
Introducing Database-Centric Support in AUTOSAR

Andreas Hjertström, Dag Nyström and Mikael Sjödin
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

{andreas.hjertstrom, dag.nystrom, mikael.sjodin}@mdh.se

Abstract—We propose to integrate a real-time database
management system into the basic software of the AUTOSAR
component model. This integration can be performed without
violating the fundamental principles of the component-based
approach of AUTOSAR. Our database-centric approach allows
developers to focus on application development instead of
reinventing data management techniques or develop solutions
using internal data structures. We use state-of-the-art database
pointer techniques to achieve predictable timing, and database
proxies to maintain component encapsulation and indepen-
dence of data-management strategies. The paper illustrates the
feasibility of our proposal when database proxies are used to
manage the data communication between components and to
perform run-time monitoring on the virtual function bus. Our
implementation results show that the above benefits do not
come at the expense of less accurate timing predictions while
only introducing a total application CPU overhead, in the order
of 4%.

Keywords-CBSE; Data Management; RTDBMS; Real-Time;
Embedded Systems; AUTOSAR;

I. INTRODUCTION

By integrating an RTDBMS into AUTOSAR, developers
gain access to well established and powerful tools and
techniques that have facilitated data management in com-
plex, data intensive systems within other areas such as
financial markets for decades. Techniques to achieve more
dynamic and structured data management which include data
extraction, management of user access rights and dynamic or
static runtime monitoring would thereby be made available
even for such critical domains as automotive systems. In
addition, this approach allows information to be shared,
traced, logged and viewed using diagnostics tools or third
party tools.

Database proxies [1] has been presented as a success-
ful technique that enables the integration of a Real-Time
DataBase Management System (RTDBMS) [2] into a com-
ponent technology [3]. Database proxies are automatically
generated glue code, synthesized from the system architec-
ture, that translates data between the ports of the components
and an RTDBMS residing in the component framework.

For component-based automotive systems such as AUTo-
motive Open System ARchitecture (AUTOSAR) [4], inte-
grating an RTDBMS is not trivial since the component-based

approach of AUTOSAR favor encapsulation and reuse, while
the database centric approach favor an open blackboard data
architecture.

Component-Based Software Engineering (CBSE), strives
to decouple components from the context in which they are
deployed. One aspect of this is that a component should
not have built-in assumptions about external data-elements.
This decoupling is achieved by encapsulating component-
functionality and making visible only a component-interface
describing the provided and required services. Using an
RTDBMS in existing component-based systems would re-
quire database calls from within the component thereby
making the component unusable in an alternative setting.
In order to succeed with the integration of an RTDBMS
into AUTOSAR, components need to be decoupled from
the RTDBMS and the underlying database schema.

The contribution of this paper presents a solution for
how to integrate a real-time database management system,
COMET [5], into an AUTOSAR platform and tool suite,
such as the Arctic Core [6]. This is achieved without
violating the fundamental principles of the component-based
approach or, the fundamentals of the AUTOSAR standard
itself. The feasibility of our approach is demonstrated with
an implementation of an Adaptive Cruise Control (ACC)
using database proxies for all component communication on
the VFB. Finally, we present an evaluation which shows that
the cost for introducing database management support via
database proxies in AUTOSAR is negligible. Under typical
workload conditions, our concept only introduces a total
application CPU overhead, in the order of 4%.

II. BACKGROUND AND MOTIVATION

Since the computerization of cars, automotive software
systems have evolved from in-house monolithic control-
systems to integrated component-based software-systems.
Initially, automotive software controlled only fundamental
functions as fuel and ignition control; today automotive soft-
ware has become fully interconnected with the surrounding
environment through entertainment software, internet access
and advanced diagnostics systems. This evolvement has led
to an increasing complexity resulting in costly development
and maintenance [7], [8].

To reduce this complexity, model driven development
and component-based software engineering, e.g. using AU-
TOSAR, are widely used in industry today [9]. However,
these techniques mainly focus on the functional aspects of
the software, and rarely target management of data. In addi-
tion, the lack of run-time data management was pointed out
as a significant problem for the automotive domain, as well
as for transportation and industrial control [10]. Moreover,
the increasing need for more structured, flexible, reliable and
secure data management techniques to coordinate data both
at run-time and at design-time is continuously pointed out
as major challenges for the future [11], [12], [13].

As stated by Pretschner et al. [8] and Broy [14], a stan-
dardized and overall data model and management system has
great potential as a solution to deal with the distributed and
uncoordinated data in these complex systems. Furthermore,
Schulze et al. [11] and Saake et al. [15] points out that the
ad-hoc and/or reinvented management of data for each ECU
with individual solutions using internal data structures, can
lead to concurrency and inconsistency problems. In addition,
maintainability, extensibility and flexibility of the system
decrease.

Moreover, sophisticated techniques for diagnostics, error
detection, logging and secure data sharing are much needed
to improve reliability and system quality. Inefficient diagnos-
tics and error tracing techniques has led to that more than
50% of replaced ECUs are in fact not defect [8]. Much of
the diagnostics messages and logging that can be retrieved
from these systems are statically predefined at design time. A
possibility to perform dynamic run-time monitoring and/or
diagnostics of the system could greatly aid developers.

In techniques such as the Program Monitoring and Mea-
suring System (PMMS), it is up to the user to specify pre-
conditions and insert code in order to collect data [16]. This
put high demands on developers to predict future needs of
what could be of interest to for instance a service technician.

There are well established database techniques that can aid
developers with the above stated complexity available, such
as Mimer SQL Real-Time Edition [17] and ExtremeDB [18].
These database systems include efficient and predictable
concurrency-control, temporal consistency, and overload and
transaction management [19], [20], [21]. In addition, there
are efficient and well proven tools available from the
database community that can aid developers in dealing with
the data complexity. In spite of the fact that RTDBMSs
are available, they remain unused in automotive embedded
systems.

It is thereby well established that the integration of an
RTDBMS into AUTOSAR could not only aid developers
with standardized tool support for modeling system data
at design-time, but also provide predictable and efficient
routines for managing data at run-time.

1 TASK oilTemp(void){
//Initialization part

2 int temp;
3 DBPointer *dbp;
4 bind(&dbp,"Select TEMP from ENGINE

where SUBSYSTEM=’oil’");
//Control part

5 while(1){
6 temp=readOilTempSensor();
7 write(dbp,temp);
8 waitForNextPeriod();

}
}

Figure 1. A task that uses a database pointer

III. SYSTEM MODEL AND RELATED TECHNIQUES

AUTOSAR supports hard real-time functionality that in-
clude critical control-functions, as well as soft real-time
functionality. We therefore consider a system where func-
tionality is divided into the following classes of tasks:
Hard real-time tasks, typically have high arrival rates.
Hard real-time tasks use hard transactions to read and write
simple values from sensors/actuators and execute real-time
control loops. Hard real-time tasks cannot manage complex
data structures. This limitation however, is fairly small in
practice, since hard real-time components often are static,
communicating with fairly simple data structures. When a
database is used, hard real-time tasks require predictable
access to data elements.
Soft real-time tasks, often with a lower arrival rate, control
less critical functionality. Soft real-time tasks uses soft
transactions to read and write dynamic and complex data
structures typically to present statistical information, logging
or used as a gateway for service access to the system by
technicians in order to perform system maintenance. Soft
real-time tasks could also be used for fault management and
perform ad-hoc queries at run-time.

In order to support a predictable mix of both hard and
soft real-time transactions, we consider an RTDBMS with
two separate interfaces. For hard real-time transactions, a
database pointer [21] interface is used to enable the applica-
tion to access individual data elements in the database with
hard real-time performance. For soft real-time transactions,
a standardized SQL interface is used.

A. Database Pointers

A database pointer [22] is a hard real-time database
access-method which uses an application pointer variable to
access individual data in an RTDBMS, see Figure 1. The
figure shows an example of a task (thread) that reads a
sensor and propagates the sensor value to the database using
a database pointer. During the initialization part (lines 2 to 4)
the database pointer is created and bound to a data element
in the database using the bind function. The bind function
calls the database server which creates a handle directly to
the data element.

During the control part, the write function uses this
handle to directly write to the data element without calling
the database server. The write operation consists of only a
few lines of sequential code that performs type checking,
synchronization, and writing of the data.

A key property of the database-pointer concept is that
reads and writes through database-pointers have determin-
istic execution-time with bounded and negligible blocking
[21]. They also allow SQL-based transactions to be executed
in the background without any predictability loss due to
any concurrent database-pointer accesses (i.e. no starvation,
conflicts, or restarts of transaction can be caused by database
pointers [22]).

B. COMET

The COMponent-based Embedded real-Time database
system [5] (COMET RTDBMS) is a real-time database
management system intended for applications with a mix
of hard and soft real-time requirements. The COMET RT-
DBMS implements the database pointer interface to access
individual data elements in an efficient and deterministic
manner. For soft real-time database access, SQL queries are
used. To guarantee hard real-time predictability for database
accesses while eliminating starvation issues for soft real-
time SQL queries, COMET RTDBMS uses the 2V-DBP
concurrency-control algorithm [21] that combines version-
ing and pessimistic concurrency-control. 2V-DBP is suited
for resource-constrained, safety critical, real-time systems
that have a mix of hard real-time control applications and
soft real-time management, maintenance, or user-interface
applications.

Some technologies developed for COMET RTDBMS, in-
cluding the database pointer concept, has later been adopted
by the commercially available RTDBMS, Mimer SQL Real-
Time Edition [17].

C. Arctic Core

Arccore AB [6] is a provider of the open-source Arc-
tic Core embedded AUTOSAR platform developed in
Eclipse [23]. The open-source solution, to be used for
education and testing, includes Arctic Core and Arctic
Studio which is an Integrated Development Environment
(IDE). The commercial solution offers a number of licensed
professional graphical tools to facilitate development of a
complete AUTOSAR system. Arctic Core includes build
scripts and services such as, network communication, mem-
ory, and operating system. In addition, drivers for different
microcontroller architectures are also provided.

Components and their port-based interfaces are developed
using the SoftWare Component Builder tool. The Extract
Builder tool is used to add selected components to the ECU,
connect ports and to validate the extract. The Run-Time
Environment Builder models the VFB and generates a run-
time implementation of the component communication. The

configuration of the target platform is done in the Basic
Software Builder tool which also generates the configuration
files. Since Arctic Core is provided as open source, it is
possible to extend it to also include RTDBMS support.

IV. AUTOSAR CONCEPT OVERVIEW

AUTOSAR [4] is a standard component model and mid-
dleware platform for the automotive electronic architecture.
One of the fundamental concepts of AUTOSAR is to have
a clear separation between the underlying infrastructure and
the applications which consists of interconnected software
components. A simplified explanation is that AUTOSAR
consists of the following layers, see Figure 2; the SoftWare
Component layer (SWC), Virtual Function Bus (VFB), and
the Basic SoftWare layer (BSW).

SWC-1 SWC-2

BSW

VFB

PPort

VFB Trace

Messages

ECU Hardware

….

OS

module

BSW

module
…. DLT

module
…. ..

InterfaceInterfaceInterface

RPort

Figure 2. Autosar Overview

The main focus in this paper is the VFB, which is
the central mechanism that manages the connections and
data sharing between AUTOSAR components residing in
an Electronic Control Unit (ECU) or between ECUs in the
system. The purpose of the VFB is that it enables a virtual
integration of components early in the development phase.
Since the VFB manages all component interactions, there
is a clear separation between the software components and
the underlying infrastructure. The realization of the VFB is
the Run-Time Environment (RTE) which is generated from
the specifications and the underlying BSW components. The
RTE acts as a communication center for both internal ECU
communication and information exchange between ECUs in
the system.

Data is shared between components by creating connec-
tions between Provider Ports (PPort) and Receiver Ports
(RPort) of components. Data sets passed between compo-
nents on an ECU is usually realized through shared RAM
areas which have to be protected using semaphores to ensure

data consistency. This makes data internal on the ECU, and
visible only to those components which have been specified
as receivers when developing the system.

Regulatory requirements and the complexity of automo-
tive systems have increased the need for run-time diagnostics
and system monitoring. To meet this need, AUTOSAR has,
from version 4.0 included support for system monitoring
via the Diagnostic Log and Trace (DLT) module. The DLT
is capable of managing multiple types of diagnostic log
and trace messages and transmit them to external clients
remotely connected over the network. One such trace-type
is the VFB trace message which is used to collect component
communication in the VFB, see Figure 2.

Today, all diagnostics messages must be statically defined
at design time, thus is it not possible to view or subscribe
to VFB communication that has not been tagged for VFB
tracing. An external client can initiate a session to the DLT
and request that a subscription of a VFB trace should be
initiated and periodically published on the network.

V. DATABASE PROXIES

Database proxies [1] are shown to be an efficient and pre-
dictable technique that offers a range of valuable features to
component-based embedded real-time systems development,
maintenance and evolution at a minimal cost with respect
to resource consumption. A database proxy translates data
between component ports and an RTDBMS that resides in
the component framework (i.e., the AUTOSAR BSW) and
vice versa. This allows full decoupling of the RTDBMS
from the component, i.e., the component and the RTDBMS
are unaware of the existence of the other. Database proxies
remove the need for database calls within the component,
thus preserving component encapsulation and enable com-
ponent reuse. Furthermore, the schema of the database can
be modeled and optimized separately and is independent of
the component implementation.

Database proxies are automatically generated from the
system architecture, and the run-time implementations are
synthesized by the system generation tool. Therefore,
database proxies are a part of the system architecture, and
are realized in the form of glue code. The internal mapping
of data in the RTDBMS to the database proxies is made
using database pointers for hard real-time components, or
pre-compiled SQL statements or stored procedures for soft
real-time components. A pre-compiled statement enables a
developer to bind a certain database query to a statement
which is compiled once during system setup. This has
a decoupling effect since the internal database schema is
hidden from the component.

To support the different requirements of hard and soft real-
time tasks, we distinguish between hard real-time database
proxies (hard proxies) and soft real-time database proxies
(soft proxies).

A. Hard Real-Time Database Proxies

Hard proxies are intended for hard real-time components,
which need efficient and deterministic access to individual
data elements. Hard proxies support hard real-time data to
be shared between several hard real-time components, or a
mix of hard and soft real-time components.

Since hard real-time components manage hard real-
time data, hard proxies emphasize predictable and efficient
data access. Hard proxies are therefore implemented using
database pointers.

A hard real-time database proxy:

• communicates with the database through a database
pointer, thereby providing predictable data access.

• translates native data types only, thereby providing
predictable data translation.

That a hard proxy only translates native data types such
as integer, character, or float implies that no unpredictable
type conversions or translation of complex data types that
require unbounded iterations are needed.

B. Soft Real-Time Database Proxies

Soft proxies are intended for soft real-time components,
which usually have a more dynamic behavior and thus
might have a need for more complex data-structures. Typical
usages for soft proxies include graphical interface com-
ponents, logging components, and diagnostics components.
Therefore, soft proxies emphasize support for more complex
data structures by using a relational interface provided by
SQL, towards the RTDBMS.
A soft real-time database proxy:

• Communicates with the database through a relational
interface, thereby providing a flexible data access.

• Translates complex data types, thereby providing means
for components to access complex data.

C. Database Proxy Constituents

The realization of a database proxy contains the following
constituent parts:

• Initialization code that connects to the RTDBMS and
opens a pre-compiled database statement or database
pointer. The initialization code is executed at system
startup.

• Data translation code which is the glue code that
access the database and translate the result to/from the
components. The data translation code is executed prior
to or after every component execution.

• Uninitialization code that closes the database state-
ment or database pointer and disconnects from the
RTDBMS. The uninitialization code is executed at
system shutdown.

VI. INTEGRATING DATABASE PROXY SUPPORT IN
AUTOSAR

To enable efficient and dynamic data management in
AUTOSAR, our approach proposes that communication be-
tween components over the VFB is handled by the RTDBMS
using database proxies instead of internal RAM areas. This
has substantial benefits both during design-time and run-
time of the system. At design-time, all system data could
be explicitly modeled using well established data modeling
techniques, such as Entity/Relationship modeling [24], to
achieve an efficient and optimized data model. Run-time
system management would benefit from the approach since
all communication would be stored in the database, thus
dynamically enabling monitoring and tracing of any data
during run-time. This is especially beneficial for testing and
debugging purposes since internal data now can be made
available for external access.

To implement a VFB using database proxies, the virtual
function bus needs to be extended and the RTDBMS needs
to be integrated into the BSW.

A. Integrating the RTDBMS

The RTDBMS is integrated in the system as a BSW
module that is responsible for all system data that has been
designated to be managed by the RTDBMS, see Figure 3.
However, if two components share a single data item that
is of no additional interest for other components, nor for
logging or diagnostics proposes, a mapping to the RTDBMS
could be superfluous. All real-time accesses to the database
from the VFB are made through the Real-Time database
pointer APplication Interface (RTAPI), while internal soft
real-time accesses or external tools and 3rd party appli-
cations, use an SQL-based interface. These APIs are also
utilized internally by other BSW modules such as the DLT
module. The DLT module extracts information from the
database and uses the BSW diagnostic services to forward
the data to an external client.

B. Extending the VFB with database proxies

The current model of the VFB, where connections are
using RAM areas to connect one PPort of the providing
component to the RPort of the receiving component needs
to be extended to contain the following constituents:

• PPort: The port that provides the data.
• RPort: The port that requires the data.
• Database statement: A database statement that

uniquely associates the data with a data element in the
database.

During the realization of the VFB these constituents are
used to create the proxies as follows (see Figure 3):

SWC-1 SWC-2

BSW

VFB

OS

module

BSW

module

.. ..

PPort

ECU Hardware

DLT

module

..

InterfaceInterfaceInterface

Provider

DB Proxy

Receiver

DB Proxy

RTAPI

RTDBMS

RPort

SQL

API

3 PY Tools

Figure 3. Database proxies support in the VFB

• Provider DB Proxy: The provider DB Proxy translates
data from the PPort to the database using a database
pointer which is bound to the database statement of
the connection.

• Receiver DB Proxy: The receiver DB proxy translates
data from the database to the RPort using a database
pointer which is bound to the database statement of the
connection.

Rte.c
RteRunnable(){

SwcRunnable();

RtePostRunnable();

}

RteRostRunnable(){

DisableAllInterrupts();

WriteDataToBuf(value);

EnableAllInterrupts();

}

Task1(){

RteRunnable();

}

Component_X.c
SWC_Runnable(){

…..

RteWriteDataPort(…);

}

Rte_Runnable.c
RTE_WriteDataPort(){

WriteDataToPort(…);

}

Rte_Data.c
WriteDataToBuf(value){

data = value;

}1

2 3 4

5

6

7

Figure 4. Execution trace for the original AUTOSAR code

The initialization code and uninitialization code of the two
proxies are generated and placed in the AUTOSAR standard
startup and shutdown routines, and the data translation code
is placed in the connection, e.g., glue code, itself. This
implies that all communication between components will be
performed through the RTAPI interface of the RTDBMS,
thus removing the need to use RAM areas or inter process
communication operations from the operating system.

Figures 4 and 5 presents a simplified illustration of
the differences of the execution trace between the original
generated implementation and using database proxies for a
task that includes a component.

Tasks.c
StartupHook(){

DBInit();

}

ShutdownHook(){

DBUnInit();

}

DBProxies.c
DbInit(){

Setup DB;

}

DBUninit(){

Shutdown DB;

}

Rte.c
RteRunnable(){

SwcRunnable();

RtePostRunnableDBProxy();

}

RtePostRunnableDBProxy(){

DisableAllInterrupts();

DbpWriteIntDb(dbp,data->value);

EnableAllInterrupts();

}

Task1(){

RteRunnable();

}

Component_X.c
SWC_Runnable(){

…..

RTE_WriteDataPort(…);

}

Rte_Runnable.c
RTE_WriteDataPort(){

WriteDataToBuf(…);

}

Performed once

3

2

1

6

5
4

7

8

10

9

Figure 5. Execution trace using database proxies

Execution trace for the original generated implementa-
tion:

1 The task invokes the RteRunnable.
2 The software component is invoked by RTE.
3 The component performs its task and write the data

to its port.
4 The RTE writes to a port variable.
5 Since it is a provider port, the RTE writes the data

after the component invocation.
6 The RtePostRunnable function disables all

interrupts and calls function to write the data.
7 The data is written to the buffer. When finished,

all interrupts are enabled.

Execution trace using database proxies:
Performed once during system startup:

1 The AUTOSAR StartupHook calls functions to
setup and initialize the database.

2 The database is initialized during startup.
Performed during component communication:

3-6 Corresponds to steps (1-4) in the previous example
without database proxies.

7 RtePostRunnableDBProxy is called.
8 The data is written to the database.

Performed once during system shutdown:
9 The AUTOSAR ShutdownHook is called during

system shutdown.
10 The database is uninitialized.

For proxies connected to an RPort, the execution flow is
similar apart from that the database proxy is executed before
the component is called.

The differences in call flow, except from the initializa-
tion part of the database, which is executed once during
system startup is what happens when data is stored during
post write. In the case of not using a database, the task
of Rte_Data.c, is in some sense a predefined static data
manager which provides functions to read and write data
for each port.

When using database proxies, the post write is made to the
database. Provided that a user have the correct data access
rights, any data item from a single component port or data
items from several port, even from different components can
be queried. In addition, if the outcome from a query is a large
volume of data, the data can be filtered to not provide the
user with superfluous information.

VII. SYSTEM DESIGN AND IMPLEMENTATION

As a proof of concept and to demonstrate and evaluate
the usefulness of our approach, we have implemented an
application that mimics the behavior of an Adaptive Cruise
Control (ACC) system and deployed it on an AUTOSAR
hardware node. The software tools and techniques that have
been used are ArcCore AUTOSAR open source and profes-
sional solutions and the COMET RTDBMS. The design of
the ACC application, a brief introduction and the role of in-
cluded tools and technologies as well a discussion regarding
the predictability of our implementation is presented in the
remainder of this section.

A. Application System Design

The system has been designed according to the proposed
approach in section VI with the RTDBMS residing in the
BSW and database proxies that manages all component com-
munication. As illustrated in Figure 6, the nine components
communicate via the RTE. The database proxies in the RTE
manage the communication between PPorts and RPorts via
the RTDBMS. However, the figure is simplified with a focus
on a few connections to clearly illustrate the approach.

As seen in Figure 7, the application design consists of nine
components distributed over five hard real-time tasks, T1-T5
and a soft real-time task, T6. The internal implementation
of the components varies from simple Proportional Integral
Derivative (PID) controllers to more complex controller
logic [25].

The nine components assignments are as follows:
• HMI Input, controls if the ACC is active or not as

well as the desired speed. (Task 1)
• Internal Sensor, handles the throttle level and the

actual speed. (Task 2)
• Radar, measures and outputs the distance to a vehicle

in front. (Task 3)
• Mode Logic, handles the logic for different states of

the vehicle and sets mode accordingly. (Task 4)
• Object Recognition, determine if there is an obstacle

in front. If so, calculate the relative velocity and trigger
a mode switch to for instance reduce speed. (Task 4)

• ACC Controller, manages speed control according to
the distance and mode. (Task 5)

• HMI Output, outputs information regarding the vehi-
cle state and displays it to the driver. (Task 5)

HMI

input

Mode Logic HMI

Output

Internal

Sensor

Radar ActuatorACC Controller Object Recogni!on

RTE (realiza!on of the VFB)

BSW

RTAPI

RTDBMS………………. ………………… ……………….

RPort PPort

Monitor

…… ..… …… ..…. … ...

SQL

Figure 6. Illustration of the ACC system implementation in AUTOSAR

• Actuator, control throttle and speed of the vehicle.
(Task 5)

• Run-Time Monitor, Monitors the output from system
sensors. (Task 6)

The whole application is developed and generated using
the different tools in Arctic Studio.

B. Predictability of the Implementation

The ACC implementation includes a mix of hard and soft
database proxies, the code contains no unbounded behavior
and WCET and memory usage can be calculated (although
such analysis is beyond the scope of this paper). A hard
real-time database-pointer provides direct access to a data
element in memory without calling the database server.

This implies that from a predictability perspective,
database proxies do not introduce any additional context
switches, compared to the original implementation. A write
operation consist a few lines of sequential code that performs
type checking, synchronization, and writing of the data.
This is similar approach as using a pointer variable and
semaphores in C.

In addition, the database-pointer interface has been proven
temporally and spatially predictable within the COMET
project [21]. Thus, our implementation is suitable for use
in hard-real time systems.

The use of an RTDBMS, which is developed for this
purpose and have undergone extensive validation, could
be seen as single point of failure. However, this must be
compared to the ad hoc and individual solutions, currently
used in these complex systems [11], [15].

VIII. EVALUATION

In order to evaluate the performance of our approach
and to validate the practicality of database proxies under
realistic workload conditions, a performance evaluation of
the ACC application has been conducted. In addition, the
evaluation includes a soft run-time monitor component that
continuously extracts data, using a soft proxy. The aim of
the evaluation is to verify the predictability and measure the
CPU overhead introduced by integrating database proxies.

Internal

Sensor

ACC

Mode

Logic

HMI

Inputs

Radar

Object

Recogni on

ACC

Controller

HMI

Output

Actuator

T1

T2

T3

T4

T4

T5

T5

T5

T6Run-Time

Monitor

T6

Figure 7. ACC application design

A. Benchmark Setup

The evaluation was performed on a board, named VK-
EVB-M3, equipped with a STM32F107 ARM Cortex M3
processor, fitted with 256 kB Flash and 64 kB RAM [26].
The AUTOSAR OS included in Arctic Core was used and
the application was compiled using the GNU C compiler
(gcc) version 4.3.4. An Olimex ARM-USB-OCD was used
as the communication link to the board, and for debugging;
the GDB Hardware Debugger.

The reported execution times are the measured execution
times based on 5000 task executions. The elapsed time
is measured using the OS system tick function and the
collected measurements were written to the Arctic Core
ramlog, which is a defined RAM area for logging. The data
from the measurements was then read separately after the
test case was completed.

The two performance tests each contain three test cases,
A-C as follows:

A AUTOSAR generated code using original Arctic
Core mechanisms. In this test case, component
communication is performed using shared variables
without any RTDBMS support in the BSW. This
case does not include the run-time monitor (Task
6), since database support is not included.

B AUTOSAR generated code with database proxies.
In this test case, the database proxies ensure mutual
exclusion and atomic access, but performs no data
type or access right checking, i.e., the same level of
checking as in test case A is used. This approach is
useful for static systems where all component com-
munication is known beforehand and type checking
and access rights can be validated at design-time.
In addition, the run-time monitor component peri-
odically queries the system for shared data.

C AUTOSAR generated code with database proxies.
This test also includes data type and access right
checking at run-time. This approach is useful in
more dynamic environments which could include
third party applications and communication with
the surrounding environment. In addition, the run-
time monitor component periodically queries the
system for shared data.

B. Test 1: Communication Performance

In this test, the execution times of the individual read and
write operations of a single data element (16-bit integer) are
measured using the three test cases A-C. Test 1A in Table
I is the benchmark reference to which Tests 1B and 1C are
evaluated.

Test

1 A

Test

1 B

Test

1 C

Diff B

(ns)

Diff C

(ns)

Diff B

% / CPU c

Diff C

% / CPU c

1R 828 979 1131 151 303 18 / 10 36 / 22

1W 825 904 1016 79 191 10 / 6 23 / 14

Table I
RESULT OF TEST 1

Table I, shows the results of the test. The numbers are
shown in average time in nanoseconds (ns) and in the two
rightmost columns, difference in percentage and number of
CPU clock cycles is shown. From the table it can be seen
that a data read (where data are read from the shared variable
or RTDBMS and propagated to a component) using database
proxies introduces an overhead of 151ns (18 % or 10 CPU
cycles) for test case B, and 303ns (36 % or 22 CPU cycles)
for test case C, compared to not using database proxies.
For the data write case (where data is propagated to the
RTDBMS from a component) the introduced overhead is
79ns (10 % or 6 CPU cycles) for test case B, and 191ns (23
% or 14 CPU cycles) for test case C, compared to not using
database proxies.

Figure 8, presents the execution time for test cases A-
C. As the graph shows, the time for reading a value is
constant in the three test cases, whereas the write operations
have some fluctuations. Since the tasks are periodically
executed, these fluctuations could be the result of a probe
effect from the time measurement routines, cache misses or

500

600

700

800

900

1000

1100

1200

1 3 5 7 9 11 13 15 17 19 21 23

Test 1A (R)

Test 1A (W)

Test 1B (R)

Test 1B (W)

Test 1C (R)

Test 1C (W)

ns

n Execu!ons

Figure 8. Execution times for read and write operations

a combination of both. In any case, this is not the result of
introducing database proxies since identical fluctuations are
also present in the original generated code.

The number of executions in the graph is limited for read-
ability. Worth noting is that these numbers are representative
for the rest of the executions in the evaluation.

Monitor func 1 int (ns) 2 int (ns) 3 int (ns)

So� Read 20631 21431 22011

Table II
RESULT OF SOFT READ BY THE RUN-TIME MONITOR

Table II, display the time, in nanoseconds, for reading 1-
3 shared data elements using the SQL interface. As seen to
the right in the table, 22011ns is the time required to read
the output from components 1-3, as seen in Figure 7. Worth
noting is that the predictability of the hard real-time tasks
reading and writing the shared data is not compromised. No
fluctuations or increased execution times were observed.

A code analysis showed that the difference in execution
time between test case A and B is mainly caused by that
the database proxy pushes two parameters (the value and
the database pointer handle) to the stack when performing
the read/write compared to in test case A where only the
value needs to be pushed to the stack. Our analysis show
that the extra parameter alone cost 6 of the 10 CPU cycles
that differs (see Table I).

C. Test 2: System Performance

In this test, the execution time for each individual task
including the component logic as well as the component
communication is measured. Test 2A in Table III is the
benchmark reference to which Tests 2B and 2C are eval-
uated. The soft task (T6) is not included in this table since
it cannot be evaluated against the reference implementation
which does not include the Run-Time Monitor component.
However, in this performance test, T6 is included and

monitors the sensor input values throughout the evaluation
for test 2B and 2C in order to show that it will not negatively
affect hard proxies while providing enlarged support for
sharing, tracing, monitoring and logging.

Tasks

Test

2 A

Test

2 B

Test

2 C

Diff B

(ns)

Diff C

(ns)

Diff B

% / CPU c

Diff C

% / CPU c

T1 1271 1407 1490 136 219 10 / 10 17 / 16

T2 5671 5726 5892 55 221 1 / 4 4 / 16

T3 4719 4899 5064 180 345 4 / 13 7 / 25

T4 24191 24936 26537 745 2346 3 / 53 10 / 168

T5 16905 17760 19002 855 2097 5 / 61 12 /150

Table III
RESULT OF TEST 2

The aim is to measure the impact of introducing database
proxies in relation to the execution time of the whole
application.

Table III, shows the results of the average execution times.
The measurements shows that the overhead of using database
proxies under typical workload conditions introduces an
overhead of only between 1-10% in test case B and slightly
higher in test case C, with the exception of task T1. In this
case the increased overhead of 10% or 17% for case B-C can
be explained by the fact that the component executed within
task T1 is the smallest, therefore introducing data type and
access right checking in the communication accounts for a
larger relative overhead than in the other tasks. It is worth
noting that the introduced overhead in test case B and C
corresponds to as little as 10 and 16 CPU cycles respectively.

Total Execu�on Time

Test

2 A (ns)

Test

2 B (ns)

Test

2 C (ns)

Diff

Test 2 B

 %

Diff

Test 2 C

 %

T1-T5 527 57 547 28 579 85 3,74 9,91

Table IV
TOTAL APPLICATION CPU OVERHEAD

So far the focus has been on the overhead for the
individual tasks. To get a better overview of the overhead
on an application level, the execution time for the whole
application is measured and presented in Table IV. The
table shows that the total application CPU overhead of using
database proxies under typical workload conditions in test
case B is as low as 3.74%, and in test case C, 9.91%.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a technique to integrate pre-
dictable database management support in the AUTOSAR
basic software layer and the virtual function bus without
violating the fundamental principles of the component-
based approach of the AUTOSAR standard. To achieve this,
the database proxy concept in conjunction with database

pointer techniques, adopted by COMET, is used as the
communication link on the VFB. This database-centric
approach provides predictable timing guarantees, dynamic
access to data, maintained component encapsulation and
independence from the data-management strategy. Devel-
opers and maintenance personal can now exploit the full
potential of using a real-time database and extract any trace
information from the component interactions in contrast to
the static predefined approach that exists today. Furthermore,
the approach provides means for any BSW module to act as
a database client using a standard API.

To validate the feasibility of our approach, we have
performed a series of execution time tests which shows that
the database proxy approach offers a range of added value
features for AUTOSAR systems development, maintenance
and evolution at a minimal cost with respect to resource
consumption.

Our conclusion is that an RTDBMS that implements the
concept of database pointers can be successfully integrated
into AUTOSAR, without components being aware of it, or
jeopardizing system performance. This in turn, greatly sim-
plifies development of soft real-time functions that process
large data volumes, e.g., for statistics and logging.

In the future we plan to further extend the support for our
approach in the Arctic Core open source tool by integrating
modeling and configuration tools. Furthermore, the data-
entity approach that provide techniques for visualization of
data dependencies and documentation extraction for efficient
design-time management of run-time data will be included
[27].

ACKNOWLEDGMENT

This work is supported by the Swedish Foundation for
Strategic Research within the PROGRESS Centre for Pre-
dictable Embedded Software Systems.

REFERENCES

[1] A. Hjertström, D. Nyström, and M. Sjödin, “Data Manage-
ment for Component-Based Embedded Real-Time Systems:
the Database Proxy Approach,” Journal of Systems and Soft-
ware, vol. 85, pp. 821–834, April 2012.

[2] K. Ramamritham, S. H. Son, and L. C. Dipippo, “Real-Time
Databases and Data Services,” Journal of Real-Time Systems,
vol. 28, no. 2/3, pp. 179–215, November/December 2004.

[3] I. Crnkovic and M. Larsson, Building Reliable Component-
Based Software Systems. Artech House, 2002.

[4] AUTOSAR Open Systems Architecture,
http://www.autosar.org.

[5] D. Nyström, A. Tešanović, M. Nolin, C. Norström, and
J. Hansson, “COMET: A Component-Based Real-Time
Database for Automotive Systems,” in Proceedings of the
Workshop on Software Engineering for Automotive Systems.
The IEE, June 2004, pp. 1–8.

[6] ArcCore, “Open Source AUTOSAR Solutions, Göteborg
Sweden,” http://www.arccore.com.

[7] K. Grimm, “Software Technology in an Automotive Company
- Major Challenges,” Software Engineering, International
Conference on Software Engineering, p. 498, 2003.

[8] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Soft-
ware Engineering for Automotive Systems: A Roadmap,”
Future of Software Engineering, pp. 55–71, 2007.

[9] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli, “The
Save Approach to Component-Based Development of Vehicu-
lar Systems,” Journal of Systems and Software, vol. 80, no. 5,
pp. 655–667, May 2007.

[10] A. Hjertström, D. Nyström, M. Nolin, and R. Land, “Design-
Time Management of Run-Time Data in Industrial Embedded
Real-Time Systems Development,” in Proceedings of 13th
IEEE International Conference on Emerging Technologies
and Factory Automation, Germany, September 2008.

[11] S. Schulze, M. Pukall, G. Saake, T. Hoppe, and J. Dittmann,
“On the Need of Data Management in Automotive Systems,”
in BTW, ser. LNI, J. C. Freytag, T. Ruf, W. Lehner, and
G. Vossen, Eds., vol. 144. GI, 2009, pp. 217–226.

[12] R. R. Brooks, S. Sander, J. Deng, and J. Taiber, “Automo-
tive System Security: Challenges and State-Of-The-Art,” in
Proceedings of the 4th Annual Workshop on Cyber Security
and Information Intelligence Research: Developing Strategies
to Meet the Cyber Security and Information Intelligence
Challenges Ahead. ACM, 2008.

[13] D. Nyström, A. Tešanović, C. Norström, J. Hansson, and N.-
E. Bånkestad, “Data Management Issues in Vehicle Control
Systems: a Case Study,” in Proceedings of the 14th Euromicro
Conference on Real-Time Systems. IEEE Computer Society,
June 2002, pp. 249–256.

[14] M. Broy, “Challenges in Automotive Software Engineering,”
in ICSE ’06: Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 33–42.

[15] G. Saake, M. Rosenmüller, N. Siegmund, C. Kästner, and
T. Leich, “Downsizing Data Management for Embedded
Systems,” Egyptian Computer Science Journal, pp. 1–13,
2009.

[16] N. Delgado, A. Q. Gates, and S. Roach, “A Taxonomy and
Catalog of Runtime Software-Fault Monitoring Tools,” IEEE
Trans. Softw. Eng., vol. 30, pp. 859–872, December 2004.

[17] Mimer SQL Real-Time Edition, Mimer Information Technol-
ogy, Uppsala, Sweden, http://www.mimer.se.

[18] eXtremeDB, McObject, “Issaquah, WA USA,”
http://www.mcobject.com/.

[19] R. K. Abbott and H. Garcia-Molina, “Scheduling Real-
Time Transactions: a Performance Evaluation,” ACM Trans.
Database Syst., vol. 17, pp. 513–560, September 1992.

[20] J. Mellin, J. Hansson, and S. Andler, Eds., Real-Time
Database Systems: Issues and Applications. Kluwer Aca-
demic Publishers, 1997, ch. Refining Timing Constraints of
Application in DeeDS.

[21] D. Nyström, M. Nolin, A. Tešanović, C. Norström, and
J. Hansson, “Pessimistic Concurrency Control and Versioning
to Support Database Pointers in Real-Time Databases,” in
Proceedings of the 16th Euromicro Conference on Real-Time
Systems. IEEE Computer Society, 2004, pp. 261–270.

[22] D. Nyström, A. Tešanović, C. Norström, and J. Hansson,
“Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems,” in Proceedings of the
9th International Conference on Real-Time and Embedded
Computing Systems and Applications, 2003, pp. 623–634.

[23] The Eclipse Foundation, Ottawa, USA,
http://www.eclipse.org/.

[24] P. P.-S. Chen, “The Entity-Relationship Model - Toward a
Unified View of Data,” ACM Trans. Database Syst., vol. 1,
no. 1, 1976.

[25] K. Åström, “The Future of PID Control,” Control Engineering
Practice, vol. 9, no. 11, pp. 1163–1175, Nov. 2001.

[26] ArcCore VK-Board, “Open Source AUTOSAR Solutions,
Göteborg Sweden,” http://arccore.com/wiki/VK-Board.

[27] A. Hjertström, D. Nyström, and M. Sjödin, “A Data-Entity
Approach for Component-Based Real-Time Embedded Sys-
tems Development,” in 14th IEEE International Conference
on Emerging Technology and Factory Automation, Sept 2009.

