
Implementing Hierarchical Scheduling to Support
Multi-Mode System

Rafia Inam∗, Mikael Sjödin∗, and Reinder J. Bril†
∗ Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

† Technische Universiteit Eindhoven (TU/e), Eindhoven, The Netherlands
rafia.inam@mdh.se, mikael.sjodin@mdh.se, r.j.bril@tue.nl

Abstract—Multi-mode embedded real-time systems exhibit a
specific behavior for each mode and upon a mode-change
request, the task-set and timing interfaces of the system need
to be changed. Hierarchical Scheduling Framework (HSF) is
a known technique to partition the CPU time into a number
of hierarchically divided subsystems each consists of its own
task set. We propose to implement a multi-mode system using
a two-level HSF and provide a skeleton (framework) for an
adaptive HSFs supporting multi-modes. Upon a mode-change
request, the timing interface of each subsystem is changed,
thus making the hierarchical scheduling adaptive in nature. We
address the main goals for the implementation and describe the
initial design details of the Multi-Mode Adaptive Hierarchical
Scheduling Framework (MMAHSF) with the emphasis of doing
minimal changes to the underlying kernel.

Keywords-real-time systems; hierarchical scheduling

I. INTRODUCTION

A wide spectrum of real-time embedded systems often have
to support very different and changing application scenarios.
Such systems is said to operate in multiple modes where each
mode corresponds to a specific application scenario, are called
multi-mode systems (MMS). At a specific time, the system
can be in one of the predefined modes and is switched from
one mode to another upon some condition. A mode switch
mechanism (or mode change protocol) is used to transform
the system from one mode to another at runtime.

Normally, a different piece of software is executed for
each mode, this means that a different task set, implementing
different behaviour, is executed. The system can be viewed
as a set of hierarchically organized subsystems, each sub-
system consisting of its own set of tasks. For example in
Figure 1, the system consists of two subsystems S1 and S2;
which intern consists of task sets T1 = {τ1,1, τ2,1, τ3,1},
and T2 = {τ1,2, τ2,2} respectively. The system supports two
different modes M1 and M2, both having different timing
properties. Both subsystems are active in both modes while
the tasks can be active or deactive in a particular mode. Active
tasks are those tasks that belong to the currently executing
mode. Deactive tasks are those tasks that do not belong to the
currently executing mode. The task τ1,1 is deactive in mode
M1, tasks τ2,1 and τ1,2 are deactive in M2, while tasks τ3,1
and τ2,2 are active in both modes.

Hierarchical scheduling framework (HSF) [1] is a known
technique used to partition a system into a set of subsystems,
each consisting of its own set of tasks. Hence it is well-
suited to implement a multi-mode system using the HSF. Both

20120411

SubSystem 1 SubSystem2

Mode M1

SubSystem 1 SubSystem2

Mode M2

SubSystem 1 SubSystem2

T1,1 T2,1 T3,1 T1,2 T2,2

T2,1 T3,1 T1,2 T2,2 T2,2T1,1 T3,1

Fig. 1. An example of a Multi-Mode System (MMS)

MMS and HSF are known individually from both a scientific
and an engineering perspective. Adaptive interfaces for the
compositional analysis of hierarchical multi-mode systems are
provided in [2] but no work has been found from an implemen-
tation perspective. We focus on implementing an MMS using
the HSF technique and call it multi-mode adaptive hierarchical
scheduling framework (MMAHSF). In this paper we propose
to use HSF to implement MMS and describe the system’s
main goals and challenges. We start with the design and
implementation of a framework for MMAHSF with managing
the mode-change request into an HSF implementation [3] to
incorporate and to change system modes at runtime. A mode
change protocol is to be implemented and its implementation
issues/details are not part of the scope of this paper. Our goal
is to provide a generic framework that can be used as a basis
to instantiate a particular mode-change protocol.

A lot of work has been done on scheduling theory for multi-
mode systems and on component-based multi-mode systems.
Sha et al. [4] provided a simple mode switch protocol for a
prioritized preemptive scheduling environment. A survey of
mode change protocols for fixed-priority preemptive schedul-
ing (FPPS) on a single processor is presented in [5] and along
with proposed several new protocols. Multi-mode schedula-
bility analysis is presented in [6], [7], [8], and added to the
compositional system using Real-Time Calculus (RTC) in [2].
Some frameworks and programming languages support multi-
mode systems, including [9], [10] and [11], [12], [13] respec-
tively. Hang et al. [14] provides the details of mode switch
logic algorithms to handle mode mapping for component-
based systems. A mode-change protocol is implemented for
reallocating the memory among tasks in [15] but no work
has been done to reallocate the CPU time. To the best of our
knowledge, no work has been found with respect to the MMS

implementation using hierarchical scheduling.
Paper Outline: Section II provides an overview of the

HSF and its implementation on FreeRTOS that our work uses.
Section III describes the support for MMS inclusion into the
HSF implementation, and section IV concludes the paper with
a description of ongoing and future work.

II. HSF AND ITS IMPLEMENTATION

A two-level HSF is used to divide the system among a
set of subsystems. In hierarchical scheduling, the CPU time
is partitioned among many subsystems (or servers), that are
scheduled by a global (system-level) scheduler. Each server
contains its own internal set of tasks that are scheduled
by a local (subsystem-level) scheduler. Hence a two-level
HSF can be viewed as a tree with one parent node (global
scheduler) and many leaf nodes (local schedulers). The global
scheduler schedules subsystems. Each subsystem has its own
local scheduler, that schedules the tasks within the subsystem.

Our implementation of MMS is based on a two-level
HSF implementation for the FreeRTOS operating system [3].
FreeRTOS is a portable, open source (licensed under a mod-
ified GPL), mini real-time operating system developed by
Real Time Engineers Ltd [16]. It is ported to 23 hardware
architectures ranging from 8-bit to 32-bit micro-controllers,
and supports many development tools. Its main advantages
are portability, scalability and simplicity. The core kernel is
simple and small, with a binary image between 4 to 9KB.
Since most of the source code is in C language, it is readable,
portable, and easily expandable and maintainable.

The official release of FreeRTOS only supports single level
fixed-priority preemptive scheduling. However, a recent work
has been presented that implements a two-level HSF for
FreeRTOS [3] with associated primitives for hard real-time
sharing of resources both within and between servers [17]. The
HSF implementation supports two kinds of servers, idling peri-
odic [18] and deferrable servers [19]. The implementation uses
fixed-priority preemptive scheduling for both global and local-
level scheduling. The HSF supports reservations by associating
a tuple 〈Q,P 〉 to each server where P is the server period and
Q (0 < Q ≤ P) is the allocated portion of P . Given Q, P ,
and information on resource holding times, the schedulability
of a server and/or a whole system can be calculated with the
methods presented in [17]. The implementation has been tested
and experimental evaluations have been performed on a 32-bit
AVR-based micro-controller board EVK1100 [20].

III. MULTI-MODE ADAPTIVE HIERARCHICAL
SCHEDULING FRAMEWORK

HSF will become adaptive in nature by incorporating dif-
ferent modes of the system and using a mode change protocol
to change the system-mode at run-time. An application may
not only need to change a mode but also a different mode
change protocol semantic. For example, consider an applica-
tion that can be in startup, normal execution, emergency, and
shutdown modes. The mode change from normal to shutdown
can allow all the tasks to be completed before the mode is

changed. While changing a mode from normal to emergency
may require to abort all the tasks instantly. To address this
issue, we are implementing a generic framework that can
support multiple mode change protocols. The system will be
instantiated in a particular mode and a particular mode change
protocol. At run-time, both the system mode and the mode
change protocol can be changed.

The mode change protocol is performed within a Mode
Change Request Controller (MCRC). To change the mode of
the whole system in hierarchical scheduling, the mode-change
has to be done at both global and local levels. Therefore,
we use a global MCRC and a local MCRC as shown in
Figure 2. The global MCRC is responsible for changing the
mode of the whole system upon a mode-change request, and
calls the local MCRCs to change the mode of each subsystem
(i.e. change the task set). The local MCRC is responsible for
handling the mode-change locally, hence change the mode
of the subsystem. An event-triggered mode-change request
initiates the process of mode-change. The request could be
triggered either internally (e.g. deadline misses of tasks or too
long execution of the idle task) or by external user request.
Global MCRC is called upon a mode-change request to change
the system’s mode.

For Poster

Multi-Mode Adaptive Hierarchical
Scheduling Framework

Global
Scheduler

. . .

Global
MCRC

SubSystem n

Task Set

SubSystem 1

Task Set

Local
Scheduler

Local
Scheduler

Local
MCRC

Local
MCRC

Fig. 2. Multi-mode adaptive hierarchical scheduling framework

We start our design and implementation with managing the
mode-change request into our simple HSF implementation.
Currently the implementation work of MMAHSF is on-going.
We plan to execute, test, and evaluate our implementation on
the EVK1100 board.

A. System model

We consider a two-level MMAHSF, in which a global
scheduler schedules a system that consists of a set of subsys-
tems S and a set of modesM = {M0, . . . ,Mn−1} where n is
the total number of modes in the system, and a global MCRC
to change the system’s mode. Each subsystem Ss consists of a
local scheduler along with a set of tasks Ts and a local MCRC.
Fixed-priority preemtive scheduling is used at both levels of
schedulers. For each mode Mm, each subsystem Ss is speci-
fied by a different timing interface Is,m = 〈Ps,m, Qs,m, ps,m〉
and a unique set of tasks Ts,m = {τ1s,s,m, . . . , τns,s,m},

where Ps,m is the period for that subsystem (Ps,m > 0),
Qs,m is the capacity allocated periodically to the subsystem
(0 < Qs,m ≤ Ps,m), and a unique priority ps,m in mode Mm.

B. Assumptions

The following assumptions are made for the initial design:
• All subsystems are active in all modes.
• The number of modes is fixed in the system and new

modes are not allowed to be added at run-time. The
period, budget, and priority of each subsystems for each
mode are defined statically.

• A mode-change request will be served instantly. For
scheduling we might need to delay the instantly serving
of mode-change request, but we are not considering it in
our current implementation.

• We will start by implementing suspend-resume semantics
in which upon a mode-change request, all old-mode tasks
are deactivated (suspended), and all new-mode tasks are
activated (resumed). Further, all the events that occurred
during the deactive state of the tasks, are delayed to be
handled until their corresponding mode become active
and starts execution. Tasks that belong to both (old and
new) modes will remain active in the new mode.

• Resources that are shared among the tasks of the same
subsystem are mode-specific; e.g. resources shared in
mode M1 are not shared with the tasks of mode M2.

C. Design considerations

Here we present goals of adapting HSF with MMS that our
implementation should satisfy:

1) The use of HSF and the original FreeRTOS operating
system: User should be able to make a choice for
using the MMAHSF or the original FreeRTOS scheduler
(without HSF and MMAHSF).

2) Consistency with the FreeRTOS kernel and keeping
its API intact: To get minimal changes and better uti-
lization of the system, it will be good to match the design
of the MMAHSF implementation with the underlying
FreeRTOS operating system. This includes consistency
from the naming conventions to API, data structures
and the coding style. It will also increase the usability
and understandability of MMAHSF implementation for
FreeRTOS users.

3) The deactived tasks of a particular mode should not
interfere with the execution of active tasks of that mode
for better system performance.

D. Implementation details

Here we describe the initial design, implementation, and
functionality details in adapting the two-level HSF with the
MMS. The server type is idling periodic here.

1) The design of the scheduling hierarchy: Each subsystem
Ss is reflected by its server. A server control block subSCB
contains lists to store the server’s interface Is,m and lists for
tasks Ts,m of each mode Mm. An idle task is created in
each server. An idle server with an idle task is also created

to setup the system. The motivations to use idle task and
idle server are presented in [3]. The user will provide a total
number of modes, an initial executing mode, and an initial
mode change protocol (currently suspend-resume). The global
scheduler is started by calling vTaskStartScheduler()
(typically at the end of main() function), which is a non-
returning function.

The global scheduler maintains a running server pointer and
two prioritized lists to schedule servers: a ready-server list and
a release-server list for hierarchical scheduling, containing all
the active and inactive servers respectively [3]. The additional
information to be stored here is the current mode of
the system, and a total number of modes i.e. n in the
system as shown in Figure 3. During execution, the system
can be in one of these predefined modes M0, . . . ,Mn−1.
We also store current mode change protocol, and
a total number of mode change protocols.

Global Scheduler using Mode switches

Adaptive Hierarchical
Scheduling System

. . .

. . .
Running Server
Ready Server List
Release Server List
NoModes
CurrentMode
NoModeChangeProtocols
CurrentProtocols

Server Control
Block

ServerParameterList

Remaining Budget
currentTCB
Ready Task List
Delayed Task List

Fig. 3. Data structures for active and inactive servers, and system modes

The local scheduler schedules the tasks that belong to a
server in a fixed-priority scheduling manner. For each server
a subSCB contains all information needed by the server to
execute in hierarchical scheduling and the queues for each
mode of the system as presented in Figure 4.

Each server maintains a currently running task and two lists
to schedule its tasks: a ready-task list, and a delayed-task list
for each mode. Since the total number of modes are fixed
in the system, the currently executing task and both lists for
each mode are stored within an array, where the array index
specifies a unique mode. Separate ready-task and delayed-task
lists per mode are used to keep track of ready and delayed tasks
respectively. The currentTCB pointer points to the currently
executing task of the current system mode. During system
execution, only the lists of the currently executing mode will
be active in the system, and the lists of all the other modes
are inactive (means not accessed). A mode list is added to
the Task Control Block (TCB) containing the modes in which
the task is active.

Server parameter list is also added to the subSCB to support
the additional information about interfaces for each mode
of each server. Since the servers may have different timing
interfaces (periods, budgets, and priorities) in different modes,
these three properties are now stored in an array structure
i.e server parameter list; again whose index corre-
sponds to a unique mode.

E. System functionality

Local Scheduler w/O Periodic task
model

Server Control
Block

Task Control
Block

FreeRTOS TCB

Mode List
Local Server

ServerParameterList

currentTCB
Ready Task List
Delayed Task List

n-1

1

0

.
Period, Budget, Priority, Remaining Budget

.

n-1 . . .
. . .

1 . . .
0 . . .

..

0

1
..
n-1

Fig. 4. Data structures for ready and delayed tasks, and server parameters
for multi-mode system

1) The functionality of the tick handler: The tick handler
is executed at each system tick. At each tick interrupt:

• The system tick is incremented.
• Upon a mode-change request, the global MCRC is called

to handle the mode-change event.
• Check for the server activation events.
• The global and local schedulers are called to incorporate

server events and task events respectively1.
2) The functionality of the global and the local MCRC:

The global MCRC executes a mode change mechanism upon
receiving a mode-change request. It changes the timing inter-
faces for all the servers for the new-mode. The local MCRC
is responsible for activating the lists belonging to the new-
mode and for deactivating the lists belonging the old-mode.
The active lists of the servers only include all those tasks that
belong to the new-mode of the system. Tasks that belong (or
active) in both the old and new mode are copied to lists of
the new mode. In the end, the system’s current mode is
changed to the new-mode.

IV. CONCLUSIONS AND ONGOING WORK

In this paper, we have proposed a generic framework for
the multi-mode adaptive hierarchical scheduling (MMAHSF)
implementation, supporting multiple modes and multiple mode
change protocol semantics, that can be instantiated in a par-
ticular mode change protocol. We have proposed to extend an
HSF implementation to support MMS by keeping the original
FreeRTOS API semantics. We have presented the system
model, design consideration with initial design details, and
main goals of the implementation to be achieved.

Ongoing work is to implement the MMAHSF in FreeRTOS
for our target platform EVK1100. We will start by implement-
ing suspend-resume semantics for the mode change protocol,
in which all tasks that are inactive in the new mode are
suspended, and all tasks that are active in the new mode are
resumed. We also plan to support completion semantics for
the mode change protocol in future, in which all tasks that
are inactive in the new mode are allowed to complete their
execution before the mode is changed.

1Their functionality remains the same as in [3]

Once the implementation efforts for the framework and
mode-change protocol are complete and basic testing is per-
formed, we measure/assess the performance of MMAHSF, like
measuring overheads of MMAHSF w.r.t HSF, overheads of the
global and the local MCRC etc. The next step will be to make
the assumptions more flexible like adding new modes in the
system dynamically at run-time, providing resource sharing
among the tasks of different modes etc. We also plan to
provide support for resource sharing among tasks of different
subsystems in a MMAHSF.

REFERENCES

[1] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open
environment. In IEEE Real-Time Systems Symposium(RTSS’97), 1997.

[2] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional analysis of
multimode systems. In Euromicro Conference Real-Time Systems, 2010.

[3] R. Inam, J. Mäki-Turja, M. Sjödin, S. Ashjaei, and S. Afshar. Hierar-
chical Scheduling Framework Implementation in FreeRTOS. In IEEE
Conference on Emerging Technologies and Factory Automation. IEEE
Computer Society, 2011.

[4] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change
protocols for priority-driven preemptive scheduling. Real-Time Systems,
1:243–264, 1989.

[5] J. Real and A. Crespo. Mode change protocols for real-time systems:
A survey and a new proposal. Real-Time Systems, 26(2):161197, 2004.

[6] K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority
pre-emptively scheduled systems. In Real Time Systems Symposium,
1992.

[7] P. Pedro and A. Burns. Schedulability analysis for mode changes in
flexible real-time systems. In 10th Euromicro Conference on Real-Time
Systems, 1998.

[8] V. Nelis, B. Andersson, J. Marinho, and S. M. Petters. Global-
EDF scheduling of multimode real-time systems considering mode
independent tasks. In 23rd Euromicro Conference on Real-Time Systems,
2011.

[9] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A component-based
framework for generative development of distributed real-time control
systems. In 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA 2007), 2007.

[10] E. Borde, G. Haik, and L. Pautet. Mode-based reconfiguration of critical
software component architectures. In Conference on Design, Automation
and Test in Europe (DATE 2009), pages 1160–1165, 2009.

[11] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis and
design language (AADL): An introduction. Technical Report, CMU/SEI-
2006-TN-011, 2006.

[12] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A timetriggered
language for embedded programming. In PROCEEDINGS OF THE
IEEE, pages 166–184, 2001.

[13] J. Templ. TDL specification and report. Technical Report, Univ. of
Salzburg, 2003.

[14] Hang Yin and Hans Hansson. A mode mapping mechanism for
component-based multi-mode systems. In 4th Workshop on Composi-
tional Theory and Technology for Real-Time Embedded Systems, 2011.

[15] M. Holenderski, R. J. Bril, and J. J. Lukkien. Swift mode changes in
memory constrained real-time systems. In International Conference on
Computational Science and Engineering, 2009.

[16] FreeRTOS web-site. http://www.freertos.org/.
[17] R. Inam, J. Mäki-Turja, M. Sjödin, and M. Behnam. Hard Real-time

Support for Hierarchical Scheduling in FreeRTOS. In (OSPERT’ 11),
pages 51–60, 2011.

[18] L. Sha, J.P. Lehoczky, and R. Rajkumar. Solutions for some Practical
problems in Prioritised Preemptive Scheduling. In Proc. IEEE Real-Time
Systems Symposium (RTSS), pages 181–191, 1986.

[19] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server
algorithm for Enhanced Aperiodic Responsiveness in Hard Real-time
Environments. IEEE Transactions on Computers, 44(1), 1995.

[20] ATMEL EVK1100 product page. http://www.atmel.com.

