response-time Analysis in Rubus-ICE. Saad

Mubeen, Jukka Mäki-Turja and Mikael Sjödin. Technical Report ISSN

1404-3041 ISRN MDH-MRTC-258/2012-1-SE, Mälardalen University,

Sweden, January, 2012.

• Response-Time Analysis of Mixed-Type Controller Area Network (CAN)

Messages. Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin. Techni-

cal Report ISSN 1404-3041 ISRN MDH-MRTC-259/2012-1-SE, Mälar-

dalen University, Sweden, January, 2012.





Contents

I Thesis 1

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Statement and Research Questions . . . . . . . . . . 6

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Technical Contributions 9

2.1 Modeling of Legacy Network Communication in Component-

based DRE Systems . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Extraction of End-to-end Timing Models . . . . . . . . . . . . 10

2.3 Extension of the Existing Analysis for Controller Area Network 11

2.4 Proof-of-Concept Implementation . . . . . . . . . . . . . . . 11

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Impact of Contributions . . . . . . . . . . . . . . . . . . . . . 13

3 Conclusions 15

3.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . 15

3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography 19

II Included Papers 23

4 Paper A:

Analyzable Modeling of Legacy Communication in Component-

Based Distributed Embedded Systems 25

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



xii Contents

4.1.1 Goals and Paper Contributions . . . . . . . . . . . . . 28

4.1.2 Paper Layout . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Background – The Rubus Concept . . . . . . . . . . . . . . . 29

4.2.1 The Rubus Component Model . . . . . . . . . . . . . 30

4.2.2 The Rubus Code Generator and Run-Time System . . 30

4.2.3 The Rubus Analysis Framework . . . . . . . . . . . . 31

4.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 AUTOSAR . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 TIMMO . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.3 ProCom . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.4 COMDES-II . . . . . . . . . . . . . . . . . . . . . . 34

4.3.5 Real-Time CORBA . . . . . . . . . . . . . . . . . . . 35

4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Support for Modeling of Legacy Communication . . . . . . . 35

4.4.1 Network Specification (NS) . . . . . . . . . . . . . . 36

4.4.2 Output Software Circuit (OSWC) . . . . . . . . . . . 37

4.4.3 Input Software Circuit (ISWC) . . . . . . . . . . . . . 38

4.4.4 Automatic Generation of OSWC and ISWC . . . . . . 40

4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Implementation of End-to-End Timing Analysis in Rubus-ICE 41

4.5.1 System Model for End-to-end Timing Analysis . . . . 41

4.5.2 Extraction of End-to-End Timing Model . . . . . . . . 43

4.5.3 Support for End-to-End Timing Analysis . . . . . . . 45

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Paper B:

Extraction of End-to-end Timing Model from Component- Based

Distributed Real-Time Embedded Systems 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Goals and Paper Contribution . . . . . . . . . . . . . 55

5.1.2 Paper Layout . . . . . . . . . . . . . . . . . . . . . . 55

5.2 The Rubus Concept . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 The Rubus Component Model (RCM) . . . . . . . . . 56

5.2.2 The Rubus Code Generator and Run-Time System . . 56

5.2.3 The Rubus Analysis Framework . . . . . . . . . . . . 57

5.2.4 The Rubus Simulation Model . . . . . . . . . . . . . 57

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 End-to-end Timing Model . . . . . . . . . . . . . . . . . . . 59



Contents xiii

5.4.1 System Timing Model . . . . . . . . . . . . . . . . . 59

5.4.2 System Tracing Model . . . . . . . . . . . . . . . . . 61

5.4.3 Problem: Tracing of Event Chains . . . . . . . . . . . 61

5.5 Extraction of End-to-end Timing Model . . . . . . . . . . . . 63

5.5.1 Proposed Solution . . . . . . . . . . . . . . . . . . . 64

5.5.2 Example DRE System Modeled with RCM . . . . . . 65

5.5.3 Extraction of End-to-end Timing Model in Rubus-ICE 67

5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 68

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Paper C:

Extending Schedulability Analysis of Controller Area Network (CAN)

for Mixed (Periodic/Sporadic) Messages 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Transmission Patterns of a CAN Message . . . . . . . . . . . 77

6.3.1 Periodic and Event Transmissions . . . . . . . . . . . 78

6.3.2 Mixed (Periodic/Event) Transmission . . . . . . . . . 78

6.4 Network Scheduling Model . . . . . . . . . . . . . . . . . . . 81

6.5 Extending CAN Schedulability Analysis . . . . . . . . . . . . 82

6.5.1 Existing Analysis . . . . . . . . . . . . . . . . . . . . 82

6.5.2 Extended Analysis . . . . . . . . . . . . . . . . . . . 85

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Paper D:

Support for Holistic Response-time Analysis in an Industrial Tool

Suite: Implementation Issues, Experiences and a Case Study 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Goals and Paper Contributions . . . . . . . . . . . . . 103

7.1.2 Paper Layout . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Background and Related Work . . . . . . . . . . . . . . . . . 104

7.2.1 The Rubus Concept . . . . . . . . . . . . . . . . . . . 104

7.2.2 Plug-in Framework in Rubus-ICE . . . . . . . . . . . 105

7.2.3 Response-Time Analysis . . . . . . . . . . . . . . . . 105

7.2.4 Tools for Timing Analysis of DRE Systems . . . . . . 107

7.3 Implemented Analysis in Rubus-ICE . . . . . . . . . . . . . . 108

7.3.1 Node Analysis . . . . . . . . . . . . . . . . . . . . . 108

7.3.2 Network Analysis . . . . . . . . . . . . . . . . . . . . 108



xiv Contents

7.3.3 Holistic Analysis . . . . . . . . . . . . . . . . . . . . 109

7.4 Implementation Issues and Experiences . . . . . . . . . . . . 109

7.4.1 Extraction of Unambiguous Timing Information . . . 110

7.4.2 Extraction of Tracing Information from Distributed

Transactions . . . . . . . . . . . . . . . . . . . . . . 111

7.4.3 Impact of Design Decisions in Component Model on

the Implementation of Analysis . . . . . . . . . . . . 113

7.4.4 Direct Cycles in Distributed Transactions . . . . . . . 113

7.4.5 Analysis of DRE Systems with Multiple Networks . . 114

7.4.6 Sequential Execution of Plug-ins in Rubus Plug-in

Framework . . . . . . . . . . . . . . . . . . . . . . . 115

7.4.7 Presentation of Analysis Results . . . . . . . . . . . . 116

7.4.8 Interaction between the User and HRTA Plug-in . . . . 117

7.4.9 Suggestions to Improve Schedulability Based on Anal-

ysis Results . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.10 Requirement for Continuous Collaboration between In-

tegrator and Implementer . . . . . . . . . . . . . . . . 117

7.5 Testing and Evaluation . . . . . . . . . . . . . . . . . . . . . 118

7.5.1 Standalone Testing . . . . . . . . . . . . . . . . . . . 118

7.5.2 Integration Testing . . . . . . . . . . . . . . . . . . . 119

7.6 Automotive Case Study . . . . . . . . . . . . . . . . . . . . . 119

7.6.1 Autonomous Cruise Control System . . . . . . . . . . 120

7.6.2 Modeling of ACC System with RCM in Rubus-ICE . . 122

7.6.3 Modeling of Deadline Requirements . . . . . . . . . . 125

7.6.4 HRTA of ACC System using HRTA Plug-in . . . . . . 126

7.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . 126

7.8 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



I

Thesis

1





Chapter 1

Introduction

In this thesis we introduce a new approach for modeling legacy network com-

munication in component-based Distributed Real-time Embedded (DRE) sys-

tems. By introducing special-purpose components to encapsulate and abstract

the communication protocols in DRE systems, we allow the use of legacy

nodes and legacy protocols in a component- and model-based software en-

gineering environment. The proposed approach also supports the state-of-the-

practice development of component-based DRE systems. Because an end-to-

end timing model should be available to perform the holistic response-time

analysis, we also provide a method to extract such models from component-

based DRE systems.

1.1 Background

An embedded system is a microprocessor-based system that is designed to per-

form a dedicated functionality by means of hardware and software [1]. Often,

embedded systems interact with their environment through sensors and actu-

ators. They mostly remain hidden in their applications, for example, an em-

bedded system in a vending machine, because they are embedded inside the

larger system which they control or which they are part of. They are found

in almost all electronic items ranging from simple consumer products such as

microwave oven and coffee machine to highly sophisticated systems such as

industrial process controllers and smart phones. Their applications span over

many domains such as automotive, aerospace, consumer electronics, biomedi-

3



4 Chapter 1. Introduction

cal, military, business, industrial control, and many more.

It is estimated that about 10 billion processors are manufactured every year.

Out of which, approximately 99% are embedded processors while only 1%

find their way to the general-purpose computers such as PCs and laptops [1,

2]. Not only the number of embedded processors has increased in the past

few years, but also the software which runs on them. The embedded software

has drastically increased in size and complexity. In automotive domain, for

example, a modern premium car contains nearly 100 million lines of code that

run on about 70 to 100 embedded processors [3]. Another example of the

complexity and large size of embedded software can be seen in the software

for radio and navigation system in a modern premium car such as Mercedes

Benz S-Class that alone contains 20 million lines of code [3]. Because of this

trend of continuously increasing size and complexity of embedded software,

the development of embedded systems has become very complex.

Often, an embedded system needs to interact with its environment in a

timely manner, i.e., the embedded system is a real-time system. For such a

system, the desired and correct output is one which is logically correct as well

as delivered within a specified time (e.g., a deadline). One way to classify

a real-time system is as being either soft or hard. In soft real-time systems,

infrequent deadline misses can be tolerated. For example, electronic window

control system in a car is a soft real-time system. On the other hand, missing

a deadline in a hard real-time system can result in the system failure. In hard

real-time systems, a logically correct but late response is considered as bad as

logically incorrect response. The electronic engine control system in a car is

an example of a hard real-time system. Many hard real-time systems are also

safety critical which means that the system failure can result in catastrophic

consequences such as endangering human life or the environment. For exam-

ple, airbag control system in a car is a safety-critical hard real-time system.

In order to capture, e.g., requirements early during the development, han-

dle the complexity of embedded software, lower the development cost, reduce

the time-to-market and time-to-test, allow reusability, and support modeling

at higher level of abstraction, the research community proposed model- and

component-based development of embedded systems by employing the prin-

ciples of Model-Based software Engineering (MBE) and Component-Based

Software Engineering (CBSE) [4, 5]. MBE provides the means to use mod-

els throughout the process of system development. It uses models to describe

functions, structures and other design artifacts. Whereas, CBSE facilitates the

development of large software systems by integration of software components.

CBSE raises the level of abstraction for software development and aims to



1.1 Background 5

reuse software components and their architectures. There is a great interest

for bringing these development techniques in the embedded systems industry

[5, 6].

In DRE systems, the functionality is distributed over many nodes (proces-

sors). The nodes in a DRE system are connected to one or more networks.

The software development of DRE systems is much more complex compared

to uniprocessor embedded real-time systems because of various reasons in-

cluding the distribution of functionality and real-time requirements on network

communications. The example of a modern premium car, that we discussed

above, provides a good example of an application of DRE systems. The size

of embedded software in a modern premium car may reach up to 1 GB which

may be realized by more than 2000 software functions distributed over 70 to

100 Electronic Control Units (ECUs) that may be connected by more than five

different buses (or networks) [7].

When MBE and CBSE are used for the development of DRE systems, mod-

eling of communication infrastructure arises as a challenge. In the industry,

DRE systems are built often using legacy (sub) systems (i.e., previously de-

veloped) which use predefined rules for communication. Furthermore, DRE

systems are often expected to use legacy network protocols for real-time com-

munication. A component technology for the development of DRE systems

should abstract the application software from the communication infrastruc-

ture. Moreover, the component technology should support the modeling and

analysis of legacy communications and legacy systems.

The safety-critical nature of many DRE systems requires evidence that the

actions by the system will be provided in a timely manner, i.e., each action

will be taken at a time that is appropriate to the environment of the system.

Therefore, it is important to make accurate predictions of the timing behavior

of such systems. In order to provide evidence that each action in the system will

meet its deadline, a priori analysis techniques such as schedulability analysis

have been developed by the research community. The Holistic Response-Time

Analysis (HRTA) [8] is a schedulability analysis technique which calculates

upper bounds on the response times of event chains that are distributed over

more than one node in a DRE system. The end-to-end timing model of a DRE

system should be available to perform HRTA. Ideally, a component technology

for the development of DRE systems should support automatic extraction of

such timing model.

There are a number of real-time network protocols used in DRE systems.

Among them, Controller Area Network (CAN) [9] is one of the most frequently

used especially in automotive domain. It has been standardized by the Inter-



6 Chapter 1. Introduction

national Organization for Standardization as ISO 11898-1 [10]. According

to CAN in Automation (CiA) [11], the number of CAN enabled controllers

sold in 2011 are estimated to be 850 million. In total, more than two billion

CAN controllers have been sold until today. Out of this huge number, approx-

imately 80% CAN controllers have been used in automotive domain. CAN is

a multi-master, event-triggered, serial communication bus protocol supporting

bus speeds of up to 1 mega bits per second. In this thesis, we will focus only

on CAN and some of its high-level protocols which are developed for various

industrial applications. These include CAN Application Layer (CAL) [12],

CANopen [13], Hägglunds Controller Area Network (HCAN) [14], CAN for

Military Land Systems domain (MilCAN) [15], etc.

1.2 Problem Statement and Research Questions

The model- and component-based development has emerged as an attractive

option for the development of software for DRE systems. The majority of exist-

ing model- and component-based development approaches allow for structural

and functional modeling. They do not support execution modeling which is

concerned with the modeling of run-time properties and/or requirements (e.g.,

end-to-end deadlines, jitter, etc.) of software functions. The modeling of DRE

systems should extend down to the execution level to allow precise control of

resource utilization and that timing requirements are not violated when the sys-

tem is executed. However, providing such modeling support for DRE systems

is very challenging because the functionality in DRE systems can be realized

with more than one execution model, e.g., separate execution models for the

nodes and networks. Today, one of the main focus points during the develop-

ment of DRE systems in the industry is to model and express timing related

information and perform timing analysis [16].

One way to deal with these challenges is to use a component technology

that allows model- and component-based development of DRE systems with

the support for modeling, analyzing, predicting and modifying the execution

behavior. Such a component technology should complement structural and

functional modeling with the modeling of execution requirements at an ab-

straction level close to the functional specification while abstracting the imple-

mentation details. The component technology should allow the expression of

timing related information during the development. Moreover, it should facil-

itate the identification of timing errors early during the development by easily

rendering the modeled DRE applications for end-to-end timing analysis.



1.2 Problem Statement and Research Questions 7

However, building such a component technology to support the state-of-

the-practice development of DRE systems raises many challenges. One of the

main reasons behind these challenges is that the development process of DRE

systems in academia and industry may be very different from each other. In

academia, the development process often starts with discussions about models

and functions. The models are assumed to be platform independent. Further,

it is assumed that the models and functions will be deployed on specific plat-

forms at a later stage. However, this way of development for DRE systems is

often not practiced in the industry, especially in automotive or vehicle domain.

The traditional process for the development of DRE systems in the industry

starts with designing the bus (or network) communication. The infrastructure

for the DRE system to be developed is already known. In the early stage of in-

dustrial development process of DRE systems, usually the focus is on finding

the answers to the questions as follows. How many busses will be there in the

system? Which nodes will be connected to which bus? How many messages

will be there in the system? Which messages will be sent by each node? After

finding the answers to these questions, the focus is shifted towards the devel-

opment of functions. Thus, a communication-oriented development process is

used for DRE systems and constitutes the state of the practice.

In order to provide a model- and component-based approach to support

the state-of-the-practice development of DRE systems, we will target the chal-

lenges concerned with the modeling of real-time network communication and

support for holistic timing analysis. One such challenge is to support the mod-

eling of legacy network communication and allow the use of legacy nodes in

component-based DRE systems. In order to ensure that the DRE system will

behave in a timely manner during its execution, we need to analyze tasks,

messages and event chains in distributed transactions and predict the end-

to-end delays. The component technology for the industrial development of

DRE systems should support state-of-the-art real-time analysis such as Holis-

tic Response-Time Analysis (HRTA). The supported HRTA should be able to

incorporate the analysis of common message transmission patterns that are im-

plemented by the real-time network protocols used in the industry. In order to

perform HRTA, the end-to-end timing model of DRE systems should be avail-

able. The extraction of end-to-end timing model from component-based DRE

systems is another challenge that we will target.



8 Chapter 1. Introduction

The research problem addressed in this thesis can be formulated as follows.

Investigate how to provide a model- and component-based ap-

proach for communications-oriented development of DRE systems

with a support for legacy communication protocols, legacy nodes

and holistic response-time analysis.

We further refine this problem to formulate two questions that we will in-

vestigate in this thesis.

1. How to model legacy network communication and allow the use of legacy

nodes for the state-of-the-practice development processes for component-

based DRE systems?

2. How to extract end-to-end timing models from component-based DRE

systems that are built using the state-of-the-practice development pro-

cesses?

1.3 Thesis Outline

The thesis is organized into two parts:

Part I includes first three chapters. In Chapter 1 we provided an introduction

to the thesis and formulated the research problem. In Chapter 2 we discuss the

contributions in the thesis. Chapter 3 presents the conclusion and suggestions

for the future work.

Part II presents the technical contributions of the thesis in the form of four

papers which are organized in Chapters 4-7.



Chapter 2

Technical Contributions

This thesis presents the development and implementation of new modeling and

timing analysis techniques which can be used for the state-of-the-practice de-

velopment of component-based DRE systems. The contributions in this thesis

are organized in four parts. In the first part, we introduce a new technique for

modeling legacy network communication in DRE systems. The detailed con-

tribution in this part is discussed in Paper A (Chapter 4). In the second part,

we present a method to extract the end-to-end timing models from component-

based DRE systems. The detailed contribution in this part is discussed in Paper

B (Chapter 5). In the third part, we identify a need for the extension of exist-

ing response-time analysis of CAN, and accordingly, we present the extended

analysis. The detailed contribution in this part is discussed in Paper C (Chapter

6). Finally, in the fourth part, we provide a proof-of-concept implementation of

the techniques developed in previous three parts. The detailed contribution in

the fourth part is discussed in Paper D (Chapter 7). In this chapter we provide

a summary of these contributions.

Personal Contribution. The research work presented in these contributions

was done in collaboration with my supervisors Prof. Mikael Sjödin and Dr.

Jukka Mäki-Turja along with Dr. Jan Carlson (only Paper A). I am the main

contributor and first author of all the papers.

9



10 Chapter 2. Technical Contributions

2.1 Modeling of Legacy Network Communication

in Component-based DRE Systems

This contribution addresses first research question. We introduce a new ap-

proach for modeling real-time network and legacy communication in compo-

nent-based DRE systems. In order to show usability of our modeling approach,

we implement it by extending the existing industrial component model, i.e.,

Rubus Component Model (RCM) [17]. By introducing special-purpose com-

ponents to encapsulate and abstract the communication protocols in DRE sys-

tems, we allow the use of legacy nodes and legacy protocols in a component-

and model-based software engineering environment. With the addition of these

components, RCM will be able to not only model real-time network communi-

cation, but also support state-of-the-practice development of component-based

DRE systems. The proposed extension also allows model- and component-

based development of new nodes that are deployed in legacy systems that use

predefined communication rules. These extensions also enable adaptation of a

node when communication rules change (e.g., due to re-deployment in a new

system or due to upgrades in the communication system) without affecting

its internal component design. The special-purpose components can be au-

tomatically generated from the information about legacy communication or

from early design decisions about network communication. Although RCM

was selected for the proof-of-concept implementation, the proposed extensions

should be generally applicable for the extension of several component models

for the development of DRE systems that use the pipe-and-filter style for com-

ponent interconnection such as ProCom [18] and COMDES-II [19].

2.2 Extraction of End-to-end Timing Models

This contribution addresses second research question. HRTA is an important

activity during the development of DRE systems. In order to perform HRTA of

component-based DRE systems, the end-to-end timing models should be ex-

tracted from them. The extraction of such models can be challenging because

the design and analysis models are usually built using different meta-models.

We present a method to extract the end-to-end timing models from component-

based DRE systems to facilitate HRTA. This method is built upon the modeling

approach that we discussed in the first contribution (Paper A). We discuss and

solve the issues concerning the model extraction such as extraction of unam-

biguous timing and tracing information from all nodes and networks in the



2.3 Extension of the Existing Analysis for Controller Area Network

11

system and tracing of event chains in distributed transactions. The extraction

method for end-to-end timing models and the solutions of encountered prob-

lems may be applied to several component models that use a pipe-and-filter

style for component interconnection. The end-to-end timing model that we

considered is also general as it incorporates the analysis of several real-time

network protocols used in the automotive domain. To show the applicability of

our approach, we demonstrate the implementation of end-to-end timing model

extraction in the analysis framework of the existing industrial tool suite Rubus-

ICE [20].

2.3 Extension of the Existing Analysis for Con-

troller Area Network

To analyze communications in DRE systems, it is important to find out whether

the existing analysis is sufficient or extensions are required to meet the indus-

trial needs. In this work, we focus only on CAN and some of its high-level pro-

tocols. While answering the two research question (discussed in Chapter 1), we

identified that the existing response-time analysis of CAN does not support the

analysis of common message transmission patterns which are implemented by

some high-level protocols used in the industry. The existing analysis calculates

the response times of CAN messages that are queued for transmission period-

ically or sporadically. However, there are a few high-level protocols for CAN

such as CANopen and HCAN that support the transmission of mixed messages

as well. A mixed message can be queued for transmission both periodically

and sporadically. In other words, a mixed message is simultaneously time and

event triggered. Thus, it may not exhibit a periodic activation pattern. In order

to support the development of DRE systems employing high-level protocols

for CAN, there is a need to extend the existing analysis. We extend the exist-

ing response-time analysis of CAN to support mixed messages. The extended

analysis is generally applicable to any high-level protocol for CAN that uses

periodic, sporadic, and both periodic and sporadic transmission of messages.

2.4 Proof-of-Concept Implementation

In this contribution we validate our solutions to the research questions. In or-

der to transfer the new modeling techniques and extended analysis, discussed in

the previous three contributions, to the industry we need to validate them first.



12 Chapter 2. Technical Contributions

While validating our solutions, we found out that the process of implementing

and integrating state-of-the-art real-time analysis with an existing industrial

tool suite offers many challenges. The Implementer has to not only code and

implement the analysis in the tool suite, but also deal with several other issues.

We present the implementation of HRTA as a plug-in for the existing industrial

tool suite Rubus-ICE. As part of HRTA, we implemented the existing as well

as the extended analysis discussed in the third contribution. The implemented

HRTA is general as it supports the integration of response-time analysis of var-

ious networks without a need for changing the holistic algorithm. We discuss

and solve encountered issues and highlight gained experiences during the im-

plementation, integration and evaluation of HRTA plug-in. We believe that

most of the experiences gained and solutions to the issues encountered in this

work maybe applicable when other complex real-time analysis techniques are

implemented in any industrial tool suite that supports a plug-in framework (for

the integration of new tools) and component-based development of DRE sys-

tems. Finally, we provide a proof of concept for all modeling approaches and

extended analysis discussed in this thesis by modeling an automotive indus-

trial application (autonomous cruise control system) using extended RCM and

analyzing it with HRTA plug-in in Rubus-ICE.

2.5 Discussion

We selected RCM and accompanying tool suite Rubus-ICE to provide a proof-

of-concept implementation of our new modeling techniques and extended anal-

ysis for several reasons. Among them, one reason is the existing support for

structural, functional and execution modeling of dependable embedded real-

time systems. Further, RCM and Rubus-ICE provide a means for develop-

ing predictable and analyzable control functions with a support for modeling

real-time properties and requirements, interconnections between the functions

in terms of data flow and control flow separately, and generation of run-time

framework.

With the proposed extensions, RCM along with Rubus-ICE can be consid-

ered a suitable choice for the component-based development of DRE systems

in the industry for many reasons. For example, it complements the structural

and functional modeling with the execution modeling of DRE systems; it sup-

ports communications-oriented development process for DRE systems; it sup-

ports the modeling of legacy communication and legacy systems; it can eas-

ily model and specify the timing related information; it has a small run-time



2.6 Impact of Contributions 13

footprint (timing and memory overhead); it implements the state-of-the-art re-

search results; and it has a strong support for development and analysis tools.

2.6 Impact of Contributions

The new approaches for modeling legacy network communication and extrac-

tion of end-to-end timing models may be suitable for other component models,

for DRE systems, that use a pipe-and-filter style for component interconnec-

tion. The extended analysis supports common message transmission patterns

that are implemented by several high-level protocols used in the industry today.

Further, the analysis engines support the integration of the analysis of various

real-time networks without a need for changing the holistic algorithm. Most

of the encountered issues, proposed solutions and gained experiences in this

work may provide guidance for the implementation of other complex real-time

analysis in any industrial tool suite that supports a plug-in framework (for the

integration of new tools) and component-based development of DRE systems.

The new release of RCM and Rubus-ICE (Version 4.0) incorporates the

contributions and results presented in this thesis.





Chapter 3

Conclusions

3.1 Summary and Conclusions

In this thesis we introduced new techniques to provide a model- and component-

based support for communications-oriented development of Distributed Real-

time Embedded (DRE) control systems.

In order to provide a solution to the first research question, we proposed

a new approach for modeling legacy network communication in component-

based DRE systems. The proposed approach abstracts the implementation

and configuration of communications in DRE systems. It enables the com-

munication capabilities of a node very explicit, but efficiently hides the imple-

mentation or protocol details. Moreover, the new approach allows model- and

component-based development of new nodes that are deployed in legacy sys-

tems that use predefined communication rules. The proposed approach also en-

ables adaptation of a node when communication rules change without affecting

its internal component design. As a solution to our second research question,

we presented a method to extract end-to-end timing models from component-

based DRE systems that are developed using above modeling approach. The

purpose of extracting the end-to-end timing models is to support the Holistic

Response Time Analysis (HRTA) of DRE systems.

We believe, these techniques may be suitable for several other component

models for DRE systems that use a pipe-and-filter style for component inter-

connection. Moreover, these techniques can be used for any type of “inter-

model signaling”, where a signal leaves one model (e.g., a node, or a core, or a

process) and appears again in some other model.

15



16 Chapter 3. Conclusions

While we were looking for answers to our research questions, we identified

a need for the extension of existing response-time analysis of CAN to support

the analysis of common message transmission patterns that are implemented

by some high-level protocols used in the industry. Accordingly, we extended

the existing analysis which is generally applicable to any high-level protocol or

commercial extension of CAN that uses periodic, sporadic, and both periodic

and sporadic transmission of messages.

We provided a proof-of-concept implementation of our modeling and anal-

ysis approaches by extending the existing industrial component model, i.e., the

Rubus Component Model (RCM); implementing the extended HRTA in an in-

dustrial tool suite, i.e., Rubus-ICE; and conducting an automotive-application

case study. The analysis engines that we provide are able to predict important

execution characteristics of the system such as holistic response times without

a need for tedious and expansive testing.

We believe, the industrial tools that implement our modeling techniques

and extended analysis for the development of DRE control systems may prove

helpful for the software development organizations in the automotive domain

to decrease the costs for software development, configuration and testing.

3.2 Future Work

An interesting future research direction is to investigate and develop patterns

that allow transformation between several domain-specific modeling languages

in the vehicular domain. The idea is to bridge the semantic gap between func-

tional models (expressed in standard languages as EAST-ADL [21] and/or

proprietary languages such as Simulink [22] or Statemate [23]) and execu-

tion models (expressed in standard languages like TADL [24] and Autosar [6]

and/or proprietary languages like RCM). It would also be interesting and useful

to facilitate the exchange of analysis models and tools between RCM and sev-

eral other component models and tools used for the development of automotive

embedded systems.

Another future work could be extending the existing analysis of CAN by

combining the analysis of mixed messages in CAN (presented in this thesis)

and analysis of CAN with FIFO queues [25]. The extended analysis will be

able to compute the worst-case response times of mixed messages in the CAN

network where some nodes use FIFO queues while others use priority queues.

The preliminary work in this direction is presented in [26]. Another future

work in this direction is the extension of CAN analysis for mixed messages



3.2 Future Work 17

which have multiple sources for periodic and sporadic triggering.

In the future, the HRTA plug-in can be expanded by implementing and in-

tegrating the analysis of other network communication protocols (e.g., Flexray,

switched ethernet, etc.) within the holistic analysis algorithms discussed in this

thesis. Another future work could be providing a support for asynchronous

data-flow using the two different semantics of data-age and reaction (described

in [27]) in Rubus-ICE.





Bibliography

[1] Michael Barr and Anthony Massa. Programming Embedded Systems.

O’Reilly Media, Inc., 2006.

[2] Michael Barr. Embedded Systems Glossary. http://www.netrino.com/

Embedded-Systems/Glossary.

[3] Robert N. Charette. This Car Runs on Code. Spectrum, IEEE, 46(2),

2009. http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-

on-code.

[4] Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems De-

sign Challenge. In Proceedings of the 14th International Symposium on

Formal Methods (FM), Lecture Notes in Computer Science, pages 1–15.

Springer, 2006.

[5] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-

Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[6] AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AUTomo-

tive Open System ARchitecture, Release 3.1, The AUTOSAR Consor-

tium, Aug., 2008. http://autosar.org.

[7] M. Broy, I.H. Kruger, A. Pretschner, and C. Salzmann. Engineering au-

tomotive software. Proceedings of the IEEE, 95(2):356 –373, feb. 2007.

[8] Ken Tindell and John Clark. Holistic schedulability analysis for dis-

tributed hard real-time systems. Microprocess. Microprogram., 40:117–

134, April 1994.

[9] Robert Bosch GmbH. CAN Specification Version 2.0. Postfach 30 02 40,

D-70442 Stuttgart, 1991.

19



20 Bibliography

[10] ISO 11898-1. Road Vehicles interchange of digital information

controller area network (CAN) for high-speed communication, ISO

Standard-11898, Nov. 1993.

[11] Automotive networks. CAN in Automation (CiA). http://www.can-

cia.org/index.php?id=416.

[12] CAL, CAN Application Layer for Industrial Applications, CiA Draft

Standard DS-207, Version 1.1. CAN-in-Automation, Feb. 1996.

[13] CANopen high-level protocol for CAN-bus, Version 3.0. NIKHEF, Ams-

terdam, March 2000. http://www.nikhef.nl/pub/departments/ct/po/doc/

CANopen.pdf.

[14] Jimmy Westerlund. Hägglunds Controller Area Network (HCAN), Net-

work Implementation Specification. BAE Systems Hägglunds, Sweden

(internal document), April 2009.

[15] MilCAN (CAN for Military Land Systems domain). http://www.milcan.

org/.

[16] TIMMO Methodology , Version 2. TIMMO (TIMing MOdel), Deliver-

able 7, October 2009. The TIMMO Consortium.

[17] K. Hänninen et.al. The Rubus Component Model for Resource Con-

strained Real-Time Systems. In 3rd IEEE International Symposium on

Industrial Embedded Systems, June 2008.

[18] Sverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and Ivica

Crnkovic. A Component Model for Control-Intensive Distributed Em-

bedded Systems. In Proceedings of the 11th International Symposium on

Component Based Software Engineering (CBSE2008), pages 310–317.

Springer Berlin, October 2008.

[19] Xu Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Component-

Based Framework for Generative Development of Distributed Real-Time

Control Systems. In Embedded and Real-Time Computing Systems and

Applications, RTCSA 2007. 13th IEEE International Conference on,

pages 199 –208, August 2007.

[20] Arcticus Systems. http://www.arcticus-systems.com.



[21] EAST-ADL Domain Model Specification, Deliverable D4.1.1.

http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-ADL

2-Specification 2010-06-02.pdf.

[22] Simulink - Simulation and Model-Based Design. http://www.mathworks

.se/products/simulink.

[23] Rational Statemate. http://www-01.ibm.com/software/awdtools/statemate.

[24] TADL: Timing Augmented Description Language, Version 2. TIMMO

(TIMing MOdel), Deliverable 6, October 2009. The TIMMO Consor-

tium.

[25] Robert I. Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka.

Controller Area Network (CAN) Schedulability Analysis with FIFO

queues. In 23rd Euromicro Conference on Real-Time Systems

(ECRTS11), July 2011.

[26] Mubeen, Saad and Mäki-Turja, Jukka and Sjödin, Mikael. Extend-

ing response-time analysis of controller area network (CAN) with FIFO

queues for mixed messages. In Emerging Technologies Factory Automa-

tion (ETFA), IEEE 16th Conference on, pages 1–4, sept. 2011.

[27] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional

Framework for End-to-End Path Delay Calculation of Automotive Sys-

tems under Different Path Semantics. In Compositional Theory and Tech-

nology for Real-Time Embedded Systems, 2008. CRTS 2008. Workshop

on, dec. 2008.





II

Included Papers

23





Chapter 4

Paper A:

Analyzable Modeling of

Legacy Communication in

Component-Based

Distributed Embedded

Systems

Saad Mubeen, Jukka Mäki-Turja, Mikael Sjödin and Jan Carlson.

In proceedings of the 37th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), pages 229-238, Oulu, Finland, September,

2011.

25



Abstract

We present extensions to the existing industrial component model Rubus

Component Model (RCM). By introducing special purpose components to en-

capsulate and abstract the communication protocols in distributed embedded

systems we allow use of legacy nodes and legacy protocols in a component-

based and model-based software engineering environment. With the addition

of these components, RCM will be able to support state-of-the-practice de-

velopment processes for distributed embedded systems where communication

rules are defined early in the development process. The proposed extension

also allows model-based and component-based development of new nodes that

are deployed in the legacy systems that use predefined communication rules.

We also demonstrate how an end-to-end timing model can be extracted from

a distributed embedded system modeled with extended RCM. The extracted

model is then used to perform an end-to-end timing analysis that we imple-

mented in the Rubus Analysis Framework.



4.1 Introduction 27

4.1 Introduction

Embedded systems are found in almost all electronic products around us. Their

applications span over many domains including automotive, aerospace, con-

sumer electronics, biomedical, military applications, business applications, in-

dustrial control, etc. It is claimed in [1] that more than 98 percent of the pro-

cessors produced today are embedded processors. Not only the number of em-

bedded processors has increased in the past few years but the software which

runs on them, i.e., the embedded software has also drastically increased in size

and complexity. In automotive domain, for example, a modern premium car

contains nearly 100 million lines of code that run on about 70 to 100 embed-

ded processors [2]. Because of the continuously increasing trend in size and

complexity of embedded software, the development of embedded systems has

become very complex.

Often, embedded systems are resource-constrained and have hard real-

time requirements. In order to capture such requirements as early as pos-

sible during the process of system development, handle complexity of em-

bedded software, lower development cost, reduce time-to-market and time-to-

test, allow reusability and modeling at higher level of abstraction, etc., the re-

search community proposed the use of Model-Based Engineering (MBE) and

Component-Based Software Engineering (CBSE) for the development of em-

bedded systems [3, 4]. MBE provides the means to use models throughout

the process of system development while CBSE facilitates the development

of large software systems by integration of software components. CBSE raises

the level of abstraction for software development and makes it possible to reuse

software components and their architectures. There is a great need for bringing

these development techniques in the embedded systems industry.

In distributed embedded systems, the functionality is distributed over many

nodes and the nodes communicate with each other through a bus or a network.

Software development of distributed embedded systems is more complex com-

pared to single processor embedded systems. When MBE and CBSE are used

for the development of resource-constrained and hard real-time distributed em-

bedded systems, modeling of communication infrastructure arises as another

challenge. In the industry, embedded systems are often deployed in legacy sys-

tems (previously developed) which use predefined rules for communication.

Furthermore, distributed embedded systems are often expected to use legacy

network protocols for real-time communication. A component model for the

development of distributed embedded systems should not only be resource-

efficient, but also abstract the application software from the communication



28 Paper A

infrastructure. Moreover, it should support the modeling of legacy communi-

cations and legacy systems.

In this paper we propose an extension to a commercially available com-

ponent model, the Rubus Component Model (RCM) [5], used for the devel-

opment of resource-constrained real-time embedded systems in many domains

especially automotive. It supports glue code generation, end-to-end response-

time analysis, and resource requirement estimations. Over the years, RCM

has evolved based on the industrial needs and the state-of-the-art research re-

sults. At present, RCM is able to model only single-node embedded systems.

We extend RCM by adding special purpose components to it. The purpose of

new components is to encapsulate and abstract the communication protocols

and configuration in a component-based and model-based software engineer-

ing setting. The motivation for the extension of RCM comes from the industrial

demand to model distributed embedded systems, real-time network communi-

cation, legacy communications and legacy systems.

4.1.1 Goals and Paper Contributions

We present an extension to an existing industrial component model by intro-

ducing new components to it. Our main goals in introducing new components

are:

1. Allow model-based and component-based development of new nodes

that are deployed in legacy systems that use predefined communication

rules.

2. Support state-of-the-practice development processes where communica-

tion rules are defined early in the development process.

3. Enable adaptation of a node when communication rules change (e.g. due

to re-deployment in a new system or due to upgrades in the communica-

tion system) without affecting the internal component design.

4. Generate these special components from the information about legacy

communication or from early design decisions about network communi-

cation. The generated components should be compatible with the exist-

ing entities defining functionality and communication in RCM.

These goals are to be realized in RCM. The scope of this paper is PSMs (Plat-

form Specific Models) for distributed embedded systems. With PSM we mean

that the software components have been allocated to nodes and any adaptation



4.2 Background – The Rubus Concept 29

to specific node characteristics (e.g., device drivers and memory layouts) has

been added to the model. Using our new components, nodes can be developed

without explicit knowledge about the communication configuration.

One important objective during the extension of RCM is to enable the de-

veloper to specify real-time properties and analyze timing behavior of the mod-

eled distributed embedded system. While making design decisions about the

new modeling concepts and components, we placed special focus on how the

modeled system will render itself to an end-to-end timing analysis. In this

paper, we also show how we extract an end-to-end timing model from a dis-

tributed embedded system using the Rubus tool suite. The extracted model is

then used to perform an end-to-end timing analysis that we implemented in the

Rubus Analysis Framework [6, 7].

4.1.2 Paper Layout

The rest of the paper is organized as follows. Section 4.2 presents the Rubus

concept, the component model and its development environment. In Sec-

tion 4.3, we present the related research and compare different modeling ap-

proaches with ours. Section 4.4 describes the new modeling objects that sup-

port modeling of legacy communication. Section 4.5 describes the implemen-

tation of the end-to-end timing analysis of distributed embedded systems in

the Rubus tool suite. Section 4.6 concludes the paper and presents the future

work.

4.2 Background – The Rubus Concept

Rubus is a collection of methods and tools for model- and component-based

development of dependable embedded real-time systems. Rubus is developed

by Arcticus Systems [6] in close collaboration with several academic and in-

dustrial partners. Rubus is today mainly used for development of control func-

tionality in vehicles. The Rubus concept is based around the Rubus Compo-

nent Model (RCM) [5] and its development environment Rubus-ICE, which

includes modeling tools, code generators, analysis tools and run-time infras-

tructure. The overall goal of Rubus is to be aggressively resource efficient and

to provide means for developing predictable and analyzable control functions

in resource-constrained embedded systems.



30 Paper A

4.2.1 The Rubus Component Model

The purpose of the component model is to express the infrastructure for soft-

ware functions i.e. the interaction between the software functions in terms of

data and control flow. One important principle is to separate functional code

and infrastructure implementing the execution model, i.e., explicit synchro-

nization or data access should all be visible at the modeling level. In RCM,

the basic component is called a Software Circuit (SWC). It is the lowest-level

hierarchical element in RCM and its purpose is to encapsulate basic functions.

The SWCs interact with each other through the use of ports. An SWC can be

seen as a type, or a class, that can be instantiated an arbitrary number of times.

By separating functional code and the infrastructure, RCM facilitates analysis

and reuse of components in different contexts (an SWC has no knowledge how

it connects to other components).

The execution semantics of software components (functions) is simply:

1. Upon triggering, read data on data in-ports.

2. Execute the function.

3. Write data on data out-ports.

4. Activate the output trigger.

An example system modeled with RCM, depicted in Figure 4.1, shows how

components interact with external events and actuators with regard to both data

and triggering. The triggering events can consist of interrupts, internal periodic

clocks, internal and external events. Furthermore, the component model has a

possibility to encapsulate SWCs into software assemblies enabling the designer

to construct the system at different hierarchical levels.

4.2.2 The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs, functions are mapped to

run-time entities; tasks. Each external event trigger defines a task and SWCs

connected through the chain of triggered SWCs (triggering chain) are allocated

to the corresponding task. All clock triggered “chains” are allocated to an

automatically generated static schedule that fulfills the precedence order and

temporal requirements.

Within trigger chains, inter-SWC communication is aggressively optimized

to use the most efficient means of communication possible for each commu-

nication link. For example, there is no use of semaphores in point-to-point



4.2 Background – The Rubus Concept 31

Figure 4.1: An example system in RCM

communications within a trigger chain. Another example is sharing of mem-

ory buffers between ports when there are no overlapping activation periods.

This means that a buffer can be shared between two ports belonging to dif-

ferent SWCs if it can be guaranteed that these ports will never use the buffer

space at the same time. This is true in the case of a trigger chain because a task

early in the chain can never be active at the same time as a task late in the chain

(considering the deadlines of tasks are smaller than their respective periods).

Allocation of SWCs to tasks and construction of schedule can be submitted

to different optimization criterion to minimize, e.g., response times for differ-

ent types of tasks, or memory usage. The run-time system executes all tasks on

a shared stack, thus eliminating the need for static allocation of stack memory

to each individual task.

4.2.3 The Rubus Analysis Framework

The model also allows expressing real-time requirements and properties on the

architectural level. For example, it is possible to declare real-time requirements



32 Paper A

from a generated event and an arbitrary output trigger along the trigger chain.

For this purpose, the designer has to express real-time properties of SWCs,

such as worst-case execution times and stack usage. The scheduler will take

these real-time constraints into consideration when producing a schedule. For

event-triggered tasks, response-time calculations are performed and compared

to the requirements.

4.3 Related Work

There exist many component models for the development of distributed sys-

tems, e.g., Distributed Component Object Model (DCOM) [8], Common Ob-

ject Request Broker Architecture (CORBA) [9], Enterprise JavaBeans (EJB)

[10], etc. These models in their original form are not suitable for the de-

velopment of resource-constrained distributed embedded systems with hard

real-time requirements because they require excessive amount of computing

resources, have large memory foot print and have inadequate support for mod-

eling of real-time communication.

There are very few commercial component models for the development of

distributed embedded and real-time systems especially in automotive domain.

In the last decade, automotive research community and industry has focused

more on the component-based development of automotive embedded systems

which led to the development of various solutions, approaches, methodologies,

and models. Some of them are discussed below.

4.3.1 AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) [11] is a standardized

software architecture for the development of software in automotive domain.

It can be viewed as a standardized distributed component model [12]. In AU-

TOSAR, the application software is defined in terms of Software Components

(SWCs). The distribution of SWCs, their virtual integration and communica-

tion at design time is handled by the Virtual Function Bus (VFB). The run-time

representation of VFB for each Electronic Control Unit (ECU) is defined by the

Run-Time Environment (RTE). The communication services are provided by

the Basic Software (BSW) via RTE to the AUTOSAR SWCs.

When AUTOSAR was being developed, there was no focus placed on the

specification and handling of real-time requirements and properties during the

process of system development. On the other hand, such requirements and ca-



4.3 Related Work 33

pabilities were strictly taken into account right from the beginning during the

development of RCM. AUTOSAR describes embedded software development

at a relatively higher level of abstraction compared to RCM. A Software Circuit

in RCM more resembles to a runnable entity compared to AUTOSAR SWC.

A runnable entity is a schedulable part of AUTOSAR SWC. As compared to

AUTOSAR, RCM clearly distinguishes between the control flow and the data

flow among SWCs in a node. AUTOSAR hides the modeling of execution

environment. On the other hand, RCM explicitly allows the modeling of exe-

cution requirements, e.g., jitter, deadlines, etc., at an abstraction level close to

the functional modeling while abstracting the implementation details.

In RCM, special Software Circuits, which are integral part of our contri-

bution in this paper and will be introduced in the next Section, are used if

SWCs require inter-ECU communication; otherwise, SWCs communicate via

data and trigger ports. On the other hand, AUTOSAR does not differentiate

between intra-node and inter-node communication at modeling level. Unlike

RCM, there are no special components in AUTOSAR for inter-node commu-

nication. AUTOSAR SWCs use interfaces for all types of communications

which can be of two types, i.e., Sender Receiver and Client Server. The Sender

Receiver communication mechanism in AUTOSAR is very similar to the pipe-

and-filter communication mechanism for component interconnection used in

RCM.

4.3.2 TIMMO

TIMMO (TIMing MOdel) [13] is an initiative to provide AUTOSAR with a

timing model. It describes a predictable methodology and a language, TADL

(Timing Augmented Description Language) [14], to express timing require-

ments and timing constraints during all design phases in the development of

automotive embedded systems. TADL is inspired by MARTE (Modeling and

Analysis of Real Time and Embedded systems) [15] which is a UML profile for

model-driven development of real-time and embedded systems. TIMMO de-

velopment methodology makes use of structural modeling provided by EAST-

ADL [16] which is a domain specific architecture description language used

in automotive domain. TIMMO methodology and its model structure abstract

the modeling of communication at implementation level of EAST-ADL where

they propose to use AUTOSAR. Both TIMMO methodology and TADL have

been evaluated on prototype validators. To the best of our knowledge there is

no concrete industrial implementation of TIMMO. In TIMMO-2-USE project

[17], the results of TIMMO will be further validated and brought to the indus-



34 Paper A

try.

4.3.3 ProCom

ProCom [18] is a two-layer component model for the development of dis-

tributed embedded systems. At the upper layer, called ProSys, it models a

system with concurrent subsystems which communicate by passing messages

via explicit message channels. Unlike an RCM SWC, a subsystem is active

which means that it has its own thread of execution and hence, it can be trig-

gered periodically or by internal events. At the lower layer, called ProSave,

a subsystem is internally modeled in terms of functional components which

are implemented as a piece of code, for example, a C function. Like RCM

SWCs, ProSave components are passive which means that they cannot trigger

themselves and hence, they require an external trigger for activation.

ProCom is inspired by RCM, and there are a number of similarities be-

tween the ProSave modeling layer and RCM. For example, components in both

ProSave and RCM are passive. Similarly, both the models clearly separate data

flow from control flow among the components. Moreover, the communication

mechanism for component interconnection used in both the models is pipe-and-

filter. At modeling level, ProCom does not differentiate between inter-node and

intra-node communication. ProCom uses two-step deployment modeling, i.e.,

virtual node modeling and physical node modeling [19]. At present, physical

node modeling is a work in progress. The validation of a complete distributed

embedded system, modeled with ProCom, is yet to be done. Moreover, the de-

velopment environment and the tools accompanying ProCom are still evolving.

4.3.4 COMDES-II

COMDES-II (COMponent-based design of software for Distributed Embedded

Systems) provides a component-based framework for the development of dis-

tributed embedded control systems [20]. It models the architecture of a system

at two levels. At upper level, an application is modeled as a network of actors

that are active components. Actors communicate with each other by sending

labeled messages. At the lower level, the functionality of an actor is modeled in

terms of Function Blocks which are passive components similar to the SWCs

in RCM. The Operating System (OS) employed by COMDES-II implements

fixed-priority timed multitasking scheduling. On the other hand, Rubus OS

implements hybrid scheduling policy that combines both static cyclic schedul-

ing and fixed-priority preemptive scheduling [21]. COMDES-II is a relatively



4.4 Support for Modeling of Legacy Communication 35

new research project and the support for development tools and run-time en-

vironment was provided fairly recently [22]. On the other hand, RCM and its

tool suite are relatively mature as they are being used in the industry for the

development of embedded systems for more than 10 years [6].

4.3.5 Real-Time CORBA

Object Management Group (OMG) defined middleware technologies such as

Real-Time CORBA, minimum CORBA and CORBA lightweight services for

the development of real-time and distributed embedded systems [23]. In some

projects, Real-Time CORBA has been used to develop distributed embedded

and real-time systems [24, 25]. Because of higher resource requirements, these

models may not be suitable for the development of resource-constrained dis-

tributed embedded systems with hard real-time requirements.

4.3.6 Discussion

RCM can be considered a suitable choice for the development of resource-

constrained distributed embedded systems for many reasons. For example, it

can completely handle timing related information, i.e., real-time requirements,

properties and constraints during all the stages of system development; It has

a small run-time footprint (timing and memory overhead); it implements the

state-of-the-art research results; It has a strong support for development and

analysis tools, etc.

4.4 Support for Modeling of Legacy Communica-

tion

In an ideal scenario, it should be possible to automatically generate the com-

munication from the design model for each distributed embedded application.

However, this is often not the practice in the industry because of legacy com-

munications and legacy systems. These systems have their own predefined

rules of communication. Our goal is to introduce the support for modeling of

legacy communications in RCM.

To support abstraction of the implementation of communications in a node,

we propose the introduction of two special purpose modeling elements, i.e.,

Output Software Circuit (OSWC) and Input Software Circuit (ISWC) for each



36 Paper A

frame that is to be sent or received by a node (connected to a network) respec-

tively. In order to represent a model of communication in a physical bus, we

propose another modeling object called Network Specification (NS).

4.4.1 Network Specification (NS)

It is the model representation of a physical bus. It consists of two parts: one

is protocol independent and the other is protocol dependent. The protocol-

independent part defines messages and the data-elements mapped to these mes-

sages. Moreover, it describes message properties, i.e., a message ID, a unique

sender node ID, a list of receiver nodes IDs and an ordered set of RCM signals.

A signal in RCM has a name, data type and real-time properties.

The protocol-dependent part of NS defines the behavior semantics of each

message according to the protocol used for network communication. It is spe-

cific to each protocol, e.g., it will be different for CANopen [26], Hägglunds

Controller Area Network (HCAN) [27], MilCAN (CAN for Military Land Sys-

tems domain) [28], Flexray, etc. The protocol-dependent part of NS contains

complete information of all the frames which are sent on the bus. Moreover,

it describes the frame properties. In RCM, a frame is a collection of RCM

signals.

The frame properties described by the protocol-dependent part of NS (e.g.,

for a CANopen protocol) include an identifier (a reference to the correspond-

ing message in the protocol-independent part of NS), a priority, a transmission

type (type of message transmission in CANopen), a sender node ID, a list of

receiver nodes IDs, whether a frame is an IN frame or an OUT frame, a pe-

riod (period with which a message is sent in case of periodic transmission),

an inhibit time (minimum time between successive transmission of a message

in case of one of the asynchronous transmission types in CANopen), SYNC

period (time between SYNC messages sent by the CANopen SYNC master),

and real-time requirements. Moreover, it also specifies the speed of CAN bus.

The transmission type of a frame can be periodic, event or mixed (transmitted

periodically as well as on arrival of an event) [29].

The components inside a single node communicate with each other by

using data and control signals separately. However, if a component on one

node intends to communicate with a component on another node via a net-

work then the signals are packed into frames. These frames are then trans-

mitted over the network. Here, some questions arise regarding the network

communication. How are signals packed into the frames? How many signals

a message contains? How are signals encoded into the frames at the sender



4.4 Support for Modeling of Legacy Communication 37

node? How are signals decoded from the received frames and sent to the re-

spective SWCs at the receiver node? All the rules that are concerned with the

answers to these questions are specified in the Signal Mapping. The Signal

Mapping is unique for each network communication protocol and is defined by

the protocol-dependent part of NS.

4.4.2 Output Software Circuit (OSWC)

OSWC is the model representation of signals in an outgoing message (frame)

to the network. Basically, it is a Software Circuit which denotes the data that

leaves the model. An OSWC is associated with a LAN (Local Area Network)

object. In RCM, LAN is an object to represent a connection between two or

more nodes in a system. Formally, a LAN is defined by its name, a list of

connected nodes and a Network Specification. There is exactly one OSWC in

a node for every outgoing frame on the network. Each OSWC describes all the

signals that can be sent in a particular frame. A frame contains zero or more

signals.

An OSWC has only one trigger in-port and at least one data in-port. Each

data in-port is associated with one signal in the Network Specification. There-

fore, the number of data in-ports may vary depending upon the number of

signals to be packed in the frame. An OSWC has no data and trigger out-ports.

The OSWC component uses protocol-specific rules, specified in the protocol-

specific part of NS, while encoding data and mapping signals to a frame. In

this way, OSWC provides a clear abstraction to the SWCs that send signals to

one of its data in-ports. Thus, SWCs are kept unaware of the protocol-specific

details such as signal-to-frame mapping, data type encoding and transmission

patterns of frames. The OSWC component is graphically illustrated in Figure

4.2.

�����������!	����	 ����$����&

�����
�������
�����������'	��

�����	�

�	����	���	�

Figure 4.2: Graphical illustration of OSWC.



38 Paper A

4.4.3 Input Software Circuit (ISWC)

ISWC is the model representation of signals in an incoming message (frame)

from the network. Basically, it is a Software Circuit which denotes the data that

enters the model. An ISWC is associated with a LAN object defined in RCM.

There is exactly one ISWC component in a node for every frame received from

the network. An ISWC describes all the signals that are contained in a received

frame associated to it. An ISWC has one unconditional trigger out-port. An

unconditional trigger port produces a trigger signal every time the SWC is

executed. There is at least one data out-port in the ISWC component. Each

data out-port is associated with one signal in the Network Specification of the

LAN object. Therefore, the number of data out-ports may vary depending

upon the number of signals contained in the received frame. An ISWC has no

data out-ports. There is one trigger in-port in every ISWC component which

is triggered when a frame arrives from the network. When a frame arrives at a

node, the physical bus drivers and protocol-specific implementation of ISWC

extract the signals (zero or more signals per frame) and encode their data in the

RCM data type. When the signal(s) is delivered, the data is placed on the data

port which is connected to the data in-port of the destination SWC (the tracing

information is provided in NS), and the corresponding trigger port is triggered.

Figure 4.3 graphically illustrates ISWC.

����������!	����	 ����$����&

�����
�	� ��+����	�������'	��

�����	�

�	����	���	�

Figure 4.3: Graphical illustration of ISWC.

Example

Consider an example of a node in a distributed embedded application mod-

eled with newly introduced objects in RCM as shown in Figure 4.4. The net-

work protocol considered in this example is CAN. Note that the figure is di-

vided into two halves: the upper half represents the model of a node whereas

the lower half depicts the physical communication including CAN controller



4.4 Support for Modeling of Legacy Communication 39

and CAN network. There are two grey boxes outside the model called CAN

SEND and CAN RECEIVE that are placed just below the sets of OSWCs and

ISWCs respectively. These gray boxes are specific for each network proto-

col. The frames that leave the model (sent to CAN SEND) are denoted by S

(Send), e.g., S1, S2 and S3. Similarly all the frames that enter the model (re-

ceived from CAN RECEIVE) are denoted by R (Receive), e.g., R1 and R2 as

shown in Figure 4.4.

���������	�
������������������������������������������
����

���
�	������������������
���

�����	�

�	����	�

��	�

���
� �����!�	"�������� ����

���#��������!�	"�$�%�&

'	��
'	��


%��������
�

�	���'	����(

%��������
�

���'	����(

%��������
����

'	����)

%��������
�

���'	����*

��������

�����*�����)�����(

%��������
��	���

'	����)

��������	
�

�����	��

�����( �����)
��
�������������

���
�������������

Figure 4.4: Model of OSWCs and ISWCs in one of the nodes in a distributed

embedded system modeled with extended RCM.

All the signals sent in the frame S1 are provided at the data in-ports of

OSWC1. These signals are mapped and encoded into S1 by OSWC1 accord-

ing to the protocol-specific information available in the Network Specification.

Once the frame is ready, it leaves the model as it is sent to the grey box CAN

SEND. In this example, this grey box represents a CAN controller in the node

which is responsible for the physical transmission of this frame on the network

according to the communication rules of CAN protocol.

When a frame arrives at the receiving node, it is transferred by the physical

network drivers to a grey box (CAN RECEIVE in this example) that produces

an interrupt. The frame enters the model and is transferred to the destina-



40 Paper A

tion ISWC (the tracing information is provided in the Network Specification).

ISWC extracts the signals from the frame, decodes the data from the frame

and encodes it to RCM data type. The data is placed on the data out-port of

ISWC which is connected to the data in-port of the destination SWC and the

corresponding trigger out-port is triggered (the tracing information is provided

in the Network Specification).

4.4.4 Automatic Generation of OSWC and ISWC

Both OSWC and ISWC can be automatically generated from NS by a Network

Configuration Tool. The input to this tool is the protocol-specific information

about the network communication and the tracing information of tasks in all

the distributed transactions (event-based and periodic chains) present in the

application. This information is made available from the configuration files

that correspond to the NS. The output of this tool is a set of automatically

generated OSWCs and ISWCs for each node in the network. This tool also

carries out mapping from NS to OSWC and ISWC and vice versa. The Input

and Output Software Circuits are translated into a set of SWCs to execute the

protocol at run-time.

4.4.5 Discussion

Let us briefly compare our newly introduced modeling approach for network

communication with the existing modeling approach for intra-node communi-

cation in RCM (depicted in Figure 4.1 by means of connectors). An alternative

to the new modeling approach (presented in this paper) would have been to

use the same connectors for modeling both inter-node and intra-node commu-

nication by attaching a boolean specifier to it, say, 0 for intra-node and 1 for

inter-node communication; and some tool could automagically generate the

run-time architecture for all communications and perform the deployment of

the distributed embedded application. Similarly, another alternative modeling

approach is to have an allocation property on each SWC, describing which

node it will run on. However, these modeling approaches may not be practical

in an industrial setup because of the requirements of modeling legacy systems

and legacy communications, deployment of newly developed nodes in the ex-

isting systems and early analysis of the developed system.

Analyzability was one important aspect that was kept in mind while intro-

ducing new components in RCM. The objective was to enable RCM to not only

model the legacy communication but also to analyze the end-to-end timing be-



4.5 Implementation of End-to-End Timing Analysis in Rubus-ICE 41

havior of the modeled system. In the next Section, we will discuss how the

required timing information is extracted from a distributed embedded system,

modeled with RCM, to perform an end-to-end timing analysis.

4.5 Implementation of End-to-End Timing Anal-

ysis in Rubus-ICE

In real-time systems, the time at which the result is available is as important

as correct value of the result. With the newly introduced modeling elements

in RCM, we can model a complete distributed real-time embedded system.

In order to ensure that all timing requirements are met, the modeled system

should render itself to an end-to-end timing analysis. To perform the timing

analysis, an end-to-end timing model of the application should be available. In

this Section, we first present the end-to-end timing model used by the Rubus

Analysis Framework. Then we demonstrate, by an example, the extraction of

the end-to-end timing model. Finally, we describe the support for the end-to-

end timing analysis available in Rubus-ICE.

4.5.1 System Model for End-to-end Timing Analysis

The scheduling model that we implemented in the Rubus Analysis Frame-

work, to carry out the end-to-end timing analysis, consists of two state-of-

the-art scheduling models, i.e., a node analysis model and a network analysis

model. The node analysis model was previously implemented in the the analy-

sis framework of Rubus-ICE [7]. The node analysis model is a task model that

corresponds to the tighter version of offset-based RTA [30] that is adapted from

the scheduling model for the holistic response-time analysis developed by [31]

and later on, extended by many researchers, e.g., [32, 33]. This model is used

for the response-time analysis of tasks in a node. The network analysis model

that we implemented in Rubus-ICE is a communication model [34] which is

used for the response-time analysis of CAN messages. The task model and

the communication model together comprise the end-to-end timing model of a

distributed real-time and embedded system.

Node Analysis Model

The system (node), Γ, consists of a set of k transactions Γ1, . . . ,Γk. Each

transaction Γi is activated by a periodic sequence of events with a period Ti.



42 Paper A

In case of sporadic events, Ti denotes the minimum inter-arrival time between

two consecutive events. In this model we consider that the activating events

are mutually independent, i.e., the phasing between them is arbitrary. There

are |Γi| tasks in a transaction Γi and each task may not be activated until a

certain time, called an offset, elapses after the arrival of the external event.

By task activation we mean that the task is released for execution. A task is

denoted by τij . The first subscript, i, specifies the transaction to which this task

belongs and the second subscript, j, denotes the number of the task within the

transaction. A task, τij , is defined by the following attributes.

• Cij : It is the worst case execution time of the task.

• Oij : It is an offset of the task.

• Dij : It is the deadline of the task.

• Jij : It is the maximum release jitter.

• Bij : It represents the maximum blocking of the task from lower priority

tasks.

• Pij : It represents the priority of the task.

• Rij : It represents the worst-case response time of the task.

In this task model, there are no restrictions placed on offset, deadline or

jitter, i.e., they can each be either smaller or greater than the period.

Network Analysis Model

The system (network) consists of a number of nodes that are connected through

a CAN bus. If a task on one node intends to communicate with a task on an-

other node, it queues a message in the send queue of its node. The CAN pro-

tocol ensures arbitration and transmission of all messages over the bus. There

are four different types of CAN frames used for message transmission, i.e.,

Data frame, Remote Transmit Request (RTR) frame, Overload frame and Er-

ror frame. In this model, a message corresponds to a message that uses Data or

RTR frames for transmission. Each message m has the following attributes.

• IDm : It is a unique identifier.

• FRAME TYPE : It specifies whether the frame is a Standard or an

Extended CAN frame.



4.5 Implementation of End-to-End Timing Analysis in Rubus-ICE 43

• TRANSMISSION TYPE : It specifies whether the frame is periodic

or event or mixed (both periodic and event).

• Pm : It is a unique priority.

• Cm : It specifies the transmission time of the message.

• Jm : It is a release jitter that is inherited from the response time of the

task queueing the message.

• DLCm : Each message can carry a data payload that ranges from 0 to 8

bytes. This number is specified in the header field of the frame called

Data Length Code.

• Tm : It specifies the period of a message in case of periodic transmission.

In case of an event transmission, Tm refers to the minimum time that

should elapse between the transmission of any two messages.

• Bm : Each message has a blocking time which refers to the maximum

amount of time this message can be blocked by the lower priority mes-

sages.

• Rm : It denotes the worst-case response time of a message m.

4.5.2 Extraction of End-to-End Timing Model

We extract an end-to-end timing model from the distributed transactions mod-

eled with extended RCM. The extracted model is used to analyze the end-to-

end timing for delays and network utilization. Consider the following example.

Example

An example distributed embedded system modeled with RCM using the

new modeling objects is shown in Figure 4.5. There are two nodes in the

system with three SWCs per node. SWCs communicate with each other by

using both inter-node and intra-node communication. For inter-node commu-

nication, CAN or any high level protocol of CAN (e.g., CANopen, HCAN,

MilCAN, etc.) can be used. In this example, the nodes are connected to a CAN

network. An event chain (distributed transaction) that consists of four Software

Circuits, i.e., SWC1, SWC2, SWC4 and SWC5 is identified with bold lines in

Figure 4.5. In this transaction, a clock triggers SWC1 which in turn triggers

SWC2. SWC2 then sends a signal to the OSWC A1 which in turn maps it to

a CAN frame. It then sends the frame to the grey box CAN SEND and hence,



44 Paper A

the data leaves the model. The frame is transmitted over the CAN bus by the

CAN controller according to the communication rules of CAN protocol.

�����������	��
����������	��

�
�
�����

��������

����

������
��

�����

����

Ext

�
�
�

������

�
�
�

���

������

�����������	�
���
�����

���� ����

����	������ ��������

 ����

�!

"����

�!

���#

Ext

 �$�����%��&����

"��$�����%��&����

'�
(�$

'�
(�$

����
�$

��������

"����

	!

�����	

���! ���)

���*

����	������

 ����

	!

'�
(�$

'�
(�$

����
�$

����
�$
����
�$

Figure 4.5: Example distributed system modeled with extended RCM

When the frame is received at Node B, the grey box CAN RECEIVE raises

an interrupt and passes the frame to ISWC B1 and hence, the data enters the

model. It should be noted that there can be more than one ISWCs in a node.

In that case, a received frame is passed to the desired ISWC by looking at the

tracing information in the NS. The ISWC B1 decodes the received frame, ex-

tracts signal from the frame, places the data on the corresponding data port and

triggers the corresponding trigger port. The elapsed time between the arrival

of a triggering event (clock trigger) at the input of SWC1 and the response of

SWC5 is referred to as an end-to-end response time of the distributed transac-

tion and is indicated in Figure 4.5.

The end-to-end timing model, used by the Rubus Analysis Framework,

requires the timing related information of all the transactions and messages

as discussed in the above subsection. The required timing information about

all the transactions in the system is extracted from the compiled and verified

design representation of the modeled systems provided in the form of node

configuration files in Rubus-ICE. At network level, the timing information is

specified in the Signal Mapping that is defined in NS. This information is ex-



4.5 Implementation of End-to-End Timing Analysis in Rubus-ICE 45

tracted from the configuration specification files corresponding to NS.

4.5.3 Support for End-to-End Timing Analysis

In Rubus-ICE, when the designed model is completed it is compiled to the In-

termediate Compiled Component Model (ICCM) file [7]. All the timing infor-

mation required by the end-to-end timing model is extracted from the ICCM

file. From this timing model, the Rubus Analysis Framework performs the

response-time analysis of individual tasks [33], the response-time analysis of

messages on the network [34, 35] and the end-to-end timing analysis [36].

The analysis framework provides the results, i.e., response times of individual

tasks, response times of network messages, end-to-end response times of event

chains (distributed transactions), network utilization, etc., back to Rubus-ICE.

This whole process is depicted in Figure 4.6.

���������

�����	
������	���������

����������	
�������	�

��������

����������	
�������	��

�������
�������

����������	������	����

������������	
	��������	�

����������

�	
	��������
��	��

�������	��

�����	��������

� �!��	��

Figure 4.6: Extraction of end-to-end timing model for timing analysis in

Rubus-ICE



46 Paper A

4.6 Conclusion

We introduced new components to the industrial component model, the Rubus

Component Model (RCM), for the development of distributed embedded sys-

tems. The purpose of new modeling objects, i.e., Output Software Circuit

(OSWC), Input Software Circuit (ISWC) and Network Specification (NS) is

to abstract the implementation and configuration of communications in dis-

tributed embedded systems. These objects make the communication capabili-

ties of a node very explicit, but efficiently hide the implementation or protocol

details. The extended model allows model-based and component-based de-

velopment of new nodes that are deployed in legacy (previously developed)

systems that use predefined communication rules. While making the design

decisions about new components, one important objective was to enhance ana-

lyzability in the component model. Here, the focus was the ease to extract the

end-to-end timing model from a distributed application modeled with RCM.

The extracted model is used by the Rubus Analysis Framework to perform the

end-to-end timing analysis.

With the addition of new modeling capabilities, RCM can be considered

a suitable choice for the industrial development of resource-constrained dis-

tributed embedded systems with hard real-time requirements. There are a

number of reasons behind this motivation, e.g., it can model real-time com-

munication (both intra-node and inter-node); it can completely handle timing

related information (real-time requirements, properties and constraints) during

all the stages of system development; it has a small run-time footprint (timing

and memory overhead); it implements the state-of-the-art research results; it

has a strong support for development and analysis tools, etc.

In the future work, the implementation of OSWC and ISWC will be au-

tomatically generated from protocol configuration files of other specialized

communication protocols used for real-time network communication such as

CANopen, HCAN (Hägglunds Controller Area Network), J1939, etc. For ex-

ample, the next step will be to generate automatically the implementation of

OSWC and ISWC from DCFs (Device Configuration Files) in CANopen or

for subsets of J1939.

Acknowledgement

This work is supported by Swedish Knowledge Foundation (KKS) within the

project EEMDEF, the Swedish Research Council (VR) within project TiPCES,



4.6 Conclusion 47

and the Strategic Research Foundation (SSF) with the centre PROGRESS. The

authors would like to thank the industrial partners Arcticus Systems and BAE

Systems Hägglunds for the cooperation.





Bibliography

[1] M. Broy. Automotive software and systems engineering. In Formal Meth-

ods and Models for Co-Design, 2005. MEMOCODE ’05. Proceedings.

Third ACM and IEEE International Conference on, pages 143 – 149,

2005.

[2] Robert N. Charette. This Car Runs on Code. Spectrum, IEEE, 46(2),

2009. http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-

on-code.

[3] Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems De-

sign Challenge. In Proceedings of the 14th International Symposium on

Formal Methods (FM), Lecture Notes in Computer Science, pages 1–15.

Springer, 2006.

[4] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-

Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[5] K. Hänninen et.al. The Rubus Component Model for Resource Con-

strained Real-Time Systems. In 3rd IEEE International Symposium on

Industrial Embedded Systems, June 2008.

[6] Arcticus Systems. http://www.arcticus-systems.com.

[7] K. Hänninen et.al. Framework for real-time analysis in Rubus-ICE. In

Emerging Technologies and Factory Automation, 2008. ETFA 2008. IEEE

International Conference on, pages 782 –788, 2008.

[8] Microsoft, Distributed Component Object Model (DCOM).

http://msdn.microsoft.com/en-us/library/Aa286561.

49



50 Bibliography

[9] OMG, Common Object Request Broker Architecture (CORBA) , Version

3.1, January 2008.

[10] L. DeMichiel. Sun Microsystems, Enterprise JavaBeans Specification,

Version 2.1. Sun Microsystems, 2002.

[11] AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AUTomo-

tive Open System ARchitecture, Release 3.1, The AUTOSAR Consor-

tium, Aug., 2008. http://autosar.org.

[12] Harald Heinecke et al. AUTOSAR – Current results and preparations for

exploitation. In Proceedings of the 7th Euroforum Conference, EURO-

FORUM ’06, May 2006.

[13] TIMMO Methodology , Version 2. TIMMO (TIMing MOdel), Deliver-

able 7, October 2009. The TIMMO Consortium.

[14] TADL: Timing Augmented Description Language, Version 2. TIMMO

(TIMing MOdel), Deliverable 6, October 2009. The TIMMO Consor-

tium.

[15] The UML Profile for MARTE: Modeling and Analysis of Real-Time and

Embedded Systems, January 2010.

[16] EAST-ADL Domain Model Specification, Deliverable D4.1.1.

http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-ADL

2-Specification 2010-06-02.pdf.

[17] TIMMO-2-USE. http://www.timmo-2-use.org/.

[18] Sverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and Ivica

Crnkovic. A Component Model for Control-Intensive Distributed Em-

bedded Systems. In Proceedings of the 11th International Symposium on

Component Based Software Engineering (CBSE2008), pages 310–317.

Springer Berlin, October 2008.

[19] J. Carlson, J. Feljan, J. Mäki-Turja, and M. Sjödin. Deployment Mod-

elling and Synthesis in a Component Model for Distributed Embedded

Systems. In 36th EUROMICRO Conference on Software Engineering

and Advanced Applications (SEAA), 2010, pages 74 –82, 2010.



Bibliography 51

[20] Xu Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Component-

Based Framework for Generative Development of Distributed Real-Time

Control Systems. In Embedded and Real-Time Computing Systems and

Applications, RTCSA 2007. 13th IEEE International Conference on,

pages 199 –208, August 2007.

[21] Jukka Mäki-Turja, Kaj Hänninen, and Mikael Nolin. Efficient Develop-

ment of Real-Time Systems Using Hybrid Scheduling. In 9th Real-Time

in Sweden (RTiS’07), pages 157–163, August 2007.

[22] Yu Guo, K. Sierszecki, and C. Angelov. COMDES Development Toolset.

In 5th International Workshop on Formal Aspects of Component Software

FACS 08, Malaga, Spain, 2008.

[23] Catalog of Specialized CORBA Specifications. OMG Group.

http://www.omg.org/technology/documents/.

[24] S. Lankes, A. Jabs, and T. Bernmerl. Integration of a CAN-based

connection-oriented communication model into Real-Time CORBA. In

Parallel and Distributed Processing Symposium, 2003.

[25] R. Finocchiaro, S. Lankes, and A. Jabs. Design of a real-time CORBA

event service customised for the CAN bus. In Parallel and Distributed

Processing Symposium, 2004. Proceedings. 18th International, page 121,

2004.

[26] CANopen high-level protocol for CAN-bus, Version 3.0. NIKHEF, Ams-

terdam, March 2000. http://www.nikhef.nl/pub/departments/ct/po/doc/

CANopen.pdf.

[27] Jimmy Westerlund. Hägglunds Controller Area Network (HCAN), Net-

work Implementation Specification. BAE Systems Hägglunds, Sweden

(internal document), April 2009.

[28] MilCAN (CAN for Military Land Systems domain). http://www.milcan.

org/.

[29] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Extending schedu-

lability analysis of controller area network (CAN) for mixed (peri-

odic/sporadic) messages. In Emerging Technologies Factory Automation

(ETFA), IEEE 16th Conference on, sept. 2011.



[30] Jukka Mäki-Turja, , and Mikael Nolin. Tighter response-times for tasks

with offsets. In Real-time and Embedded Computing Systems and Appli-

cations Conference (RTCSA). Springer-Verlag, August 2004.

[31] Ken Tindell. Adding Time-Offsets to Schedulability Analysis. Technical

report, Department of Computer Science, University of York, England,

January 1994.

[32] J.C. Palencia and M. Gonzalez Harbour. Schedulability Analysis for

Tasks with Static and Dynamic Offsets. Real-Time Systems Symposium,

IEEE International, page 26, 1998.

[33] Jukka Mäki-Turja and Mikael Nolin. Efficient implementation of tight

response-times for tasks with offsets. Real-Time Syst., 40(1):77–116,

2008.

[34] K.W. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time com-

munications: controller area network (CAN). In Real-Time Systems Sym-

posium (RTSS) 1994, pages 259 –263.

[35] Robert Davis, Alan Burns, Reinder Bril, and Johan Lukkien. Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and re-

vised. Real-Time Systems, 35:239–272, 2007.

[36] Ken Tindell and John Clark. Holistic schedulability analysis for dis-

tributed hard real-time systems. Microprocess. Microprogram., 40:117–

134, April 1994.



Chapter 5

Paper B:

Extraction of End-to-end

Timing Model from

Component- Based

Distributed Real-Time

Embedded Systems

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin.

In proceedings of the International Workshop on Time Analysis and Model-

Based Design, from Functional Models to Distributed Deployments (TiMoBD)

located at Embedded Systems Week, Taipei, Taiwan, October, 2011.

53



Abstract

In order to facilitate the end-to-end timing analysis early during the develop-

ment of component-based distributed real-time embedded (DRE) systems, we

present the extraction of end-to-end timing models using the existing industrial

component model, Rubus Component Model (RCM). Moreover, we discuss

and solve the issues involved during the model extraction such as, extraction of

timing information from all nodes and networks in the system, tracing of event

chains in distributed transactions, and modeling of exit and entry points for

RCM models to provide timing bounds for extra-model medium. We also de-

scribe the implementation of end-to-end timing model extraction in the Rubus

Analysis Framework.



5.1 Introduction 55

5.1 Introduction

The model-based and component-based development [1, 2] is often consid-

ered a promising choice for the development of distributed real-time embedded

(DRE) systems for many reasons such as: handling complexity of embedded

software; lowering development cost; reducing time-to-market and time-to-

test; allowing reusability; providing flexibility, maintainability and understand-

ability; enabling modeling and analysis at higher level of abstraction and early

during the process of system development, etc.

In DRE systems, the timing behavior of the system is as important as its

functional behavior. The current trend for the industrial development of DRE

systems, especially in automotive domain, is focused towards handling timing

related information and performing timing analysis as early as possible during

the process of system development [3, 4, 5]. This implies that the component

model for the development of DRE systems should support the extraction of

required timing information into an end-to-end timing model early during the

development.

5.1.1 Goals and Paper Contribution

Our main goal is to extract an end-to-end timing model from component-based

DRE system modeled with the existing industrial component model, i.e., the

Rubus Component Model (RCM). We focus on the following issues.

1. To extract the timing information from all the nodes and networks in a

DRE application into an end-to-end timing model.

2. To trace event chains in the transactions that are distributed over more

than one node in a DRE system.

3. To model exit and entry points for RCM models to provide timing bounds

for extra-model medium.

4. To implement the extraction of the end-to-end timing model in the Rubus

Analysis Framework.

5.1.2 Paper Layout

The rest of the paper is organized as follows. In Section 5.2, we discuss the

Rubus concept. Section 5.3 presents the related work. In Section 5.4, we



56 Paper B

discuss main parts of an end-to-end timing model. In Section 5.5, we discuss

the model extraction. Section 5.6 concludes the paper.

5.2 The Rubus Concept

Rubus is a collection of methods and tools for model-based development of de-

pendable embedded real-time systems. The Rubus concept is based around the

Rubus Component Model and its development environment Rubus-ICE (In-

tegrated Component development Environment) [6, 7], which includes mod-

eling tools, code generators, analysis tools and run-time infrastructure. The

overall goal of Rubus is to be aggressively resource efficient and to provide

means for developing predictable and analyzable control functions in resource-

constrained embedded systems.

5.2.1 The Rubus Component Model (RCM)

RCM expresses the infrastructure for software functions, i.e., the interaction

between the software functions in terms of data and control flow separately.

The control flow is expressed by triggering objects as clocks and events as

well as other components. In RCM, the basic component is called Software

Circuit (SWC). It is the lowest-level hierarchical element in RCM. It is a self

contained unit that encapsulates the basic functionality into manageable and

reusable blocks of software. The execution semantics of an SWC is simply:

upon triggering, read data on data in-ports; execute the function; write data on

data out-ports; and activate the output trigger.

One important principle is to separate functional code and infrastructure

implementing the execution model, i.e., explicit synchronization or data access

should all be visible at the modeling level. By separating functional code and

the infrastructure, RCM facilitates analysis and reuse of components in differ-

ent contexts (an SWC has no knowledge how it connects to other components).

The component model has the possibility to encapsulate SWCs into software

assemblies enabling the designer to construct the system at different hierarchi-

cal levels.

5.2.2 The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs, functions are mapped to

run-time entities; tasks. Each external event trigger defines a task and SWCs



5.2 The Rubus Concept 57

connected through the chain of triggered SWCs (triggering chain) are allo-

cated to the corresponding task. All clock triggered “chains” are allocated to

an automatically generated static schedule that fulfills the precedence order

and temporal requirements. Within trigger-chains, inter-SWC communication

is aggressively optimized to use the most efficient means of communication

possible for each communication link. Allocation of SWCs to tasks and con-

struction of schedule can be submitted to different optimization criterion to

minimize, e.g., response times for different types of tasks, or memory usage.

The run-time system executes all tasks on a shared stack, thus eliminating the

need for static allocation of stack memory to each individual task.

5.2.3 The Rubus Analysis Framework

The Rubus model allows expressing real-time requirements and properties at

the architectural level. For example, it is possible to declare real-time require-

ments from a generated event and an arbitrary output trigger along the trigger

chain. For this purpose, the designer has to express real-time properties of

SWCs, such as worst-case execution times and stack usage. The scheduler will

take these real-time constraints into consideration when producing a sched-

ule. For event-triggered tasks, response-time calculations are performed and

compared to the requirements. The analysis supported by the model includes

distributed end-to-end response time analysis and shared stack analysis.

5.2.4 The Rubus Simulation Model

The Rubus SIMulation Model (RSIM) and accompanying tools enable simu-

lation and testing of applications modeled with RCM at various hierarchical

levels such as: an SWC or function, a hierarchical RCM component structure

as an Assembly (ASM), a complete Electronic Control Unit (ECU) application

(may require I/O simulation), a set of ECU’s, a distributed system (may require

I/O simulation of each ECU), etc. To verify the logical functionality of these

objects, RSIM supports testing in an automatic generated framework based on

the Rubus OS Simulator.

The input data is read from external tools or files, e.g., Matlab, and fed

to the simulation process that controls the stimulation of input ports and state

variables using probes. The output from the simulation process is fed back to

the external tools. By building a simulated environment around the application

to be simulated, the execution of the application can be controlled from a high-

level tool such as LabView or Matlab/Simulink. The high-level tools control



58 Paper B

the execution of the simulated target by means of commands to stop and run

the target clock a specified number of ticks. The high-level tool sets the input

data to the control function to be tested, performs a number of execution steps,

and then reads the generated output data. In this way the execution flow can be

visualized in each time increment.

5.3 Related Work

There are very few commercial component models for the development of DRE

systems especially in automotive domain. In our previous work,we carried out

a detailed comparison of RCM with various models for DRE systems [8]. We

briefly highlight a few of them.

AUTOSAR (AUTomotive Open System ARchitecture) [9] is a standardized

software architecture for the development of software in automotive domain.

It can be viewed as a standardized distributed component model [10]. When

AUTOSAR was being developed, there was no focus placed on the specifica-

tion and handling of real-time requirements and properties during the process

of system development. In the recent release of AUTOSAR 4.0, timing model

is introduced and timing extensions such as timing constraints, requirements,

budgets, event chains and event triggers are added[11].

TIMMO (TIMing MOdel) [5] is an initiative to provide AUTOSAR with a

timing model. It describes a predictable methodology and a language, TADL

(Timing Augmented Description Language) [4], to express timing require-

ments and timing constraints in all design phases during the development of

automotive embedded systems. Both TIMMO methodology and TADL have

been evaluated on prototype validators. To the best of our knowledge there is

no concrete industrial implementation of TIMMO. In TIMMO-2-USE project

[3], the results of TIMMO will be further validated and brought to the industry.

ProCom [12] is a two-layer component model for the development of dis-

tributed embedded systems. ProCom is inspired by RCM. The validation of

a complete distributed embedded system, modeled with ProCom, is yet to be

done. Moreover, the development environment and the tools accompanying

ProCom are still evolving.

A related research presents a detailed overview of timing aspects during

the design activities of automotive embedded systems[13]. In[14], the authors

define end-to-end delay semantics and present a formal framework for the cal-

culation of end-to-end delays for register-based multi-rate systems. Like any

other timing analysis, they assume that the timing information of the system is



5.4 End-to-end Timing Model 59

available as an input. On the other hand, our focus is on the extraction of re-

quired information into an end-to-end timing model to carry out the end-to-end

timing analysis.

In our previous work, we extended RCM to model and analyze DRE sys-

tems. In [15], we explored various options for modeling of real-time net-

work communication in RCM. In [16], we discussed our initial work to sup-

port modeling of legacy network communication in distributed embedded sys-

tems. In [8], we presented analyzable modeling of legacy communication in

component-based DRE systems. We added new components in RCM to encap-

sulate and abstract the communication protocols, allow use of legacy nodes and

legacy protocols in a component-based and model-based software engineering

environment, and support model-based and component-based development of

new nodes that are deployed in the legacy systems that use predefined commu-

nication rules. Further, we highlighted the problem of tracing event chains in

the transactions that are distributed over several nodes in a DRE system [17].

5.4 End-to-end Timing Model

In this section, we discuss the main constituents of an end-to-end timing model

of a DRE system. The end-to-end timing model consists of two models, i.e.,

system timing model and system tracing model. All the required timing in-

formation of each node in a DRE application is extracted into a node timing

model. Similarly, the timing information of all the networks in a DRE applica-

tion is extracted into a network timing model. Together the node and network

timing model comprise the system timing model. All the mapping and trac-

ing information of event chains and distributed transactions is extracted into a

tracing model.

5.4.1 System Timing Model

Node Timing Model

The node timing model contains node-level timing information. This model

corresponds to the tighter version of the offset-based response-time analysis

[18] which is based on a transaction model with offsets developed by [19] and

later on, extended by many researchers, e.g., [20, 21]. A node, Γ, consists of a

set of k transactions Γ1, . . . ,Γk. Each transaction Γi is activated by mutually

independent events, i.e., the phasing between them is arbitrary. The activating

events can be a periodic sequence of events with a period Ti. In case of sporadic



60 Paper B

events, Ti denotes the minimum inter-arrival time between two consecutive

events.

There are |Γi| tasks in a transaction Γi and each task may not be activated

until a certain time, called an offset, elapses after the arrival of the external

event. By task activation we mean that the task is released for execution. A

task is denoted by τij . The first subscript, i, specifies the transaction to which

this task belongs and the second subscript, j, denotes the index of the task

within the transaction.

A task, τij , is defined by the following attributes: a priority (Pij), a worst-

case execution time (Cij), an offset (Oij), maximum release jitter (Jij), an

optional deadline (Dij), maximum blocking time which is the maximum time

the task has to wait for a resource that is locked by a lower priority task (Bij).

In order to calculate the blocking time for a task, usually, a resource locking

protocol like priority ceiling or immediate inheritance is used. Each task has a

worst-case response time denoted by Rij . In this model, there are no restric-

tions placed on offset, deadline or jitter, i.e., they can each be either smaller or

greater than the period.

Network Timing Model

This model contains network-level timing information of a DRE system. A

network consists of a number of nodes that are connected through a real-time

network. Currently, the model supports Controller Area Network (CAN) and

its higher-level protocols such as CANopen, CAN for Military Land Systems

domain (MilCAN), HCAN [22], etc. If a task on one node intends to com-

municate with a task on another node, it queues a message in the send queue

of its node. The network communication protocol ensures the arbitration and

transmission of all messages over the network.

Each message m has the following attributes: a unique identifier (IDm );

transmission type showing whether the message is periodic or sporadic or

mixed [22], i.e., both periodic and sporadic (TRANSMISSION TYPE ); a

unique priority (Pm ); transmission time (Cm ); release jitter (Jm ) which is in-

herited from the response time of the task queueing the message; data payload

(sm ) in the message; period (Tm ) in case of periodic transmission or minimum

inter-arrival time (MINTm ) which is the minimum time that should elapse be-

tween the transmission of any two sporadic messages in case of sporadic trans-

mission; blocking time (Bm ) which is the maximum amount of time a message

can be blocked by the lower priority messages; and worst-case response time

(Rm ).



5.4 End-to-end Timing Model 61

5.4.2 System Tracing Model

In DRE systems, the transactions are usually distributed over several nodes.

Hence, there exist event chains that may be distributed over more than one

node. An event chain consists of a number of tasks that are in a sequence and

have one common triggering ancestor (e.g., clock, internal and external events,

etc.). In a particular distributed transaction, a task on one node communicates

via network messages with the task on another node belonging to the same

transaction. When there are event chains in a DRE system, the end-to-end tim-

ing model should not only contain timing related information but also the trac-

ing information of the event chains. By tracing information, we mean proper

sequencing and linking information among all tasks inside the chain. The ex-

traction of tracing information of event chains in a distributed real-time system

is more complex compared to a single node real-time system. In [23], we

highlighted the issues concerning tracing of event chains in component-based

real-time systems in a single node (uniprocessor) as well as in a distributed

system. We revisit this problem in DRE systems.

5.4.3 Problem: Tracing of Event Chains

Consider a DRE system modeled with RCM as shown in Figure 5.1. There are

two nodes in the system with three SWCs in node A and four SWCs in node

B. SWCs communicate with each other by using both inter-node and intra-

node communication. The intra-node communication takes place via connec-

tors whereas, the inter-node communication takes place via a real-time network

to which the nodes are connected. One event chain (distributed transaction) that

is activated by a clock consists of four Software Circuits, i.e., SWC1, SWC2,

SWC4 and SWC5 and is identified with a solid-line arrow in Figure 5.1. In

this transaction, a clock triggers SWC1 which in turn triggers SWC2. SWC2

then sends a signal to the network. This signal is transmitted over the net-

work in a message (frame) and is received by the SWC4 at the receiver node.

SWC4 processes it and sends it to SWC5. The elapsed time between the arrival

of a triggering event at the input of the task corresponding to SWC1 and the

response of the task corresponding to SWC5 is referred to as the holistic or

end-to-end response time of the distributed transaction and is also identified in

Figure 5.1. The second event chain that is activated by an external event con-

sists of three Software Circuits, i.e., SWC3, SWC6 and SWC7. It is identified

by a broken-line arrow in Figure 5.1.

There may not be direct triggering connections between any two neigh-



62 Paper B

�����������	
��
������������
����������������
���
��

����
�����������������
���
��

����
�������� !����"

������ ������

#$�% #$�& #$�' #$�(

#$�) *��
������

�����

+���
������

�����

#$�,

Ext

#$�-

�����������	�
���
�����

	�������

.
//��

���

�0������

�1���

�����

Ext

	����

#����

	����

#
��

Figure 5.1: Event chains in distributed transactions

boring SWCs in the chain which is distributed over more than one node, e.g.,

SWC2 and SWC4 in Figure 5.1. In this case, SWC2 communicates with SWC4

by sending signals via the network. Here, the problem is that when a trigger

signal is produced by SWC2, it may not be sent straightaway as a message on

the network. A message may combine several signals and hence, there may be

some waiting time for the signal to be sent on the network. The message may

be sent periodically or sporadically or by any other rule defined by the underly-

ing network protocol. When such event chains are modeled with a component

model, it is not straightforward to trace them to extract the end-to-end timing

model. For example, if a message is received at node B then the following in-

formation should be available to correctly link the received message in a chain:

the ID of the sender node; the ID of the task that generated this message; the

ID of the destination node; and the ID(s) of the task(s) that should receive

this message. In order to get a bounded end-to-end delay, a more important

question is when and who will trigger the destination SWC when a message is

received at node B.



5.5 Extraction of End-to-end Timing Model 63

Discussion

The existing modeling components in RCM do not provide enough support to

trace and extract the corresponding timing information of event chains that are

distributed over more than one node. Therefore, there is a need to introduce

special modeling objects in the component model to provide the tracing infor-

mation of event chains to extract end-to-end timing information for the timing

model. Further, there is a need to model mapping between signals and mes-

sages and vice versa. SWCs inside a node communicate via signals whereas

they communicate via messages if located on different nodes in a distributed

transaction. Moreover, there is a need to model exit and entry points for RCM

models. An exit point is where a message (data) leaves the model and is trans-

mitted according to the protocol-specific rules of the network. Similarly, an

entry point is where a message enters the model from the network. The reason

for the need of modeling exit and entry points for RCM models is to get the

bounded delays for extra-model medium. We propose the extraction of this

information into a tracing model.

We believe that the issues discussed in this section may occur during the de-

velopment of any other component model for distributed real-time systems that

uses a pipe-and-filter communication mechanism for component interconnec-

tion, e.g., ProCom Component Model[12], COMDES [24], etc. The problem

of tracing event chains may also exist in any type of “inter-model signaling”,

where a signal leaves one model (e.g., a node, or a core, or a process) and

appears again in some other model. The requirement for the end-to-end tim-

ing analysis is that the “extra-model medium” can give bounded delays for the

signal.

5.5 Extraction of End-to-end Timing Model

In this section, we resolve the issues discussed in the previous section. More-

over, we provide an example of a two-node DRE application modeled with

RCM to show the applicability of our approach. Finally, we present the extrac-

tion of end-to-end timing model in Rubus-ICE.



64 Paper B

5.5.1 Proposed Solution

Addition of Special Components in RCM

In order to model real-time network communication and legacy communication

in DRE systems, we introduced special purpose Software Circuits in RCM, i.e.,

Output Software Circuit (OSWC) and Input Software Circuit (ISWC) in [8].

There is one OSWC for each message that a node sends to the network. Sim-

ilarly, there is one ISWC for each message that a node receives from the net-

work. We also introduced a new object in RCM, i.e., the Network Specification

(NS) that represents the model of communication in a physical network [8].

There is one NS for each network protocol. NS contains Signal Mapping

which includes the following information: How are signals mapped to mes-

sages? How many signals a message contains? How are signals encoded in a

message at the sender node? How are signals decoded from a message at the

receiving node? etc. The model representation of OSWC, ISWC and NS in a

two-node DRE system is shown in Figure 5.2. The internal structure of nodes

and the model of network communication is omitted for simplicity.

������

����

�����	
�����

��

����

�����	
�����

��

������

����

�����	
�����

��

����

�����	
�����

��

���	�
�������������������

���������	�
�����������	


�������	����

���������������������

��������
������������� ������������� 

Figure 5.2: Model representation of OSWC, ISWC and NS in a two-node DRE

system

Tracing Event Chains in DRE Systems

The tracing information of all event chains in the modeled DRE application is

provided in the Network Specification. We assign pointers (references) to the

input trigger ports of OSWCs and the output trigger ports of ISWCs along the



5.5 Extraction of End-to-end Timing Model 65

same distributed transaction. All such pointers for all the event chains in the

system are specified in the NS. Consider again the example of a two-node DRE

system shown in Figure. 5.2. Assume that there are four signals per message in

each node. Further, assume that both nodes send messages to each other. There

is a pointer array P1 that references the trigger in-port of OSWC in Node A and

trigger out-port of ISWC in node B. Similarly, a pointer array P2 is stored in

NS that points to the trigger in-port of OSWC in Node B and trigger out-port

of ISWC in node A. In this way, the event chains in distributed transactions can

be traced.

Exit and Entry Points for RCM Models

When the OSWC component is triggered, it executes the required function-

ality (e.g., mapping of signals to a message) and then the data (message) is

transferred from the RCM model of a node to the network controller or an-

other model of communication network. Therefore, OSWC also represents the

model of an exit point for RCM models. Similarly, ISWC component also rep-

resents the model of an entry point for RCM models. Since the trigger in-ports

of all OSWC components and trigger out-ports of all ISWC components along

a distributed transaction are referenced in NS, the end-to-end timing delay can

be bounded by specifying the delay in extra-model medium.

5.5.2 Example DRE System Modeled with RCM

An example of a two-node DRE system modeled in RCM is shown in Fig-

ure 5.3. There are four SWCs in Node A while three SWCs in Node B.

For inter-node communication, CAN or any high-level protocol of CAN (e.g.,

CANopen, HCAN, MilCAN, etc.) can be used. In this example, the nodes are

connected to a CAN network. There are three event chains in the system that

are distributed over both the nodes:

• EC1 : SWC1→ SWC2→ OSWC A1→ ISWC B1→ SWC5→
SWC6.

• EC2 : SWC3→ OSWC A1→ ISWC B1→ SWC5→ SWC6.

• EC3 : SWC7→ OSWC B1→ ISWC A1→ SWC4.

The event chains EC1 and EC2 are triggered by an external event whereas

the event chain EC3 is triggered by a clock. The references to the trigger



66 Paper B

ports of OSWC and ISWC in each event chain are specified in NS. The grey

boxes outside the model are specific for each network communication protocol.

In this example the grey boxes represent CAN SEND and CAN RECEIVE

routines. The CAN SEND grey box represents a CAN controller in a node

and is responsible for receiving messages from the corresponding OSWC and

queueing them for transmission over the network.

When a message arrives at the receiving node, it is transferred by the phys-

ical network drivers to the CAN RECEIVE grey box which is responsible

for raising an interrupt request and passing the message to the corresponding

ISWC component. Upon receiving a message, an ISWC component decodes

it, extracts signals from it, places the data on the corresponding data port (con-

nected to the data in-port of the destination SWC) and triggers the correspond-

ing trigger port by using the tracing information in NS. It should be noted that

there can be more than one ISWC and OSWC components in a node. It can

be seen from Figure 5.3 that OSWC and ISWC essentially make the exit and

entry points for the node models.

�����������	��
����������	��

�
�
�����

��������

����

������
��

�����

����

Ext

�
�
�

������

�
�
�

���

����������

�����

 ����������

�����

!�
"��

����
��

������

����

�	�	
�	

!�
"��

����
��

����
��

����
��

�#�$

�#�%

OR

 �#��

	&

����

�	�

Ext

�#�& �#�'

Ext

��#��

	&

��#��

(&

�#�) �#�*

�#�+

����

�	�	
�	

 �#��

(&

����

�	�

������

��

,���������-�.���/������
���

,�����
���
.

,���
�������/��"
����

,���������

�&0�&&1��&'2

�'0�'&1��''2

Figure 5.3: Example DRE system modeled with RCM



5.5 Extraction of End-to-end Timing Model 67

5.5.3 Extraction of End-to-end Timing Model in Rubus-ICE

In Rubus-ICE, a DRE application is modeled in Rubus Designer. It is then

compiled to the Intermediate Compiled Component Model (ICCM). Apart from

the compiled component model, ICCM file also includes timing and tracing

information of the modeled system. The end-to-end timing model that is im-

plemented in the Rubus Analysis Framework, extracts the required timing and

tracing information from ICCM file as shown in Figure. 5.4. The end-to-end

timing model consists of three models, i.e., node timing model, network tim-

ing model and system tracing model. From the extracted timing model, the

Rubus Analysis Framework performs the end-to-end timing analysis and then

provides the results, i.e., response times of individual tasks, response times of

network messages, end-to-end response times of event chains, network utiliza-

tion, etc., back to Rubus-ICE.

���������

�����	
�����

����������	�
���������

�����	�������	���������

��������	�����	�����

	������	����������
�������

���������


���������������

����������

��������	�����	�����

������	�����	�����

�������	�����

�����

������	������	�����

����	�����

�����

Figure 5.4: Extraction of end-to-end timing model in Rubus tool-suite



68 Paper B

5.6 Conclusion and Future Work

In this paper, we discussed the extraction of the end-to-end timing model from

component-based distributed real-time embedded (DRE) systems modeled with

the industrially available component model, i.e., the Rubus Component Model

(RCM). The purpose of extracting an end-to-end timing model is to perform

the end-to-end timing analysis early during the development of DRE systems.

We discussed and resolved various issues during the model extraction such as,

extraction of timing information from all nodes and networks in the system,

extraction of tracing model containing the tracing information of event chains

in all distributed transactions, and modeling of exit and entry points for RCM

models to provide timing bounds for extra-model medium. We also described

the implementation of end-to-end timing model in the Rubus Analysis Frame-

work.

Although, we discussed the extraction of end-to-end timing model for RCM,

we believe it is also suitable for other component-models for the development

of DRE systems that use a pipe-and-filter style for component interconnection.

Moreover, our approach can be used for any type of “inter-model signaling”,

where a signal leaves one model (e.g. a node, or a core, or a process) and

appears again in some other model. The requirement for end-to-end timing

analysis is that the “extra-model medium” can give bounded delays for the

signal.

In future, we plan to validate our methodology by making an industrial

case study. Another interesting future work will be facilitating the exchange of

analysis models and tools between RCM and other component models.

Acknowledgement

This work is supported by Swedish Knowledge Foundation (KKS) within the

project EEMDEF, the Swedish Research Council (VR) within project TiPCES,

and the Strategic Research Foundation (SSF) with the centre PROGRESS. The

authors would like to thank the industrial partners Arcticus Systems and BAE

Systems Hägglunds for the cooperation.



Bibliography

[1] Ivica Crnkovic and Magnus Larsson. Building Reliable Component-

Based Software Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[2] Thomas A. Henzinger and Joseph Sifakis. The Embedded Systems De-

sign Challenge. In Proceedings of the 14th International Symposium on

Formal Methods (FM), Lecture Notes in Computer Science, pages 1–15.

Springer, 2006.

[3] TIMMO-2-USE. http://www.timmo-2-use.org/.

[4] TADL: Timing Augmented Description Language, Version 2. TIMMO

(TIMing MOdel), Deliverable 6, October 2009. The TIMMO Consor-

tium.

[5] TIMMO Methodology , Version 2. TIMMO (TIMing MOdel), Deliver-

able 7, October 2009. The TIMMO Consortium.

[6] Arcticus Systems. http://www.arcticus-systems.com.

[7] K. Hänninen et.al. The Rubus Component Model for Resource Con-

strained Real-Time Systems. In 3rd IEEE International Symposium on

Industrial Embedded Systems, June 2008.

[8] Saad Mubeen, Jukka Mäki-Turja, Mikael Sjödin, and Jan Carlson. An-

alyzable Modeling of Legacy Communication in Component-Based Dis-

tributed Embedded Systems. In 37th EUROMICRO Conference on Soft-

ware Engineering and Advanced Applications (SEAA), 2011, pages 229

–238, Sep. 2011.

[9] AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AUTomo-

tive Open System ARchitecture, Release 3.1, The AUTOSAR Consor-

tium, Aug., 2008. http://autosar.org.

69



70 Bibliography

[10] Harald Heinecke et al. AUTOSAR – Current results and preparations for

exploitation. In Proceedings of the 7th Euroforum Conference, EURO-

FORUM ’06, May 2006.

[11] K. Richter et.al. A Timing Verification Methodology for AUTOSAR

Series Development. In 3rd AUTOSAR Open Conference 2011.

http://www.autosar.org/download/conferencedocs11/

15 AUTOSAR AR-Methodik Symtavision final.pdf.

[12] Sverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and Ivica

Crnkovic. A Component Model for Control-Intensive Distributed Em-

bedded Systems. In Proceedings of the 11th International Symposium on

Component Based Software Engineering (CBSE2008), pages 310–317.

Springer Berlin, October 2008.

[13] O. Scheickl and M. Rudorfer. Automotive Real Time Development Using

a Timing-augmented AUTOSAR Specification. In ERTS 2008.

[14] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional

Framework for End-to-End Path Delay Calculation of Automotive Sys-

tems under Different Path Semantics. In Compositional Theory and Tech-

nology for Real-Time Embedded Systems, 2008. CRTS 2008. Workshop

on, dec. 2008.

[15] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Exploring Options

for Modeling of Real-Time Network Communication in an Industrial

Component Model for Distributed Embedded Systems. In The 6th In-

ternational Conference on Embedded and Multimedia Computing (EMC-

2011), volume 102 of Lecture Notes in Electrical Engineering, pages

441–458. Springer Berlin / Heidelberg, 2011.

[16] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Modeling of legacy

communication in distributed embedded systems. In 2nd Workshop on

Model Based Engineering for Embedded Systems Design (M-BED 2011),

located at Design, Automation & Test in Europe (DATE) Conference,

2011, pages 1–6, March 2011.

[17] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Tracing event

chains for holistic response-time analysis of component-based distributed

real-time systems. In 23rd Euromicro Conference on Real-Time Systems

(ECRTS 2011), WIP Session. ACM SIGBED Review, July 2011.



[18] Jukka Mäki-Turja, , and Mikael Nolin. Tighter response-times for tasks

with offsets. In Real-time and Embedded Computing Systems and Appli-

cations Conference (RTCSA). Springer-Verlag, August 2004.

[19] Ken Tindell. Adding Time-Offsets to Schedulability Analysis. Technical

report, Department of Computer Science, University of York, England,

January 1994.

[20] J.C. Palencia and M. Gonzalez Harbour. Schedulability Analysis for

Tasks with Static and Dynamic Offsets. Real-Time Systems Symposium,

IEEE International, page 26, 1998.

[21] Jukka Mäki-Turja and Mikael Nolin. Efficient implementation of tight

response-times for tasks with offsets. Real-Time Syst., 40(1):77–116,

2008.

[22] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Extending schedu-

lability analysis of controller area network (CAN) for mixed (peri-

odic/sporadic) messages. In Emerging Technologies Factory Automation

(ETFA), IEEE 16th Conference on, sept. 2011.

[23] Mubeen, Saad and Mäki-Turja, Jukka and Sjödin, Mikael. Tracing event

chains for holistic response-time analysis of component-based distributed

real-time systems. SIGBED Review, 8:48–51, September 2011.

[24] Xu Ke, K. Sierszecki, and C. Angelov. COMDES-II: A Component-

Based Framework for Generative Development of Distributed Real-Time

Control Systems. In Embedded and Real-Time Computing Systems and

Applications, RTCSA 2007. 13th IEEE International Conference on,

pages 199 –208, August 2007.





Chapter 6

Paper C:

Extending Schedulability

Analysis of Controller Area

Network (CAN) for

Mixed (Periodic/Sporadic)

Messages

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin.

In proceedings of the 16th IEEE Conference on Emerging Technologies and

Factory Automation (ETFA), pages 1-10, Toulouse, France, September, 2011.

73



Abstract

The schedulability analysis of Controller Area Network (CAN) developed by

the research community is able to compute the response times of CAN mes-

sages that are queued for transmission periodically or sporadically. However,

there are a few high-level protocols for CAN such as CANopen and Hägglunds

Controller Area Network (HCAN) that support the transmission of mixed mes-

sages as well. A mixed message can be queued for transmission both peri-

odically and sporadically. Thus, it does not exhibit a periodic activation pat-

tern. The existing analysis of CAN does not support the analysis of mixed

messages. We extend the existing analysis to compute the response times of

mixed messages. The extended analysis is generally applicable to any high

level protocol for CAN that uses any combination of periodic, event and mixed

(periodic/event) transmission of messages.



6.1 Introduction 75

6.1 Introduction

Often, real-time systems are employed in distributed systems. In such sys-

tems, also known as distributed real-time systems, the nodes (processors) com-

municate with each other by sending and receiving messages over a real-time

network or a bus. Controller Area Network (CAN) [1, 2] is a real-time, event-

triggered, serial communication bus protocol. It supports bus speeds of up to 1

mega bits per second. CAN is a largely used real-time network in automotive

domain. Moreover, it finds its application in other domains such as, medical

equipments, industrial control, etc. There are many high level protocols and

commercial extensions of CAN developed for many industrial applications.

These include CAN Application Layer (CAL) [3], CANopen [4], Hägglunds

Controller Area Network (HCAN) [5], CAN for Military Land Systems do-

main (MilCAN) [6], DeviceNet, etc.

System providers of hard real-time systems are required to ensure that the

system meets its deadlines. Moreover, the need for safety criticality in most of

the hard real-time systems requires an evidence that the actions by the system

will be provided in a timely manner (e.g. each action will be taken at a time that

is appropriate to the environment of the system). Therefore, it is important to

predict the timing behavior of such systems. In order to provide the evidence

that each action in the system will meet its deadline, a priori analysis tech-

niques, also known as schedulability analysis techniques, have been developed

by the research community.

Response-Time Analysis (RTA) [7, 8] is a powerful, mature and well es-

tablished schedulability analysis technique. It is a method to calculate upper

bounds on the response times of tasks or messages in a real-time system or

a real-time network respectively. In crux, RTA is used to perform a schedu-

lability test which means it checks whether or not tasks (or messages) in the

system (or network) will satisfy their deadlines. RTA applies to systems (or

networks) where tasks (or messages) are scheduled with respect to their pri-

orities and which is the predominant scheduling technique used in real-time

operating systems (or real-time network protocols e.g., CAN) today [9].

Tindell et al. [10] developed schedulability analysis of CAN which was

recognized by the automotive industry. Later on, the analysis was revisited

and revised by Davis et al. [11]. The model of communication used by this

analysis assumes that the messages are queued for transmission by the applica-

tion tasks which are activated periodically or sporadically. However, there are a

few high-level protocols and commercial extensions of CAN such as CANopen

and HCAN, that support the transmission of mixed messages as well. A mixed



76 Paper C

message contains both periodic and event signals. Thus a mixed message can

be queued for transmission periodically as well as sporadically at the arrival

of event signals. The current schedulability analysis of CAN does not support

mixed messages.

In this paper, we extend the existing schedulability analysis of CAN to sup-

port the analysis of mixed messages. The extended analysis is able to find out

the response times of periodic, event and mixed (periodic/event) CAN mes-

sages. The extended analysis is applicable to any high level protocol for CAN

that uses any combination of periodic, event and mixed (periodic/event) trans-

mission of messages. The motivation for this work comes from the activity of

implementing the Holistic Response-Time Analysis (HRTA) [12] in the indus-

trial tool suite, Rubus-ICE (Integrated Component development Environment)

[13], that provides a component-based development environment for resource

constrained distributed real-time systems.

The rest of the paper is organized as follows. In Section 6.2, we discuss the

related work. In Section 6.3, we describe three different transmission patterns

of CAN messages. In Section 6.4, we present the scheduling model for network

communication. In Section 6.5, we visit the existing schedulability analysis of

CAN and present the extended analysis. Finally, Section 6.6 concludes the

paper.

6.2 Related Work

Liu and Layland [14] provided theoretical foundation for analysis of fixed-

priority scheduled systems. Since then schedulability analysis of fixed-priority

preemptive systems has been well developed. Joseph and Pandya published the

first Response-Time Analysis (RTA) [15] for the simple task model presented

by Liu and Layland which assumes independent periodic tasks.

There are many protocols such as CAN, TDMA (Time Division Multiple

Access), TTCAN (Time-Triggered CAN), FlexRay, etc., that are used for real-

time communication in distributed real-time systems. Schedulability analysis

of these protocols has been developed by the research community. In this pa-

per, we will focus only on the CAN protocol. Tindell et al. [10] developed the

schedulability analysis of CAN by adapting the theory of fixed priority pre-

emptive scheduling for uniprocessor systems. This analysis has been imple-

mented in the analysis tools that are used in the automotive industry [16, 17].

Moreover, this analysis has served as basis for many research projects. Later

on, this analysis was revisited and revised in [11]. The communication model



6.3 Transmission Patterns of a CAN Message 77

used in this analysis supports the analysis of CAN messages that are queued

for transmission periodically or sporadically. This analysis does not support

the response-times computation of CAN messages that are queued for trans-

mission both periodically and sporadically.

Tindell [12] developed the holistic schedulability analysis for distributed

hard real-time systems. Holistic analysis combines both the schedulability

analysis of nodes (uniprocessors) and the network. This analysis is able to

analyze a distributed real-time system that employs CAN or a simple TDMA

protocol. As discussed earlier, this analysis does not support the response-time

computation of mixed type messages.

In [18], Pop et al. provide a holistic schedulability analysis of distributed

embedded systems in which the tasks are both time- and event-triggered. The

analysis is developed for ST/DYN protocol bus that uses static and dynamic

phases for sending messages. Static phase is split into time slots and each

node transmits in its own slot. The dynamic phase is shared by all nodes and

the contention is resolved by message priorities. As compared to this approach,

we use CAN protocol for network communication and the messages are queued

by the tasks (that require remote transmission), on each node, periodically or

sporadically or both periodically and sporadically.

6.3 Transmission Patterns of a CAN Message

When CAN is employed for network communication in a distributed real-time

system, each node (processor) is equipped with a CAN interface that connects

the node to the bus [19]. Application tasks in each node, that require remote

transmission, are assumed to queue messages for transmission over CAN bus.

The messages are actually transmitted according to the protocol specification

of CAN. The classical scheduling analysis of CAN [10] assumes that the tasks

queueing CAN messages are invoked either by periodic events with a period

or sporadic events with a minimum inter-arrival time. However, there are few

high level protocols and commercial extensions of CAN in which the task that

queues the messages can be invoked periodically as well as sporadically and

hence, does not exhibit periodic activation patterns.

Throughout this paper, we will use the terms message and frame inter-

changeably since we only consider messages that will fit into one frame (max-

imum 8 bytes). For the purpose of using simple notation, we will call a CAN

frame as PERIODIC, EVENT or MIXED if it is queued by an application task that

is invoked periodically, sporadically or both (periodically/sporadically) respec-



78 Paper C

tively.

6.3.1 Periodic and Event Transmissions

If all the signals contained in a message are periodic then the transmission type

of the message is periodic. Such a message will be queued for transmission at

periodic intervals. On the other hand, if all the signals contained in a message

are of event type then the message is said to have event transmission type.

Such a message will be queued for transmission as soon as an event occurs that

changes the value of one or more signals contained in the message provided a

Minimum Update Time (MUT ) between the queueing of two successive event

messages has elapsed. Hence, the transmission of an event frame is constrained

by MUT .

6.3.2 Mixed (Periodic/Event) Transmission

If a message can be queued periodically as well as at the arrival of an event

then the transmission type of a message is called mixed (periodic/event) or sim-

ply mixed transmission. We identified two different methods of implementing

mixed messages for CAN protocol.

Method 1: Implementation of a Mixed Message

The CANopen protocol [20] provides an example of the first implementation

method of a MIXED message. A mixed message can be queued for transmission

at an arrival of an event provided an Inhibit Time has expired. The Inhibit Time

is the minimum time that must be allowed to elapse between the queueing of

two consecutive messages. A mixed message can also be queued periodically

at the expiry of an Event Timer. Hence, the expiry of an Event Timer is con-

sidered as an additional event for queueing of a mixed message. The Event

Timer is reset every time the message is queued. It should be noted that once

a mixed message is queued for transmission, any additional queueing of the

same message will not take place during the Inhibit Time [20]. The transmis-

sion pattern of a mixed message in CANopen is illustrated in Figure 6.1. The

down-pointing arrows (labeled with numbers) symbolize the queueing of mes-

sages while the upward lines (labeled with alphabets) represent arrival of the

events.

In Figure 6.1, message 1 is queued for transmission as soon as an event

A arrives (assume that the Inhibit Timer was expired). In this case, the Event



6.3 Transmission Patterns of a CAN Message 79

�����

�����

� � �

�

������

�������

��������

�����
��	��

����������	�

!�"�#��

����

� 

�����

�����

�

!�"�#��

����

�����

�����

!�"�#��

����

Figure 6.1: Transmission pattern of a Mixed Message in CANopen

Timer is reset along with the Inhibit Time. As soon as the Event Timer expires,

message 2 is queued for transmission and both the Event Timer and Inhibit

Time are reset. Similarly, message 3 is queued for transmission because of the

expiry of the Event Timer. When an event B arrives, message 4 is immediately

queued for transmission because the Inhibit Time has already expired. Note

that the Event Timer is also reset at the same time when the message 4 is

queued. The message 5 is transmitted because of the expiry of the Event Timer.

Hence, there exist a dependency relationship between the Inhibit Time and the

Event Timer.

Method 2: Implementation of a Mixed Message

The HCAN protocol [5] provides an example of the second implementation

method of a MIXED message. A mixed message defined by HCAN protocol

contains signals of which some are periodic and some are of event type. A

mixed message is queued for transmission not only periodically but also, as

soon as, an event occurs that changes the value of one or more event signals

provided MUT between the queueing of two successive event messages has

elapsed. Hence, the transmission of a mixed message due to arrival of events

is constrained by MUT . The transmission pattern of a mixed message is illus-

trated in Figure 6.2.

In Figure 6.2, message 1 is queued for transmission because of the partly

periodic nature of a mixed message. As soon as the event A arrives, message

2 is queued. When the event B arrives it is not queued immediately because



80 Paper C

�������

������

 � � �

� 	 � �


�����

������ 

��������

�����������

������������

�������

���

�������

���

� �

�������

������

Figure 6.2: Transmission pattern of a Mixed Message in HCAN

MUT is not expired yet. As soon as MUT expires, message 3 is queued.

Message 3 contains the signal changes that correspond to event B. Similarly, a

message is not immediately queued when an event C arrives because the MUT

is not expired. Message 4 is queued because of the periodicity. It should be

noted that although, MUT was not yet expired, the event signal corresponding

to event C was packed in message 4 and queued as part of the periodic message.

Hence, there is no need to queue an additional event message when MUT

expires. It should be noted that the periodic transmission of a mixed message

cannot be blocked by the event transmission. When an event D arrives, an

event message 5 is immediately queued because the MUT has already expired.

Message 6 is queued due to the periodicity.

Discussion

In the first method, the Event Timer is reset every time a mixed message is

queued for transmission. The most natural interpretation of a mixed message

from the specification of CANopen is that there is an implicit requirement that

the periodicity of transmission of a mixed message can never be higher than

the Inhibit Time [4] [21]. Hence, it can be assumed that in the worst case, a

mixed message is queued for transmission every time the Inhibit Timer expires.

Therefore, the original CAN analysis can be used for mixed messages in the

first method.



6.4 Network Scheduling Model 81

However, the second method of implementing a mixed message is more

complex because the periodic transmission is independent of the event trans-

mission. In other words, the Event Timer is not reset with every event transmis-

sion. In this case, for the purpose of analysis we need to treat a mixed message

as two separate message streams with same IDs and priorities. This calls for

the need of new analysis for mixed CAN messages. In addition, the existing

analysis does not support any two messages with same IDs and equal priorities,

which also requires extension of the original analysis.

6.4 Network Scheduling Model

In this section, we discuss the network scheduling model that will be used in

the development of extended analysis for mixed type CAN messages. This

model is an extension to the communication model that was developed by

Tindell et al. [10] for the response-time analysis of Controller Area Network

(CAN) messages. The existing model supports the scheduling of messages

that are queued for transmission periodically (PERIODIC messages) or sporad-

ically (EVENT messages). We will extend this model to support the analysis

of messages that are queued periodically as well as sporadically (MIXED mes-

sages).

Each CAN message m has an IDm which is a unique identifier. Associ-

ated to each message is a FRAME TYPE that specifies whether the frame

is a Standard or an Extended CAN frame. The difference between the two

frame types is that a standard CAN frame uses an 11-bit identifier whereas an

extended CAN frame uses a 29-bit identifier. There is a TRANSMISSION

TYPE of each message that specifies whether the message is PERIODIC or

EVENT or MIXED (both PERIODIC and EVENT). Each message has a unique pri-

ority (Pm ), transmission time (Cm ) and queueing jitter (Jm ) which is inherited

from the response time of the task queueing the message.

Each message can carry a data payload that ranges from 0 to 8 bytes. This

number is specified in a header field of the frame called Data Length Code

(DLC) and denoted by sm . In case of PERIODIC transmission, each frame has

a period, denoted by Tm . In case of EVENT transmission, each frame has a

MUTm that refers to the minimum time that should elapse between the trans-

mission of any two EVENT frames. Each message has a blocking time Bm

which refers to the largest amount of time this message can be blocked by any

lower priority message. Each message has a worst-case response time, denoted

by Rm , and defined as the longest time between the queueing of the message



82 Paper C

(on the sending node) and the delivery of the message to the destination buffer

(on the destination node).

When a message has a MIXED transmission type, we duplicate the message

in the analysis model. Hence, each MIXED message has two copies which are

treated as separate messages. One copy is the PERIODIC message and the other

is an EVENT message. All the attributes of these duplicates, including ID, pri-

ority, release jitter, transmission time and blocking time, are the same except

that the PERIODIC copy inherits Tm while the EVENT copy inherits MUTm .

It is important to note that CAN identifier of each message is unique and

it also corresponds to its priority. As discussed earlier that in case of a MIXED

message, we duplicate the message and the duplicates have the same identifier

and priority. The existing analysis model [19][10] does not support any two

messages with equal priorities.

6.5 Extending CAN Schedulability Analysis

In this section, we extend the scheduling analysis of CAN that was originally

developed by Tindell et al. [10] and later revised by Davis et al. [11]. The

extended analysis will be able to compute the response times of mixed type

messages as well.

6.5.1 Existing Analysis

First of all, we quickly revisit the existing algorithms that are used to compute

the response-times of CAN messages. Then we extend these algorithms to

support the analysis of mixed type messages.

According to the existing analysis, the worst-case response time of a CAN

message is given by the following equation:

Rm = Jm + ωm + Cm (6.1)

where m is the message under analysis. Jm denotes the queueing jitter of

m and is inherited from the worst-case response time of the task that queues

this message (sending task). ωm represents the worst-case queueing delay and

is equal to the longest time that elapses between the instant a message m is

queued by the sending task in the priority-ordered send queue and the instant

when the message starts its transmission. In other words, ωm is the interference

caused by other messages to m.



6.5 Extending CAN Schedulability Analysis 83

It is important to mention that CAN uses fixed-priority non-preemptive

scheduling and therefore, a message cannot be interfered by higher priority

messages during its transmission on the bus. Whenever we use the term in-

terference, it refers to the amount of time the message has to wait in the send

queue because the higher priority messages win the arbitration and hence, the

right of transmission before the message under analysis.

ωm is given by the following recursive equation:

ωn+1
m = Bm +

∑

∀k∈hp(m)

⌈

ωn
m + Jk + τbit

Tk

⌉

Ck (6.2)

In (6.2), hp(m) refers to the set of all messages in the system that have higher

priority than m. τbit denotes the time required to transmit a single bit on CAN

bus. Its value depends upon the speed of the bus. In order to solve the recursive

equation given by (6.2), initial value of ωn
m can be taken equal to the blocking

time, Bm, as given by the following equation:

ω0
m = Bm (6.3)

Bm represents the maximum time for which m can be blocked by the lower

priority messages. It is equal to the largest transmission time of any message

in the set of all the lower priority messages compared to the priority of m and

is given by the following equation:

Bm = max
∀k∈lp(m)

(Ck) (6.4)

where, lp(m) refers to the set of all messages in the system that have lower

priority than message m.

In (6.2), Cm is the transmission time of m. It represents the longest time

it takes for m to be transmitted over the bus. The transmission time of the

message is computed according to [11] as given by the following equation:

Cm =

(

g + 8sm + 13 +

⌊

g + 8sm − 1

4

⌋)

τbit (6.5)

where sm is the Data Length Code. It refers to the number of data bytes in a

CAN data message. It can have any integer value from 0 to 8. g is equal to

34 and 54 for standard and extended CAN frame formats respectively. For a

Standard CAN identifier, (6.5) can be simplified as follows.

Cm = (55 + 10sm)τbit (6.6)



84 Paper C

Similarly, the transmission time of m for an Extended CAN identifier is

given by the following equation.

Cm = (80 + 10sm)τbit (6.7)

In [11], Davis et al. made an observation that it is possible in the case

of fixed-priority non-preemptive scheduling that a higher priority task may be

waiting for transmission when a message m finishes its transmission. Hence,

they proposed to analyze all the instances of m that lie in the level-m busy

period.

In order to calculate the worst-case response time of a CAN message, the

number of instances of m that become ready for transmission before the end

of the busy period should be known first. Then the response time of each

instance of m should be computed. The largest value from the response time

of all instances should be picked up as the worst-case response time of m. The

length of a priority level-m busy period, tm, is given by the following recursive

equation:

tn+1
m = Bm +

∑

∀k∈hep(m)

⌈

tnm + Jk

Tk

⌉

Ck (6.8)

where, hep(m) refers to the set of all messages in the system that have equal

or higher priority than m. In order to solve this recursive equation, initial value

of tnm can be taken equal to the transmission time of m, i.e.

t0m = Cm (6.9)

The right hand side of (6.8) is a monotonic non-decreasing function of tm.

The recursive equation (6.8) is guaranteed to converge if the bus utilization for

messages of priority level m and higher, denoted by Um, is less than 1. Um is

given by the following equation:

Um =
∑

∀k∈hep(m)

Ck

Tk

(6.10)

thus,

Um < 1 (6.11)

The number of instances of m, denoted by Qm, that becomes ready for

transmission before the end of the busy period is given by the following equa-

tion:



6.5 Extending CAN Schedulability Analysis 85

Qm =

⌈

tm + Jm

Tm

⌉

(6.12)

The response time of each instance of m is calculated by the following equa-

tion:

Rm(q) = Jm + ωm(q)− qTm + Cm (6.13)

where q is the message-instance number. The range of q is shown below.

0 ≤ q ≤ Qm − 1 (6.14)

The queueing delay of each instant of the message m is given by the fol-

lowing equation.

ωn+1
m (q) = Bm + qCm +

∑

∀k∈hp(m)

⌈

ωn
m(q) + Jk + τbit

Tk

⌉

Ck (6.15)

After the response time of all instances of the message m have been com-

puted, its worst-case response time can be found by selecting the largest value

as given by the following equation.

Rm = max(Rm(q)), ∀ 0 ≤ q ≤ (Qm − 1) (6.16)

6.5.2 Extended Analysis

In the extended schedulability analysis of CAN, we treat a message differently

based on its transmission type. In order to keep the notations simple and con-

sistent, we define a function ξ(m) that represents the transmission type of a

message m. It can be either periodic or event or mixed. Formally, the domain

of this function can be defined as:

ξ(m) ∈ [PERIODIC, EVENT, MIXED]

We assume that there are multiple slots for sending and receiving messages

in the CAN controllers. Usually each slot has a single buffer [11]. If the

previous instance of a message is not sent before the next then the previous

instance is overwritten by the next one. In case of multiple buffers per slot,



86 Paper C

we assume that the FiFo (First in First out) policy is used to send the multiple

instances of a message.

We discuss two cases. In the first, we assume that a message under analysis

has a transmission type either periodic or event. Whereas in the second case,

we consider that the message under analysis is of mixed transmission type.

Case 1: When the Message Under Analysis is Periodic or Event

When the transmission type of m is PERIODIC or EVENT then the worst-case

response time of each instance q of this message is computed by the following

equation:

Rm(q) =







Jm + ωm(q)− qTm + Cm, if ξ(k) = PERIODIC

Jm + ωm(q)− q(MUTm) + Cm, if ξ(k) = EVENT

(6.17)

This equation is similar to the response-time equation (6.13) in the existing

analysis. In (6.17), Jm represents the queueing jitter which is equal to the

worst-case response time of the task that queues m. Cm represents the trans-

mission time of m. It is calculated according to the existing analysis using (6.6)

or (6.7) depending upon the type of CAN frame identifier. If the transmission

type of a message under analysis is PERIODIC then the message period is taken

into account. However, if the transmission type of the message is EVENT, min-

imum update time is used in the above response-time equation.

The algorithms for the computation of the worst-case queueing delay (ωm)

of m should include the interference caused by all the other PERIODIC, EVENT

and MIXED messages. The existing analysis accounts the interference caused

by only PERIODIC and EVENT messages.

As we discussed in the communication model that when transmission type

of a message is MIXED, we duplicate the message and designate the duplicates

as a PERIODIC and EVENT copy of the MIXED message. It is important to note

that all the attributes of the duplicates are the same as that of the original MIXED

message except the PERIODIC copy inherits the period while the EVENT copy in-

herits minimum update time.

Worst Case Queueing Delay of a Periodic or Event Message

Each higher priority MIXED message should contribute more interference to

the the message under analysis. The worst-case queueing delay, adapted from



6.5 Extending CAN Schedulability Analysis 87

(6.15) in the existing analysis, can be computed by the following recursive

equation:

ωn+1
m (q) = Bm + qCm +

∑

∀k∈hp(m)

IkCk (6.18)

where Ik is computed differently for different values of ξ(k) (k is the index

of any higher priority message) as shown below. Note that the interference

by a higher priority MIXED message contains the contribution from both the

duplicates.

Ik =







































⌈

ωn

m
(q)+Jk+τbit

Tk

⌉

, if ξ(k) = PERIODIC

⌈

ωn

m
(q)+Jk+τbit
MUTk

⌉

, if ξ(k) = EVENT

⌈

ωn

m
(q)+Jk+τbit

Tk

⌉

+

⌈

ωn

m
(q)+Jk+τbit
MUTk

⌉

, if ξ(k) = MIXED

(6.19)

The initial value of ωn
m can be taken equal to the blocking time of m as

given by (6.3). Bm in (6.18) can be computed by the same method which is

used in the existing analysis given by (6.4). This is because CAN uses fixed

priority non-preemptive scheduling and any message can be blocked by only

one message in the set of lower priority messages. Although we duplicate all

the mixed messages, a message under analysis can only be blocked by either

the periodic copy or the event copy of any lower priority MIXED message. It

should be noted that both the copies of a MIXED message have the same trans-

mission time, Cm. Hence Bm is equal to the largest transmission time among

all periodic, event and mixed messages in a set of lower priority messages with

respect to the message under analysis.

Length of the Busy Period

The length of priority level-m busy period, denoted by tm, is also adapted

from the existing analysis as given in (6.8). It can be computed by the following

recursive equation.

tn+1
m = Bm +

∑

∀k∈hep(m)

I ′kCk (6.20)



88 Paper C

where I ′k is given by the following relation. Note that the contribution of both

the duplicates of a MIXED message k is taken into account, provided k belongs

to a set of equal or higher priority messages with respect to m.

I ′k =







































⌈

tn
m
+Jk

Tk

⌉

, if ξ(k) = PERIODIC

⌈

tn
m
+Jk

MUTk

⌉

, if ξ(k) = EVENT

⌈

tn
m
+Jk

Tk

⌉

+

⌈

tn
m
+Jk

MUTk

⌉

, if ξ(k) = MIXED

(6.21)

In order to solve this recursive equation, Cm can be used as an initial value

of tnm as shown in (6.9). The right hand side of (6.20) is a monotonic non-

decreasing function of tm. The recursive equation (6.20) is guaranteed to con-

verge if the bus utilization for messages of priority level-m and higher, denoted

by Um, is less than 1. That is,

Um < 1 (6.22)

where Um is computed by the following equation:

Um =
∑

∀k∈hep(m)

CkI
′′
k (6.23)

where I ′′k is given by the following relation:

I ′′k =



















1
Tk

, if ξ(k) = PERIODIC

1
MUTk

, if ξ(k) = EVENT

1
Tk

+ 1
MUTk

, if ξ(k) = MIXED

(6.24)

In the above equation, the contribution by both the copies of all the mixed

messages, lying in a set of equal and higher priority messages with respect to

m, is clearly taken into account while calculating the bus utilization.

The number of instances of m, denoted by Qm, that becomes ready for

transmission before the busy period ends is given by the following equation

(similar to the existing analysis):



6.5 Extending CAN Schedulability Analysis 89

Qm =



















⌈

tm+Jm

Tm

⌉

, if ξ(m) = PERIODIC

⌈

tm+Jm

MUTm

⌉

, if ξ(m) = EVENT

(6.25)

The index of each message-instance is identified by q. The range of q is

shown as follows.

0 ≤ q ≤ Qm − 1 (6.26)

After computing the response time of all the instances of m, we select the

largest value among these response times as the worst-case response time of m

as shown below.

Rm = max(Rm(q)), ∀ 0 ≤ q ≤ (Qm − 1) (6.27)

Case 2: When the Message Under Analysis is Mixed

Since, a message with a MIXED transmission type is duplicated, we compute

the response time of both the duplicates separately. For simplicity, we denote

the PERIODIC and EVENT copies of a mixed message m by mP and mE re-

spectively. Let the worst-case response time of mP and mE be denoted by

RmP
and RmE

respectively. The worst-case response time of m is equal to the

largest value between RmP
and RmE

as given by the following equation:

Rm = max(RmP
, RmE

) (6.28)

where, RmP
and RmE

are computed separately by adapting the existing anal-

ysis. Let us denote the total number of instances of messages mP and mE ,

occurring in the priority level-m busy period, by QmP
and QmE

respectively.

Assume that the index variable for message instances of mP and mE is de-

noted by qmP
and qmE

respectively. The range of qmP
and qmE

is shown by

the following equations:

0 ≤ qmP
≤ (QmP

− 1) (6.29)

similarly,

0 ≤ qmE
≤ (QmE

− 1) (6.30)



90 Paper C

The worst-case response time of mP is equal to the largest value among the

response times of all its instances in the busy period as shown by the following

equation.

RmP
= max(RmP

(qmP
)) (6.31)

Similarly, the worst-case response time of mE is equal to the largest value

among the response times of all its instances in the busy period. It is given by

the following equation.

RmE
= max(RmE

(qmE
)) (6.32)

The worst-case response time of each instance of mP and mE can be de-

rived by adapting the equations for the computation of worst-case response

time of PERIODIC and EVENT messages respectively, derived in case 1, as given

by the following two equations:

RmP
(qmP

) = Jm + ωmP
(qmP

)− qmP
Tm + Cm (6.33)

RmE
(qmE

) = Jm + ωmE
(qmE

)− qmE
MUTm + Cm (6.34)

The queueing jitter, Jm, is the same in both the equations (6.33) and (6.34).

It is equal to the worst-case response time of the task that queues m. The

transmission time, Cm, is also the same in these equations and is calculated

according to the existing analysis by using (6.6) or (6.7) depending upon the

type of CAN frame identifier. Although, both the duplicates of m inherit same

Jm and Cm from it, they experience different amount of worst-case queueing

delay caused by other messages.

The worst-case queueing delay experienced by mP and mE is denoted by

ωmP
and ωmE

in (6.33) and (6.34) respectively. ωmP
and ωmE

can be com-

puted by adapting the algorithm for the computation of the worst-case queueing

delay for PERIODIC and EVENT messages presented in (6.18). In this algorithm,

we need to add the contribution of mP to the worst-case queueing delay expe-

rienced by mE and vice versa. It should be noted that the copies of a mixed

message have equal priority and the existing analysis does not allow any two

messages with equal priority.

Effect of Self Interference in a Mixed Message

In order to derive the contribution of one copy of a mixed message to the

worst-case queueing delay of the other, consider three different cases, depict-

ing the transmission pattern of a mixed message m, shown in Figure 6.3. In



6.5 Extending CAN Schedulability Analysis 91

the first case, we assume that Tm is greater than MUTm . This means that

there could be more transmissions of the event copy compared to the periodic

copy of m. Since the maximum update time between the queueing of any two

event copies can be arbitrarily very long, it is also possible that there are fewer

event transmissions than the periodic transmissions of m. In the second case,

we assume that Tm is equal to MUTm . In this case, there could be equal

transmissions of both the copies of m. In the third case, we assume that Tm

is smaller than MUTm . This implies that the event transmissions will be less

than the periodic transmissions of m.

It is important to note that in the example shown in Figure 6.3, there is a

small offset between the first periodic and event transmission of m. This offset

is used to maximize the queueing delay. If this offset is removed then only one

frame will be queued corresponding to the first instance of both periodic and

event copy. Moreover, the larger value between Tm and MUTm is the integer

multiple of the smaller in all the cases. This relationship along with the offset

between Tm and MUTm ensures that periodic and event transmission of m

will not overlap, there by, maximizing the queueing delay.

Case (a): Tm > MUTm

Let the message under analysis be mP and consider case (a) in Figure 6.3.

An application task queues m periodically with a period Tm (e.g., equal to 9

time units). Moreover, the same task can also queue m at the arrival of events

(labeled with numbers 1-6). The queueing of mE is constrained by MUTm

(e.g., equal to 3 time units). The first instance of mP , i.e., (qmP
= 0), is queued

for transmission as shown by mP (0) in Figure 6.3. If event 1 had arrived at the

same time as the queueing of mP (0) then the signals in mE(0) were updated

as part of mP (0). In that case, mE(0) was not queued separately (this is the

property of a mixed message). In order to maximize the contribution of mE on

the queueing delay of mP , mE(0) is queued just after the queueing of mP (0)
as shown in all the cases in Figure 6.3. Therefore, mE(0) and subsequent

instances of mE will have no contribution in the worst-case queueing delay of

the first instance of mP , i.e., mP (0).

Now, consider the second instance of mP . All the instances of mE that

are queued just before the queueing of mP (1) will contribute to its worst-case

queueing delay. It can be observed in the case (a) that the first three instances

of mE are queued before mP (1). Similarly, there are six instances of mE that

are queued before mP (2).

Let QP
mE

denotes the total number of instances of mE that are queued



92 Paper C

���������	�
� ��
����������������
��		��

��������

����

���� ���

�

���� ���

�����

�����

����� ���������� ��� ����!� ���"�

���� ���� ���� ���� ����

�� ���

���� ���

�

���� ���

�� ���

! �

�����

�����

����� ���!�

����� ���!�

������	�

��������

�� ���

� ! �

������

�� ���

 " �

�����

�����

����� ���!�

����� ���!� ����� ��� � ���"�

!

�����

�

���!�

Figure 6.3: Demonstration of self interference in a MIXED message. Case (a)

Tm > MUTm. Case (b) Tm =MUTm. Case (c) Tm < MUTm



6.5 Extending CAN Schedulability Analysis 93

before the qthmP
instance of mP . We can generalize QP

mE
for the case (a) as

follows:

QP
mE

=

⌈

qmP
Tm

MUTm

⌉

(6.35)

for example, consider again the queueing of different instances of mE and

mP in the case (a). Equation (6.35) yields the set {QP
mE

= 0 , 3 , 6 , ...} for the

corresponding values in the set {qmP
= 0 , 1 , 2 , ...}. Thus the total number of

instances of mE queued before each instance of mp computed by (6.35) are

consistent with the case (a) in Figure 6.3.

Case (b): Tm =MUTm

Consider case (b) in which Tm is equal to MUTm . It can be observed

from Figure 6.3 that there are 0, 1, and 2 instances of mE that are queued

before mP (0), mP (1) and mP (2) respectively. When Equation (6.35) is used

in case (b), we get the set {QP
mE

= 0 , 1 , 2 , ...} for the corresponding values in

the set {qmP
= 0 , 1 , 2 , ...}. Therefore, (6.35) is also applicable on case (b).

Case (c): Tm < MUTm

Now, consider case (c) in which Tm (equal to 3 time units) is smaller than

MUTm (equal to 9 time units). The first instance of mE , which is mE(0),
will be queued before the queueing of mP (1), mP (2) and mP (3). Similarly,

it can be seen from the figure that two instances of mE , which are mE(0) and

mE(1), will contribute to the worst-case queueing delay of mP (4), mP (5)
and mP (6). (6.35) yields the set {QP

mE
= 0 , 1 , 1 , 1 , 2 , 2 , 2 , ...} for the cor-

responding values in the set {qmP
= 0 , 1 , 2 , 3 , 4 , 5 , 6 , ...}. Thus the total

number of instances of mE queued before each instance of mp computed by

Equation (6.35) are consistent with the case (c) in Figure 6.3.

Now we consider the effect of jitter on the instances of mE previous to

mE(0)which can be queued just before mP (0) and hence, can contribute to the

worst-case queueing delay of mP . We assume a FiFo queue for the queueing

of different instances of each message. By adding the jitter of mE to QP
mE

,

equation (6.35) can be generalized for the three cases as follows.

QP
mE

=

⌈

qmP
Tm + Jm

MUTm

⌉

(6.36)

The total number of instances of mP that are queued before the qthmE
in-

stance of mE , denoted by QE
mP

, can be derived in a similar fashion. Thus



94 Paper C

QE
mP

can be computed by the following equation:

QE
mP

=

⌈

qmE
MUTm + Jm

Tm

⌉

(6.37)

Worst Case Queueing Delay of a Mixed Message

The worst-case queueing delay of messages mP and mE can be computed

by adapting (6.18) as follows.

ωn+1
mP

(qmP
) = Bm + qmP

Cm +
∑

∀k∈hp(m)

IkP
Ck +QP

mE
Cm (6.38)

ωn+1
mE

(qmE
) = Bm + qmE

Cm +
∑

∀k∈hp(m)

IkE
Ck +QE

mP
Cm (6.39)

Where, IkP
and IkE

are given by the following equations.

IkP
=



























































⌈

ωn

mP
(qmP

)+Jk+τbit

Tk

⌉

, if ξ(k) = PERIODIC

⌈

ωn

mP
(qmP

)+Jk+τbit

MUTk

⌉

, if ξ(k) = EVENT

⌈

ωn

mP
(qmP

)+Jk+τbit

Tk

⌉

+

⌈

ωn

mP
(qmP

)+Jk+τbit

MUTk

⌉

, if ξ(k) = MIXED

(6.40)

IkE
=



























































⌈

ωn

mE
(qmE

)+Jk+τbit

Tk

⌉

, if ξ(k) = PERIODIC

⌈

ωn

mE
(qmE

)+Jk+τbit

MUTk

⌉

, if ξ(k) = EVENT

⌈

ωn

mE
(qmE

)+Jk+τbit

Tk

⌉

+

⌈

ωn

mE
(qmE

)+Jk+τbit

MUTk

⌉

, if ξ(k) = MIXED

(6.41)



6.5 Extending CAN Schedulability Analysis 95

Bm in equations 6.38 and 6.39 can be computed by the same method which is

used in the existing analysis given by (6.4). By using the values of QP
mE

and

QE
mP

from (6.36) and (6.37) in equations (6.38) and (6.39), we get:

ωn+1
mP

(qmP
) = Bm + qmP

Cm +
∑

∀k∈hp(m)

IkP
Ck +

⌈

qmP
Tm + Jm

MUTm

⌉

Cm (6.42)

ωn+1
mE

(qmE
) = Bm + qmE

Cm +
∑

∀k∈hp(m)

IkE
Ck +

⌈

qmE
MUTm + Jm

Tm

⌉

Cm (6.43)

In order to solve the recursive equations (6.40) and (6.41), initial values

of ωn
mP

(qmP
) and ωn

mE
(qmE

) can be taken equal to the blocking time of the

MIXED message m, i.e.

ω0
mP

(qmP
) = ω0

mE
(qmE

) = Bm (6.44)

Length of the Busy Period

The length of priority level-m busy period, denoted by tm, can be computed

by using (6.20) that was developed for PERIODIC and EVENT messages. This is

because (6.20) takes into account the effect of queueing delay from all the

higher and equal priority messages. Since, the duplicates of a MIXED message

inherit the same priority from it, the contribution of queueing delay from the

duplicate is also covered in (6.20). Therefore, there is no need to compute tm
for mP and mE separately. tm should be computed only once for a MIXED

message m.

Although the length of the busy period is the same for mP and mE , the

number of instances of both the messages that become ready for transmission

just before the end of busy period, i.e., QmP
and QmE

respectively, may be

different. The reason is that the computation of QmP
and QmE

require Tm

and MUTm respectively and which may have different values. QmP
and QmE

can be computed by adapting (6.25) that was derived for the computation of

the number of instances of PERIODIC and EVENT messages that become ready

for transmission before end of the busy period. QmP
and QmE

are given by

the following equations.



96 Paper C

QmP
=

⌈

tm + Jm

Tm

⌉

(6.45)

QmE
=

⌈

tm + Jm

MUTm

⌉

(6.46)

6.6 Conclusion

The schedulability analysis of Controller Area Network (CAN) developed by

the research community can compute the response times of CAN messages that

are queued by application tasks periodically or sporadically. The existing anal-

ysis does not support the analysis of mixed messages. A mixed message can be

queued for transmission both periodically and sporadically. Mixed messages

are used in some of the high-level protocols for CAN such as CANopen and

HCAN. Hence, the context of this problem is very general and requires a new

analysis to support mixed messages.

In this paper, we extended the existing schedulability analysis of CAN to

support the analysis of mixed messages. The extended analysis is able to com-

pute the response times of CAN messages with all types of transmission pat-

terns, i.e., periodic, event and mixed. The extended analysis is applicable to

any high level protocol or commercial extension of CAN that uses any combi-

nation of periodic, event and mixed (periodic/event) transmission of messages.

In future work, the extended analysis will be implemented in an existing

industrial tool suite, the Rubus-ICE [22], that provides a complete component-

based development environment for resource-constrained distributed real-time

systems.

Acknowledgement

This work is supported by Swedish Knowledge Foundation (KKS) within the

project EEMDEF, the Swedish Research Council (VR) within project TiPCES,

and the Strategic Research Foundation (SSF) with the centre PROGRESS. The

authors would like to thank the industrial partners Arcticus Systems and BAE

Systems Hägglunds for the cooperation.



Bibliography

[1] Robert Bosch GmbH. CAN Specification Version 2.0. Postfach 30 02 40,

D-70442 Stuttgart, 1991.

[2] ISO 11898-1. Road Vehicles interchange of digital information

controller area network (CAN) for high-speed communication, ISO

Standard-11898, Nov. 1993.

[3] CAL, CAN Application Layer for Industrial Applications, CiA Draft

Standard DS-207, Version 1.1. CAN-in-Automation, Feb. 1996.

[4] CANopen high-level protocol for CAN-bus, Version 3.0. NIKHEF, Ams-

terdam, March 2000. http://www.nikhef.nl/pub/departments/ct/po/doc/

CANopen.pdf.

[5] Jimmy Westerlund. Hägglunds Controller Area Network (HCAN), Net-

work Implementation Specification. BAE Systems Hägglunds, Sweden

(internal document), April 2009.

[6] MilCAN (CAN for Military Land Systems domain). http://www.milcan.

org/.

[7] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings. Fixed

priority pre-emptive scheduling:an historic perspective. Real-Time Sys-

tems, 8(2/3):173–198, 1995.

[8] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. P. Baker, A. Burns,

G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real

Time Scheduling Theory: A Historical Perspective. Real-Time Systems,

28(2/3):101–155, 2004.

97



98 Bibliography

[9] Mikael Nolin, Jukka Mäki-Turja, and Kaj Hänninen. Achieving Industrial

Strength Timing Predictions of Embedded System Behavior. In ESA,

pages 173–178, 2008.

[10] K.W. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time com-

munications: controller area network (CAN). In Real-Time Systems Sym-

posium (RTSS) 1994, pages 259 –263.

[11] Robert Davis, Alan Burns, Reinder Bril, and Johan Lukkien. Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and re-

vised. Real-Time Systems, 35:239–272, 2007.

[12] Ken Tindell and John Clark. Holistic schedulability analysis for dis-

tributed hard real-time systems. Microprocess. Microprogram., 40:117–

134, April 1994.

[13] Arcticus Systems. http://www.arcticus-systems.com.

[14] C.L. Liu and J.W. Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. ACM, 20(1):46–61, 1973.

[15] M. Joseph and P. Pandya. Finding Response Times in a Real-Time Sys-

tem. The Computer Journal (British Computer Society), 29(5):390–395,

October 1986.

[16] Volcano Network Architect (VNA). Mentor Graphics. http://www.mentor

.com/products/vnd/communication-management/vna.

[17] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano - a

revolution in on-board communications. In Volvo Technology Report,

1998.

[18] Traian Pop, Petru Eles, and Zebo Peng. Holistic scheduling and analysis

of mixed time/event-triggered distributed embedded systems. In Proceed-

ings of the tenth international symposium on Hardware/software code-

sign, CODES ’02, pages 187–192, New York, NY, USA, 2002. ACM.

[19] Ken Tindell and Alan Burns. Guaranteeing Message Latencies on Con-

troller Area Network (CAN). In 1st International CAN Conference, 1994,

pages 1 –11.

[20] CANopen Application Layer and Communication Profile. CiA Draft

Standard 301. Version 4.02. February 13, 2002. www.ece.unh.edu/biolab

/hof/public/CiA.



[21] Olaf Pfeiffer, Andrew Ayre, and Christian Keydel. Embedded Networking

with CAN and CANopen. Annabooks, 2003.

[22] K. Hänninen et.al. Framework for real-time analysis in Rubus-ICE. In

Emerging Technologies and Factory Automation, 2008. ETFA 2008. IEEE

International Conference on, pages 782 –788, 2008.





Chapter 7

Paper D:

Support for Holistic

Response-time Analysis in an

Industrial Tool Suite:

Implementation Issues,

Experiences and a Case

Study

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin.

Accepted for publication in proceedings of the 19th IEEE Conference on En-

gineering of Computer Based Systems (ECBS), Novi Sad, Serbia, April, 2012.

101



Abstract

The process of implementing and integrating state-of-the-art real-time anal-

ysis techniques with an existing industrial tool suite for the development of

Distributed Real-time Embedded (DRE) systems offers many challenges. The

implementer has to not only code and implement the analysis in the tool suite,

but also deal with several issues such as extraction of unambiguous timing and

tracing information from the design model. In this paper we present an imple-

mentation of the Holistic Response-Time Analysis (HRTA) as a plug-in for an

industrial tool suite Rubus-ICE that is used for component-based development

of DRE systems. We discuss and solve the issues encountered and highlight the

experiences gained during the process of implementation, integration and eval-

uation of HRTA plug-in. We also provide a proof of concept by modeling an

automotive application (autonomous cruise control system) using component-

based development and analyzing it with HRTA plug-in.



7.1 Introduction 103

7.1 Introduction

In order to provide evidence that each action in the system will meet its dead-

line, a priori analysis techniques such as schedulability analysis have been

developed by the research community. Response Time Analysis (RTA) [1, 2]

is one of the methods to check the schedulability of a system. It calculates

upper bounds on response times of tasks or messages in a real-time system or a

network respectively. Holistic Response-Time Analysis (HRTA) [3, 4, 5] is an

academic well established schedulability analysis technique to calculate upper

bounds on the response times of event chains (distributed transactions) in a dis-

tributed real-time system. The process of transferring such academic research

results to the tools for industrial use can be challenging.

A tool chain for the industrial development of component-based Distributed

Real-time Embedded (DRE) systems consists of a number of tools such as de-

signer, compiler, builder, debugger, simulator, etc. Often, a tool chain may

comprise of tools that are developed by different tool vendors. The implemen-

tation of state-of-the-art complex real-time analysis techniques such as RTA

and HRTA in such a tool chain is non-trivial because there are several issues

that are encountered apart from merely coding and testing the analysis algo-

rithms.

7.1.1 Goals and Paper Contributions

In this paper, we discuss the implementation of HRTA as a standalone plug-

in in the industrial tool suite Rubus-ICE (Integrated Component development

Environment) [6]. Our goals in this paper are as follows.

1. Transfer the state-of-the-art real-time analysis results, i.e., holistic res-

ponse-time analysis to the tools for industrial use.

2. Discuss and solve several issues encountered during the implementation,

integration and evaluation of HRTA as a plug-in for Rubus-ICE.

3. Discuss the experiences gained during the implementation, integration

and evaluation of HRTA plug-in.

4. Provide a proof of concept by conducting an automotive-application case

study.

We believe, the contributions in this paper may provide guidance for the imple-

mentation of complex real-time analysis techniques in any industrial tool suite



104 Paper D

that supports a plug-in framework for the integration of new tools and allows

component-based development of DRE systems.

7.1.2 Paper Layout

The rest of the paper is organized as follows. Section 7.2 presents the back-

ground and related work. Section 7.3 discusses the implemented analysis. Sec-

tion 7.4 describes the experiences gained and issues encountered during the

implementation of HRTA. Section 7.5 presents a test plan. In Section 7.6, we

present an automotive case study by modeling and analyzing a DRE applica-

tion. Section 7.7 concludes the paper and presents the future work.

7.2 Background and Related Work

7.2.1 The Rubus Concept

Rubus is a collection of methods and tools for model- and component-based

development of dependable embedded real-time systems. Rubus is developed

by Arcticus Systems [6] in close collaboration with several academic and in-

dustrial partners. Rubus is today mainly used for development of control func-

tionality in vehicles. The Rubus concept is based around the Rubus Compo-

nent Model (RCM) [7] and its development environment Rubus-ICE, which

includes modeling tools, code generators, analysis tools and run-time infras-

tructure. The overall goal of Rubus is to be aggressively resource efficient and

to provide means for developing predictable and analyzable control functions

in resource-constrained embedded systems.

RCM expresses the infrastructure for software functions, i.e., the interac-

tion between software functions in terms of data and control flow separately.

The control flow is expressed by triggering objects such as internal periodic

clocks, interrupts, internal and external events. In RCM, the basic component

is called Software Circuit (SWC). The execution semantics of an SWC is sim-

ply: upon triggering, read data on data in-ports; execute the function; write data

on data out-ports; and activate the output trigger. Recently, we extended RCM

for the development of DRE systems by introducing new components [8, 9].

A detailed comparison of RCM with several component models is presented

in [8].

Figure 7.1 depicts the sequence of main steps followed in Rubus-ICE from

modeling of an application to the generation of code. The component-based



7.2 Background and Related Work 105

design of an application is modeled in the Rubus Designer tool. Then the com-

piler compiles the design model into an Intermediate Compiled Component

Model (ICCM). After that the builder tool sequentially runs a set of plug-ins.

Finally, a coder tool generates the code.

Designer Compiler Builder Coder

XML XML

Plug-ins

ICCM Code

Figure 7.1: Sequence of steps from design to code generation in Rubus-ICE

7.2.2 Plug-in Framework in Rubus-ICE

The plug-in framework in Rubus-ICE [10] facilitates the implementation of

state-of-the-art research results in an isolation (without needing Rubus tools)

and their integration as add-on plug-ins (binaries or source code) with the inte-

grated development environment. A plug-in is interfaced with a builder tool as

shown in Figure 7.1. The plug-ins are executed sequentially which means that

the next plug-in can execute only when the previous plug-in has run to com-

pletion. Hence, each plug-in reads required attributes as an input, runs to com-

pletion and finally writes the results to ICCM file. An Application Program-

ming Interface (API) defines the services required and provided by a plug-in.

Each plug-in specifies the supported system model, required inputs, provided

outputs, error handling mechanisms and a user interface. Figure 7.2 shows a

conceptual organization of a Rubus-ICE plug-in.

7.2.3 Response-Time Analysis

RTA of Tasks in a Node

Liu and Layland [11] provided theoretical foundation for analysis of fixed-

priority scheduled systems. Joseph and Pandya published the first RTA [12]

for the simple task model presented in [11]. Subsequently, it has been ap-

plied and extended in a number of ways by the research community. RTA is

used to perform a schedulability test which means it checks whether or not

tasks in the system will satisfy their deadlines. RTA applies to systems where



106 Paper D

tasks are scheduled with respect to their priorities and which is the predomi-

nant scheduling technique used in real-time operating systems [13]. In [13], it

is claimed that amongst the more traditional, analytical, schedulability analysis

techniques, RTA of tasks with offsets stands out as the prime candidate because

of its better precision and ability to analyze quite complex system behaviors.

API Calls
Analysis

Algorithms

User Interaction

Error Handling

API Calls

Figure 7.2: Conceptual organization of a plug-in in Rubus-ICE

Tindell [4] developed the schedulability analysis for tasks with offsets for

fixed-priority systems. It was extended by Palencia and Gonzalez Harbour [5].

Later, Mäki-Turja and Nolin [14] reduced pessimism from RTA developed

in [4, 5] and presented a tighter RTA for tasks with offsets by accurately mod-

eling inter-task interference. We implemented RTA of tasks with offsets [14]

as part of HRTA plug-in.

RTA of Messages in a Network

There are many protocols such as, CAN (Controller Area Network), TTCAN

(Time-Triggered CAN), FlexRay, etc., that are used in DRE systems. To stay

focussed, we will consider only CAN and its high-level protocols. Tindell

et al. [15] developed the schedulability analysis of CAN which has served as

a basis for many research projects. Later on, this analysis was revisited and

revised by Davis et al. [16]. The analysis in [15, 16] assumes that all CAN

device drivers implement priority-based queues. In [17] Davis et al. pointed

out that this assumption may become invalid when some nodes in a CAN net-

work implement FIFO queues. Hence, they extended the analysis of CAN

with FIFO queues as well. However, the existing analysis does not support

mixed messages which are implemented by several high-level protocols for

CAN. In [18, 19], Mubeen et al. extended the existing analysis to support RTA

of mixed messages in the CAN network where some nodes use FIFO queues

while others use priority queues.



7.2 Background and Related Work 107

Holistic RTA

It combines the analysis of nodes (uniprocessors) and a network. Hence, it

computes the response times of event chains that are distributed over several

nodes in a DRE system. In this paper, we consider a timing model that cor-

responds to the holistic schedulability analysis for DRE systems [3]. An ex-

ample distributed transaction in a DRE system is shown in Figure 7.3. The

holistic response time is equal to the elapsed time between the arrival of an

event (corresponding to the brake pedal input) and the response time of Task4

(corresponding to the production of a signal for brake actuation). In [20], we

discussed our preliminary findings about implementation issues that are en-

countered when HRTA is transferred to the industrial tools.

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

Holistic Response Time

Brake

Pedal

Input

Brake

Actuator

Figure 7.3: Holistic response-time in a distributed real-time system

7.2.4 Tools for Timing Analysis of DRE Systems

We briefly discuss few tool suits that provide similar real-time analysis support

for DRE systems. The MAST tool suite [21] implements a number of state-of-

the-art analysis algorithms for DRE systems. Among them is the offset-based

analysis algorithm [4, 5] whose tighter version [14] is implemented in Rubus-

ICE. The MAST model also allows visual modeling and analysis of real-time

systems in a UML design environment. The Volcano Family [22] is a bunch

of tools for designing, analyzing, testing and validating automotive embedded

software systems. Among them, Volcano Network Architect (VNA) [23] is a

communication design tool that supports the analysis of CAN and LIN net-

works. It also supports end-to-end timing analysis of a system with more than

one networks. It implements RTA of CAN developed by Tindell et al. [15].

SymTA/S [24] is a tool for model-based timing analysis and optimiza-

tion. It implements several real-time analysis techniques for single-node, mul-

tiprocessor and distributed systems. It supports RTA of software functions,



108 Paper D

RTA of buss messages and end-to-end timing analysis of both single-rate and

multi-rate systems. It is also integrated with the UML development environ-

ment to provide a timing analysis support for the applications modeled with

UML [25]. RAPID RMA [26] implements several scheduling schemes and

supports end-to-end analysis for single- and multiple-node real-time systems.

It also allows real-time analysis support for the systems modeled with Real-

Time CORBA [27].

The Rubus tool suite allows a developer to specify timing information and

perform holistic response-time analysis at the modeling phase during com-

ponent-based development of DRE systems. To the best of our knowledge,

Rubus-ICE is the only tool suite that implements RTA of mixed messages in

CAN [18] and a tighter version of offset-based RTA algorithm [14] as part of

the holistic RTA.

7.3 Implemented Analysis in Rubus-ICE

We implemented HRTA as a standalone plug-in in Rubus-ICE. The plug-in can

be used to compute the response times of individual tasks in a node, messages

in a network and Distributed Transactions (DTs) in a distributed system.

7.3.1 Node Analysis

In order to analyze tasks in each node, we implemented RTA of tasks with

offsets developed by [4, 5] and improved by [14].

7.3.2 Network Analysis

We implemented a network RTA that supports the analysis of CAN and its

high-level protocols. It is based on the following RTA profiles for CAN.

1. RTA of CAN [15, 16].

2. RTA of CAN for mixed messages [18].

The above analysis assumes that the CAN nodes implement priority-ordered

queues. The next step, as a future work, will be the implementation of CAN

analysis that also supports FIFO ordered queues, i.e., RTA of CAN with FIFO

queues [17] and RTA of CAN with FIFO Queues for Mixed Messages [19].



7.4 Implementation Issues and Experiences 109

7.3.3 Holistic Analysis

The HRTA algorithm iteratively runs the analysis algorithms for node and net-

work analysis. In the first step, release jitter of all messages and tasks in the

system is assumed to be zero. The response times of all messages in the net-

work and all tasks in each node are computed. In the second step attribute

inheritance is carried out. This means that each message inherits a release jitter

equal to the response time of its sender task (computed in the first step). Sim-

ilarly, each receiver of a message inherits a release jitter equal to the response

time of the message (computed in the first step). In the third step, response

times of all messages and tasks are computed again. The newly computed re-

sponse times are compared with the response times previously computed in the

first step. The analysis terminates if the values are equal otherwise these steps

are repeated. The conceptual view of HRTA that is implemented in Rubus-

ICE is shown in Figure 7.4. The pseudocode of HRTA algorithm is shown in

Algorithm 1.

HRTA Plug-in

Algorithms for RTA of 

Tasks in a Node

Algorithms for RTA of 

Messages in a Network

HRTA Algorithm

Figure 7.4: Conceptual view of HRTA plug-in in Rubus-ICE

7.4 Implementation Issues and Experiences

We discuss several issues encountered during the process of implementation

and integration of HRTA as a standalone plug-in in Rubus-ICE. We also present

our solution for each individual issue. Moreover, we discuss the summary of

our experiences that are gained while translating theoretical results (HRTA)

into the industrial tool suite.



110 Paper D

Algorithm 1 HRTA Algorithm

RTPrev ← 0 // Initialize Response Time (RT) to zero

Repeat ← TRUE

while Repeat = TRUE do

for all Messagesandtasksinthesystem do

JitterMsg ← RTSender

JitterReceiver ← RTMsg

ComputeRTof allmessages

ComputeRTof all tasksineverynode

if RT > RTPrev then

RTPrev ← RT

Repeat ← TRUE

else

Repeat ← FALSE

end if

end for

end while

7.4.1 Extraction of Unambiguous Timing Information

One common assumption in HRTA is that the timing attributes required by the

analysis are available as an input. However, when HRTA is implemented in a

tool chain for the analysis of component-based DRE systems, the implementer

has to not only code and implement the analysis, but also extract unambiguous

timing information from the component model and map it to the inputs for

the analysis model. This is because the design and analysis models are build

upon different meta-models [28]. Often, the design model contains redundant

timing information and hence, it is not trivial to extract unambiguous timing

information for HRTA.

We divide the timing information (to be extracted) into two categories. The

first category corresponds to the timing attributes of tasks (in each node) and

network messages that are provided in the modeled application by the user.

These timing attributes include Worst Case Execution Times (WCETs), pe-

riods, minimum update times, offsets, priorities, deadlines, blocking times,

precedence relations in event chains, jitters, etc. In [9], we identified all the

timing attributes of nodes, networks, transactions, tasks and messages that are

required by HRTA. This timing information should be extracted from the mod-

eled application and be made available as an input for HRTA.



7.4 Implementation Issues and Experiences 111

The second category corresponds to the timing attributes that are not di-

rectly provided by the user but they must be extracted from the modeled ap-

plication. For example, message period (in case of periodic transmission) or

message inhibit time (in case of sporadic transmission) is often not specified

by the user. These attributes must be extracted from the modeled application

because they are required by the RTA of network communication. In fact, a

message inherits the period or inhibit time from the task that queues this mes-

sage. Thus, we assign a period or inhibit time to the message equal to the

period or inhibit time of its sender task respectively.

However, the extraction of message timing attributes becomes complex

when the sender task has both periodic and sporadic activation patterns. In

such a case, not only the timing attributes of a message have to be extracted but

also the transmission type of the message has to be identified. This issue can

be visualized in an example shown in Figure 7.5. It should be noted that an Out

Software Circuit (OSWC), shown in the figure, is one of the network interface

components in RCM that sends a message to the network. The other network

interface component is In Software Circuit (ISWC) that receives a message

from the network [8].

In Figure 7.5(a), the sender task is activated by a clock and hence, the cor-

responding message is periodic. Similarly, the corresponding message is spo-

radic in Figure 7.5(b) because the sender task is activated by an event. How-

ever, the sender task in Figure 7.5(c) is triggered by both a clock and an event.

Thus, the corresponding message will be a mixed message [18]. If there are

periodic and sporadic messages in the modeled application, the HRTA plug-in

uses the first profile of network analysis as discussed in the previous Section.

On the other hand if the modeled application contains mixed messages as well,

the second profile of network analysis is used. We extract the transmission type

of a message from the modeled application as follows. If the sender of a mes-

sage has a periodic or sporadic activation pattern then the message is assigned

a periodic or sporadic transmission type respectively. However, if the sender is

activated both periodically and sporadically, the message is assigned a mixed

transmission type.

7.4.2 Extraction of Tracing Information from Distributed

Transactions

In order to perform HRTA, correct tracing information of DTs should be ex-

tracted from the design model [29]. For this, we need to have a mapping among

signals, data ports and messages. Consider the following DT in a two-node



112 Paper D

(c)

(a) (b)

Figure 7.5: Extraction of transmission type of a message

DRE system modeled with RCM as shown in Figure 7.6.

SWC1→ OSWC A→ ISWC B → SWC2→ SWC3

In this example, our focus is on the network interface components, i.e.,

OSWC and ISWC [8]. In order to compute the holistic response time of this

DT, we need to extract tracing information from the component model. We

identified a need for the following mappings in the component model.

• At the sender node, mapping between signals and input data ports of

OSWC components.

• At the sender node, mapping between signals and a message that is sent

to the network.

• At the receiver node, mapping between data output ports of ISWC com-

ponents and the signals to be sent to the desired components.

• At the receiver node, mapping between message received from the net-

work and the signals to be sent to the desired component.

• Mapping between multiple signals and a complex data port. For exam-

ple, mapping of multiple signals extracted from a received message to a

data port that sends a complex signal (structure of signals).

• Mapping of all trigger ports of network interface components along a DT

as shown by a bidirectional arrow in Figure 7.6.



7.4 Implementation Issues and Experiences 113

Controller Area Network (CAN)

Node A

Signals

SWC1

OSWC_A

CAN

SEND

Ext

messages

Signals

ISWC_B

SWC2 SWC3

CAN

RECEIVE

Node B
Data Port

Trigger 

Port

External

Event
Ext

Data 

Source

Data 

Sink

Figure 7.6: Two-node DRE system modeled in RCM

7.4.3 Impact of Design Decisions in Component Model on

the Implementation of Analysis

Design decisions made in the component model can have indirect impact on

the response times computed by the analysis. For example, design decisions

could have impact on WCETs and blocking times which in turn have impact

on the response times. In order to implement, integrate and test HRTA, the

implementer needs to understand the design model (component model), anal-

ysis model and run-time translation of the design model. In the design model,

the architecture of an application is described in terms of software compo-

nents, their interconnections and software architectures. Whereas in the anal-

ysis model, the application is defined in terms of tasks, transactions, messages

and timing parameters. At run-time, a task may correspond to a single compo-

nent or chain of components. The run-time translation of a software component

may differ among different component models.

7.4.4 Direct Cycles in Distributed Transactions

A direct cycle in a DT is formed when any two tasks located on different nodes

send messages to each other. When there are direct cycles in a DT, the holistic

analysis algorithm may run forever and may not produce converging results,

i.e., the response times increase in every iteration.

Consider a two-node application modeled in RCM as shown in Figure

7.7 (a). The OSWC A component in node A sends a message m1 to node

B where it is received by ISWC B component. Similarly, OSWC B com-

ponent in node B sends a message m2 to ISWC A component in node A.



114 Paper D

There are two options for run-time allocation of the network interface compo-

nents (OSWC and ISWC) as shown in Figure 7.7 (b). First option is to allocate

a network interface component to the task that corresponds to the immediate

SWC, i.e., to the same task as that of the component that receives/sends the

signals from/to it. Since SWC A is immediately connected to both network

interface components in node A, there will be only one task in node A denoted

by τA as shown in Figure 7.7 (b). Similarly, τB is the run-time representation

of ISWC B , SWC B and OSWC B components. It is obvious that the run-

time allocation of network interface components in the first option results in

direct cycles.

The direct cycles in DTs can be avoided by allocating each network inter-

face component to a separate task as shown in the option 2 in Figure 7.7 (b).

Although same messages are sent between the nodes, one task can not be both

a sender and a receiver. No doubt there is a cycle between the nodes, but

not a direct one. In this case, the holistic algorithm may produce converg-

ing response-time results and non-terminating execution of the plug-in may be

avoided. It is interesting to note that the requirements and limitations of the

analysis implementation provides feedback to the design decisions concerning

the run-time allocation of modeling components.

Node B

ISWC_B OSWC_BSWC_B

Node A

ISWC_A OSWC_ASWC_A

m2

Node B

 SWC_B

 OSWC_B

 ISWC_B

Node A

 SWC_A

 ISWC_A

 OSWC_A

Option 2

Node B

 B

Node A

 A

Option 1

m1

m2

m1

(a) (b)

Figure 7.7: Run-time allocation of network interface components

7.4.5 Analysis of DRE Systems with Multiple Networks

In a DRE system, a node may be connected to more than one network. If a

transaction is distributed over more than one network, the computation of its



7.4 Implementation Issues and Experiences 115

holistic response time involves the analysis of more than one network. Con-

sider an example of a DRE system with two networks, i.e., CAN and LIN as

shown in Figure 7.8. There are five nodes in the system. Node 3 is a gateway

node that is connected to both the networks. Consider a transaction in which

task1 in Node1 sends a message to task1 in Node5 via Node3. The compu-

tation of holistic response time of this transaction will involve the computation

of message response times in both CAN and LIN networks.

If a modeled system contains more than one network, we divide it into sub-

systems (each having a single network) and analyze them separately. In the

above example, we first perform HRTA using CAN network. Then we provide

the response times of the messages that are received at the gateway node as

input jitters to the receiver tasks (attribute inheritance). Finally, HRTA of LIN

network is performed. However, the implemented HRTA does not support the

analysis of transactions that are distributed cyclically on multiple networks,

i.e., the transactions that are distributed over more than one network and first

and last task of the transaction are located on the same network.

Task1 Task1 Task2 Task1

CAN

Node1 Node2
Gateway Node

Node3

Task1

LIN

Node4 Node5

Task1

Figure 7.8: Multiple networks in a DRE system

7.4.6 Sequential Execution of Plug-ins in Rubus Plug-in

Framework

The Rubus plug-in framework allows only sequential execution of plug-ins.

Hence, a plug-in has to execute to completion and terminate before running

the next plug-in. It should be noted that there exists a plug-in in Rubus-ICE

that performs RTA of tasks in a node and it is already in the industrial use.

There are two options to develop HRTA plug-in for Rubus-ICE, i.e., option A

and B as shown in Figure 7.9.

The option A supports reusability by building the HRTA plug-in upon the

existing Node RTA Plug-in. Thus, HRTA plug-in is built by integrating exist-



116 Paper D

ing RTA plug-in and two new plug-ins, i.e., one implementing network RTA

algorithms and the other implementing holistic RTA algorithm. In this case

HRTA plug-in is very light weight. It iteratively uses the analysis results pro-

duced by the node and the network RTA plug-ins and accordingly provides

new inputs to them until converging holistic response times are obtained. On

the other hand, option B requires the development of HRTA plug-in from the

scratch, i.e, implementing the algorithms of node, network and holistic RTA.

This option does not support any reuse of existing plug-ins.

Node RTA Plug-in

Rubus Builder

Algorithms for RTA 

of Tasks in a Node

Node Timing 

Information

Network RTA Plug-in

Algorithms for RTA of 

messages in a Network

Network Timing 

Information

HRTA Plug-in

Algorithms for HRTA

End-to-end

Timing Information

Rubus Builder

HRTA Plug-in

Algorithms for 

RTA of Tasks

in a Node

Algorithms for 

RTA of messages

in a Network

Algorithms for HRTA

End-to-end

Timing Information

Analysis

Results

Analysis Results Analysis Results

Analysis 

Results

Option A Option B

Figure 7.9: Options to develop HRTA Plug-in for Rubus-ICE

Since, option A allows the reuse of a pre-tested and heavy weight (having

most complex algorithms compared to network and holistic RTA) node RTA

plug-in, it is easy to implement and requires less time for implementation,

integration and testing compared to option B. However, the implementation

method in option A is not supported by the plug-in framework of Rubus-ICE

because the plug-ins can only be sequentially executed and one plug-in can not

execute the other. Hence, we had to select option B for the implementation of

HRTA.

7.4.7 Presentation of Analysis Results

When HRTA of a modeled application has been performed, the next issue is

how to present the analysis results. There can be a large number of tasks and

messages in the system. It may not be appropriate to display the response time



7.4 Implementation Issues and Experiences 117

of all the tasks and messages because it may contain a lot of useless infor-

mation (if the user is not interested in all of it). Furthermore, presenting the

response times of only DTs to the user may not be appropriate because there

may be hundreds of DTs in a DRE application. A way around this problem is

to provide the response times of only those tasks and DTs which have dead-

line requirements (specified by the user) or which produce control signals for

external actuators (e.g., the analysis results of case study that will be discussed

in Section 7.6). Apart from this, we also provide an option for the user to get

detailed analysis results.

7.4.8 Interaction between the User and HRTA Plug-in

We identified that it is important to provide a progress report of HRTA plug-in

during its execution. Based on the progress, the user should be able to inter-

act with the plug-in while it is running. The HRTA algorithm iteratively runs

the algorithms of node RTA and network RTA until converging values of the

response times are computed or the computed response times exceed the dead-

lines (if deadlines are specified). We feel that it is important to display the

number of iterations, running time and over all progress of the plug-in dur-

ing its execution. Moreover, the user should be able to stop, rerun or exit the

plug-in at any time.

7.4.9 Suggestions to Improve Schedulability Based on Anal-

ysis Results

If the analysis results indicate that the modeled system is unschedulable, it can

be interesting if HRTA plug-in is able to provide suggestions (e.g., by varying

system parameters) guiding the user to make the system schedulable. However,

it is not trivial to provide such feedback because there can be so many reasons

behind the system being not schedulable. The support for this type of feedback

in HRTA plug-in will be provided in the future.

7.4.10 Requirement for Continuous Collaboration between

Integrator and Implementer

Our experience of integrating HRTA plug-in with Rubus-ICE shows that there

is a need of continuous collaboration between the integrator of the plug-in and

its implementer especially in the phase of integration testing (see next Sec-

tion). This collaboration is more obvious when the plug-in is developed in iso-



118 Paper D

lation by the implementer (from research background) and integrated with the

industrial tool chain by the integrator (with limited experience of integrating

complex real-time analysis but aware of overall objective). A continuous con-

sultation and communication was required between the integrator and the im-

plementer for the verification of the plug-in. Examples of small DRE systems

with varying architectures were created for the verification. The implementer

had to verify these examples by hand. The integration testing and verification

of HRTA plug-in was non-trivial and most tedious activity.

7.5 Testing and Evaluation

In this section we discuss our test plan for both standalone and integration

testing of HRTA plug-in. Error handling and sanity checking routines make

a significant part of the implementation. The purpose of these routines is to

detect and isolate faults and present them to the user during the analysis. Our

test plan contains the following sets of error handling routines.

• A set of routines evaluating the validity of all inputs: attributes of all

nodes, transactions, tasks, networks and messages in the system.

• A set of routines evaluating the validity of linking and tracing informa-

tion of all DTs in the system.

• A set of routines evaluating the validity of intermediate results that are

iteratively inherited as inputs (e.g., a message inheriting the worst-case

response time of the sender tasks as a release jitter).

• A set of routines evaluating the overload conditions during the analysis.

For example, processor utilization exceeding 100%, presence of direct

cycles in the system, etc. Since HRTA algorithm is iterative, the analysis

may never terminate in the presence of these conditions.

• A set of routines evaluating variable overflow during the analysis.

7.5.1 Standalone Testing

Standalone testing means testing the implementation of HRTA before it is in-

tegrated as a plug-in with the Rubus builder tool. In other words, it refers to

the testing of HRTA in an isolation. The following input methods were used

for standalone testing.



7.6 Automotive Case Study 119

1. Hard coded input test vectors.

2. Test vectors are read from external files.

3. Test vectors are generated using a test case generator (a separate pro-

gram). This generator produces test cases with varying architectures. It

also randomly inserts invalid inputs to check if the error handling rou-

tines are able to catch the errors.

The analysis results provided by the plug-in corresponding to the test vectors

in the first two input methods were also verified by hand.

7.5.2 Integration Testing

Integration testing refers to the testing of HRTA plug-in after integrating it

with the Rubus builder tool. Although standalone testing is already performed,

the integration of HRTA with Rubus-ICE may induce unexpected errors. Our

experience shows that integration testing is much more difficult and time con-

suming activity compared to standalone testing. The following input methods

were used for integration testing.

1. Test vectors are read from external files.

2. Test vectors are manually written in ICCM file (see Figure 7.1) to make

it appear as if test vectors were extracted from the modeled application.

3. Test vectors are automatically extracted from several DRE applications

modeled with RCM.

The analysis results provided by the plug-in corresponding to all types of test

cases were also verified by hand.

7.6 Automotive Case Study

We provide a proof of concept for the analysis approach that we implemented

in Rubus-ICE by conducting an automotive case study. First, we model an

Autonomous Cruise Control (ACC) system with RCM using Rubus-ICE. Then,

we analyze the modeled ACC system using HRTA plug-in.



120 Paper D

7.6.1 Autonomous Cruise Control System

A cruise control system is an automotive feature that allows a vehicle to au-

tomatically maintain a steady speed to the value that is preset by the driver.

It uses velocity feedback from the speed sensor (e.g., a speedometer) and ac-

cordingly controls the engine throttle. However, it does not take into account

traffic conditions around the vehicle. Whereas, an Autonomous Cruise Control

(ACC) system allows the cruise control of the vehicle to adapt itself to the traf-

fic environment without communicating with the surrounding vehicles. Often,

it uses a radar to create a feedback of distance to and velocity of the preceding

vehicle. Based on the feedback, it either reduces the vehicle speed to keep a

safe distance and time gap from the preceding vehicle or accelerates the vehicle

to match the preset speed specified by the driver [30].

An ACC system may be divided into four subsystems, i.e., Cruise Control,

Engine Control, Brake Control and User Interface subsystem [31]. Figure 7.10

shows the block diagram of ACC system. The subsystems communicate with

each other via a CAN network.

Controller Area Network (CAN)

Brake Control 

Subsystem

Engine Control 

Subsystem

Cruise Control 

Subsystem

User Interface 

Subsystem

Figure 7.10: Block diagram of Autonomous Cruise Control System

User Interface Subsystem

The User Interface (UI) subsystem reads inputs (provided by the driver) and

shows status messages and warnings on the display screen. The inputs are

acquired by means of switches and buttons mounted on the steering wheel.

These include Cruise Switch input (corresponding to ON/OFF/Standby states

for ACC), Set Speed input (desired cruising speed set by the driver) and de-

sired clearing distance from the preceding vehicle. Apart from user inputs, it

also receives some other parameters from the rest of the subsystems via CAN

network. These include linear and angular speed of the vehicle, i.e., kilome-

ter per hour (KPH) and revolution per minute (RPM), status of manual brake



7.6 Automotive Case Study 121

sensor, state of ACC subsystem, status messages and warnings to be displayed

on the screen. Apart from showing status messages and warnings, it sends

messages (including status of driver’s input) to other subsystems.

Cruise Control Subsystem

The Cruse Control (CC) subsystem receives user input information as a CAN

message from the UI subsystem. From the received message it analyzes the

state of the cruise control switch; if it is in ON state then it activates the cruise

control functionality. It reads input from proximity sensor (e.g., radar) and

processes it to determine the presence of a vehicle in front of it. Moreover,

it processes the radar signals along with the information received from other

subsystems such as vehicle speed to determine its distance from the preceding

vehicle. Accordingly, it sends control information to the Brake Control and

Engine Control subsystems to adjust the speed of the vehicle with the cruising

speed or clearing distance from the preceding vehicle. It also receives the status

of manual brake sensor from Brake Control subsystem. If brakes are pressed

manually then the cruise control functionality is disabled. It also sends status

messages to the UI subsystem.

Engine Control Subsystem

The Engine Control (EC) subsystem is responsible for controlling the vehicle

speed by adjusting engine throttle. It reads sensor input and accordingly deter-

mines engine torque. It receives CAN messages sent by other subsystems. The

messages include information regarding vehicle speed, status of manual brake

sensor, and input information processed by UI system. Based on the received

information, it determines whether to increase or decrease engine throttle. It

then sends new throttle position to the actuators that control engine throttle.

Brake Control Subsystem

The Brake Control (BC) subsystem receives inputs from sensor for manual

brakes status and linear and angular speed sensors connected to all wheels.

It also receives a CAN message that includes control information processed

by CC subsystem. Based on this feedback, it computes new vehicle speed.

Accordingly, it produces control signals and sends them to the brake and back

light actuators. It also sends CAN messages to other subsystems that carry

information regarding status of manual brake, vehicle speed and RPM.



122 Paper D

7.6.2 Modeling of ACC System with RCM in Rubus-ICE

In RCM, we model each subsystem as a separate node connected to a CAN

network as shown in Figure 7.11. The selected speed of CAN bus is 500kbps .

The extended frame format is selected which means that all frames will use

29-bit identifier [32].

Figure 7.11: Model of Autonomous Cruise Control System in RCM

There are seven CAN messages that are sent by the nodes as shown in

Figure 7.12. A signal data base that contains all the signals sent to the network

is also shown. Each signal in the signal database is linked to one or more

messages. The extracted attributes of all messages including data size (sm),

priority (Pm), transmission type (ξm) and period or minimum inter-arrival time

(Tm) are listed in Table 1.

Figure 7.12: Model of CAN messages and signal database in RCM

A high-level architecture of UI, CC, EC and BC nodes in RCM is shown in

Figures 7.13, 7.14, 7.15 and 7.16 respectively.

In this Section, we discuss the internal model of only CC node. The details

of internal models of the rest of the nodes are presented in Appendix A. The CC

node is modeled with four assemblies as shown in Figure 7.14. An assembly in

RCM is a container for various software items. The Input from Sensors assem-

bly contains an SWC that reads radar sensor values as shown in Figure 7.17.

The Input from CAN assembly contains three ISWCs, i.e., GUI Input Msg

ISWC, Vehicle speed Msg ISWC and Manual brake input Msg ISWC as de-

picted in Figure 7.18. These components receive respective messages m1 , m6



7.6 Automotive Case Study 123

Figure 7.13: Architecture of a User Interface node in RCM

Figure 7.14: Architecture of a Cruise Control node in RCM

Figure 7.15: Architecture of a Engine Control node in RCM

and m7 from CAN network. Similarly, the assembly Output to CAN contains

three OSWC components as shown in Figure 7.19. These components send

messages m5 , m4 and m2 to CAN network. The Cruise Control assembly

contains two SWCs: one handles the input and cruise control mode signals

while the other processes the received information and produces control mes-



124 Paper D

Figure 7.16: Architecture of a Brake Control node in RCM

Table 7.1: Message attributes extracted from the model and corresponding

analysis results

Msg sm Pm ξm Tm Cm Rm

µSec µSec µSec

m1 8 7 Periodic 10000 320 3860

m2 8 6 Periodic 10000 320 2360

m3 8 4 Periodic 10000 200 2540

m4 8 3 Sporadic 10000 320 7340

m5 2 5 Sporadic 10000 320 6520

m6 2 2 Periodic 10000 200 1200

m7 1 1 Sporadic 10000 180 7500

sages for the other nodes. The internal structure of this assembly is shown in

Figure 7.20.

Figure 7.17: Internals of an assembly reading sensors



7.6 Automotive Case Study 125

Figure 7.18: Internals of an assembly reading CAN messages

Figure 7.19: Internals of an assembly sending CAN messages

7.6.3 Modeling of Deadline Requirements

We specify deadline requirements on four DTs in ACC system using a deadline

object in RCM. Upon reading the radar signal, these DTs produce brake and

engine actuation signals and display information for the driver. All these trans-

actions have a common initiator, i.e., their first task corresponds to the SWC

that reads radar signal and is located in the CC node. The last tasks of first and



126 Paper D

Figure 7.20: SWCs comprising the Cruise Control assembly

second DTs are located in the Brake Control node. These tasks correspond to

the SWCs SetBrakeSignal and SetBackLightSignal as shown in Figure. 7.16.

The last task of third DT corresponds to SetThrottlePosition SWC and is lo-

cated in the Engine Control node as shown in Figure. 7.15. The last task of

fourth DT corresponds to GUIdisplay SWC and is located in the User Interface

node as shown in Figure. 7.13.

7.6.4 HRTA of ACC System using HRTA Plug-in

The run-time allocation of all the components in the model of ACC system

results in 19 transactions, 36 tasks and 7 messages. Due to lack of space,

the extracted timing attributes and detailed analysis results of all transactions

and tasks can not be provided. The transmission times (Cm) and worst-case

response times (Rm) of all messages computed by HRTA plug-in are shown in

Table 1. The analysis report in Table 2 provides worst-case holistic response

times of four DTs (discussed in the previous subsection) using HRTA plug-in.

The corresponding deadlines are also shown. The response time of a DT is

counted from the activation of the first task to the completion of the last task in

the chain. The response time of these four DTs correspond to the production

of control signals for brake actuators, back lights, engine throttle actuator and

graphical user interface.

7.7 Conclusion and Future Work

We presented an implementation of state-of-the-art Holistic Response Time

Analysis (HRTA) as a plug-in for the industrial tool suite Rubus-ICE. The im-

plemented analysis is general as it supports the integration of real-time analysis

of various networks without a need for changing the holistic analysis algorithm.

We discussed and solved several issues that we faced during the implementa-

tion, integration and evaluation of HRTA plug-in. The experience gained by



7.7 Conclusion and Future Work 127

Table 7.2: Analysis Report

DT Control Signal Deadline Holistic

Produced by DT (µSec) Response

Time(µSec)

1 SetBrakeSignal 10000 6000

2 SetBackLightSignal 10000 6500

3 SetThrottlePosition 5000 3000

4 GUIdisplay 12000 1500

dealing with the implementation issues provided a feed back to the component

model, for example, feed back on the design decisions for efficient run-time

allocation of network interface components. We also discussed the steps that

we followed for testing and evaluating HRTA plug-in. We found the integration

testing to be a tedious and non-trivial activity. Our experience of implementing,

integrating and evaluating HRTA plug-in shows that a considerable amount of

work and time is required to transfer complex real-time analysis results to the

industrial tools.

We provided a proof of concept by modeling an autonomous cruise con-

trol system using component-based development and analyzing it with HRTA

plug-in. We believe that most of the implementation issues discussed in this

paper are generally applicable when real-time analysis is transferred to any in-

dustrial or academic tool suite. Moreover, the contributions in this paper may

provide guidance for the implementation of other complex real-time analysis

techniques in any industrial tool suite that supports a plug-in framework (for

the integration of new tools) and component-based development of DRE sys-

tems.

In the future, we plan to implement the analysis of other network commu-

nication protocols (e.g., Flexray, switched ethernet, etc.) and integrate them

within HRTA plug-in. Another future work could be the implementation of

end-to-end latency analysis in Rubus-ICE to support the analysis of multi-

rate real-time systems. We also plan to provide a support for asynchronous

data-flow using the two different semantics of data-age and reaction described

in [33].



128 Paper D

Acknowledgement

This work is supported by Swedish Knowledge Foundation (KKS) within the

projects Femmva and EEMDEF, the Swedish Research Council (VR) within

project TiPCES, and the Strategic Research Foundation (SSF) with the centre

PROGRESS. The authors would like to thank the industrial partners Arcticus

Systems and BAE Systems Hägglunds.

7.8 Appendix A

Internal Model of User Interface Node in RCM

The User Interface node is modeled with three assemblies along with two

SWCs as shown in Figure 7.13. The GUI Control SWC handles the input from

the sensors and messages from the CAN network. After processing the infor-

mation, it not only produces information for Graphical User Interface (GUI),

but also computes control signals for the other nodes. The GUIdisplay SWC

sends the signals (corresponding to updated information) to GUI in the car.

The Input from Sensors assembly contains two SWCs as shown in Fig-

ure 7.21. One of them reads the sensor values that correspond to the state

of the cruise control switch on the steering wheel. The other SWC reads the

sensor values that correspond to the vehicle cruising speed set by the driver.

Figure 7.21: User Interface Node: internals of an assembly reading sensors

The Input from CAN assembly contains four ISWC components, i.e., Ve-

hicle Speed Msg ISWC, RPM Msg ISWC, ACC text display Msg ISWC and

Manual brake input Msg ISWC as shown in Figure 7.22. These components

receive messages m6 , m3 , m2 and m7 from CAN network respectively.



7.8 Appendix A 129

Figure 7.22: User Interface Node: internals of an assembly reading CAN mes-

sages

The third assembly, i.e., Output to CAN Periodic sends a message m1 to

CAN network via the OSWC component as shown in Figure 7.23.

Figure 7.23: User Interface Node: internals of an assembly sending CAN mes-

sages

Internal Model of Engine Control Node in RCM

The Engine Control node is modeled with four assemblies as shown in Fig-

ure 7.15. The Input from Sensors assembly contains a SWC that reads the

sensor values corresponding to the engine torque as shown in Figure 7.24. The

Input from CAN assembly contains three ISWCs, i.e., Vehicle Speed Msg



130 Paper D

ISWC, Engine control info Msg ISWC and Manual brake input Msg ISWC

as shown in Figure 7.25. These components receive messages m6 , m4 and

m7 from CAN network respectively. The third assembly, Output to Actuators

as shown in Figure 7.26, contains the SWC that produces control signals for the

engine throttle actuator. The fourth assembly, i.e., Engine Control as shown in

Figure 7.27, contains two SWCs: one handles and processes the inputs from

sensors and received messages while the other computes the new position for

engine throttle.

Figure 7.24: Engine Control Node: internals of an assembly reading sensors

Figure 7.25: Engine Control Node: internals of an assembly reading CAN

messages

Internal Model of Brake Control Node in RCM

The Brake Control node is modeled with five assemblies as shown in Fig-

ure 7.16. The Input from Sensors assembly contains three SWCs as shown in

Figure 7.28. These SWCs read the sensor values that correspond to the values

of speed, rpm and manual brake sensors in the vehicle. The Input from CAN



7.8 Appendix A 131

Figure 7.26: Engine Control Node: internals of an assembly producing actua-

tion signals

Figure 7.27: Engine Control Node: SWCs comprising the Engine Control as-

sembly

assembly, shown in Figure 7.29, contains the ISWC component Brake control

info Msg ISWC that receives a message m5 from CAN network. The third as-

sembly, i.e., Brake Control as shown in Figure 7.30, contains two SWCs: one

handles and processes the inputs from sensors and received messages while the

other computes the control signals for brake actuators. The fourth assembly

Output to CAN contains three OSWC components as shown in Figure 7.31.

These components send messages m7 , m6 and m3 to CAN network. The fifth

assembly, Output to Actuators as shown in Figure 7.32, contains the SWCs

that produce control signals for the brake actuators and back light controllers.

Figure 7.28: Brake Control Node: Internals of an assembly reading sensors



Figure 7.29: Brake Control Node: Internals of an assembly reading CAN mes-

sages

Figure 7.30: Brake Control Node: Internals of Brake Control assembly

Figure 7.31: Brake Control Node: Internals of an assembly sending CAN mes-

sages

Figure 7.32: Brake Control Node: internals of an assembly producing actuation

signals



Bibliography

[1] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings. Fixed

priority pre-emptive scheduling:an historic perspective. Real-Time Sys-

tems, 8(2/3):173–198, 1995.

[2] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. P. Baker, A. Burns,

G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok. Real

Time Scheduling Theory: A Historical Perspective. Real-Time Systems,

28(2/3):101–155, 2004.

[3] Ken Tindell and John Clark. Holistic schedulability analysis for dis-

tributed hard real-time systems. Microprocess. Microprogram., 40:117–

134, April 1994.

[4] K. W. Tindell. Using offset information to analyse static priority preemp-

tively scheduled task sets. Technical Report YCS 182, Dept. of Computer

Science, University of York, 1992.

[5] J.C. Palencia and M. Gonzalez Harbour. Schedulability Analysis for

Tasks with Static and Dynamic Offsets. Real-Time Systems Symposium,

IEEE International, page 26, 1998.

[6] Arcticus Systems. http://www.arcticus-systems.com.

[7] K. Hänninen et.al. The Rubus Component Model for Resource Con-

strained Real-Time Systems. In 3rd IEEE International Symposium on

Industrial Embedded Systems, June 2008.

[8] Saad Mubeen, Jukka Mäki-Turja, Mikael Sjödin, and Jan Carlson. An-

alyzable Modeling of Legacy Communication in Component-Based Dis-

tributed Embedded Systems. In 37th EUROMICRO Conference on Soft-

133



134 Bibliography

ware Engineering and Advanced Applications (SEAA), 2011, pages 229

–238, Sep. 2011.

[9] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Extraction of end-

to-end timing model from component-based distributed real-time embed-

ded systems. In Time Analysis and Model-Based Design, from Functional

Models to Distributed Deployments (TiMoBD) workshop located at Em-

bedded Systems Week, pages 1–6. Springer, October 2011.

[10] K. Hänninen et.al. Framework for real-time analysis in Rubus-ICE. In

Emerging Technologies and Factory Automation, 2008. ETFA 2008. IEEE

International Conference on, pages 782 –788, 2008.

[11] C.L. Liu and J.W. Layland. Scheduling algorithms for multi-

programming in a hard-real-time environment. ACM, 20(1):46–61, 1973.

[12] M. Joseph and P. Pandya. Finding Response Times in a Real-Time Sys-

tem. The Computer Journal (British Computer Society), 29(5):390–395,

October 1986.

[13] Mikael Nolin, Jukka Mäki-Turja, and Kaj Hänninen. Achieving Industrial

Strength Timing Predictions of Embedded System Behavior. In ESA,

pages 173–178, 2008.

[14] Jukka Mäki-Turja, , and Mikael Nolin. Tighter response-times for tasks

with offsets. In Real-time and Embedded Computing Systems and Appli-

cations Conference (RTCSA). Springer-Verlag, August 2004.

[15] K.W. Tindell, H. Hansson, and A.J. Wellings. Analysing real-time com-

munications: controller area network (CAN). In Real-Time Systems Sym-

posium (RTSS) 1994, pages 259 –263.

[16] Robert Davis, Alan Burns, Reinder Bril, and Johan Lukkien. Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and re-

vised. Real-Time Systems, 35:239–272, 2007.

[17] Robert I. Davis, Steffen Kollmann, Victor Pollex, and Frank Slomka.

Controller Area Network (CAN) Schedulability Analysis with FIFO

queues. In 23rd Euromicro Conference on Real-Time Systems

(ECRTS11), July 2011.



Bibliography 135

[18] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Extending schedu-

lability analysis of controller area network (CAN) for mixed (peri-

odic/sporadic) messages. In Emerging Technologies Factory Automation

(ETFA), IEEE 16th Conference on, sept. 2011.

[19] Mubeen, Saad and Mäki-Turja, Jukka and Sjödin, Mikael. Extend-

ing response-time analysis of controller area network (CAN) with FIFO

queues for mixed messages. In Emerging Technologies Factory Automa-

tion (ETFA), IEEE 16th Conference on, pages 1–4, sept. 2011.

[20] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Implementation of

Holistic Response-Time Analysis in Rubus-ICE: Preliminary Findings,

Issues and Experiences. In The 32nd IEEE Real-Time Systems Symposium

(RTSS), WIP Session, pages 9–12, December 2011.

[21] MAST–Modeling and Analysis Suite for Real-Time Applications.

http://mast.unican.es/.

[22] The Volcano Family. http://www.mentor.com/products/vnd.

[23] Volcano Network Architect (VNA). Mentor Graphics. http://www.mentor

.com/products/vnd/communication-management/vna.

[24] Arne Hamann, Rafik Henia, Razvan Racu, Marek Jersak, Kai Richter,

and Rolf Ernst. Symta/s - symbolic timing analysis for systems, 2004.

[25] M. Hagner and U. Goltz. Integration of scheduling analysis into uml

based development processes through model transformation. In Com-

puter Science and Information Technology (IMCSIT), Proceedings of the

2010 International Multiconference on, pages 797 –804, oct. 2010.

[26] RAPID RMA: The Art of Modeling Real-Time Systems.

http://www.tripac.com/rapid-rma.

[27] D.G. Schmidt and F. Kuhns. An overview of the Real-Time CORBA

specification. Computer, 33(6):56 –63, June 2000.

[28] M. Hagner and U. Goltz. Integration of scheduling analysis into uml

based development processes through model transformation. In Com-

puter Science and Information Technology (IMCSIT), Proceedings of the

2010 International Multiconference on, pages 797 –804, oct. 2010.



[29] Mubeen, Saad and Mäki-Turja, Jukka and Sjödin, Mikael. Tracing event

chains for holistic response-time analysis of component-based distributed

real-time systems. SIGBED Review, 8:48–51, September 2011.

[30] P. Berggren. Autonomous Cruise Control for Chalmers Vehicle Simula-

tor. Master’s thesis, Department of Signals and Systems, Chalmers Uni-

versity of Technology, 2008.

[31] Adaptive Cruise Control System Overview. In Workshop of Software Sys-

tem Safety Working Group, April 2005. Anaheim, California, USA. Avail-

able at: sunnyday.mit.edu/Adaptive Cruise Control Sys Overview.pdf.

[32] ISO 11898-1. Road Vehicles interchange of digital information

controller area network (CAN) for high-speed communication, ISO

Standard-11898, Nov. 1993.

[33] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. A Compositional

Framework for End-to-End Path Delay Calculation of Automotive Sys-

tems under Different Path Semantics. In Compositional Theory and Tech-

nology for Real-Time Embedded Systems, 2008. CRTS 2008. Workshop

on, dec. 2008.






	Lic146
	thesisRaw.pdf

