
Timing analysis for mode switch
in component-based multi-mode systems

Yin Hang, Hans Hansson
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, SWEDEN

Email: {young.hang.yin, hans.hansson}@mdh.se

Abstract—Component-Based Development (CBD) reduces
development time and effort by allowing systems to be built
from pre-developed reusable components. Partitioning the
behavior into a set of major operational modes is a classical
approach to reduce complexity of embedded systems design
and execution. In supporting system modes in CBD, a key
issue is seamless composition of pre-developed multi-mode
components into systems. We have previously developed a Mode
Switch Logic (MSL) for component-based multi-mode systems
implementing such seamless composition.

In this paper we extend our MSL to cope with atomic
transactions, i.e., to handle sets of components that must not
be aborted in the middle of the processing of data. This is
in contrast with our original MSL, in which components are
immediately aborted to perform a mode switch. Based on our
extended MSL, we provide analysis of the mode switch timing.

Keywords-component-based, mode switch, timing analysis

I. INTRODUCTION

Partitioning system behaviors into different operational
modes is a classical approach to reduce complexity and
improve efficiency of real-time software. Typically, each
mode corresponds to a specific system behavior. The system
starts by running in a default initial mode and switches to
another appropriate mode when some condition changes. For
instance, the control software of an airplane could run in
modes: taxi (the initial mode), taking off, flight and landing.

Component-Based Development (CBD) is a design
paradigm in which systems are built from pre-developed
reusable components [1]. Since a component is built for
reuse in different systems, no specific context should be
assumed. The fundamental idea is to reduce development
time by building systems from existing components.

Our focus is component-based development of real-time
embedded software. Since operational mode is highly rele-
vant for such software, our research is devoted to exploring
efficient and predictable mode switch in component-based
multi-mode systems (CBMMSs). A CBMMS has two dis-
tinctive features: (1) it is built in a component-based manner;
(2) it supports multiple operational modes and can switch
between different modes under certain conditions. Fig. 1
illustrates the hierarchical component structure of a typical
CBMMS. From the top level, the system consists of three
components: a, b and c. Component b is composed of three

other components: d, e and f. With respect to the terminology
of CBD, we can distinguish two basic types of components:
(1) a primitive component contains executable software
codes, and it cannot be further decomposed; (2) a composite
component is a composition of other components. In Fig. 1,
a, c, d, e and f are primitive components whereas Top and b
are composite. The system supports two modes: m1 and m2.
When the system is in m1 (Fig. 1 lower left), Component
f is deactivated (suspended). In m2 (Fig. 1 lower right), f
is activated (executing) while c and e are deactivated. In
addition, Component a has different mode-specific behavior
in m1 and m2 indicated by different shadings in Fig. 1.

Figure 1. Component hierarchy in different modes

There are several important challenges that need to be
addressed in providing a complete handling of modes and
mode switches in a CBMMS. Related to our approach, these
challenges include the following problems already explored:

• Mode switch propagation: A mode switch can be
triggered by any component and other components must
be made aware of the mode switch. Since a component
has no global knowledge of the system component
hierarchy, a mode switch event has to be stepwise
propagated as provided by the mechanism in [2].

• The guarantee of a consistent mode switch: The
mode switch of a system typically corresponds to
mode switches of several components, which must be
synchronized and coordinated to ensure that the system
is in a consistent state when it completes a mode switch.

An initial solution for a limited setting is provided
in [2], and extended in [3].

• The mode mapping between different components:
Since components are developed independently, the
components in a system may support different modes
and the supported modes of different components must
be consistently mapped, i.e. it must be unambiguously
defined which mode in a particular component corre-
sponds to which mode in another component. In [4],
we present such a mode mapping mechanism.

together with the specific contributions of this paper:
• Atomic component execution handling: Our original

mode switch mechanism (the Mode Switch Logic-
MSL) assumes that the execution of each component is
immediately aborted when a mode switch is triggered.
This assumption is unrealistic because it ignores the
case with executions that must be completed before a
mode switch can be taken. As the first contribution of
this paper, we extend our MSL by adding the support
for atomic component execution.

• Conflict handling for multiple mode switch trigger-
ing: While a CBMMS is in the process of switching
mode, a new mode switch triggering will incur con-
flict. Previously, we assumed that such conflicts never
occur. As the second contribution, we provide an initial
solution to this problem based on our extended MSL.

• Mode switch timing analysis: Many CBMMSs are
also real-time systems, thus the mode switch time
must be bounded and predictable. A very basic timing
analysis is presented in [5]. As the third contribution
of this paper we present a more general and thorough
timing analysis for the mode switch of a CBMMS either
with or without atomic component execution.

The remainder of the paper is organized as follows: Sec-
tion II introduces some related work. Section III describes
the system and component models as well as the assump-
tions made in this paper. Section IV extends our original
MSL by adding the support for atomic component execution.
In Section V, the global mode switch time is analyzed
for CBMMSs either with or without atomic component
execution. Section VI describes how to derive the extra mode
switch latency introduced by atomic component execution
by using the model checker UPPAAL [6]. Finally, we make
our conclusion and discuss some future work in Section VII.

II. RELATED WORK

Mode switch (sometimes also called ”Mode change”)
problems can be found in a multitude of related ongoing
research on miscellaneous topics, a majority of which delve
into multi-mode real-time systems, in particular the study of
mode switch protocols and scheduling issues during mode
switch (e.g. [7] and [8]). One of the earliest publications
related to mode switch is by Sha et al. [9], who developed

a simple mode switch protocol in a prioritized preemptive
scheduling environment guaranteeing short and bounded
mode switch latency. Later Real and Crespo [10] conducted
a survey of different mode switch protocols and proposed
several new protocols along with associated schedulability
analysis. Mode switch protocols are also extended to multi-
processor platforms, e.g., in [11] and [12].

Phan et al. extend the traditional Real-Time Calculus
to handle multi-mode [13], and present a multi-mode au-
tomaton model for modeling multi-mode applications, to-
gether with an interface-based technique for compositional
analysis [14] and a semantic framework for mode switch
protocols [15].

Several frameworks have been developed for the sup-
port of multi-mode systems, such as COMDES-II [16]
and MyCCM-HI [17], and mode switch support has been
provided for a few programming languages/models, such as
AADL [18], Giotto [19] and TDL [20].

In general, the mode switch problem in CBD has been
rarely explored, not to mention the consideration of atomic
component execution in the multi-mode context. Atomic
execution has mostly been considered as a type of real-time
task whose current execution must be completed before a
mode switch (e.g. in the mode change model in [8]).

III. SYSTEM MODEL

In this section, we first introduce the system and compo-
nent models that we base our work on. We assume pipe-and-
filter (data/control flow) type of executions, which are com-
mon in multimedia and process control systems, although we
believe that our results have wider applicability. We will first
introduce some notations, after which we present a model for
component-based multi-mode pipe-and-filter systems that do
not require atomic component execution. Then we extend the
model to also cover atomic component execution.

A. Notations

A CBMMS consists of a set of hierarchically organized
components. Let PC denote the set of primitive components
and CC denote the set of composite components: PC ∩
CC = ∅. The top component is denoted by Top. Let C̃C
denote CC\{Top}. For ci ∈ C̃C, Pci denotes the parent of
ci. As the set of subcomponents of ci, SCci is divided into
two disjoint parts: the set of subcomponents ASCci activated
in the current mode and the set of subcomponents DSCci

deactivated in the current mode. SCci = ASCci ∪DSCci .

B. The general system and component model

In [2], we have designed component models that sup-
port multi-mode and composable mode switch for both
primitive and composite components. Each component has
input and output ports through which it communicates with
its neighboring components. In addition, components have
dedicated ports used for mode switch handling. For each

supported mode, there is a specific configuration of the
component. The configuration is a collection of the mode-
specific properties of a component. Some properties are
application dependent while some others are general. For
instance, the configuration of a primitive component usually
includes its mode-specific behavior and the configuration
of a composite component usually includes the running
status (either activated or deactivated) of its subcomponents
and active inner component connections. If a component is
deactivated, it is not running in any mode but only responsive
to mode related events. A component is able to reconfigure
itself when switching mode. All components follow the same
repeated execution pattern: waiting for inputs, processing
data and producing outputs.

In this paper, we target pipe-and-filter systems. Just like
the execution pattern of each component, a pipe-and-filter
system waits for its input data, processes data and generates
output data. Different components can process different data
simultaneously. Fig. 2 depicts the component connection of
the example given by Fig. 1. The component connection
here is quite simple, i.e. there are no diverging or converging
branches, or feedback loops.

Figure 2. A component-based multi-mode pipe-and-filter system

A component has a non-empty set of input and output
ports. We assume that primitive components have data going
through all its input and output ports, i.e. input data has to
be available at all input ports before processing can start and
output data must be sent via all output ports. Whenever a
primitive component receives new data at an input port, the
data is first queued in a corresponding input buffer. While
a primitive component is processing data, new arriving data
must wait in its input buffers and cannot be processed until
the component completes its current data processing. As
opposed to a primitive component, a composite component
does not buffer its input data. Whenever it receives new
data, it will simply propagate the data to its subcompo-
nents. Similarly, whenever it receives output data from its
subcomponents, it will immediately forward the data via its
corresponding output port(s).

C. The system model with atomic component execution

Atomic components cannot be interrupted by a mode
switch at any point in time; they have to complete any

ongoing execution before reconfiguration for the new mode.
In addition to single atomic component, we will consider
groups of components that are atomic, termed an Atomic
Execution Group (AEG). All ongoing executions in the
AEG have to be completed before reconfiguration, including
processing of any data existing or produced by computations
within the group. It should be noted that AEGs are mode
specific, i.e., components that belong to the same AEG in
one mode may belong to different AEGs in another mode;
they may not even belong to any AEG in another mode. The
following are properties/requirements of AEGs:

• If ci ∈ CC is in an AEG in one mode, then ∀ck ∈
ASCci must be in the same AEG as well. For instance,
in Fig. 2, if Component b is in an AEG when the top
component is in m1, then d and e must be in the same
AEG as well.

• An AEG can consist of a set of components. To
simplify the handling mechanism and presentation, we
assume that each AEG is represented by a single
component ci that is either primitive or composite.

• A system may have multiple AEGs at the same time,
but there should be no overlapping between any two
AEGs. It is allowed to have one AEG included by a
bigger AEG, which then absorbs the smaller one.

In this paper, we make the following additional restric-
tions (assumptions) on the AEG:

• An AEG should have only one input port. The reason
is that an AEG must freeze its input(s) (i.e. accept
no more data) when it is told to switch mode. If an
AEG has multiple input ports, it may receive data from
different input ports at different times. Consequently,
input freezing becomes a complex issue, which is out
of the scope of this paper.

• There is no cyclic connection, i.e. feedback loop, in an
AEG. Feedback loops complicate the data flow within
an AEG as well as the mode switch timing analysis.

• Data transmission between different components within
an AEG is instantaneous. An AEG is most likely
to reside in the same physical (sub)system, therefore,
compared with component execution time, data trans-
mission time can be considered negligible (or included
in the component execution time).

With respect to the mode switch timing analysis, we make
two more assumptions:

• For each component, the response time of the mode
switch handling is known and bounded, such that the
timing of each step can be represented by a known
constant maximal value, i.e., we do not here deal with
issues related to scheduling or execution time estima-
tion. This could also correspond to a fully parallel
system with known execution times.

• When a mode switch is triggered, all components will
switch mode. This implies that a mode switch is always

a global activity. In [4], it has been pointed out that
some components may be unaffected by a mode switch
event, and a mode switch can also be a local activity, i.e.
within a non-top composite component. Yet the timing
analysis for a local mode switch is left for future work.

IV. THE EXTENDED MODE SWITCH LOGIC

According to our original MSL, the mode switches of
different components are synchronized by the Mode Switch
Request (MSR) propagation mechanism and mode switch
dependency rule. An MSR is a signal telling a component
to switch mode. A mode switch is triggered by a Mode
Switch Source (MSS) which is the component that initiates
the MSR. An MSS can be either a primitive or composite
component, and a system can have multiple MSSs in each
mode. The MSR from an MSS must be propagated to all
other components of the system. This has been handled by
the original MSR propagation mechanism [2]. If a system
has no AEG, after receiving the MSR, each component
will abort its current execution immediately and start its
reconfiguration. However, components within an AEG must
run to completion before reconfiguration. Here we propose
a new mode switch (MS) propagation mechanism, which
compared with the original MSR propagation mechanism,
can cope with atomic component execution as well as
resolve the conflict of multiple overlapping MSRs.

A. The extended MSL without atomic component execution

Let ci denote an MSS with cj = Pci . The MS prop-
agation mechanism without considering atomic component
execution works as follows:
MS propagation mechanism: When ci triggers a mode
switch, it sends an MSR to cj . As a composite component,
cj refers to the local mode mapping and makes a decision
upon receiving the MSR:

• If the MSR does not imply any mode switch of cj ,
then cj approves the MSR by sending a Mode Switch
Instruction (MSI) to SCcj based on its mode mapping.

• If the MSR implies the mode switch of cj whose
condition does not allow such a mode switch, then cj
rejects the MSR by doing nothing.

• If the MSR implies the mode switch of cj whose con-
dition allows such a mode switch and cj 6= Top, then
cj will forward the MSR to its parent Pcj and let Pcj

make further decisions. If this MSR is finally approved,
cj will receive an MSI from Pcj and propagate the MSI
to SCcj based on its mode mapping.

∀ck ∈ CC, ck handles an incoming MSR or MSI exactly
in the same way as cj . ∀cl ∈ PC, cl can only receive an MSI
but does not propagate the MSI. An MSS is not blocked after
issuing an MSR. If Top is an MSS, it can directly issue an
MSI to SCTop. The mode switch propagation is terminated
when all components have received an MSI associated with
the same MSR from an MSS.

The MS propagation mechanism divides the mode switch
propagation process into two independent phases: the up-
stream MSR propagation (if the MSS is not Top) and the
downstream MSI propagation (if the MSR is approved).
Since we in this paper assume that a mode switch is always a
global activity making all components switch mode, a mode
switch decision of an MSR is always made by Top which
issues the corresponding MSI. Since an MSI is propagated
from a parent to children and the component hierarchy has
a tree structure, the MSI is propagated to all components
(each MSI from Top is sent to each component only once).

Each component starts its reconfiguration after its MSI
propagation. The synchronization between the reconfigura-
tion of different components is guided by our mode switch
dependency rule [3]:
Mode switch dependency rule: Each component starts
its reconfiguration after its MSI propagation. ci ∈ PC
sends a Mode Switch Completion (MSC) signal to Pci upon
completion of its reconfiguration to indicate mode switch
completion. cj ∈ CC completes its mode switch when its
reconfiguration is completed and it has received the MSC(s)
from all ck ∈ SCcj . Thereafter, cj sends an MSC to Pcj if
cj 6= Top. A global mode switch is completed when Top
completes its mode switch.

The mode switch of the system in Fig. 1 is demonstrated
in the left part of Fig. 3 (the timeline will be explained in the
timing analysis later on), where d is the MSS and component
reconfiguration is illustrated by black bars. Without atomic
component execution, the global mode switch process is
independent of component connections.

B. Atomic component execution handling

The basic idea of handling atomic component execution
in a pipe-and-filter system is to guarantee that an AEG can
complete processing all the data within the AEG before
mode switch takes place. When a component is developed, it
can be pre-defined that it is an AEG in certain mode(s) with-
out considering the context during composition. The AEG
component is able to monitor its Data Processing Status
(DPS), which is either ”Processing” or ”Not processing”.
When some data is being processed within the AEG, its DPS
is ”Processing”. Otherwise its DPS is ”Not processing”.

Our MS propagation mechanism and mode switch depen-
dency rule still work with atomic component execution for
most components. Only the AEG component needs a slight
modification in its MSI propagation. Let ci ∈ CC denote an
AEG component which has just started its MSI propagation.
Essentially, ∀ck ∈ DSCci , the mode switch of ck is not
affected by atomic component execution because it is not
running. The MSI propagation of ci works as follows:
MSI propagation of an AEG component: ci refers
to its local mode mapping and immediately propagates
the MSI to DSCci . If DPSci =”Not processing”, then
there is no unfinished atomic component execution and ci

Figure 3. The global mode switch process and timing analysis

can immediately propagate the MSI to ASCci as well.
If DPSci =”Processing”, ci will freeze its input so that
no more data will enter the AEG. Then it lets its atomic
execution complete while monitoring its DPS. When DPSci

turns to ”Not processing”, the atomic component execution
in ci has been completed and ci can propagate the MSI to
ASCci . ci must unfreeze its input to accept new input data
upon its mode switch completion.

Our MS propagation mechanism does not exclude the case
when an AEG is included in a bigger AEG. Since the outer
AEG does not propagate the MSI until all data within it have
been processed, the DPS of the enclosed AEG is always
”Not processing” when it receives an MSI.

We can use the example in figures 1 and 2 to demonstrate
the mode switch of a system with an AEG. Suppose the
system is in m1 and Component b is an AEG. Then
ASCb = {d, e} and DSCb = {f}. Component d is still
assumed to be the MSS. The right part of Fig. 3 illustrates
the scenario when b receives the MSI in a situation when
some data has just entered the AEG via the input port of b
and there is no other data in the AEG. In the figure, atomic
component execution is represented by grey bars. The global
mode switch process can be described as follows:

1) d sends an MSR to b, who forwards the MSR to Top.
2) Top approves the MSR and propagates an MSI to its

subcomponents a, b, and c.
3) Top, a and c start to reconfigure themselves. As a

composite component and an AEG, b first sends an
MSI to its deactivated subcomponent f which will
initiate its reconfiguration. Then b checks its DPS.
Since some data just entered b, DPSb =”Processing”.

Therefore, b freezes its input port and monitors DPSb.
4) b finds that DPSb becomes ”Not processing” as the

data is completely processed by the AEG. b propagates
the MSI to its two activated subcomponents d and e,
who will start their reconfigurations.

5) All the components follow the dependency rule intro-
duced in Section IV-A. When b completes its mode
switch, it will unfreeze its input.

By comparing the left and right parts of Fig. 3, we can see
that atomic component execution changes the global mode
switch process only by adding a bounded delay during the
MSI propagation of an AEG component. Alg. 1 implements
the MS propagation mechanism of ci ∈ C̃C with or without
AEGs. The special case when ci is an MSS, a primitive
component or Top can be easily deduced. This algorithm
can be considered as a separate task dedicated to handling
the mode switch of ci, thus an ongoing atomic execution
will not be interrupted by an incoming MSR or MSI. A few
points deserve further explanation in the algorithm:

• pMSX and pMSX
in are the mode switch dedicated ports of

ci, the former for the communication with Pci and the
latter for the communication with SCci . MSX stands
for either MSR or MSI.

• Wait and Signal are primitives for receiving and sending
MSR or MSI via pMSX or pMSX

in . MSR is sent via pMSX

and received via pMSX
in while MSI is sent via pMSX

in and
received via pMSX .

• MSX(y,z) is the MSR or MSI carrying the new target
mode y of the receiving component and the identity z
of the sending component.

• After reconfiguration, ci follows the mode switch de-

pendency rule which is not affected by AEGs and
therefore omitted in the algorithm.

Algorithm 1 MS Propagation AEG(ci)

loop
repeat

Wait(pMSX ∨ pMSX
in ,MSX(mnew

origin, origin);
if MSR then

Mode Mapping;
Signal(pMSX ,MSR(mnew

ci , ci));
end if

until MSI
Mode Mapping;
if AEG then
∀ck ∈ DSCci : Signal(pMSX

in ,MSI(mnew
ck , ci));

if DPSci = Processing then
FreezeInput;
waituntil DPSci = ¬Processing;

end if
∀ck ∈ ASCci : Signal(pMSX

in ,MSI(mnew
ck , ci));

else
∀ck ∈ SCci : Signal(pMSX

in ,MSI(mnew
ck , ci));

end if
Reconfiguration;
· · · · · · ;
UnfreezeInput;

end loop

No matter whether a component-based multi-mode pipe-
and-filter system has an AEG or not, the data being pro-
cessed by the system during a mode switch must be properly
handled, though it is not critical for the global mode switch
process. Just like an AEG, Top should always freeze its
input as it propagates an MSI, and unfreeze its input upon
mode switch completion, in that the system is in an unstable
state during a mode switch and the processing of new
incoming data should be avoided. For the same reason,
data communication between components should be disabled
until the global mode switch completion. Reconfiguration
can change component connection and running status, thus
making data communication unpredictable. One simple solu-
tion is to delay component execution in the new mode until
Top propagates a Start to execute signal after the global
mode switch. Moreover, after an AEG freezes its input, the
component directly connected to its input may still send
some data. Depending on the system requirements, it may
or may not be permissible to discard the data, hence a
temporary input buffer of the AEG might be required to
store such data.

C. Conflict handling for multiple mode switch triggering

Our original MSL assumes that the interval between two
different MSXs is long enough so that a new MSX will
not be issued before mode switch completion. However, if
a CBMMS has multiple MSSs in one mode, their MSXs
may interfere with each other. Actually, even the same MSS

may initiate two consecutive MSXs such that the second one
interferes with the first one.

Our MS propagation mechanism can resolve the conflicts
due to overlapping MSXs. For a global mode switch, since a
mode switch decision is always made by Top, an arbitration
mechanism can be applied in Top when it receives multiple
overlapping MSRs or an incoming MSR is in conflict
with its MSI if it is one MSS. Based on the arbitration
mechanism, Top can refrain from issuing a new MSI before
the completion of an ongoing mode switch. Depending
on the desired behavior of a particular CBMMS, different
arbitration mechanisms can be used. For instance, during
a mode switch, a new MSR may be discarded by Top, or
the new MSR may be temporarily delayed until completion
of the current mode switch. Top can even set priorities to
different MSRs and make arbitration decisions accordingly.

V. MODE SWITCH TIMING ANALYSIS

Since many CBMMSs are also real-time systems, it is
important that the system timing constraints can be verified.
In this section we present mode switch timing analysis for
CBMMSs. We are interested in the global mode switch
time, which starts when an MSS initiates an MSR and ends
when Top completes its mode switch. We start by analyzing
the global mode switch time without considering atomic
component execution and then extend this timing analysis
to also cover atomic component execution. We still follow
the assumption that an MSI always originates from Top and
is eventually propagated to all components.

A. The mode switch timing analysis without AEG

For a CBMMS without any AEG, the global mode switch
time can be derived from the reconfiguration times of
individual components. We first list some key timing factors
and corresponding notations:

• tMSR, tMSI and tMSC : The transmission time of an
MSR, MSI or MSC, respectively.

• RCTci : The reconfiguration time of Component ci. We
assume all scheduling effects are included in RCTci .

• MSci : The mode switch time of Component ci. If ci ∈
PC, then MSci = RCTci . However, if ci ∈ CC, its
reconfiguration completion does not have to result in
mode switch completion, ergo MSci ≥ RCTci .

We will approximate the possibly varying transmission
times (tMSR, tMSI and tMSC) with constants corresponding
to their maximum values. In calculating the global mode
switch time, the timing analysis of MSR propagation can
be performed separately. The total MSR propagation time
TMSR is proportional to the hierarchical distance L between
the MSS and Top, with L = 0 if the MSS is Top. Therefore,
TMSR can be easily calculated as

TMSR = tMSR ∗ L (1)

Fig. 4 depicts a simple MSI propagation scenario within
a composite component a, where a broadcasts an MSI to
its subcomponents b and c. The black bar represents the
reconfiguration time of a, while the linear gradient bars
represent the mode switch times of b and c respectively.
Since a is the MSI sender, the mode switch starting times
of its subcomponents b and c are both delayed for the trans-
mission time of one MSI, i.e. tMSI . After MSI propagation,
the reconfigurations of these components can be taken in
parallel. According to the mode switch dependency rule, two
conditions must be satisfied for the mode switch completion
of a: (1) a must complete its own reconfiguration; (2) a must
receive the MSCs from both b and c. The calculation of
MSa boils down to selecting the maximum of three timing
points: (1) the reconfiguration completion time of a; (2) the
time when a receives an MSC from b; (3) the time when a
receives an MSC from c. Hence,

MSa = max{RCTa, tMSI +MSb + tMSC ,

tMSI +MSc + tMSC}
(2)

In Fig. 4, a finally completes its mode switch as it receives
an MSC from c. Thus a is blocked for a while after its
reconfiguration. In general, for ci ∈ CC,

MSci = max{RCTci ,maxck∈SCci
{tMSI +MSck + tMSC}}

(3)
MSck in Eq. 3 actually reveals the recursive nature of

the global mode switch time calculation. Since ∀ck ∈ SCci ,
the MSI propagation of ck is the same as ci, MSck can be
calculated exactly in the same way as MSci . This recursion
is terminated by cj ∈ PC with MScj = RCTcj . As a result,
starting from primitive components, the global mode switch
time is calculated from lower levels to higher levels.

Figure 4. Mode switch timing analysis within a composite component

Since the global mode switch is completed upon the mode
switch completion of Top, the global mode switch time MS
is simply the sum of the MSR propagation time TMSR and
the mode switch time of Top, which is MSTop:

MS = TMSR +MSTop (4)

Now let’s try to analyze the MS of the example from
Fig. 1, where Component d is assumed to be the MSS. We
assume that tMSR = tMSI = tMSC = 1. The left part of
Fig. 3 shows the entire mode switch process of the system
without AEG. The reconfiguration time of each component
is shown on each black reconfiguration bar. Obviously, b
and Top are the only two composite components in charge
of the MSI propagation described by Fig. 4. The first step
is to calculate TMSR:

TMSR = tMSR ∗ L = 1 ∗ 2 = 2 (5)

The next step is to calculate MSb:

MSb = max{RCTb,max{tMSI +MSd + tMSC ,

tMSI +MSe + tMSC , tMSI +MSf + tMSR}}
= max{13,max{1 + 6 + 1, 1 + 9 + 1, 1 + 5 + 1}}
= 13 (6)

Based on MSb, MSTop is calculated in the same way:

MSTop = max{RCTTop,max{tMSI +MSa + tMSC ,

tMSI +MSb + tMSC , tMSI +MSc + tMSC}}
= max{9,max{1 + 10 + 1, 1 + 13 + 1, 1 + 6 + 1}}
= 15 (7)

Thus, just as Fig. 3 indicates, the global mode switch time

MS = TMSR +MSTop = 2 + 15 = 17 (8)

B. The mode switch timing analysis with AEG(s)

For an AEG component ci. If ci ∈ PC, its reconfiguration
can be delayed by its atomic execution AEci . If ci ∈ CC,
the MSI propagation time can be delayed by AEci . In the
best case AEci = 0, but we are more interested in the worst
case. We shall focus on the case when ci ∈ CC.

The global mode switch time without considering atomic
component execution is defined by equations 1, 3 and 4 in
Section V-A. To cater for atomic component execution, we
extend Eq. 3 into the following

ci 6= AEG⇒ max{RCTci ,maxck∈SCci

{tMSI+
MSck + tMSC}}

ci = AEG⇒ max{RCTci +AEci ,
maxck∈ASCci

{tMSI +MSck + tMSC +AEci},
maxck∈DSCci

{tMSI +MSck + tMSC}}

(9)

Eq. 9 is consistent with Alg. 1, where ∀ck ∈ DSCci ,
ck can receive an MSI immediately from ci. This is why
AEci only contributes to the timing of ci and ASCci in Eq.
9. We consider AEci as the worst-case atomic component
execution time in the AEG ci, thus components at lower
levels in the same AEG do not need to consider AEci again.
If a system has multiple AEGs, then each AEG has its own
AE that needs to be calculated independently. In the next
section we will show how to obtain AE.

But first we will analyze the global mode switch time
demonstrated in the right part of Fig. 3. We assume that the
reconfiguration and transmission times are the same as the
left part of Fig. 3. Then TMSR is still 2. If the worst-case
data processing times of d and e are 5 and 7, respectively,
then in the scenario above, AEb = 12, i.e. the sum of both.

Now let’s analyze MS using Eq. 9, starting with MSb:

MSb = max{RCTb +AEb,max{tMSI +MSd+

tMSC +AEb, tMSI +MSe + tMSC +AEb,

tMSI +MSf + tMSC}}
= max{13 + 12,max{1 + 6 + 1 + 12, 1 + 9+

1 + 12, 1 + 5 + 1}} = 25 (10)

Then MSb is used to calculate MSTop:

MSTop = max{RCTTop,max{tMSI +MSa + tMSC ,

tMSI +MSb + tMSC , tMSI +MSc + tMSC}}
= max{9,max{1 + 10 + 1, 1 + 25 + 1, 1 + 6 + 1}}
= 27 (11)

Finally, MS is obtained by

MS = TMSR +MSTop = 2 + 27 = 29 (12)

Hence, the global mode switch time is 29, which is con-
sistent with Fig. 3. The extra delay due to atomic component
execution is substantial, which indicates that AEGs should
be kept as small as possible.

VI. USING UPPAAL TO DETERMINE THE WORST-CASE
LATENCY OF AN AEG DURING MODE SWITCH

In this section, we demonstrate how to determine the
worst-case atomic execution time of an AEG (denoted AE)
during a mode switch by using the model-checking tool
UPPAAL [6]. AE is then used in calculating the mode
switch time in Eq. 9.

A. The worst-case latency of an AEG during mode switch

AEb of the AEG (Component b) in Fig. 3 can be easily
derived. However, AE of an AEG component in general
can be affected by many contributing factors such as the
component hierarchy, component connections, and data flow.

Figure 5. A complex AEG

Fig. 5 depicts a more complex AEG consisting of primi-
tive components a-f. Composite components or deactivated
components in the AEG are not shown because they do not
affect AE. We assume that the data processing time of each
component ci ∈ PC in the AEG is bounded by a timing
interval [Cmin

ci ,Cmax
ci], and that the incoming data rate of

the AEG is within the interval [Rmin,Rmax]. When the
AEG receives an MSI, all the data within the AEG must
be completely processed before the AEG can start its MSI
propagation. The worst-case value of this data processing
time equals AE. To ensure that AE is bounded and that our
calculations terminate, we will enforce a maximum number
of data elements in the AEG. Depending on the incoming
data rate and component processing times, this bound may
or may not be reached. In fact, the bound could be used
as a modeling artifact (further details in Section VI-C), but
could also be a mechanism in the real system. The timing
parameters of the system are as follows:

• Incoming data rate R=[7,8].
• Data processing time C of components a-f : Ca=[4,5],

Cb=[7,8], Cc=[6,7], Cd=[5,6], Ce=5, Cf=[7,8].
• Maximum number of data elements in the AEG N=5.
To calculate AE, we propose a model-checking approach

based on UPPAAL.
UPPAAL is a model-checking tool which is widely used

to model, simulate and verify real-time systems. In particu-
lar, since version UPPAAL 4.1.3, there is a ”sup” operator
able to find out the maximal value of a variable or clock.
If an AEG is properly modeled by UPPAAL, we can use
”sup” to obtain AE. In this way, the focus is moved from
AE calculation to the UPPAAL modeling of a given AEG.

B. UPPAAL modeling

By using UPPAAL, we first model the mode switch
behavior of an AEG and then derive AE via its property
verification. No matter how complex an AEG is, we can
divide its UPPAAL model into four parts:

1) Data source: generates data at a flexible rate.
2) The AEG: receives data from Data source, processes

it and deposits the results at its output port(s). Further-
more, it ensures that the number of data elements n in
the AEG is within the bound N . Data source is turned
off when n = N . If mode switch is not in progress,
Data source is turned on again when n decreases.
When the AEG receives an MSI, Data source will also
be turned off. AE is the maximal data processing time
to reach n = 0.

3) Data forwarder: forwards data between components
without the sender knowing the identity of the receiver.
This simplifies the modeling, since when some con-
nections are changed, or a component is removed or
added, only component connection definitions referred
to by Data forwarder need to be updated.

4) Primitive components: modeled by a UPPAAL tem-
plate for each of them. Though the number of compo-
nents can be arbitrary, a parameterized generic model
applying to all components can be used.

The full UPPAAL model of the mode switch handling in
the AEG component in Fig. 5 is available in [21]. Here we
will only focus on the AEG model (Item 2 above) and its
enclosed primitive components.

Fig. 6 models the AEG. When a new data enters the
AEG, the AEG will propagate this data to its subcompo-
nents through the dataOut! channel. dataCounter counts the
number of data within the AEG. In the function shutDS(),
the AEG compares dataCounter with the threshold N . If the
threshold is reached, the data source will be turned off in
shutDS(). When dataCounter decreases and no MSI arrives,
the data source is turned on in function dataNControl(). The
model has two major states: Waiting and Processing. In
state Waiting, no data is within the AEG, i.e. if an MSI
arrives, the mode switch will not be delayed by atomic
component execution, hence AE=0. In state Processing,
at least one data is in the AEG. The MSI is modeled by
the channel MSI?. Clock z plays a significant role in that
the maximal possible value of z in its State Processing
corresponds to AE.

Figure 6. UPPAAL model: AEG

Fig. 7 illustrates the model of Component f, which has
multiple inputs and outputs. Actually the model of f is
generic in the sense that all the other components in the
AEG from Fig. 5 can be modeled in the same way. When
not processing any data, f is in state nonProcessing. When
processing data, it is in state Processing. The invariant x<=8
and guard x>7 define the interval of its data processing
time, i.e. Cf = [7, 8]. Component f receives data through
the channel dataIn? and sends output data through the
channel dataOut!. f recognizes new data by the guard
target==fi1||target==fi2 where fi1 and fi2 are its input ports.
When all input buffers are non-empty, the boolean variable
readyToProcess is set to true and f will switch to location
Processing by the urgent channel Go!. Data is processed
by the function processData(), thus representing mode-

specific behavior of a primitive component. After processing
the data, f immediately sends its output data through all
its output ports. This is modeled by the sequential and
atomic output data generation from its output ports. The two
committed states Temp1 and Temp2 guarantee atomicity.
outputCounter records how many output ports have sent out
the data. When the output data is sent through all its output
ports, f goes back to state nonProcessing and checks its
buffer status again.

When modeling another component with different number
of inputs and outputs, the model structure remains the
same and only some parameters need to be changed. If
a component has only one output port, the model can be
simplified by removing state Temp2 and outputCounter.

Figure 7. UPPAAL model: Component f

C. Verification and evaluation

Some interesting results including AE can be obtained by
verifying the following properties of the UPPAAL model:

• A[] not deadlock: no deadlock will occur in the model.
• sup{AEG.Processing}: AEG.z: returns the maximal

value of the clock z of AEG in state Processing. This
equals AE.

• E<> AEG.Processing && AEG.z==AE: there is a
scenario in which the clock z reaches AE when AEG is
in state Processing. Once AE is derived, this property
searches the worst-case scenario, and using the ”Di-
agnostic Trace” function of UPPAAL, the worst-case
scenario can be displayed as an execution trace.

• sup: dataCounter: returns the maximal number of data
items that can be simultaneously processed in the AEG.
If N is only a modeling artifact, then for the validity
of the calculated AE, this value must be less than N .
In other cases, validity requires a mechanism in the
deployed system that keeps n within the bound N .

• sup: Component.bufferN[Index]: returns the maximal
number of elements in one buffer of a component.

Using UPPAAL, all properties have been verified. In
addition, the verification results show that for R=[7,8], the
maximal number (i.e. n) of data items in the AEG is 5,
meaning that the threshold N can be reached. In the worst-
case, AE = 40.

Moreover, the verification results show that R and Cci

(ci ∈ PC is activated in the AEG) have substantial influence
on the property verification time. The differences are related
to variations in the number and length of executions leading
up to the worst-case scenario. We repeated the verification
of the same set of properties for different data rates. The
most important results are summarized in Table I1.

An interesting side effect of our modeling is that we
can use the last property above to obtain the maximal
buffer usage (i.e. required buffer sizes) for the component
input buffers. For instance, the maximal usage of the buffer
associated with port ei2 in Fig. 5. is 1 when R=[10,12], 2
when R=[8,10], and 4 when R=[6,8].

D. Generalization

Apart from R, verification time also depends on the num-
ber of components in the AEG, the number of connections
and output ports of the AEG, the threshold N and the
data processing time of each component. Regardless of the
verification time, the way that we model the system does
not change. Although we have only demonstrated how to
derive AE for a simple example, our UPPAAL models are
generic. We conjecture that for any AEG that is in line with
our system and component models, we are able to make
transformation rules, based on which the corresponding
UPPAAL models can be automatically generated. Since the
UPPAAL verification is based on generating and exploring
the global state space, it is subject to state explosion while
modeling a too complex system. However, we do not expect
this to be a limitation in practice, since the complexity of
an AEG typically is rather low.

Property/Value R = [6, 8] R = [7, 8] R = [8, 10] R = [10, 12]

No deadlock 28.64s 5.617s 0.139s 0.108s
Maximal n 5 5 4 3

Deriving AE 45.667s 4.36s 0.1s 0.069s
AE 40 40 25 25

Worst-case 36.716s 4.576s 0.013s 0.016sscenario

Table I
PROPERTY VERIFICATION RESULTS FOR DIFFERENT DATA RATES

VII. CONCLUSION AND FUTURE WORK

In this paper we extend our original Mode Switch Logic
(MSL) by adding the support for atomic component execu-
tion and providing an associated global mode switch timing

1Verification is performed on MacBook Pro, with 2.66GHz Intel Core 2
Duo CPU and 8GB 1067 MHz DDR3 memory.

analysis. We introduce a real-time model-checking solution
to derive the worst-case data processing time of an Atomic
Execution Group (AEG). The behavior of an AEG can be
modeled with ease, regardless of its complexity, and its
worst-case data processing time can be calculated.

Future work includes to implement support for automatic
generation and verification of UPPAAL timing models, lift
the assumption that an AEG is represented by a single
component, and investigate the handling of feedback loops.
Furthermore, we intend to explore and evaluate different
approaches to conflict handling for multiple mode switch
triggering together with its mode switch timing analysis.

ACKNOWLEDGMENT

This work is supported by the Swedish Research Council.

REFERENCES
[1] I. Crnkovic and M. Larsson, Building reliable component-based software sys-

tems. Artech House, 2002.
[2] Y. Hang, E. Borde, and H. Hansson, “Composable mode switch for component-

based systems,” in APRES ’11, pp. 19–22.
[3] Y. Hang and H. Hansson, “A mode switch logic for component-based multi-

mode systems,” MRTC, Mälardalen University, Tech. Rep. 261/2012, Jan 2012.
[4] ——, “A mode mapping mechanism for component-based multi-mode systems,”

in CRTS’11, pp. 38–45.
[5] ——, “Timing analysis for a composable mode switch,” in The Work-in-Progress

session of ECRTS’11, pp. 15–18.
[6] K. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell,” STTT-Intl. J. on

Software Tools for Technology Transfer, vol. 1, no. 1-2, pp. 134–152, 1997.
[7] K. W. Tindell, A. Burns, and A. J. Wellings, “Mode changes in priority pre-

emptively scheduled systems,” in RTSS’92, pp. 100–109.
[8] P. Pedro and A. Burns, “Schedulability analysis for mode changes in flexible

real-time systems,” in ECRTS’98, pp. 172–179.
[9] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham, “Mode change

protocols for priority-driven preemptive scheduling,” Real-Time Systems, vol. 1,
pp. 243–264, 1989.

[10] J. Real and A. Crespo, “Mode change protocols for real-time systems: A survey
and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp. 161–197, 2004.

[11] V. Nélis, J. Goossens, and B. Andersson, “Two protocols for scheduling multi-
mode real-time systems upon identical multiprocessor platforms,” in ECRTS’09,
pp. 151–160.

[12] P. M. Yomsi, V. Nelis, and J. Goossens, “Scheduling multi-mode real-time
systems upon uniform multiprocessor platforms,” in ETFA’10.

[13] L. T. X. Phan, S. Chakraborty, and P. S. Thiagarajan, “A multi-mode real-time
calculus,” in RTSS’08, pp. 59–69.

[14] L. T. X. Phan, I. Lee, and O. Sokolsky, “Compositional analysis of multi-mode
systems,” in ECRTS’10, pp. 197–206.

[15] ——, “A semantic framework for mode change protocols,” in RTAS’11, pp.
91–100.

[16] X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A component-based
framework for generative development of distributed real-time control systems,”
in RTCSA’07.

[17] E. Borde, G. Haı̈k, and L. Pautet, “Mode-based reconfiguration of critical
software component architectures,” in DATE’09, pp. 1160–1165.

[18] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis & design
language (AADL): An introduction,” Software engineering institute, MA, Tech.
Rep. CMU/SEI-2006-TN-011, Feb. 2006.

[19] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-triggered
language for embedded programming,” in PROCEEDINGS OF THE IEEE, 2001,
pp. 166–184.

[20] J. Templ, “TDL specification and report,” University of Salzburg, Tech. Rep.,
Nov. 2003.

[21] Y. Hang and H. Hansson, “A UPPAAL model for timing analysis of atomic exe-
cution in component-based multi-mode systems,” MRTC, Mälardalen University,
Tech. Rep., Feb 2012.

