
Test Case Quality in Test Driven Development:
A Study Design and a Pilot Experiment

Adnan Čaušević, Daniel Sundmark and Sasikumar Punnekkat
Mälardalen University, Sweden

firstname.lastname@mdh.se

Abstract—Background: Test driven development, as a side-
effect of developing software, will produce a set of accompanied
test cases which can protect implemented features during code
refactoring. However, recent research results point out that
successful adoption of test driven development might be limited
by the testing skills of developers using it.

Aim: Main goal of this paper is to investigate if there is a
difference between the quality of test cases created while using
test-first and test-last approaches. Additional goal of this paper is
to measure the code quality produced using test-first and test-last
approaches.

Method: A pilot study was conducted during the master level
course on Software Verification & Validation at Mälardalen
University. Students were working individually on the problem
implementation by being randomly assigned to a test-first or a
test-last (control) group. Source code and test cases created by
each participant during the study, as well as their answers on a
survey questionnaire after the study, were collected and analysed.
The quality of the test cases is analysed from three perspectives:
(i) code coverage, (ii) mutation score and (iii) the total number
of failing assertions.

Results: The total number of test cases with failing assertions
(test cases revealing an error in the code) was nearly the same
for both test-first and test-last groups. This can be interpreted
as “test cases created by test-first developers were as good as
(or as bad as) test cases created by test-last developers”. On
the contrary, solutions created by test-first developers had, on
average, 27% less failing assertions when compared to solutions
created by the test-last group.

Conclusions: Though the study provided some interesting
observations, it needs to be conducted as a fully controlled
experiment with a higher number of participants in order to
validate statistical significance of the presented results.

Index Terms—software testing; test case efficiency; test driven
development; controlled experiment;

I. INTRODUCTION

Empirical investigations of Test Driven Development prac-
tice (TDD) are being constantly performed from the moment
TDD was introduced [1] as part of the eXtreme Programming
(XP) methodology. Those experiments are focusing, to a high
extent, on evaluating effects of TDD on the quality of code.
However, a very small number of experiments is investigating
the quality of the produced tests while using TDD. The quality
of those tests is important because developers who use TDD
have to create automated unit tests before the actual code is
written (in literature TDD is sometimes referred to as test-
first approach). Those tests are in the form of assertions and
in TDD they define code requirements. This way, developers
evolve the systems through cycles of test, development and
refactoring.

TDD is gaining high attention in industry. This was the
outcome of an industrial survey [2] conducted for the purpose
of identifying differences between the preferred and the actual
level of usage for several test-related practices. A main finding
of this study could be interpreted as: “Respondents would like
to use TDD to a significantly higher extent than they actually
do currently”. This interest could be due to the success stories
of early adopters as well as academic research results which
are pointing to code quality and productivity improvements
when TDD is used ([3] [4] [5] [6] [7]).

What remains unclear are reasons for still avoiding full scale
adoption of TDD in the industrial context. By performing a
systematic literature review, seven potentially limiting factors
of full TDD adoption were identified from the existing aca-
demic investigations [8]. Developers inability to write efficient
and effective automated test cases is considered to be one of
the limiting factors. Goals of this paper are formulated and
defined in a way to validate the significance of such a limiting
factor.
A. Problem Statement

Test driven development, as a side-effect of developing
software, will produce a set of accompanied test cases which
can protect implemented features during code refactoring.
However, recent research results are pointing out that success-
ful adoption of test driven development might be limited by
the testing skills of developers using it. We are interested in
comparing testing efforts of a TDD developers and traditional,
test-last, developers. This comparison could provide us with
further insight if TDD adoption is indeed limited by the
developers testing skills.
B. Research Objective

Research objective of this study can be expressed as follows:
To compare efficiency and effectiveness of the testing
effort produced by test-first and test-last developers.

C. Context

To perform comparison with respect to the above objective,
an experiment was organised with master students enrolled in
the Software Verification and Validation course at Mälardalen
University during the autumn semester in 2011.

D. Paper Outline

This paper is structured according to the reporting guide-
lines provided in [9] with some minor deviations. In section II

we present the related research works followed by the exper-
imental design in section III. Section IV presents the details
of execution of our experiment. The treatment and analysis
of the collected data are given in section V. In section VI,
we present statistical inferences followed by conclusions and
future research planned in section VII.

II. RELATED WORK

In a recent systematic literature review [8], 48 empirical
studies were identified with the focus on investigating effects
of TDD. Most of the studies had TDD as a primary focus
of investigation, but in some cases effects of TDD were
investigated together with some other practice, e.g. pair-
programming. Most of the studies were investigating effects
of TDD with respect to: (i) the internal or the external code
quality improvements, (ii) performance improvements or (iii)
a general perception of using TDD.

There was only one study identified, which had focus on
investigating quality attributes of test cases created using
test-first approach. Madeyski [10] investigated how test-first
programming can impact branch coverage and mutation score
indicators. In his experiment, 22 students were divided in test-
first and test-last groups with the task of developing a web
based paper submission system. Experiment was performed
during 9 weeks period. Results of this experiment point out
to no statistically significant difference between the test-first
and the test-last groups with respect to branch coverage and
mutation score indicators.

Our study design relates to the work of Madeyski, since
we are also measuring the code coverage and the mutation
score indicators. Main difference with our study design is the
enforcement of programing interface, which will allow us to
execute test cases of the individual participant on the code
of other participants of the experiment. This, as a result, will
provide us with an additional quality attribute of test cases.

III. EXPERIMENTAL DESIGN

The study design of the experiment is described in this
section. Specific details of the study (instruction material and
code skeleton) can be found at the first author’s website1.

A. Research Question

We defined the following research question as a starting
point of the experiment study design:

Is there a significant difference between the quality
of test cases, produced using test-first and test-last
approaches?

B. Goals of the Experiment

The main goal of the experiment is to compare test case
effectiveness when developing software using test driven de-
velopment (test-first) and traditional (test-last) approaches.
Additionally, we measure efficiency of the experiment partici-
pants in order to investigate if there is a relation between time
spent on solving the problem using specific approach and the

1http://www.mrtc.mdh.se/˜acc01/testqualityexperiment/

quality of the resulting test cases. To confirm a common belief
that TDD improves code quality, we are also investigating
this attribute. Negative test cases, or test cases constructed
from non-specified requirement, were identified as a main
problem of our previous TDD experiment [11]. In literature,
this phenomenon is known as a positive test bias [12] [13] were
testing is done using more positive or specification defined
inputs. With this experiment, we are also investigating the ratio
of positive and negative test cases for test-first and test-last
approaches.

C. Quality Attributes

In our research question, we are using quality of test
cases as an attribute for comparison of software development
approaches. Quality of test cases (or quality of a test suite) is
defined as a sum of individual test cases quality. Individual
quality can be calculated using three different indicators: (i)
code coverage, (ii) mutation score and (iii) total number of
failing assertions.

1) Code coverage
Using EclEmma [14] (Java Code Coverage tool for
Eclipse) a coverage score indicator of the created test
cases is obtained for each individual solution.

2) Mutation score
Using Judy [15] (Java mutation tool) a mutation score
indicator of the created test cases is obtained for each
individual solution.

3) Total number of failing assertions
Since participants were obliged to implement software
solutions using predefined program interface, it is possi-
ble to execute test cases of one participant onto the code
implementations of other participants. Quality of tests,
in the form of a total number of failing assertions, could
be defined for an individual experiment participant as:

Qdefects(Si) =
n∑

j=1

DF (TSi, CSj)

where, Si - individual participant of the experiment, DF
- defects found, TSi - test set of participant i, CSj -
code solution of participant j, and n - total number of
experiment participants.

D. Experiment Design

As a final laboratory work within the course, subjects were
given a task to completely implement and test (to the extent
they consider sufficient) a bowling game score calculation
algorithm. They were grouped in two groups, the test-first
and the control (test-last) group. The Eclipse [16] integrated
development environment (IDE) was used to create software
solution in the Java programming language and the jUnit
[17] testing framework was used for writing executable tests.
After completely finalising their implementations, the subjects
answered a set of questions using an online survey system.

E. Subjects

The subjects of the experiment were software engineering
master students enrolled in the Software Verification and
Validation course at Mälardalen University during the autumn
semester of 2011. The experiment was part of the laboratory
work within the V&V course, and the subjects earned credits
for their participation. Students were informed that the final
grade for the course will be obtained from the written exam
and their performance during the laboratory work will not
affect the final grade, although they had to complete the
laboratory work.

F. Objects

The experiment used a bowling game score calculator
problem for the experiment. The specification for this was
based on the Bowling Game Kata (i.e., the problem also used
by Kollanus and Isomöttönen to explain TDD [18]). Detailed
information about the problem and instructions are provided
on first author’s webpage2.

G. Instrumentation

Participants in the test-first group were instructed to use
TDD to develop software solutions. Instructions for TDD were
given as prescribed by Flohr and Schneider [19]. Participants
in the test-last (control) group were instructed to use traditional
(test-last) approach for software development.

To avoid problems with subjects’ unfamiliarity with the jU-
nit testing framework and/or Eclipse IDE, subjects were given
an Eclipse project code skeleton with one simple test case.
Since this was all located in a subversion (SVN) repository,
an instruction on how to obtain code from an SVN and import
it into the Eclipse was also provided to students.

H. Data Collection Procedure

As part of the instructions, subjects were instructed to
upload their source code in a subversion (SVN) repository
on a regular basis (after each test case was created). This way
we have a complete log of subjects activities with an option to
obtain the code from a specific point in time. As an addition to
providing the source code, subjects answered a set of survey
questions using quiz assignments in the Blackboard learning
management system used during the course. Data from the
survey was then exported in a comma separated values (.csv)
file format.

IV. EXECUTION

Once experiment study design was defined and all lectures
within Verification & Validation (V&V) course were com-
pleted, the pre-requirements for the experiment execution were
in place.

2http://www.mrtc.mdh.se/˜acc01/testqualityexperiment/

A. Sample

Fourteen students participated during the last laboratory
work of the V&V course. Students were informed that their
lab work would be used for the experiment, but they were not
provided any details on the goal of the experiment itself. Also,
we explicitly stated that their performance during the lab will
not influence the final grade of the V&V course in any way.
The final grade was determined by a written exam.

B. Preparation

Subjects worked individually on the implementation and
were randomly assigned to follow either test-first or test-last
approach. Laboratory work was not time-boxed and subjects
were given an opportunity to work on the implementation
until they have enough quality confidence in the submitted
solution. Since one way of measuring the quality of test cases
was using a total number of failing assertions, a Java code
skeleton was created and provided to subjects to enforce usage
of same programming interface which would ease the process
of executing test cases of subject X on the code of subject Y.

For each student a corresponding subversion (SVN) reposi-
tory was created with read/write permissions assigned only to
a specific student and to the researchers. To avoid difficulties
in setting up an SVN and importing project in the Eclipse, an
instruction on usage of an SVN and the Eclipse was provided
to subjects.

C. Data Collection Performed

Using an SVN tool, researchers have a complete log of
activities during the experiment with the ability to obtain the
source code at any given point in time. After each student
reported to researchers to have a complete solution created
and saved in an SVN, the test cases and the code for each
student solution was saved.

V. ANALYSIS

This section provides an analysis of the collected data. For
each quality attribute a referencing table with data is listed
and described.

Table I lists code coverage score in percentage for each
experiment participant. This is calculated by a number of state-
ments that accompanied tests reach for a given participants
code. In average, coverage that was achieved by test-first and
test-last group is nearly the same and relatively very high.
This, as a result, makes it difficult to reason or derive any
conclusions of the quality of groups test cases by using this
quality.

Table II represents values of mutation score indicator in
percentage. By using the Judy [15] tool, mutation score is
calculated for each participant using next approach:

1) Compiled source code is taken as an input
2) Compiled test cases (test suite) are taken as well as an

input, but with the pre-requirements that they are all
passing for the original source code.

Test-First Group Test-Last Group
Coverage in % Coverage in %

TF1 96,21% TL1 100,00%
TF2 97,76% TL2 91,22%
TF3 100,00% TL3 89,42%
TF4 83,28% TL4 98,83%
TF5 98,78% TL5 98,98%
TF6 98,88% TL6 95,93%
TF7 99,45% TL7 98,86%
Average: 96,34% Average: 96,18%
Median: 98,78% Median: 98,83%
Std. Dev.: 5,89% Std. Dev.: 5,89%

TABLE I
CODE COVERAGE SCORE IN PERCENTAGE

Test-First Group Test-Last Group
Mutation in % Mutation in %

TF1 78,35% TL1 91,30%
TF2 82,11% TL2 84,31%
TF3 92,57% TL3 80,58%
TF4 57,54% TL4 89,19%
TF5 89,80% TL5 84,52%
TF6 87,83% TL6 77,65%
TF7 85,12% TL7 75,49%
Average: 81,90% Average: 83,29%
Median: 85,12% Median: 84,31%
Std. Dev.: 11,75% Std. Dev.: 5,80%

TABLE II
MUTATION SCORE IN PERCENTAGE

3) Using a set of default mutation operators, N number
of variations of original program is generated (they are
called mutants)

4) For each mutant n ∈ N the test suite is executed
5) If any test case within the test suite fails, current mutant

n is marked as “killed”.
6) Total number of killed mutants is m (m ≤ |N |).
7) Mutation score is calculated as m/|N |
Once again, average mutation quality attribute indicators for

both groups were similar, thus making it difficult to identify
if the test cases of any group could be considered of a better
quality.

Table III list a total number of failing assertions found
by test cases of each participant. For example, test cases of
participant TF4 (which was using test-first approach during the

Test-First Group Test-Last Group
of defects found # of defects found
TF1 13 TL1 30
TF2 144 TL2 86
TF3 17 TL3 34
TF4 38 TL4 72
TF5 44 TL5 17
TF6 14 TL6 20
TF7 14 TL7 31
Sum: 284 Sum: 290
Median: 17 Median: 31
Std. Dev.: 47,33 Std. Dev.: 26,68

TABLE III
DEFECTS FOUND BY TESTS

Test-First Group Test-Last Group
of defects found # of defects found
TF1 57 TL1 24
TF2 3 TL2 11
TF3 58 TL3 55
TF4 17 TL4 9
TF5 10 TL5 72
TF6 55 TL6 143
TF7 44 TL7 16
Sum: 240 Sum: 330
Median: 44 Median: 24
Std. Dev.: 24,03 Std. Dev.: 48,53

TABLE IV
DEFECTS FOUND IN CODE

Test-First Group Test-Last Group
Duration Duration

TF1 05:50:00 TL1 07:13:00
TF2 02:42:00 TL2 05:25:00
TF3 05:44:00 TL3 03:53:00
TF4 03:57:00 TL4 03:27:00
TF5 03:58:00 TL5 09:29:00
TF6 03:53:00 TL6 02:45:00
TF7 05:37:00 TL7 05:38:00
Average: 04:31:34 Average: 05:24:1
Median: 03:58:00 Median: 05:25:00
Std. Dev.: 01:12:27 Std. Dev.: 02:21:02

TABLE V
DURATION OF THE COMPLETE DEVELOPMENT TIME

experiment) contained 38 failing assertions when executed on
every code instance created by all other participants (test-first
and test-last). Interestingly, the sum of total number of failing
assertions for both groups is nearly the same.

Table IV also provides a total number of failing assertions,
but in this case the focus is on the subjects source code. If we
look again at participant TF4, there was a total of 17 assertions
that failed on the code of this participant from test cases of
all other participants. Sum of all defects found in the code is
lower for test-first participants.

Table V lists duration time needed for participants to
fully implement software solution (including testing of it) for
the given problem. On an average, test-first group finalised
implementation one hour before test-last group.

Table VI provides ratio of positive vs. negative test cases in

Test-First Group Test-Last Group
Positive bias in % Positive bias in %

TF1 22,22% TL1 33,33%
TF2 43,33% TL2 33,33%
TF3 8,33% TL3 40,00%
TF4 35,71% TL4 20,00%
TF5 35,29% TL5 46,67%
TF6 9,09% TL6 27,27%
TF7 9,09% TL7 17,65%
Average: 23,30% Average: 31,18%
Median: 22,22% Median: 33,33%
Std. Dev.: 14,88% Std. Dev.: 10,41%

TABLE VI
RATIO OF POSITIVE VS. NEGATIVE TESTS

participants test suites (given as a percentage). By a positive
test case, we refer to an assertion that is testing a functionality
in the program which is defined in the specification. Negative
test cases represent assertions which are testing non-specified
functionality.

VI. INTERPRETATION

A. Evaluation of Results and Implications
The pilot experiment performed within this study does not

have a sufficient number of participants, and thus makes
it difficult to draw any conclusions based on a statistical
significance of the collected data. However, for several quality
attributes, we can observe similarities to the result of the
related study [10]. Mainly, we can relate that difference in
test cases between the test-first and the test-last participants
almost do not exists, if code coverage and mutation score
indicators are used for comparison. Interestingly, additional
quality attribute that we introduced (the total number of failing
assertions) also could not make any distinction between the
test-first and the test-last participants.

Data is pointing out that the code of test-first group is of
better quality as compared to that of the test-last group. This
is an interesting observation considering that both the groups
had same quality of test cases used to test the implementation.
However, even though test-first group has less failing asser-
tions than test-last group, both groups still have a relatively
high number of errors in the code. Test-first participants had
more positive test cases than negative, probably as a result of
the “inherent”positive test bias of TDD.

B. Limitations of the Study
Similarly to the previously published experiments on TDD

[8], this pilot experiment was also performed in an academic
setting. Therefore, validity is threatened with some known
academic limitations: (i) using students as subjects, (ii) using
small scale objects of investigation, and (iii) having short
duration of the experiment.

VII. CONCLUSIONS AND FUTURE WORK

In its nature, test-driven development is a development
methodology and not a test design technique. This can be often
confused since, when using TDD, developers do create a set
of automated test cases. Researchers are mostly investigating
benefits of using TDD with respect to the quality of produced
code, but only one study (to the best of our knowledge) focuses
on investigating the quality of the produced test cases.

In this paper we presented a detailed study plan and a pilot
experiment on the investigation of test cases quality in TDD.
Since there is no underlying theory behind TDD, it is not
possible to formally validate its claimed benefits by any other
means except performing empirical investigations. In a long
term investigation process, this study should be conducted
as a fully controlled experiment, with a higher number of
participants in order to validate statistical significance of
the presented results. Preferably, this should be done in an
industrial context investigating if test cases of TDD developers
can detect same faults as when using test-last approach.

ACKNOWLEDGMENTS

This work was supported by SWELL (Swedish software
Verification & Validation ExceLLence) research school.

REFERENCES

[1] K. Beck, Extreme programming explained: embrace change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[2] A. Causevic, D. Sundmark, and S. Punnekkat, “An industrial survey
on contemporary aspects of software testing,” in Proceedings of the
3rd International Conference on Software Testing, Verification and
Validation (ICST), 2010, pp. 393–401.

[3] B. George and L. Williams, “A structured experiment of test-driven
development,” Information and Software Technology, vol. 46, no. 5, pp.
337 – 342, 2003.

[4] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness of
the test-first approach to programming,” IEEE Transactions on Software
Engineering, vol. 31, pp. 226–237, 2005.

[5] D. S. Janzen and H. Saiedian, “On the influence of test-driven de-
velopment on software design,” Software Engineering Education and
Training, Conference on, vol. 0, pp. 141–148, 2006.

[6] A. Gupta and P. Jalote, “An experimental evaluation of the effectiveness
and efficiency of the test driven development,” in Proceedings of the
First International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 285–294.

[7] J. H. Vu, N. Frojd, C. Shenkel-Therolf, and D. S. Janzen, “Evaluating
test-driven development in an industry-sponsored capstone project,” in
Proceedings of the 2009 Sixth International Conference on Information
Technology: New Generations. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 229–234.

[8] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors Limiting Indus-
trial Adoption of Test Driven Development: A Systematic Review,” in
Proceedings of the 4th International Conference on Software Testing,
Verification and Validation (ICST), 2011.

[9] A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled exper-
iments in software engineering.” in Proceedings of the 4th International
Symposium on Empirical Software Engineering (ISESE 2005), R. J.
et al., Ed. IEEE Computer Society, 2005, pp. 94–104.

[10] L. Madeyski, “The impact of test-first programming on branch coverage
and mutation score indicator of unit tests: An experiment,” Inf. Softw.
Technol., vol. 52, pp. 169–184, February 2010.

[11] A. Causevic, D. Sundmark, and S. Punnekkat, “Impact of Test Design
Technique Knowledge on Test Driven Development: A Controlled
Experiment,” in Agile Processes in Software Engineering and Extreme
Programming - 13th International Conference, XP 2012, Malmö, Swe-
den, May 20-25, 2012. Proceedings, ser. Lecture Notes in Business
Information Processing. Springer, 2012 (to appear).

[12] B. E. Teasley, L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman,
“Why Software Testing Is Sometimes Ineffective: Two Applied Studies
of Positive Test Strategy,” Journal of Applied Psychology, vol. 79, no. 1,
pp. 142 – 155, 1994.

[13] L. M. Leventhal, B. Teasley, D. S. Rohlman, and K. Instone, “Positive
Test Bias in Software Testing Among Professionals: A Review,” in
Selected papers from the Third International Conference on Human-
Computer Interaction. London, UK: Springer-Verlag, 1993, pp. 210–
218.

[14] EclEmma - Java Code Coverage for Eclipse, http://www.eclemma.org.
[15] Judy - Java mutation tester, http://www.java.mu.
[16] Eclipse, http://www.eclipse.org.
[17] jUnit Framework, http://www.junit.org.
[18] S. Kollanus and V. Isomöttönen, “Understanding tdd in academic envi-

ronment: experiences from two experiments,” in Proceedings of the 8th
International Conference on Computing Education Research, ser. Koli
’08. New York, NY, USA: ACM, 2008, pp. 25–31.

[19] T. Flohr and T. Schneider, “Lessons learned from an xp experiment with
students: Test-first needs more teachings,” in Product-Focused Software
Process Improvement, ser. Lecture Notes in Computer Science, J. Mnch
and M. Vierimaa, Eds. Springer Berlin / Heidelberg, 2006, vol. 4034,
pp. 305–318.

