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nima.m.khalilzad@mdh.se

Abstract—In our previous work, we have introduced an
adaptive hierarchical scheduling framework as a solution for
composing dynamic real-time systems, i.e., systems where the
CPU demand of their tasks are subjected to unknown and
potentially drastic changes during run-time. The framework uses
the PI controller which periodically adapts the system to the
current load situation. The conventional PI controller despite
simplicity and low CPU overhead, provides acceptable perfor-
mance. However, increasing the pressure on the controller, e.g,
with an application consisting of multiple tasks with drastically
oscillating execution times, degrades the performance of the PI
controller.

Therefore, in this paper we modify the structure of our
adaptive framework by replacing the PI controller with a
fuzzy controller to achieve better performance. Furthermore,
we conduct a simulation-based case study in which we compose
dynamic tasks such as video decoder tasks with a set of static
tasks into a single system, and we show that the new fuzzy
controller outperforms our previous PI controller.

I. INTRODUCTION

The Hierarchical Scheduling Framework (HSF) is a com-
ponent based technique for scheduling complex real-time
systems [1], [2]. Using such a framework, each component is
allocated a portion of the CPU and, in turn, it guarantees that
with this portion all its internal tasks will be scheduled such
that their corresponding timing constraints are respected. The
CPU portions are often specified by the component period and
budget (interface parameters). The interface parameters can
be calculated either based on the Worst Case Execution Time
(WCET) of the tasks such as the method presented in [3] and
kept fixed during run-time, or be initiated using such a method
and then be adapted during run-time based on the current
workload [4]. The dynamic resource allocation techniques are
especially efficient when the system components are composed
of dynamic tasks in which their execution times are changing
significantly during run-time. For example, when a component
consists of control tasks or video decoder tasks, since the
execution time of such tasks are dynamic during run-time,
fixed recourse allocation techniques are not efficient and may
result in underutilized systems and consequently the CPU
resource will be wasted.

We have introduced the Adaptive Hierarchical Scheduling
Framework (AHSF) [4] as a solution for composing dynamic
components. In this hierarchical framework we assume a
fixed period for each subsystem, however, each subsystem is
equipped with a budget controller which adapts the subsystem
budget based on two feedback loops. The feedback loops are
controlling the number of deadline misses and the amount
of idle time in the subsystem. In that work, we used the well
known PI controller, designed based on an approximate system
model.

In this paper we investigate a more advanced controller
which does not require any pre knowledge about the system.
We introduce the following contributions in this paper.
• i) We investigate using a model-free fuzzy controller

instead of conventional PI controllers and define a new
control variable based on the consumed budget after
missing the deadlines instead of the number of deadline
misses.

• ii) We study the stability of our controller using Lya-
punov’s direct method which gives boundaries on the
budget controller’s gain values.

• iii) We tune the designed fuzzy controller using a multi-
criteria Genetic Algorithm (GA).

• iv) We evaluate the performance of the proposed con-
troller by conducting a case study and we compare the
result of using the proposed controller against the PI
controller approach presented in [4].

The remainder of this paper is organized as follows. Related
work is presented in Section II. Section III describes the
structure of our AHSF. In Section IV we give insight into
our fuzzy budget controller. The stability study is presented in
Section V. We describe the controller tuning in Section VI. A
simulation-based case study is presented in Section VII. The
implementation complexity of the proposed approach is dis-
cussed in VIII. Finally, we conclude the paper in Section IX.

II. RELATED WORK

The idea of closed-loop real-time scheduling emerged in
late 90’s [5] and since then there has been a growing attention



in combining the real-time scheduling theory with the well-
established control techniques. The deadline miss ratio is
controlled in [6]. In [7], in addition to the deadline miss
ratio, the CPU utilization is controlled as well. In a similar
context, the CPU utilization is controlled by modifying task
periods using a fuzzy controller in [8]. The idea is also applied
to scheduling of control tasks where the quality-of-control is
regulated using a feedback-feedforward method [9].

Resource reservation [10] and hierarchical scheduling [11],
[12], [3], [13], [14], [15], [16] techniques have received
increasingly more attention over the past two decades since
they provide temporal isolation and consequently predictability
in integrating different task models. Hierarchical scheduling
is used in scheduling of soft real-time systems in [17], [18],
[19]. All aforementioned methods assign fixed CPU portions
to the subsystems and therefore it makes them inefficient when
composing dynamic tasks.

Recently, there has been some work to enable the adapt-
ability feature for resource reservation scheduling techniques
by using feedback control techniques. In [20] Abeni et al.
have introduced an adaptive Constant Bandwidth Server (CBS)
as an extension to the CBS [21] in which the server bud-
gets are adjusted during run-time. Their control variable is
limited to existence of one task per server. Adaptive CPU
resource management is presented in [22] where the hard
CBS scheduling algorithm is used and the server budgets are
adapted during run-time. Although in theory this approach can
support existence of multiple tasks in a server, it is evaluated
by using only one task per server. In our AHSF [4], we bring
the feedback scheduling techniques in the context of resource
reservation scheduling in which the servers (components) con-
sist of multiple tasks and they are scheduled using a real-time
scheduler (hierarchical scheduling). Besides, we use periodic
servers [23] instead of CBSs in our framework, however, our
work can be extended to work under other type of servers such
as CBSs with minor modifications.

III. THE ADAPTIVE HIERARCHICAL SCHEDULING

FRAMEWORK

We consider a two level Adaptive Hierarchical Scheduling
Framework (AHSF) in which a system S consisting of N
components, here denoted as subsystems Ss ∈ S, is executed on
a single processor. In the AHSF, a global scheduler schedules
subsystems, and a local scheduler in each subsystem is respon-
sible for scheduling its corresponding internal tasks. We use
the EDF scheduling algorithm in both global and local level
in this paper, however the presented approach can be extended
easily to include other scheduling algorithm, i.e., fixed priority
scheduling. Figure 1 shows the architecture of our two-level
AHSF. We use one fuzzy budget controller per subsystem to
adapt its budget according to the CPU resource demand of its
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Fig. 1. The Adaptive Hierarchical Scheduling Framework.

tasks. In addition, there is an overload controller which deals
with overload situations i.e., when the total resource request
of the subsystems are more than the available CPU resources.

A. Subsystem Model

Each subsystem Ss is represented by its temporal inter-
face parameters (Ts,Bs,Ds,ζs) where Ts, Bs, Ds and ζs are
subsystem period, budget, relative deadline and criticality
respectively. The relative deadline of a subsystem is assumed
to be equal to its corresponding subsystem period (Ds = Ts).
Each subsystem Ss consists of a set of ns tasks τs and a
local scheduler. The criticality of a subsystem ζs, which
shows how critical a subsystem is in comparison to other
subsystems, is used only in overload situations. We assume
that subsystems are sorted according to their criticality, in
the order of decreasing criticality, and ζs = s, i.e., S1 has
the highest criticality in the system while SN has the lowest
criticality.

We use periodic servers (subsystems) which works as fol-
lows. The required CPU portion is always allocated to the
subsystems every predefined period, and in the case that there
is no active task in the subsystem, it will idle its budget.

B. Task Model

We assume the periodic soft real-time task model
τi,s(Ti,s,Ci,s,Di,s), where Ti,s, Ci,s and Di,s are period, execution
time and relative deadline of task i in subsystem Ss respec-
tively. The relative deadline of a task is assumed to be equal to
its corresponding task period (Di,s = Ti,s). When a task misses
its deadline it can continue its execution to the end.



C. The Budget Controller

We use two feedback loops in the structure of our budget
controller. For the first loop controller computations, the
amount of subsystem budget that is used by tasks after
missing their deadlines to finish their executions, is monitored.
Therefore, the error in this loop is defined as follows:

em(t) = ∑
τi,s∈τs

βi,s(t)
Ts

(1)

where βi,s(t) is the controlled variable of the feedback loop
which is the amount of subsystem budget of Ss used by
task i after missing its deadline at sampling time t. We call
this feedback loop the ”m-loop” in the rest of the paper.
Note that in [4] we measure the number of deadline misses
in the ”m-loop”, however, we believe that our new control
variable (Equation 1) provides the controller with more precise
information about the state of the system, consequently the
controller can take more effective actions in controlling the
environment. It goes without saying that Equation 1 can only
be used if tasks are allowed to continue executing after missing
their deadlines.

In the second loop, the amount of idle time (unused budget)
in each subsystem is monitored. Therefore, the error in this
loop is defined as follows:

eu(t) =
αs(t)

Ts
(2)

where αs(t) is the controlled variable of the second feedback
loop which is the amount of idle time in subsystem Ss

measured at sampling time t. Similar to the m-loop, we call
the second feedback loop the ”u-loop” in the rest of the
paper. Figure 2 illustrates the defined controlled variables in
subsystem S1 of an example system. There are two tasks in
S1 where τ2,1 misses its deadline at t0, however, τ1,1 finishes
its execution before its deadline. If we consider t0, t1 and t2
as the sampling times, the value of the controlled variables in
Figure 2 at the sampling times are as follows:

α1(t0) = α1(t1) = α1(t2) = q1,
β1,1(t0) = β1,1(t1) = β1,1(t2) = 0,

β2,1(t0) = 0,β2,1(t1) = x1,β2,1(t2) = x1 + x2.

The controllers of both loops are executed periodically and
both error values are reset to zero at each control period.
The controller periods are assumed to be proportional to the
subsystem periods. In addition to the error value, the controller
should be provided with the error difference value which is
calculated as follows:

∆e(t) = e(t)− e(t−1) (3)

where e(t) is the error value at sampling time t. The error
is either em or eu depending on the control loop, therefore,
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Fig. 2. The controlled variables in S1.

there is an error difference variable per control loop: ∆em(t)
corresponding to the m-loop and ∆eu(t) corresponding to the
u-loop. We provide the fuzzy controller with e(t) and ∆e(t),
and the controller computes a CPU portion ∆w(t) which affects
the subsystem budget, i.e., it might increase the subsystem
budget if there are deadline misses or decrease the subsystem
budget if there is much unused budget. Hence, the new
subsystem budget is calculated using the controller output and
subsystem period:

B(t) = B(t−1)+Ts∆w(t). (4)

The fuzzy budget controller is indeed an integral controller
which adds the controller output to the current budget. The
controller output is calculated as follows:

∆w(t) = K f e(t) (5)

where K f is the proportional gain which is extracted from the
fuzzy rule-base given e(t) and ∆e(t). The rule-base and the
fuzzy logic control is explained in detail in Section IV. The
block diagram of the fuzzy budget controller is illustrated in
Figure 3.

D. Integration of Feedback Loops

As mentioned earlier in this section, we use two feedback
loops in our framework. Each loop calculates a budget change
value ∆w(t), however, a mechanism should be provided for
integrating these two values. We design a fuzzy multiplexer
which combines the output of the control loops. The multi-
plexer simply looks at the systems state, if the m-loop error
is large, the output of the m-loop ∆wm(t) will have the main
impact on the final output, otherwise the final output is mainly
based on the output of the u-loop ∆wu(t). The block diagram
of the fuzzy multiplexer is shown in Figure 3. There are two
fuzzy sets in the structure of the multiplexer: large and zero.
Basically, the fuzzification and defuzzification steps in the
integration phase are very similar to the steps presented in
Section IV for the budget controller, hence to avoid redun-
dancy we do not explain them in this section. However, it is
important to highlight that we use different fuzzy sets and a
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Fig. 3. Block diagram of the fuzzy budget controller. ∆wm(t): m-loop output,
∆wu(t): u-loop output.

em(t)
eu(t) Zero Large
Zero ∆wu(t) ∆wm(t)
Large ∆wu(t) ∆wm(t)

TABLE I
FUZZY MULTIPLEXER RULE-BASE.

different rule-base than the budget controller. The rule-base
presented in Table I is used in the fuzzy multiplexer.

E. The Overload Controller

The overload situation can happen when the total system
utilization is more than 100% and since the EDF scheduling
algorithm is assumed, it is detected by performing the follow-
ing test:

∑
∀Ss∈S

Bs

Ts
> 1. (6)

If the controller detects the overload situation, it redistributes
the CPU resource among subsystems according to their criti-
cality values ζs. It starts from the highest criticality subsystem
S1 and provides it with required budget. Thereafter, it moves to
a lower criticality subsystem. The lower criticality subsystem
can at most receive a budget value which corresponds to
the CPU resource that is left after allocation to the highest
criticality subsystems. This process continues until the lowest
criticality subsystem receives CPU resources, which happens
after all other subsystems have been assigned a new budget.
In other words, when the controller finds out that there are not
enough resources for all the subsystems, it tries to satisfy the
high criticality subsystems by sacrificing the lower criticality
subsystems. Note that in this approach, the low criticality
subsystems might receive very small CPU portions or be

0 -Is -IL Is IM IL 

NL NM NS Z PS PM PL 

-IM 

1 

e(t) / Δe(t) 

Fig. 4. Membership function (NL:Negative Large, NM:Negative Medium,
NS:Negative Small, Z:Zero, PS:Positive Small, PM: Positive Medium,
PL:Positive Large, IS: Ceiling of Small, IM : Ceiling of Medium, IL: Ceiling
of Large).

completely shut down which is unavoidable due to the limited
CPU resources.

Without having an overload controller, in the overload mode
high priority subsystems will receive more resources than the
low priority ones. Since we use the EDF scheduler at the global
level, the shorter period subsystem are more likely to have
higher priorities. However, the shorter period subsystems are
often not the more important ones in the system since the
periods are usually describing the temporal requirement and
not the importance of the subsystems.

IV. FUZZY LOGIC CONTROL

In this section, we explain how the control input e(t) and
∆e(t) are mapped to the control output ∆w(t) using Fuzzy
Logic Control (FLC) [24]. As illustrated in Figure 3, the
first step in the FLC is fuzzification in which we map the
crisp input error to a linguistic value. We use the membership
function presented in Figure 4 for the fuzzification purpose.
Given an input value and using the membership function we
get a set of truth values indicating how much the input belongs
to each fuzzy set. According to the definition of the controlled
variables the error value is always positive, therefore only the
positive side of the membership function is needed for e(t),
however, ∆e(t) can be either negative or positive. We use the
same membership function for both e(t) and ∆e(t). In the next
step we apply fuzzy rules to our fuzzy inputs to get a fuzzy
control output. We use different rule-bases for each feedback
loop which are presented in Table II.

We use the minimum operator as ”fuzzy and” to calculate
the truth value of each fuzzy rule for the inference purpose.
The final step in FLC is defuzzification in which a linguistic



e(t)
∆e(t) Z PS PM PL
NL NM / PL NM / PM NS / PS Z / Z
NM NS/PM NS / PS Z / Z PS / NS
NS NS / PS Z / Z PS / NS PM / NM
Z NZ / PM PS / Z PM / NM PL / NL
PS PS / PM PM / Z PL / NL PL / NL
PM PM / PS PL / Z PL / NL PL / NL
PL PL / Z PL / Z PL / NL PL / NL

TABLE II
FUZZY CONTROLLER RULE-BASE (M-LOOP / U-LOOP).

control action is mapped to a crisp value. Let o(k) and µ(k)
represent the rule consequent and the truth value of k’th fuzzy
rule respectively. Finally, according to the Sugeno’s defuzzifi-
cation model [25] the proportional gain is the weighted average
of all rule outputs:

K f =
∑o(k).µ(k)

∑µ(k)
. (7)

The rule consequent can be either zero gain Kz, small gain
Ks, medium gain Km or large gain Kl . We assume the zero
gain is always 0. For example, assume e(t) = ∆e(t) = Is

2 (Is is
the ceiling of small fuzzy set). Then, for both e(t) and ∆e(t),
µZ = µPS = 0.5 where µZ and µPS are the truth value of the
”Zero” and ”Positive Small” fuzzy sets. Therefore the output
of m-loop is:

K f =
0×0.5+Ks×0.5+Ks×0.5+Km×0.5

0.5+0.5+0.5+0.5
, (8)

and the output of u-loop is:

K f =
Km×0.5+0×0.5+Km×0.5+0×0.5

0.5+0.5+0.5+0.5
. (9)

V. STABILITY STUDY

In controlled systems, stability is one of the important
properties which should be studied after designing the con-
troller. We use the direct method of the Lyapunov’s stability
analysis [26] to study the stability of our system. Assume
that y(t) is a function representing the distance of the current
budget B(t) from the equilibrium budget Beq at sampling time
t. The equilibrium budget is the budget that the subsystem
neither experiences idle time nor its tasks miss their deadlines:

y(t) = B(t)−Beq. (10)

We define the Lyapunov function as follows:

V (y(t)) = y(t)2. (11)

Now, we should prove that the following conditions are
satisfied.

1) V (y(t)) = 0, if the system is in its equilibrium state.
2) V (y(t)) > 0, if the system is in other states than its

equilibrium.

3) V (y(t +1))−V (y(t)) = y2(t +1)− y2(t)< 0
From the definition of our Lyapunov function, condition 1
and 2 are obviously satisfied. Now we need to study the third
condition. From the definition of y(t) we have:

y2(t +1)− y2(t) = (B(t +1)−Beq)
2− (B(t)−Beq)

2. (12)

Expanding 12 and replacing B(t +1) using Equation 4 and 5
we get:

y2(t +1)− y2(t) = K2
f T 2

s e(t)2 +2K f Tse(t)(B(t)−Beq). (13)

Using Equation 11 we get:

y2(t +1)− y2(t) = K2
f T 2

s e(t)2 +2K f Tse(t)y(t). (14)

Therefore, according to the third condition the following
inequality should be valid:

K2
f T 2

s e(t)2 +2K f Tse(t)y(t)< 0 (15)

which yields to the following two results:
1) sign(K f ) = −sign(y(t)) because all other variables are

positive.
2) |K f e(t)|< |2 y(t)

Ts
|.

Result 1 is used in design of the rule-base meaning that
when the distance from the equlibrium budget is positive and
consequently we have some idle time in the subsytem, the gain
value K f is negative, and if y is negative and there are some
deadline misses in the subsytem K f is positive.

Figure 5 shows a simple scenario that two tasks exist in
a subsystem. In this case both τ1,1 and τ2,1 are missing their
deadlines, and at any sampling time t: y(t)= x1+x2+x3 mean-
ing that if we add y(t) to the current budget it is guaranteed that
the tasks can finish their execution times before their deadlines.
However, assuming that the controller period is proportional
to the subsystem period (see Section VII), the controller can
sample the subsystem at either t0, t1 or t2 depending on the
controller period. The control variables β1,1 and β2,1 at these
sampling times are as follows.
• At t0: β1,1 = β2,1 = 0 and ∑τi,1∈τ1 βi,1(t0)< y(t0).
• At t1: β1,1 = x1,β2,1 = 0 and ∑τi,1∈τ1 βi,1(t1)< y(t1).
• At t2: β1,1 = x1,β2,1 = x2+x3 and ∑τi,1∈τ1 βi,1(t2) = y(t2).

Hence, we conclude that:

∑
τi,s∈τs

βi,s(t)≤ y(t) (16)

at any sampling time t. A similar reasoning can be done for the
u-loop and its controlled variable αs(t). Therefore, according
to Equation 16 and the error definitions we derive:

e(t)≤ y(t)
Ts

. (17)

From result 2 and Equation 17 we derive that in order for
the system to be stable, |K f | should be less than 2. The upper
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Fig. 5. The controlled variables in subsystem S1 of a sample system.

bound for |K f | can be considered higher than 2 depending on
the controller frequency. The higher the controller frequency
the greater the gain boundary, although from the stability point
of view, it is always safe for the system to fulfill |K f | < 2
condition.

The stability analysis gives some guidelines on how to
design the rule-base and how to configure the controller.
Although we do not get exact boundaries on the gain value K f ,
the stability study provides us with approximate boundaries
which we use in tuning of the controller. In Section VI we
use evolutionary search to find an optimum configuration for
our controller. Indeed, confining K f , using the stability study
in this section, limits the search space that we need to explore
and speed-ups the convergence of the search.

VI. TUNING THE CONTROLLER USING EVOLUTIONARY

SEARCH

There are many parameters in our designed fuzzy controller
that need to be tuned. For instance the fuzzy set intervals (both
in the budget controller and in the multiplexer) are crucial
parameters that should be carefully chosen. In addition, the
gain values that are used in the output of the fuzzy rule-base
need tuning. We use the GA to find the optimum parameters
that maximize the performance of the controller.

There is a set of parameters associated with each control
loop. For each loop the interval of small, medium and large
fuzzy sets in addition to the three gain values: small gain Ks,
medium gain Km and large gain Kl should be tuned. To define
the set intervals we only need to consider three values (see
Figure 4): the ceiling of ”small” set Is, the ceiling of ”medium”
set Im and the ceiling of ”large” set Il . Note that we have
different sets for each of the loops. We show u-loop parameters
using the super script u, and if the parameter belongs to m-
loop we show it using the super script m. For example Ku

s is
the small gain value corresponding to u-loop while Km

s is the
small gain value in m-loop.

The first step in using the GA is to design the structure of
the so called chromosomes. We assume that each chromosome
contains the information of all the parameters. However, we

 Ks
m d1

m d2
m hm Ks

u d1
u d2

u hu 

Fig. 6. Structure of the chromosomes used in the GA.

store the information indirectly to bias the GA. We assume
that the fuzzy sets are harmonic meaning that:

Il− Im = Im− Is = Is−0 = h

where h is the base interval size. This assumption limits the
search space and helps the GA to converge faster, however, it
might prevent it to find the absolute optimum solution. Recall
from Section III-D that the fuzzy multiplexer has two fuzzy
sets. The ceiling of ”large” set is assumed to be 1.5×h while
the ceiling of ”zero” set is 0. In addition, assuming that Kl >

Km > Ks, we can write:
• Km = Ks +d1

• Kl = Km +d2

where d1 and d2 are the difference of the medium gain with
the small gain and the difference of the large gain with the
medium gain respectively. Figure 6 illustrates the structure of
the chromosomes showing that they contain all the tunable
parameters.

Designing the mutation and crossover operators are the next
stage in using the GA. We use the one point crossover operator
on the randomly selected parents from the breeding pool. The
mutation point is selected randomly as well. Thereafter, we
add a random value between −0.1 and 0.1 to the selected
variable. However, there are some boundaries on the variables,
for instance none of the fields can be less than zero, therefore,
if the result of the mutation is out of the valid region we
immediately conduct another mutation.

The fitness function should be designed such that it directs
the generations towards more optimum generations. We have
two criteria in evaluating each chromosome. The lower the
number of deadline missed tasks, the higher the efficiency. In
addition, the amount of the idle time in the subsystems should
be as low as possible. Therefore, we use a multi-objective GA
approach called Vector Evaluated GA (VEGA) [27]. In this
approach there are multiple fitness variables associated with
each chromosome based on different criteria. When we want to
select a parent, first we randomly choose the effective criterion,
meaning that the chromosomes that are fit with respect to the
selected criterion have a higher chance in being selected as
a parent. Thereafter, we select the first parent and repeat the
same procedure to select the second parent. After conducting
extensive simulations we came to the conclusion that the
solution converges faster when using three objectives which
are based on i) number of deadline misses ii) amount of idle
time iii) combination of i and ii.



Algorithm 1 Tuning the control parameters using VEGA
for i = 0 to i = populationSize do

population(i) = random();
end for
for j = 0 to i = maxGeneration do

for i = 0 to i = populationSize do
simulation(population(i));
fitnessIdle(i) =calculateFitness(idle);
fitnessDl(i) =calculateFitness(dl);
fitnessTotal(i) =calculateFitness(total);

end for
pool = population;
for k = 0 to k = populationSize/2 do

objective = randomInt(1,3);
parent1 = selectParent(objective);
objective = randomInt(1,3);
parent2 = selectParent(objective);
crossoverPoint = randomInt(1,8);
children = crossover(parent1, parent2, crossoverPoint);
population(2*i-1) = mutate(children(1));
population(2*i) = mutate(children(2));

end for
end for

Algorithm 1 shows the multi-objective GA used for tuning
the parameters. It starts by generating random chromosomes
and runs the simulation using their parameters. Thereafter it
finds the fitness value of the chromosomes based on the three
objectives. Afterward, the next generation is created based on
the previous generation given that fitter chromosomes have
more chance in being selected as a parent. The functions and
variables involved in the algorithm are:

• ”populationSize” is the size of population.
• ”population” is an array of chromosomes.
• ”random()” is a function that returns a random variable

between zero and one.
• ”maxGeneration” is the number of generations that the

GA tries to perform the optimization.
• ”simulation(population(i))” given task sets, execution

time change patterns and the variables in the chromosome
of population i performs the simulation.

• ”fitnessIdle(i)”, ”fitnessDl(i)” and ”fitnessTotal(i)” store
the fitness value of the population i based on the idle
time, deadline miss and combination of both objectives.

• ”calculateFitness()” function calculates the fitness value
based on the input objective.

• ”idle”, ”dl” and ”total” are the thee objectives that we
use in the GA.

• ”pool” stores the current generation which is used to
generate the next generation.

• ”randomInt(a, b)” returns an integer random variable
between a and b.

• ”objective” stores the randomly selected objective.
• ”parent1” and ”parent2” are the selected parents for the

crossover.
• ”selectParent(objective)” randomly selects an individual

from ”pool” given the input objective meaning than the
individuals that are fit with respect to the input objective
have a higher chance to be selected.

• ”crossover()” does the crossover operation on its input
chromosomes and given the crossover point. It returns
two children.

• ”crossoverPoint” stores the gene number that the
crossover should be performed on it.

• ”chidden” is an array which stores the output of the
crossover operators.

• ”mutate()” chooses a random mutation point and performs
the mutation.

VII. EVALUATION

In this section we design a case study using real task
execution times measured from running a video decoder task
on a sequence of TV frames. We use the same data as the
authors of [28], which they used for evaluating their work. We
have used the TrueTime [29] simulation tool for our evaluation
purposes. The TrueTime kernel has been modified such that
our AHSF has been implemented.

In this study, we assume a system consisting of three
subsystems where each of them is composed of three tasks.
Subsystem S1 is composed of a decoder task with two other
tasks having fixed execution times during run-time. Subsystem
S2 contains two fixed execution time tasks and a dynamic
task. The dynamic task operates in two modes: low and high,
where its execution time is doubled when it is in the high
mode. We assume that this task changes its mode each 2
seconds. The reason that we add this task to our sample system
is to increase the pressure on the budget controllers, hence
their difference with respect to the control performance can
be revealed and compared easily. Subsystem S3 has the same
type of tasks as S1. The only difference between them is that
the decoder task in S1 decodes the frames in a higher quality
level than the decoder task in S3. The execution times of the
decoder tasks decoding various frames are shown in Figure 7.
The figure illustrates that the execution time is fluctuating
depending on the content of the frames. Table III shows the
task specifications in detail. The executions times reported for
the dynamic tasks are the mean execution times.

Three types of budget allocation techniques are studied for
scheduling the described system.

• First of all we allocate a fixed budget for each subsystem
using the analytical approach presented in [3]. The exe-
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Fig. 7. Execution times of the decoder tasks in two quality levels decoding
the first 150 frames of the TV stream.

τi,s/Ss Ti,s/Ts Ci,s/Cs

τ1,1 40 2.4
τ2,1 30 5
τ3,1 30 4
S1 10 2.5
τ1,2 60 8
τ2,2 50 5
τ3,2 90 4
S2 15 5
τ1,3 40 2.3
τ2,3 70 7
τ3,3 80 6
S3 20 8.5

TABLE III
SPECIFICATIONS OF TASKS AND SUBSYSTEMS USED IN THE CASE STUDY.

cution time of the dynamic tasks are assumed to be equal
to the mean value of their execution times in the budget
calculation analysis.

• Secondly, we use the PI controller [4] for dynamically
allocating the budgets.

• Finally, we use the fuzzy controller introduced in this
paper which allocates the budgets during run-time.

The control frequency is an important parameter which
should be taken into account when designing an adaptive
scheduler. Although frequently sampling and manipulating the
environment might give a good control performance, due to
the control overhead on the CPU, it is desirable to invoke
the controller in a lower frequency. A reasonable approach
for setting the control period is to set it proportional to
its subsystem period. Therefore, in the PI controller, the
controller period of each subsystem is set to be equal to the
corresponding subsystem period times two. However, since the
fuzzy controller has more overhead than the PI controller, we
assign longer control periods which are equal to the subsystem
periods times six.

The fuzzy controller is tuned using the first 10 seconds of
the simulation with the help of the GA presented in Section VI.
We started with 150 individuals and stopped the GA after
50 generations. Then we picked the best individual from

Performance metric Technique S1 S2 S3

# DL misses
Fixed 7566 3027 2
PI 44 1004 77
Fuzzy 76 335 64

DL miss ratio
Fixed 29.68% 24.08% 0.03%
PI 0.24% 9.51% 0.97%
Fuzzy 0.41% 3.39% 0.81%

idle time
Fixed 26 2661 44175
PI 2149 6003 2393
Fuzzy 2352 4304 3037

TABLE IV
COMPARISON OF THE PERFORMANCE OF THE THREE BUDGET

ALLOCATION APPROACHES. DL: DEADLINE. IDLE TIME IS IN

MILLISECOND.

the 50’th generation which was fit with respect to the third
objective (see Section VI). Afterwards, we ran the simulations
for 200 seconds and compared the performance of the budget
allocation techniques with each other.

Figure 8 illustrates the budget value of the three subsystems
during run-time, which are allocated using the three tech-
niques. The dynamic tasks are also shown in the figure. The
y-axes of the figure shows the value of subsystem budgets
and the value of execution times of the dynamic tasks. Since
the execution times of the dynamic tasks are changing, the
subsystem budgets (in the case that they are adaptive) are
changing as well. Note that S1 has the highest criticality in
the system and ζ1 > ζ2 > ζ3. The figure clearly shows that
assigning fixed budgets using the analysis is very pessimistic
and it results in resources being wasted, although we used the
mean value of the dynamic tasks in the analysis. Therefore, if
we use the maximum execution times in the analysis, it will
give even more pessimistic budgets.

Table IV summarizes the performance metrics that we are
interested in after running the simulation using the three
techniques. The table shows that a fixed budget allocation
is not efficient at all since the system is overloaded, and
between the PI controller and the fuzzy controller, despite the
fact that the fuzzy controller has a longer control period, the
fuzzy controller is more successful in reducing task deadline
misses. The main difference between the performance of the
two controllers is in deadline miss ratio of S2, where the fuzzy
controller managed to reduce the deadline miss ratio with an
additional approximately 6% compared to the PI controller.

In the second simulation we modify task τ1,2 in the previous
sample system such that the execution time of the dynamic
task is tripled in the high mode which imposes even more
pressure on the budget controllers. However, this time we do
not tune our fuzzy controller and we use the previously tuned
controller to see how well it works in a scenario similar to
the one that it is tuned to work in. The deadline miss ratio
for the three subsystems is presented in Table V. The table
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Fig. 8. Budget adaptation in the case study.

Controller S1 S2 S3

PI 0.24% 17.70% 1.33%
Fuzzy 0.41% 3.10% 7.58%

TABLE V
DEADLINE MISS RATIO IN THE SECOND SIMULATION.

shows that the fuzzy controller is able to reduce the deadline
miss ratio with an additional approximately 14% compared
to the performance of the PI controller in S2, however the PI
controller is 6% better in S3. Since the system is overloaded
one subsystem should be sacrificed, and since the PI controller
is slower in adaptation, it sacrifices the higher criticality
subsystem S2 and serves the lower criticality one S3. Therefore
in total the fuzzy controller successfully schedules 8% more
tasks, and taking the criticalities into account, the value of
avoiding deadline misses in S2 is higher than S3.

A potential drawback with the fuzzy budget controller could
be its tuning. Since the tuning process is application specific,
a tuned controller for a specific application could be less
efficient for other applications. However, the simulation results
suggest that the fuzzy controller works fine in relatively similar
dynamic scenarios to the scenario that it is tuned for. In
general, the closer the tuning scenario is to the test scenario,
the better the performance.

VIII. IMPLEMENTATION COMPLEXITY

In this section we explain the implementation complexity
of the different stages in the fuzzy budget controller.

The input values e(t) and ∆e(t) can at most belong to
two neighbor fuzzy sets. The corresponding fuzzy sets can
be found by a couple of ”if” statements. Thereafter, their
membership value should be calculated. Given the set bound-
aries calculating µ requires a sum operation together with a
multiplication. Afterwards, the ”fuzzy and” operator should
be performed on the two membership value. The ”fuzzy and”
operator consist of an ”if” statement. At most four ”fuzzy and”
operations should be performed. Finally Equation 7 should be
executed for the defuzzification purpose. These stages are done
for both control loops.

The fuzzy multiplexer has the same stages as the budget
controller, however, since the number of fuzzy sets are fewer,
finding the corresponding fuzzy set for the input value requires
less computation.

The overload controller, which only gets activated in the
overload situation, consist of sum and assignment operations.
The controller loops through the subsystems, assigns a new
budget to them if necessary and updates the available CPU
resource. The number of iterations in the loop is equal to the
number of subsystems in the system.

As a conclusion, given that the fuzzy controller requires



running in lower frequency than the PI controller, it does not
add a significant overhead when it is implement.

IX. CONCLUSION

In this paper, we studied the use of a more advanced
controller (fuzzy controller) than the conventional PI controller
in our adaptive hierarchical scheduling framework for control-
ling the subsystem budgets during run-time. Thereafter, we
showed how the fuzzy budget controller is tuned using a multi-
objective genetic algorithm. To study the performance of the
new budget controller we conducted a case study using video
decoder tasks where the fuzzy controller outperformed the PI
controller.

We intend to extend our work to the context of multi-core
systems where an adaptive hierarchical framework runs on a
multi-core CPU. Furthermore, since the control overhead is
one of the main issues in our adaptive framework, we want to
deeply study this issue by implementing the controllers in the
Linux kernel.
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