
Distributed Software Development Course: Students’ and Teachers’ Perspectives

Juraj Feljan, Ivica Crnković
Mälardalen University

School of Innovation, Design and Engineering
Software Engineering Division, Västerås, Sweden

{juraj.feljan, ivica.crnkovic}@mdh.se

Ivana Bosnić, Marin Orlić, Mario Žagar
University of Zagreb

Faculty of Electrical Engineering and Computing
Zagreb, Croatia

{ivana.bosnic, marin.orlic, mario.zagar}@fer.hr

Abstract— Students and teachers do not necessarily have
the same understanding of a course – of the purpose, the
objective, and in particular of the course elements – the way
the course is performed, the examination procedure, and
similar. In distributed-development courses, in which students
and teachers are dispersed over different locations, this
difference can be larger than in “ordinary” courses, but also
less visible, due to limited communication. In this paper we
discuss these different perspectives, their rationales, possible
consequences on the course performance and on the result, as
well as lessons learned from students’ feedback.

Keywords-Distributed software development; Education;
Global software engineering

I. MOTIVATING EXAMPLE
As a standard procedure in our Distributed Software

Development (DSD) course [1], at the end of the course this
year [2] we have asked the students to fill in a questionnaire.
We received a very interesting and long answer from one of
the students, containing a combination of suggestions for
improvements and better alternatives for different elements
in the course. This comprehensive comment initiated an
exchange of discussion e-mails, and finally a proposal from
our side to the student to read and comment on two papers
about the DSD course challenges [3][4]. The student’s
answer was: “I have read the papers and I have to admit I
was very surprised by them. I … realized ... that most of
what I have said in my feedback you had already knew but
for various reasons you were not able to address. In
general, I think I agree with the "Ten tips", in fact now
having read it I realize that many of the things I found
unnecessary during the course actually had a good reason
behind them. …. Although, I am sure it's not as simple as I
think (but it should be!)”.

The last sentence in the student’s answer raises several
questions:

a) how to design a DSD-type course to be as simple and
straightforward as it can be, and how to avoid or overcome
unnecessary complexity,

b) what are the differences in students’ and teachers’
perspectives that are specific for DSD-type courses,

c) can such differences influence (negatively or
positively) the course performance and results?

In this paper we discuss these questions through the
students’ feedback and the teachers’ experience. In
particular, we discuss the experience of a coauthor that was

first a student and then became a member of the teaching
staff. We present different course elements (the
development processes, the student cooperation, the
communication between the students and teachers, the
examination procedure) interesting to look at from two
different angles (students and teachers). We discuss the
differences in student-teacher perspectives and pose several
questions related to the lessons learned and best practices.

DSD course has been carried out for nine years between
two sides, Mälardalen University in Sweden and University
of Zagreb, Croatia, with occasional participation from
University of Paderborn, Germany. The course is designed
as a combination of lectures, guest presentations and
distributed projects. Student projects are the largest part of
the course. The projects are shared and the students work
together like in a local project. The examination elements
are common, as are the students’ grades. Projects offered to
students are sized for 6 – 8 team members (3 – 4 per site),
carried out over the period of one semester, 16 – 18 weeks.
One of the students acts as a project leader, and one student
on the other site acts as a local team leader. One of the
teachers plays the role of the project supervisor. Project
customers can be either teaching staff members, or external
customers, such as companies or project proponents in
various SE contests.

The rest of the paper is organized as follows. Section 2
lists students’ comments, observed issues, proposals for
improvements from the course evaluation report, as well as
the teachers’ rationale based on the current experience.
Section 3 compares the two perspectives from the viewpoint
of one of the coauthors who was involved in the course both
as a student and a teaching staff member. Section 4
concludes the paper.

II. THE STUDENTS’ FEEDBACK
During the course execution we gather students’ data

from several sources: (i) Initial questionnaire – students
provide a short overview of their interests (professional and
hobbies), experience in software design and development;
(ii) Periodic polling – once a week, students express their
current feelings in a “How happy am I?” poll; (iii) Final
questionnaire – students are required to fill-in an exhaustive
final questionnaire, which reflects their experiences and
thoughts on distributed work in detail; (iv) Course
evaluation – an internal course evaluation, which is
anonymous and optional. We encourage the students to fill

it, as they can help us see the possible problems in the
course. By answering 15 questions of the evaluation they
discuss the topics such as: concept of lectures and projects,
cooperation between sites, student workload, project
support, and course administration. All these elements are
both numerically graded and commented. We especially
advise students to give us their comments in a free-text
form, as this reveals more information about the topics than
numeric values can.

During 9 years of course delivery, 255 students have
evaluated the course. The complete questionnaires from the
period 2003-2011 can be seen at [5]. Here we present the
results from answers to two questions: “As a whole the
course was”, and “The course has fulfilled my
expectations”, answered in the range of 1-5 (1 meaning “not
at all”, and 5 – “completely”). Table 1 shows the answers
distribution per year.

TABLE 1. RESULTS FOR TWO ANSWERS FROM THE QUESTIONNAIRE
Statement 1: As a whole the course was (1:bad – 5:excellent)

Statement 2: The course has fulfilled my expectations (1:no – 5:yes)

Year 03 04 05 06 07 08 09 10 11 Average
Students	 # 21 52 44 26 11 28 36 15 22 28.33
Statement	 1 4.71 4.58 4.32 4.08 4.36 4.14 4.67 4.53 4.23 4.40
Statement	 2 4.48 4.29 4.02 3.88 4.27 4.11 4.19 4.18 4.09 4.17

From the answers we can see that students are
continuously pleased with the course, and their expectations
are fulfilled (though slightly less than their satisfaction with
the course).

However, here we will focus on the question “What can
be improved in the course?”. From this question we have
obtained 235 improvement responses. From these responses,
19 have stated that they have no improvements to suggest.
We have grouped the remaining 216 responses in 8
categories, according to their main theme, in a two-pass
process. In the first pass, the possible categories have been
identified and roughly grouped. In the second pass, a more
precise mapping was made. Some responses could be
grouped in more than one category; for the calculations,
they have been included in the strongest resembled
category, but they can be addressed in different categories in
the improvements description. The list of 8 improvement
proposal categories, which contain more than 10
suggestions, is given in Table 2.

Students’ improvement proposals are presented as
follows, including our rationale in italic formatting.

TABLE 2. THE MAIN CATEGORIES OF THE SUGGESTIONS,
WITH THE NUMBER OF STUDENT PROPOSALS INCLUDED

Proposal category #
technical resources 32
knowledge level 31
project selection and assigment 31
lectures 29
course organization 27
workload 20
course advising 15
grading 14

A. Technical Resources
Videoconferencing is an important part of a flawless

DSD course, as we meet together for lectures and project
presentations every few weeks. Some technical glitches
occur from time to time, mostly connection issues or
temporary low bandwidth. Students especially emphasized
that the sound quality heavily influences the remote
communication. In addition, students often asked us to
provide additional meeting rooms with equipment for
distance communication, where they could meet with their
remote team members.

Student projects that include a server-side component
are hosted on virtual machines provided by the course staff.
Source code versioning is done using SVN, which is also
hosted on our virtual server. As we could not guarantee non-
stop uptime of the machines nor backup service, and server
crashes sometimes occur, students stated that server
infrastructure should be improved. Several students
proposed to substitute SVN with more modern versioning
tools, like Mercurial or Git. Students would have also
appreciated more technical support regarding their virtual
machines, as each team gets a virtual machine and is
responsible for its administration, but most students do not
have enough knowledge to work on this.

The project Web page is an important communication
means. The students upload all their work there and have
some communication possibilities. Since the Web page is
managed by the Campus Content Management System
developed at University of Zagreb, the students had to get
used to the way of publishing news or documents, so some
of them suggested improving the Web interface.

To reduce technical problems with the communication
equipment, the staff on both sites prepares in advance and
tests the equipment early before the lectures start. However,
there are some events beyond our control, so we prepare
additional backup plans (other tools to use, or even partial
local lecture while the problem is fixed). We emphasize
strong flexibility needed to solve server problems on the
spot, and help students when crashes occur. To address the
Web site proposals, we provided a CMS user manual in
English, and initial lectures include step-by-step
explanations of the tasks that need to be done at the Web
site in the first weeks. We can conclude that the technical
level still does not reach the quality one would expect in a
seamless communication.

B. Knowledge Level
A lot of students were concerned with misbalance in

knowledge levels of students enrolled to the course, ranging
from students who have poor knowledge in programming
and basic software engineering disciplines, to ones who
have specific knowledge not required for their particular
project. This made more knowledgeable students seriously
demotivated, and caused different team problems, as low-
knowledge students often would not be eager to learn. They
proposed that we make an effort to seriously warn students
about the course requirements and organization, as well as
to make some kind of pre-course test and evaluation.

Besides lacking software engineering skills, low English
language proficiency of some participants was mentioned,
which made it hard to communicate, discuss and work
together.

These knowledge-related problems are our strong
concern, as they highly influence project work. A part of
these issues is related to the considerable heterogeneity of
students, coming from a number of countries and having
studied in programs of various qualities. A part of solution
can be found in having a short pre-course test, which briefly
evaluates their programming skills, as well as English
language skills. The administrative constraints do not allow
us to reject a student who wants to enroll, but we can advise
against enrolling, depending on the test results. 2011/2012
was the first year where we gave this test, and received only
one low-knowledge result. We also occasionally held
lectures in specialized areas which several students needed
(for example lectures in UML).

C. Project Selection and Assigment
Students asked for more project proposal options that

they could choose from, more freedom in choosing the
projects, and in choosing the technologies. Also, the
students argued that some projects are more demanding than
the others. Students enjoyed our industry cooperation, and
would have liked more projects with real customers
involved. SCORE student competition participation [5] was
seen by some students as unnecessary workload, while some
others proposed that not all team members should be
involved in SCORE, if they don’t want it – to keep the team
motivation higher.

Regarding the project assignment process, students
would have liked that the staff focuses more on the skills
required per project, and map students to projects better.
There was a suggestion that we should interview students
one-by-one before assigning them to a project.

An interesting objection regarding cultural issues
occurred – at Swedish side, in a strong multicultural
environment, there should be a balance of nations involved
in a team; otherwise a kind of favoritism can occur.

We could propose more projects than we would run in a
particular course instance, but this would also bring
problems such as harder decision-making on the final list of
projects, and misbalance in staff’s workload. We should
make an effort to balance the project difficulty, whenever
possible, or at least balance the main requirements
complexity of the projects. The project assignment process
has changed over the years, and now includes both a poll
(which projects would students like to work on) and a self-
evaluation of technologies used by a student. It may seem
that this self-evaluation goes in the way of “choose the
project freely” argument, but we try to optimize the
students’ satisfaction, by assigning them to the projects
which they like as much as possible. Self-evaluation is just
an additional tool that we use to balance the student teams.
We support the idea of more industry customers, but one
should keep in mind various aspects of such cooperation,
advantages and challenges, as described in [6].

D. Lectures
We received diverse comments regarding the lectures.

Some comments were focused on reducing the number of
lectures, especially the ones which are basic, or not
necessary in relation to the projects. On the other hand,
there was a demand for more lectures regarding
technologies that could be used in the projects. Guest
lectures were especially welcome, with guests from
industry, experienced in global software development, who
can discuss their real-world experiences. Having a lecture
from former DSD students who could speak about their
course experiences was another improvement proposal.
Comments like “a little more life in lectures wouldn’t hurt”
were also present several times.

Another thing to note was the comments about cultural
differences. Some students felt we overemphasize cultural
issues, which don’t seem to be important to them. Other
students would have liked to hear more about them,
although we already give a lecture about these.

A proposal for more guest lectures is commendable. As
an addition to the lectures, a former DSD student was
invited this year to speak about his comparison between
DSD experience and real-world distributed project. We also
feel the need to give more lectures about project
management, and the importance of professional project
documentation. Having experience with past course
instances, we do feel the need to address cultural
differences, although students are unaware of these at times.
Our experience has shown that the differences are not so
visible, until there is a problem in the team: in that case,
cultural issues become a strong, highly visible factor.

E. Course Organization
This was a group of diverse improvement proposals.

There was an always-present wish for face-to-face contact,
which unfortunately could not be realized, due to financial
reasons. But, to make the first contact easier, students asked
for some ice-breaking sessions, as well as proposed to have
additional innovative and fun moments during the course, to
break the “serious” course atmosphere.

Evaluation in 2009/2010 resulted in several comments
about the number of students and presentations. Due to a
larger number of teams and presentations and short amount
of time for each presentation, the students felt their work
was not valued appropriately. Additionally, they demanded
stricter enforcing of presentation time limits.

Students also argued about too many deadlines,
especially the initial ones, which are quite dense. Finally,
some students were not satisfied with the high amount of
polls and questionnaires required during the course.

Ice-breaking is done through several activities: in the
first lecture there is a fun quiz about famous Croatian and
Swedish people, and geographical locations of teams
involved. Students are also asked to introduce themselves in
a number of ways: posting images, describing their interests
and hobbies, etc. The year with the highest enrollment was
2009/2010. It was a struggle to give everybody the attention
required, fit all activities into course hours, especially

during the presentation slots. However, we agree that
presentation durations should have been enforced stricter.
Reorganization of deadlines would be possible, however,
students do not realize the “hidden” reason – we have
learnt that if the students were not forced to start
communicating hard from the beginning, things would not
go smooth during the project. Regarding tight deadlines, the
staff should take care of ensuring these deadlines are met
with decent work done, instead of just fulfilling the deadline
by submitting required documentation, which would be
rewritten from scratch afterwards.

F. Workload
Overall, students often complained about the workload

in the course. Sometimes this was expressed as a wish for
less demanding projects, but more often it was a wish for
“more time”, or “more ECTS” points, as students in general
like to work on challenging projects.

Currently, the course is worth 7.5 to 8 ECTS, which can
be translated to 200 - 240 hours of work total, depending on
the university. Some students propose the prioritization of
requirements to make the project easier. During the
requirements gathering phase, students formalize the final
list of requirements in agreement with their supervisor.
Mostly due to their inexperience, or their wish to show their
skills and motivation, they often make demanding promises
– so we advise them to start small, while thinking of possible
features that can be added later on.

G. Course Advising
A number of students stated they would have liked more

support and advising from their supervisors. The proposals
ranged from more support in the beginning (including more
technology advising) so they could follow a good path, to
the request for a greater support during the course,
supervising the progress of the whole team, but also each
member individually, done by one-on-one interviews. An
interesting proposal was having a supervisor on each of the
sites, as it can be hard to supervise the remote site.

One of the course goals is to prepare students for real
world work, where individual decisions need to be made.
We do not want to lead the students too much. However, we
need to work on closer support and monitoring, especially
with regards to students proposals about grading.

H. Grading
There were several improvements the students proposed

concerning grading. They felt the staff should make a more
thorough analysis and testing of the final product in the end
(e.g. a student asked to focus on actual finishing of the
project, instead of grading an “illusion” that it works), and
that the grades should be more influenced by the product
quality. Students who gave their best should have been
better awarded, with a greater distinction to the ones who
invested less effort. There was a feeling that we put too
much accent on working hours (reported by the students),
instead of trying to determine the actual results of each
student.

The grading system we have is very detailed, with more
than 20 different criteria that refer to the final results, the
quality of coding, the documentation quality, the project
organization and team work. The weakness of our grading
system is that it is difficult to know how much each student
contributed (which is usually not a problem in good teams,
but in teams with weaker students and weaker results).
Another problem (which we realized later) was that the
criteria were not explained clearly enough. Finally the
grading is given at the end of the course, so until the end of
the course the students do not know their potential grade.

I. Other Issues
 There were a few other issues referred to in the

evaluations, not significantly represented. A point made by
some students most of the years was that project
requirements were not clear, and they did not understand
what is required of them. They were also not happy with the
amount of documentation required in the project, especially
if they felt the documentation is not useful. There were also
some team issues, which were not directly related to course
improvements. They described mainly the need for greater
responsibility and motivation of each student in a team.

III. THE TWO-PERSPECTIVES EXPERIENCE
One of the coauthors participated in the course first as a

student and then four years later as a member of the
teaching staff. Here we present several aspects of the course
observed by the same person, but from different
perspectives – the student and the teacher perspectives.

Motivation for choosing the course. The teachers’
motivation for giving a DSD course is quite clear – to
provide the students with insights from this increasingly
common way of working in the industry. However, as a
student, the coauthor opted for the course mostly thanks to
its reputation of being challenging, useful, fun and different
from other courses, rather than for getting educated in
distributed development. Influenced on one side by the
curriculum which primarily educated programmers, not
software engineers, and on the other side by an individual
lack of experience and knowledge on how development is
done in industry, the coauthor was not drawn to the course
to gain deeper insight into distributed development, but to
increase his programming skills and to meet students from
another university. It can be said that as a student, the
coauthor did not fully understand the intention behind the
course. It is therefore important that the staff clearly
conveys to the students the motivation for the DSD course.

Work motivation. The coauthor supervised one project
team, and felt that his involvement would set an example to
the students, and thus affect their performance. He
additionally had an impression that when the team's
performance was reviewed, his performance as a supervisor
was also being reviewed. These two aspects were sufficient
to keep the work motivation high throughout the course.

As a student, the coauthor was mostly motivated by the
love for programming, and by a general team desire for the
project to succeed. Another important motivating aspect was

the good work done by (most of) the team on the remote
site. Two aspects that had a negative effect on the
motivation were the following: there was one team member
who repeatedly failed to deliver what he had promised; the
supervisor could have shown more interest in how the
project was advancing. In general, the coauthor had no
issues of maintaining the motivation high, either as a student
or as a teacher. However, the sources of the motivation were
obviously different in the two cases.

Communication. As a student, the coauthor had no
problems in communicating his ideas to the other team
members. However, later on in the course he realized that he
had been the source of a communication issue. A team
member on the remote site had documented an API used in
the project. The coauthor, being an inexperienced student,
instead of referring to the documentation, kept asking
questions about the API directly via e-mail or instant
messaging. This created unnecessary communication
overhead and frustration for the remote team members.

As a teacher, the coauthor mostly communicated with
the team via the project leader. They both come from the
same country, and thus speak the same language and share a
similar working culture which minimized the potential for
misunderstandings. The communication with the rest of the
team did not yield problems either. On the other hand, the
students reported some communication issues within the
team, mostly due to varying English proficiency levels.

Perception of project work. As teachers, we try to give
students the complete picture behind project work in a
distributed team, covering all of the important aspects, such
as management of a distributed team, following a certain
development process, writing good documentation,
programming etc. Nevertheless, it can be easy for the
students to get blinded by their particular role, thus not
getting a holistic view. As a student, the coauthor was more
a programmer than a software engineer, and so was his
perception of his role in the project and the project work.
Apart from initially participating in requirements gathering,
he was mostly focused on programming tasks, and did not
take much interest in other aspects of the project work. Only
at the end of the course it became apparent to the coauthor
that he should have gotten more involved, despite the fact
that he enjoyed his programmer role. His biggest regret was
not participating in the software design phase.

Project requirements. We deliberatly deliberately gave
students vague requirements, in an effort to accurately
simulate the real world, and to train students in requirements
gathering and analysis. However, the students are often not
aware of this. This is visible from the questionnaires, where
the students frequently complain on not getting clear
requirements, and it was the case for the coauthor. He was
disappointed with the customers because “they themselves
were not sure what they wanted from the product“. As an
inexperienced student, he did not know that this is often the
case in the real world. So instead of a valuable lesson, the
effect of vague requirements was frustration. Therefore, as
teachers we should explain to the students the rationale
behind vague requirements.

Technical aspects. Regarding the technical aspects, the
coauthor has kept a consistent view both as a student and as
a teacher – various tools are crucial to alleviate the distance
factor. Most of the tools that the coauthor used during
project work, he still finds relevant as a teacher:
communication tools (e-mail, instant messaging, video-
conferencing, forums), code sharing/versioning tools,
project management and bug tracking tools.

From having had both a student and teacher perspective
comes the following tip: as teachers we should remember
that for most students this is often the first encounter with
working in a bigger project group, and it is easy for them to
get overwhelmed and lose focus of what we try to convey in
the course. We should therefore not be reluctant to keep
stressing on the important points mentioned in this paper –
however clear and trivial they might seem to us, the students
often have a different perspective.

IV. CONCLUSION
We listed a set of issues that we collected from the

students’ evaluation reports. Some of the issues are typical
for any type of course (like involvement of the supervisors,
boring lectures), some of them are related to the project-type
courses (like team issues, project process issues), some of
them are the results of the diversity of students (cultural
differences, different skills) and the differences between
sites (the students and – to some extent – the teaching staff
base their assumptions of the distributed environment on
local experiences), and finally some are related to technical
limitations in distance communication. While for most of
the issues it is difficult to find the distance as the exclusive
source of the problems, we can state that in general, due to
the distance and different traditions and local rules, meeting
the challenges is more difficult, more efforts are required,
and the results might not be as good as expected. A
continuous questioning of the procedures, and a continuous
emphasis on communication is a way to be more aware of
possible problems.

REFERENCES
[1] I. Bosnić, I. Čavrak, M. Orlić, M. Žagar, and I. Crnković, “Avoiding

Scylla and Charybdis in Distributed Software Development course,” in
Proceedings of the 2011 community building workshop on
Collaborative teaching of globally distributed software development,
2011, pp. 26–30.

[2] “DSD course, the official site.” [Online]. Available:
http://www.fer.hr/rasip/dsd/. [Accessed: Feb12, 2012].

[3] I. Crnković, I. Bosnić, M. Žagar, Ten Tips to Succeed in Global
Software Engineering Education, in Proceedings of International
Conference on Software Engineering, Education track, 2012 (to be
published)

[4] I. Čavrak, M. Orlić, I. Crnković, Collaboration Patterns in Distributed
Software Development Projects, in Proceedings of International
Conference on Software Engineering, Education track, 2012 (to be
published)

[5] DSD course, Web Page on MDH site, [Online], Available:
http://www.idt.mdh.se/kurser/cd5610/2011/ [Accessed: Feb12, 2012].

[6] I. Bosnić, I. Čavrak, M. Žagar, R. Land, and I. Crnković, “Customers’
Role in Teaching Distributed Software Development,” in CSEET ’10
Proceedings of the 23rd IEEE Conference on Software Engineering
Education and Training, 2010, pp. 73-80

