
FESCA 2012

TOOL PAPER: A Design Tool for
Service-oriented Systems

Eduard Paul Enoiu Raluca Marinescu Aida Čaušević
Cristina Seceleanu 1

Mälardalen Real-Time Research Centre
Mälardalen University

Väster̊as, Sweden

Abstract

In this paper we present a modeling and analysis tool for service-oriented systems. The tool
enables graphical modeling of service-based systems, within the resource-aware timed behavioral
language Remes, as well as a textual system description. We have developed a graphical envi-
ronment where services can be composed as desired by the user, together with a textual service
composition interface in which compositions can also be checked for correctness. We also provide
automated traceability between the two design interfaces, which results in a tool that enhances
the potential of system design by intuitive service manipulation. The paper presents the design
principles, infrastructure, and the user interface of our tool.

1 Introduction

The recently introduced paradigm of Service-oriented Systems (SOS) provides
the basis for dealing with software integration and composition, by exploiting
loosely coupled and autonomous abstract modeling entities called services [4].
The nature of services calls for methods and automated support to design the
system, as well as to ensure the quality of service (QoS) of the result. To
address such needs, an extension of Remes, an already existing resource-aware
timed behavioral modeling language, has been proposed [5]. This extension
has enriched Remes with service-oriented features, i.e., service interface de-
scription such as type, capacity, time-to-serve, status, pre-, and postcondi-
tion, a Hierarchical Language for Dynamic Service Composition (HDCL), as
well as with means to check service compositions. All these features make
Remes suitable for behavioral modeling and analysis of SOS. Due to the pre-,

1 {eduard.paul.enoiu, raluca.marinescu, aida.delic, cristina.seceleanu}@mdh.se

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Enoiu et al.

postcondition annotations, the correctness check for a Remes service, or a
composition of such services reduces to verifying simple boolean implication
between the respective services.

In this paper, we present a tool for designing SOS in Remes. The tool
consists of a graphical environment for behavioral modeling of services, a
service composition view integrated as a textual interface, and a correctness
condition generator for service compositions. The distinguishing features of
our tool reside in the possibility of tracking changes between the graphical
and textual views, automatically, as well as in the automated generation of
corresponding verification conditions for the composed services [5]. Last but
not least, connecting to a prover and/or model-checker, from the tool, to
discharge the verification conditions, is one-step away.

There has been a large body of work on tools on component-based systems
(CBS) and SOS modeling and analysis. Many existing approaches for CBS are
intended to support graphical interfaces, compositional verification, and dif-
ferent kind of analysis [9,3,10]. Although these tools offer reusability and user-
friendliness, they are not integrated in a graphical and textual interface with
traceability features. Also, there are several tools that support SOS modeling
and analysis [7,8,11,1]. One of them is KarmaSIM tool 2 that uses DAML-S
ontology to describe the capabilities of web services. It supports interactive
simulation and various verification and performance analysis techniques, but
in comparison to our work shows limited capabilities to automatically sup-
port these processes. There are some tool solutions gathered around BPEL
service description. One of them is WSAT tool [8], which provides verification
of LTL properties on BPEL processes using SPIN model checker. The tool
covers only the untimed aspects of BPEL. Another tool [11] translates BPEL
processes directly into state/transitions graphs, and analyzes behavioral and
discrete-time aspects of BPEL description. In comparison to our approach
these tools lack resource-aware analysis capabilities. SRML [1] is a service
modeling framework that relies on UML state machines to model service be-
havior. It supports the formal analysis of functional and timing properties,
whereas we can also cater for resource-oriented modeling and analysis.

The rest of the paper is organized as follows: Section 2 presents the overall
approach together with the tool workflow (Subsection 2.1), the user interface
(Subsection 2.2), the model traceability and verification condition generator
(Subsection 2.3), whereas Section 3 concludes the paper and gives some hints
of the future work.

2 The SOS Design Tool: Workflow and User Interface

Our tool 3 supports behavioral modeling of services by allowing their graph-

2 More information available at http://www.ai.sri.com/daml/services/.

2



Enoiu et al.

SystemDesigner

creates
SERVICE

SERVICE

REMES Services

visual

invocation/

composition

textual

invocation/

composition

COV

syncronization

composition 

correctness check

DEV
!"#$%&"!"#$%&"

!"#$%&"

!"#$%&"

!"#$%&"

!"#$%&"

Fig. 1. The tool workflow

ical specification, including their attributes and internal behavior. It provides
an environment 4 to specify, model, and compose Remes services, graphically,
while generating the equivalent textual system representation, and correspond-
ing correctness verification conditions of the compositions.

2.1 Workflow

The tool is divided into two functional units: Diagram Editor View (DEV)
and Console View (COV). DEV is the top level unit in charge for opening a
new diagram editor, creation of services, and for displaying a service composi-
tion. It uses the NetBeans Visual Library API to render the created diagram
and contains a large visual modeling interface. COV supports the textual
description of the system, including service declarations, lists of services, and
their composition; in this console-like interface, the correctness verification
conditions for services can be generated, once a composition is created.

Fig. 1 illustrates the design flow implemented in our tool. The designer
uses: (i) DEV for building and composing services in a graphical environment
and (ii) COV for invoking services using HDCL. One can synchronize DEV
and COV in case the model has been modified in one of the views, and to
check whether the given requirement is satisfied, by forward analysis (strongest
postcondition calculus [5]).

Our tool enables system composition by using services as basic units. A
service repository is available to service users, and consists of services mod-
eled using the Remes extended interface and the behavioral language. These
registered services can be invoked and composed in different ways, based on
the preferences of the service user.

3 The current version of the tool is available online via the webpage
http://www.idt.mdh.se/personal/eep/reseide/
4 The client front-end is based on NetBeans Visual Library API to display the graphical
models and Java Swing as the user interface toolkit.

3

http://www.idt.mdh.se/personal/eep/reseide/


Enoiu et al.

Fig. 2. A screenshot of the tool. A composite service (1) can be created by using the Palette (2)
and can have a number of associated service attributes (7) , constants, variables, and resources
(8), displayed in separate compartments. The services are entered via their init-,or entry points
(3). They can be described using the Remes language (4), connected by edges and conditional
connectors (5), and exited through their exit points (6). After each diagram composition, one can
check whether the given requirement is satisfied (9).

2.2 User Interface

Fig. 2 depicts a screenshot of the tool displaying a behavioral model of a
service. The Pallete (located on the righ-hand side of the graphical envi-
ronment) provides quick access to all the graphical elements. The user can
create Remes services, AND/OR services (which model synchronized behav-
ior), and compose created / retrieved services in new services, by using serial,
parallel operators, and list constructors. Services are connected via edges on
control points. Remes models and conditional connectors can be nested in-
side a composite service. A Remes model is described in terms of the Remes

hierarchical language [5].
Also, the user has the possibility to use HDCL to compose services in

COV. Services can be viewed as units that can be composed to create new
services in order to fulfill requirements that might change, and consequently
involve adaptation of existing services. Moreover, COV displays the verifi-
cation condition that should be proven in order infer correctness of service
composition.

2.3 Model Traceability and Verification Condition Generator

The user can compose services, either graphically or textually, and the tool
offers him/her the possibility to visualize the transformations from one inter-

4



Enoiu et al.

face to another. It is important to note that this feature enables consistency
checks, information exchange, and traceability links. The idea is to perform
a round-trip between views. The service repository is passed to both views,
which in turn allows the user to compose services with that selection. Through
the process of defining traceability links we have defined each link with a root
class representing a created service. Moreover, a link contains a number of
traceability link attributes, all of which are associated with service attributes
of different types. Apart from the references that represent link ends, each
traceability link typically stores some additional primitive information too.
This information either applies to a service composition or to some particular
list of services. In addition, establishing a traceability between the tool views
extends beyond construction the service syntax and also involves specifying
the service composition and the derived correctness conditions.

The tool supports the specification of the composition correctness con-
ditions using the strongest postcondition predicate transformer (sp) [6], and
therefore allows the user to refine services by weakening service preconditions,
or strengthening the service postconditions in order to satisfy the system re-
quirement. Assuming p and q are predicates that describe the initial condition
and the final guarantee of a service S, the notation {p} S {q} means that if p
holds initially, then S is guaranteed to establish q, provided that it terminates.
The strongest post-condition sp.S.p states that if p holds then the execution of
S results in sp.S.p being true. This means that for S to be correct with respect
to p and q, then sp.S.p⇒ q should hold. An example of pre-, post-condition

specification of a service S
∧
= x := x + 2 is as follows:

{x = 0} x := x + 2 {x = 2} (1)

For this example in (1) the strongest postcondition can be computed as follows:

sp.(x := x + 2).(x = 0) ≡ (∃x0 · x = x0 + 2 ∧ x0 = 0)⇒ x = 2 (2)

where x0 is the fresh variable storing the initial value of x. With this informa-
tion at hand, one is able to reason about service compositions in an automatic
way, by using a model checker or theorem prover.

3 Conclusions

In this paper, we have presented a tool for specification, modeling, and anal-
ysis of SOS, which provides interfaces to graphically and textually design the
system, but it can be also used to detect errors. The tool adopts the language
Remes as the service model, and uses a hierarchical language for composing
existing services into new ones, depending on user needs. Through a palette
and a repository, the tool makes it easy to specify both functional, as well as

5



Enoiu et al.

extra-functional behavior of services i.e., timing, resource usage etc., whereas
the console lets one to rapidly modify an already existing composition, by
adding textual information, which is then automatically reflected into the
graphical representation. The correctness verification of services is done via
strongest postcondition calculus, and reduces to discharging boolean formulae
automatically generated by the tool, from the graphical view. However, the
tool still awaits integration with model-checkers like Uppaal 5 , since Remes

semantics is given in terms of Priced Timed Automata (PTA) [2], as well as
with a prover for automatically verifying the generated correctness conditions.

Acknowledgment

The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement number 269335 and from VIN-
NOVA, the Swedish Governmental Agency for Innovation Systems.

References

[1] João Abreu, Franco Mazzanti, José Luiz Fiadeiro, and Stefania Gnesi. A model-checking
approach for service component architectures. In Proceedings of the International Conference
on Formal Techniques for Distributed Systems, pages 219–224. Springer-Verlag, 2009.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, April 1994.

[3] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in bip.
In Software Engineering and Formal Methods, 2006. SEFM 2006. Fourth IEEE International
Conference on, pages 3 –12, sept. 2006.

[4] Manfred Broy. Service-oriented systems engineering: Modeling services and layered
architectures. In Formal Techniques for Networked and Distributed Systems, Lecture Notes
in Computer Science. Springer, 2003.

[5] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Modeling and reasoning about
service behaviors and their compositions. In Proceedings of 4th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation. Springer, October
2010.

[6] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18:453–457, August 1975.

[7] Ian Foster. Globus toolkit version 4: Software for service-oriented systems. In Network and
Parallel Computing, Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005.

[8] Xiang Fu, Tevfik Bultan, and Jianwen Su. Wsat: A tool for formal analysis of web services.
In the Proc. of 16th Int. Conf. on Computer Aided Verification, year = 2004, publisher =
Springer.

[9] Dimitra Giannakopoulou, Jeff Kramer, and Shing Chi Cheung. Behaviour analysis of
distributed systems using the tracta approach. Automated Software Engineering, 6:7–35, 1999.
10.1023/A:1008645800955.

[10] Juan Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism and meta-modelling. In
Fundamental Approaches to Software Engineering, Lecture Notes in Computer Science. 2002.

[11] Radu Mateescu and Sylvain Rampacek. Formal modeling and discrete-time analysis of bpel
web services. Lecture Notes in Business Information Processing. Springer, 2008.

5 The Uppaal tool is available at http://uppaal.com/

6


	Introduction
	The SOS Design Tool: Workflow and User Interface
	Workflow
	User Interface
	Model Traceability and Verification Condition Generator

	Conclusions
	References

