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Abstract

This thesis presents new data management techniques for run-time data in
component-based embedded real-time systems. These techniques enable data
to be modeled, analyzed and structured to improve data management dur-
ing system development, maintenance, and execution. The foundation of our
work is a case-study that identifies a number of problems with current state-of-
practice in data management for industrial embedded real-time systems.

We introduce two novel concepts: the data entity and the database proxy.
The data entity is a design-time concept that allows designers to manage data
objects throughout different design and maintenance activities. It includes
data-type specification, documentation, specification of timing and quality pro-
perties, tracing of dependencies between data objects, and enables analysis and
automated validation.

The database proxy is a run-time concept designed to allow the use of state-
of-the-art database technologies in contemporary software-component tech-
nologies for embedded systems. Database proxies decouple components from
an underlying database residing in the component framework. This allows
components to remain encapsulated and reusable, while providing temporally
predictable access to data maintained in a database, thus enabling the use of
database technologies, which has previously excluded, in these systems.

To validate our proposed techniques, we present a tool implementation of
the data entity as well as implementations of the database proxy approach,
using commercial tools, the AUTOSAR standardized automotive software ar-
chitecture, and automotive hardware. Our results show that the presented tech-
niques can contribute to the development of future component-based embedded
real-time systems, by providing structured and efficient data management.
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Swedish Summary - Svensk
Sammanfattning

Inbyggda realtidssystem blir allt vanligare i de produkter och tjänster vi använ-
der. Utvecklingstakten går allt fortare och programvaran blir allt mer komplex.
Inbyggda system finns idag i t.ex. mobiltelefoner, bilar, flygplan och robo-
tar, där programvaran kan utgöras av flera miljoner rader kod och tusentals
dataelement som är distribuerade över ett stort antal datorer ihopkopplade i
nätverk. Utveckling och underhåll av dessa komplexa system medför en allt
högre kostnad. För att utveckla elektroniksystemet är kostnaden, i en modern,
avancerad bil idag, omkring 40% av den totala utvecklingskostnaden. Inom
fordonsindustrin drivs denna utveckling av framför allt hårdare miljökrav, nya
funktioner samt krav på bättre aktiv och passiv säkerhet.

För att hantera utvecklingen av dessa system försöker man göra informa-
tionen om systemet mer överblickbar genom att gruppera funktioner i olika
komponenter som kan kommunicera genom ett förutbestämt gränssnitt. Denna
teknik kallas för komponentbaserad utveckling. Komponentbaserade tekniker
som används idag fokuserar främst på att hantera funktioner, och saknar bra
metoder för att hantera den stora mängd data som utväxlas mellan komponen-
terna. Nya metoder för att effektivt hantera data har stor potential att göra både
utvecklingen och exekveringen av inbyggda system enklare och mer kostnads-
effektiv.

Denna avhandling introducerar nya koncept för hantering av data under
utveckling, underhåll och exekvering av inbyggda komponentbaserade realtids-
system. Resultaten i denna avhandling baserar sig på en fallstudie som visar på
stora problem med att hantera data inom industrin. Dessa resultat visar tydligt
att hanteringen av data måste prioriteras mer och ingå som en integrerad del av
utvecklingen av hela systemets arkitektur.
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För hantering av data under utvecklings- och underhållsfaserna introduc-
erar vi konceptet data entity. En data entity möjliggör för utvecklare att mod-
ellera och dokumentera varje dataelement i systemet korrekt redan i ett tidigt
skede av utvecklingsfasen. Därutöver är det också viktigt att på ett enkelt
sätt kunna skapa dokumentation och bedöma egenskaper, samt att visualisera
dataflöden och beroenden mellan data för att öka den totala kunskapen om sys-
temet. Tekniker för att hantera stora och komplexa datamängder i ett inbyggt
system finns tillgängliga i form av databaser. Problemet är att de komponent-
baserade teknikerna och databaserna är fundamentalt olika. Här finns ett ty-
dligt glapp, vilket vi försöker överbrygga i denna avhandling. För hantering av
data under exekvering introducerar vi konceptet database proxy, som möjlig-
gör användandet av en databas utan att bryta mot grundläggande principer inom
komponentbaserad utveckling. Syftet med detta är att komplettera den bris-
tande datahanteringen inom komponentbaserad utveckling genom att utnyttja
de beprövade tekniker som finns tillgängliga i en databas. Avhandlingen in-
nefattar även ett antal implementationer av verktyg samt evalueringar av de in-
gående koncepten för hantering av data. Embedded Data Commander (EDC)
innehåller en samling verktyg för att integrera och hantera "data entities" i en
komponentmodell. Vidare har verktyg för konfigurering samt generering av
"database proxies" i komponentmodellen SAVE har implementerats och eval-
uerats. Slutligen så har "database proxies" implementerats och evaluerats på
hårdvara i ett AUTOSAR kontext.
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Chapter 1

Introduction

The evolution of embedded systems affects us all. Embedded systems are
nowadays included in almost everything that surrounds us in our daily life.
This has mostly to do with our increased demand for new functionalities that
cannot be built, or are not practical to build, using traditional mechanics. Mo-
bile phones, medical equipment, kitchen appliances, home entertainment sys-
tems, cars, and cameras are examples of such systems. Some of these are
highly complex, and huge amounts of software are used to realize the different
functionalities. In addition, the current trend is that systems are evolving from
closed stand-alone devices to highly dynamic systems interconnected with the
surrounding environment.

Developing these kinds of systems is a challenging task. Today, 90% of the
innovations in a premium car are related to electronics and software. In addi-
tion, as many as 2500 software functions, sometimes dependent on each other,
are distributed throughout a highly interconnected architecture with up to 80
Electrical Control Units (ECU) [1]. Furthermore, there is a more frequent mix
of critical functionalities, such as breaking assistance, and non-critical func-
tionalities, such as an infotainment system. Developing these kinds of systems
is often associated with high cost [2].

From this evolution towards more complex and interconnected systems
arises the need for more efficient means to manage data, perform diagnos-
tics, and to provide predictable and dynamic data access. However, this thesis
shows that the current state-of-practice of data management is not sufficient to
cope with tomorrow’s embedded systems. Therefore, the development of new
techniques that deal with/can control data management are needed.
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4 Introduction

This thesis contributes to the future of embedded-systems develop-
ment by identifying problem areas in the current state-of-practice,
and by introducing new techniques for the development of compo-
nent-based embedded real-time systems. These techniques com-
prise a holistic approach to data management by providing design-
time support for modeling, management, documentation and anal-
ysis of run-time data, as well as run-time mechanisms for extract-
ing, structuring, and the secure sharing of data.

Design-time data management: A case-study, presented in this thesis, shows
that developers are not provided with adequate techniques that enables efficient
and up-to-date management of documentation of run-time data. The growing
information volume, lack of tool support, poor routines, and the sometimes
inadequate documentation, especially concerning internal data in nodes, are
becoming an increasing problem. This has for example led to (i) obsolete doc-
umentation, (ii) redundant and stale data (data that is not removed due to un-
known dependencies), and (iii) companies becoming highly dependent on the
undocumented knowledge of individual developers.

The data-entity approach is presented in this thesis as a solution to facilitate
efficient design-time management of run-time data. This approach has been
evaluated and implemented into a tool-suite.

Run-time data management: In the development of functions, elevating the
abstraction level and providing efficient tool support, is commonly used ap-
proaches to manage complexity. One such approach, which is increasingly
used by industry today to raise productivity and reduce complexity, is Compo-
nent-Based Software Engineering (CBSE). Structured development, standard-
ized architectures, and reuse are mentioned as key factors for success. The
CBSE focus lies on specifying and developing a component or a set of reusable
components with certain functionality. However, CBSE does, so far, not pro-
vide structured support for managing data. This has in turn led to highly unco-
ordinated and ad-hoc management of data in many complex distributed systems
[1, 2, 3].

Instead of reinventing data management techniques or developing ad-hoc
solutions using internal data structures, the use of existing techniques should
be promoted.
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Outside the embedded community, a well-proven data management tech-
nique that offers standardized interfaces, efficient data management, dynamic
access to data, user access control, and effective tool support is available,
namely DataBase Management Systems (DBMS). Over the last few years,
the use of DBMSs in embedded systems has increased. For example, many
control-systems, and virtually all premium mobile phones, such as Apples
iPhone and Android-based phones contain databases. However, the use of
Real-Time DataBase Management Systems (RTDBMS) within industrial em-
bedded real-time systems is still quite limited, even though there are a few
commercial RTDBMSs available [4, 5]. Moreover, this is especially true for
component-based systems.

Although both CBSE and RTDBMSs aim to reduce complexity, the co-
existence between the techniques is non-trivial since their design goals are
fundamentally different (i) within CBSE, decoupling of components from the
context in which they are deployed is vital, whereas an RTDBMS provides a
blackboard architecture that requires specific database knowledge to be em-
bedded within components in order to access data, (ii) direct access to shared
data introduces hidden dependencies between components, thereby violating a
fundamental aim of CBSE.

The combined approach, to not only manage the functional complexity of
the application and specifying components, but to also utilize the available
tools and techniques offered by an RTDBMS, is a research area that is not
well established.
Database proxies are presented in this thesis as a technique to close the gap
between CBSE and RTDBMSs. Furthermore, database proxies have been im-
plemented and evaluated as an approach to manage run-time data in the auto-
motive initiative, AUTomotive Open System ARchitecture (AUTOSAR).

The research results presented in this thesis are applicable to many indus-
trial application areas which depend on the efficient development of complex
embedded real-time systems with a mix of critical and less critical functions.
However, the focus of this thesis is automotive systems from which we borrow
the technical background and terminology and apply our results to.

1.1 Problem Description
The continuous increase of complexity and new requirements on data man-
agement enhances the challenges with respect to performing design-time and
run-time data management in a predictable, efficient and structured manner.
Developers need new tools and techniques to aid them with the problems of
today and tomorrow.



6 Introduction

In an effort to understand the problematics concerning data management,
this thesis investigates (i) the current problems within industrial embedded sys-
tems development, (ii) what tools and techniques could facilitate the develop-
ment, as well as how and in what contexts they could be deployed.
To be precise, the thesis focuses on the following:

F1 How is data currently managed in the industry and what are the main
problems concerning design-time and run-time data management?

F2 How can we support design-time data management within CBSE?

F3 How can we support run-time data management within CBSE by utiliz-
ing state-of-the-art RTDBMS technology?

F4 How can real-time data management techniques be integrated into an
industrial development setting?

1.2 Thesis Outline
This thesis consists of two main parts. The first part presents an introduction,
problem description and background to the scientific work carried out. The
second part comprises a collection of published papers, papers A-E.
The remainder of the thesis is structured as follows:

Chapter 2 presents the background to the research including the techniques
and tools that have been used.

Chapter 3 presents the main technical contributions, the research methodol-
ogy, the research process, the problem definition, and a summary of the
contributions. In addition, a summary of the included papers and my
contribution to the results are presented.

Chapter 4 complements Chapter 2 in that we describe the relevant state-of-
the-art, which is related to the work carried out in this thesis.

Chapter 5 concludes the introductory part of thesis and discusses possible
contingency directions.

Chapter 6-10 correspond to the papers that form the basis of this thesis.



Chapter 2

Background and Utilized
Techniques

This chapter presents technical information about relevant areas within the
scope of this thesis, such as embedded systems, real-time systems, component-
based software engineering, and real-time database management systems. In
addition, this chapter presents the major tools and techniques that have been
used within the scope of this work, e.g. Save CCT, ProCom, AUTOSAR and
Arctic Core, COMET, and Mimer SQL Real-Time.

2.1 Embedded Systems
An embedded system is a computer system, typically custom-made to perform
a certain task or small set of tasks by interacting through sensors and actuators.
Nowadays, these embedded systems can be found almost everywhere. They
are used in watches, vehicles, robots, airplanes, and even toothbrushes. Their
purpose is most often to reduce the number of mechanical parts by replacing
them with electronics, in order to add functionality and/or to save costs. Most
of these systems that we encounter in our everyday life are static, i.e. the
software is never modified. However, there is an increase of devices that are
more dynamic and where software can be continuously updated or replaced.
An embedded system is characterized by limited hardware resources such as
memory size and processor performance. Traditionally, embedded systems are
either insolated devices or a part of a larger interconnected system. The current

7



8 Background and Utilized Techniques

trend driven by new demands on functionality and features is to change embed-
ded systems from being stand-alone systems to being interconnected with other
systems. An example of such a system of systems is Car-to-Car (C2C) commu-
nication [6], which allow cars to interact with each other to share information
about, for example, a possible nearby hazard or to access the internet for info-
tainment services. This entails new requirements on how data is accessed and
shared. The important aspects include flexibility, dependability and security.

2.2 Embedded Real-Time Systems
An embedded real-time system has additional requirements, compared to more
general embedded systems, namely not only to perform its task correctly, but
also to perform it predictably and within a predefined time interval: not too
soon and not too late. Real-time systems are not only about performing a
task as fast as possible. I general, real-time embedded systems interact with
the environment where external events are perceived by sensors. These events
are then analyzed and actuated upon, based on the result of the analysis. A
typical example of a real-time system in a vehicle is an air-bag which has to be
inflated within a certain time frame if activated by a collision. If the inflation is
triggered too soon or too late the air-bag could cause the passengers even more
harm than a complete lack of inflation.

Traditionally, real-time systems are divided into two main classes: hard and
soft real-time systems. A hard real-time system should perform its actions be-
fore a defined deadline. A failure in meeting the deadline can have catastrophic
consequences if the system is safety-critical. An air-bag is a typical example
of such a system.

A soft real-time system usually manages less critical applications where a
missed deadline can have a negative, but tolerable, effect on the performance
of the system. Examples of such systems may concern the display of statistical
information, the control of power windows, or to perform diagnostics.

In many applications, combinations of both hard and soft real-time tasks
are used.

2.3 System Modeling and Development
Developing any type of complex software is most often a difficult and time
consuming task. Nowadays, a common solution to manage this problem, is
to develop tools and techniques to raise the level of abstraction, build models,
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Sensor Mode

Comp 1

HMI

Actuator

Comp 2
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Required interface Provided interface

Pipe

Filter

Figure 2.1: CBSE architectural example

generate code, and to reuse as much as possible. A frequently used technique
within automotive software development is Component-Based Software Engi-
neering (CBSE).

2.3.1 Component-Based Software Engineering

Component-Based Software Engineering aims to achieve a high level of ab-
straction when designing systems by dividing systems into well-defined and
encapsulated building blocks called components. These components have well-
defined communication interfaces that make them reusable entities that can be
assembled to form entire systems. CBSE introduces a possibility to maintain
and improve systems by replacing individual components. In this way, a sig-
nificant amount of development effort and costs can be saved [7].

Figure 2.1 shows an example of a pipe-and-filter [8] component model
where data is passed between components (filters) using connections (pipes).
The entry point for the connection to the components is the interface (port). No
communication outside of its interface is allowed.

A component can have two types of interfaces: required and provided. The
required interface specifies what is needed as input to be able to process (fil-
ter) the data and output the result to the provided interface. Furthermore, a
component can be either a white-box or a black-box component. A white-box
component reveals its internal composition. This can enable developers to di-
rectly change the source code if needed. However, a changed behavior of the
component, i.e., new versions emerges, can make it difficult to propagate, for
instance, bug fixes. A black-box component is typically already compiled and
does not reveal any internal details.
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There is a great variety of component models which are suitable for dif-
ferent types of systems. COM [9], EJB [10] and .NET [11] are typically used
for PC applications since they are not sufficiently taking important embedded
systems requirements into account, such as timing properties, safety-criticality
and the limited amount of resources available. Examples of component mod-
els aimed to at satisfying the requirements of embedded systems are the Rubus
component model [12], SaveCCT [13], Koala [14], ProCom [15] and AU-
TOSAR [16].

In the following sections we describe component technologies which are
used in papers B and paper C, namely SaveCCT, ProCom, and AUTOSAR.

2.3.2 SaveCCT

The SaveComp Component Technology (SaveCCT) [13] is focused on embed-
ded control software for vehicle systems, with the aim to be predictable and
analyzable. The applications are built by connecting input and output ports of
components by using their interfaces (see Figure 2.2). Components are then
executed using a trigger-based strict "read-execute-write" semantics.

A component is always inactive until triggered. Once triggered it starts to
execute by reading data from its input ports to perform the computations. Data
is then written to its output ports and outgoing triggering ports are activated.
This allows the execution of a component to be functionally independent of
any concurrent activity, once it has been triggered. SaveCCT also supports
composite components. A composite component is a collection of components
that are encapsulated into a single component with the same type of interface
and behavior as a primitive component.

Figure 2.2 illustrates an example of a SaveCCT graphical representation
of a component. There are two inports into the Engine Controller component,
one data port and one trigger port. Data is read by the oilTempIO component
from the oilTempSensor inport which is triggered with a frequency of 50Hz.
Computations are done and results propagated onto the output port. In this case
the output port is a combined trigger and output port.

SaveCCT supports manual design, integrated analysis tools, and automated
activities such as task and code generation which transforms the component
model into the execution model. In addition, an Integrated Development En-
vironment (IDE) tool is provided, from which developers can develop compo-
nents and graphically design the system. A number of tools are also available
in the IDE for the automated formal analysis of components and architectures.
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oilTempIO
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Figure 2.2: Save graphical application design

In the SaveIDE, component development as well as architectural and system
modeling, is performed manually while system synthesis, glue-code genera-
tion and task allocation are fully automated. Resource usage and timing are
resolved statically during the synthesis.

2.3.3 ProCom

The ProCom component model [15] extends SaveCCT by addressing key con-
cerns in the development of control-intensive distributed embedded systems.
ProCom provides a two-layer component model and distinguishes between a
component model used for modeling independent distributed components with
complex functionality (called ProSys) and a component model used for mod-
eling smaller parts of control functionality (called ProSave).

In ProSys, a system is modeled as a collection of concurrent, communicat-
ing subsystems. Distribution is modeled explicitly, meaning that the physical
location of each subsystem is not visible in the model. ProSys is a hierarchical
component model where composite subsystems can be built out of other sub-
systems. This hierarchy ends with the so-called primitive subsystems, which
are either subsystems coming from the ProSave layer or non-decomposable
units of implementation (such as Commercial-Off-The-Shelf (COTS) or legacy
subsystems) with wrappers to enable compositions with other subsystems.

A subsystem is specified by typed input and output message ports, express-
ing what type of messages the subsystem receives and sends. Message ports
are connected through message channels. An example of this is illustrated in
Figure 2.3, where a message channel is connected to three subsystems. A mes-
sage channel is an explicit design entity representing a piece of information
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Figure 2.3: ProSys Component Model

that is of interest to one or more subsystems. The message channels make it
possible to express that a particular piece of shared data will be required in the
system, before any producer or receiver of this data has been defined. This will
in addition allow information to remain in the design even if, for example, the
producer is replaced by another subsystem.

2.3.4 AUTOSAR
The Automotive Open System Architecture (AUTOSAR) [16] is a consortium,
where several of the main Original Equipment Manufacturers (OEM), sup-
pliers and software developers within the automotive domain, are members.
AUTOSAR defines a standard component model and middleware platform for
the automotive electronic architecture. One of the fundamental characteristics
of AUTOSAR is the layered architecture that separates the underlying infras-
tructure from the applications which consist of interconnected software com-
ponents. Among other things, these abstraction layers enable hardware to be
replaced without the need for software updates.

The strategy is to achieve a competitive market for vendors where an OEM
can use components and whole applications from "any" supplier. The idea is
also that as much as possible can and should be reused to save cost and to
reduce time-to-market.

AUTOSAR employs the CBSE approach, where software is encapsulated
as components which communicate via well-defined interfaces. The commu-
nication between components is managed by a Virtual Function Bus (VFB),
which acts as a virtual abstraction of the underlying hardware. This enables
early component integration in the development process as they are indepen-
dent of the ECU hardware. The realization of the VFB when configuring the
final target system is the Run-Time Environment (RTE). The RTE represents
the concrete implementation of the VFB. The RTE acts as a communication
center for both internal Electronic Control Unit (ECU) communication and in-
formation exchange between ECUs in the system.
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2.3.5 ArcCore

Arccore AB [17] is a provider of the open-source Arctic Core embedded AU-
TOSAR platform developed in Eclipse [18]. The open-source solution, to be
used for education and testing, includes Arctic Core and Arctic Studio which
is an Integrated Development Environment (IDE). The commercial solution
offers a number of licensed professional graphical tools to facilitate develop-
ment of a complete AUTOSAR system. Arctic Core includes build scripts and
services such as, network communication, memory, and operating system. In
addition, drivers for different microcontroller architectures are also provided.

Components and their port-based interfaces are developed using the Soft-
Ware Component Builder tool. The Extract Builder tool is used to add selected
components to the ECU, connect ports and to validate the extract. The Run-
Time Environment Builder models the VFB and generates a run-time imple-
mentation of the component communication. The configuration of the target
platform is done in the Basic Software Builder tool which also generates the
configuration files. Since Arctic Core is provided as open source, it is possible
to extend it to also include additional functionalities.

2.4 Data Management

Data management is defined by the Data Management Association (DAMA)
as:

"the development, execution and supervision of plans, policies,
programs and practices that control, protect, deliver and enhance
the value of data and information assets" [19].

All computer systems involve the usage of data in some way. As both the
amount of data and its use increase in an area, an increase of complexity is often
unavoidable. Routines for the documentation, storage, retrieval and security of
data thus become particularly important.

In this thesis we distinguish between two types of data management: design-
time data management and run-time data management. This can be exempli-
fied by an embedded system, where design-time data management refers to
how run-time data is organized and documented during the design and devel-
opment phase. Run-time data management refers to how data is organized and
accessed in memory during execution of the system.
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2.4.1 Design-Time Data Management

Design-time data management is the interactive link between a designer and
the underlying data management system. Management of data at design-time
has been and still is a fundamental part for managing the complexity of large
scale and data intensive systems in order to decrease time-to-market, costs, and
to increase the quality of the system. A key factor is having up-to-date and cor-
rect information about data residing in the system available during the whole
development cycle. Proper documentation and structure allow for easy access
to information, such as properties that can specify unique naming, type, size
and where the data is used. In addition, this usually includes version handling
of all design information and providing support for multiple user interactions.

The number of dedicated design-time tools for managing data in embedded
real-time systems is quite limited. Most tools focus on the properties of indi-
vidual data elements and how to create or define new data types. They do to a
limited extent present an overview of detailed information on how and where
data is used in the system during development [20, 21].

2.4.2 Run-Time Data Management

Run-time data management concerns how data is managed during execution of
the system. Traditionally, most embedded systems developers handle data ad
hoc and/or reinvent new solutions in an effort to meet the requirements of the
system. This is often done using internal data-structures. Many of today’s sys-
tems are developed in a distributed manner, which in turn could lead to many
different solutions and strategies residing in the same system. A result of this
is that large complex systems become less flexible, difficult, and demanding to
maintain and extend.

Outside the embedded community, powerful tools and techniques are well
established and have facilitated data management in complex data-intensive
systems, such as financial markets, where they have been used for decades.

Similar as the techniques used for modeling a system or for the develop-
ment of functions with a component-based approach to accomplish a higher
level of abstraction, techniques to achieve a more dynamic, structured, and
maintainable data management is available [22].

Database Management Systems (DBMS) are used to organize large am-
ounts of data. Figure 2.4 shows a high level picture of a DBMS system. To put
it simply, a DBMS is an interface and abstraction layer that manages access to
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the physical data stored in memory. A typical application area has so far been
large enterprise systems such as libraries, commercial web-sites and financial
markets. Examples of enterprise mainstream DBMS are Oracle [23], Microsoft
Access [24] and MySQL [25].

One of the main benefits with a DBMS is the ability to access data using
a standard language. The Standard Query Language (SQL) [26] is the most
common database access language, which in addition is supported by many
high-level tools, for uniform data access. In order to access data or manipulate
data in the database, a number of operations such as, SELECT, INSERT, and
DELETE are used. One or several operations that is executed, as a single logi-
cal block of work in the database, is called a transaction. A transaction is either
performed completely by ending its block of operations with a COMMIT. If
the transaction is aborted before the COMMIT, a rollback to its original state
is performed. A successful COMMIT makes the changes permanently stored
in the database and must take the database from one consistent state to another.

App 1 App 1App 1

Database 

Management System

Queries Queries

DB

Figure 2.4: DBMS overview
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To ensure a correct behavior and safe sharing of data, it is often required
that a database transaction should conform to the ACID properties [27]:

• Atomicity: either all information in a database transaction is updated or
none at all.

• Consistency: after a transaction is completed the database will be in a
valid state. If not, the transaction must be rolled back.

• Isolation: changes that are made to the database will not be revealed to
other users until the transaction is committed.

• Durability: any change to the database is permanent. The result of a
committed transaction cannot be reverted.

Most DBMSs use concurrency control in order to enforce the ACID pro-
perties while handling concurrent operations, in order to avoid transaction con-
flicts to achieve logical correctness. The most commonly used algorithm is
Two-Phase-Locking (2PL) [28] and optimistic concurrency-control [29].

The increasing amount of data and growing data complexity have increased
the need for a DBMS also in embedded systems. There are now several com-
mercial embedded DBMSs available that are suited for the specific needs, such
as a small footprint, of embedded systems [4, 5, 30].

2.4.3 Real-Time Database Management Systems
Embedded real-time systems have different requirements compared to large
enterprise systems. CPU usage, footprint and availability are highly important.
Embedded Real-Time DataBase Management Systems (RTDBMSs) is devel-
oped to support real-time constraints in order to provide a deterministic timing
behavior management of data in complex embedded real-time systems. For
safety-critical embedded real-time systems, predictable access to data is one of
the most important requirements [31].

Compared to the concurrency control algorithms used in a general-purpose
DBMS, most RTDBMSs relax the semantics of the ACID properties in order to
fulfill the real-time properties. This is sometimes necessary in order to comply
with domain-specific requirements [32].

A commonly used concurrency control algorithm that enforce real-time
properties is the Two-Phase-Locking, with High Priority abort (2PL-HP) [33]
which favors transactions with high priorities, thus aborting lower prioritized
transactions, in case of a conflict.
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2.4.4 COMET RTDBMS
The COMponent-based Embedded real-Time database system [34] (COMET
RTDBMS) is the result of a research cooperation between Linköping and Mälar-
dalen University. The focus was on real-time systems in general and vehicle
systems in particular. COMET is a real-time database management system is
intended to be used as a tightly integrated part of the control-system, providing
new techniques and functionalities such as, providing applications with support
for a mix of hard and soft real-time requirements.

COMET implements the database pointer interface [35] which is a hard
real-time database access-method which uses an application pointer variable to
access individual data in an RTDBMS. A key property of the database-pointer
concept is that reads and writes through database-pointers have deterministic
execution-time with bounded and negligible blocking [36]. They also allow
SQL-based soft real-time database transactions to be executed in the back-
ground without any predictability loss due to any concurrent database-pointer
accesses (i.e. no starvation, conflicts, or restarts of transaction can be caused
by database pointers [35]).

To guarantee hard real-time predictability for database accesses while elim-
inating starvation issues for soft real-time SQL queries, COMET uses the 2V-
DBP concurrency-control algorithm [36] that combines versioning and pes-
simistic concurrency control. 2V-DBP is suited for resource-constrained, safety-
critical, real-time systems that have a mix of hard real-time control applications
and soft real-time management, maintenance, or user-interface applications.

Some of the technologies developed for COMET, including the database
pointer concept, has later been adopted by the commercially available real-
time database system Mimer SQL Real-Time Edition [4].

2.4.5 Mimer SQL Real-Time
Mimer SQL Real-Time (Mimer RT) [4] is a commercial RTDBMS intended
for applications such as vehicle systems, process automation and telecommu-
nication systems. Mimer RT supports applications with both hard real-time and
non-real-time requirements to safely share data without putting real-time pre-
dictability at risk. Hard real-time applications utilize the RTAPI interface to ac-
cess data using database pointers while non-real-time applications use standard
SQL interfaces. Mimer RT combines the standard client/server architecture for
SQL queries with an embedded library architecture for real-time access. The
client/server architecture allows standard interfaces and tools to be used to ac-
cess data both locally and remotely.





Chapter 3

Research Summary

This thesis presents a number of scientific contributions to facilitate design-
time and run-time data management within the area of component-based em-
bedded real-time systems. This chapter presents the technical contributions,
presents the research methodology and research process, restates the problem
definition, outlines the thesis contributions, and gives a résumé of the included
papers.

3.1 Technical Contributions

A Data entity is a design entity that encapsulates metadata into a compilation
of knowledge for run-time data items in the system.

Developers are provided with an additional architectural view, the data ar-
chitectural view, which complements the traditional component-based design
approach. The approach enables run-time data to be acknowledged as design
objects during development, as each data item is tightly coupled with proper
documentation and where properties such as usage, validity and dependency
can be modeled. This enables developers to have an increased knowledge and
understanding of the system.

Furthermore, as data entities are defined completely separate from the de-
velopment of components and functions, data entities persist in the system re-
gardless of any component, function or design changes. Figure 3.1 shows the
metadata that is associated with a data entity.

19
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Figure 3.1: Data entity description

Figure 3.2 illustrates how our approach (right-hand-side) complements the
traditional component-based design approach represented by dotted lines on
the (left-hand side). The component-based approach includes tools for setting
up the system architecture, developing components, and to perform analysis.
The central database in the middle of the figure acts as the communicating link
between the two approaches.
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Figure 3.2: The data entity approach

We have developed a tool suite named, the Embedded Data Commander,
that provide support for modeling of data entities to keep track of system data,
present accurate documentation, and a data analysis tool to perform early anal-
ysis on data items. The data entity approach and tool suite serves a direct
remedy to some of the problems identified in Paper A where one of the investi-
gated systems suffered from as much as a 15% overhead because of unused and
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stale data was being produced. This was due to unknown dependency issues
where hardly anything could be removed due to a lack of knowledge.

The goal is to achieve higher software quality, lower development costs,
and to provide higher degree of control over the software evolution process.

RTDBMS

DB

Proxy

DB

Proxy

Glue Code

Component 

Framework

DB Unaware

Component A

Synthesized 

Architecture

DB Unaware

Component B

Figure 3.3: Database proxies connecting components to an RTDBMS

The Database proxy concept enables a successful integration of an RTDBMS
into a component-based system. As illustrated in Figure 3.3, a database proxy
is part of the component framework, thus external to the component. The task
of the database proxy is to enable for components to interact with an RTDBMS
using their normal interfaces. The database proxy is placed between the com-
ponent and the RTDBMS and includes pieces of code that translates data from
a components port to a database call and further on to an RTDBMS residing in
the component framework and vice versa. These pieces of code are neither a
part of the component nor a part of the RTDBMS; instead database proxies are
automatically generated glue-code synthesized from the system architecture.

Hard proxies use state-of-the-art database pointers provide predictable ac-
cess to individual data elements, and soft proxies use an SQL interface to pro-
vide flexible access to data. A hard real-time database-pointer provides direct
access to a data element in memory without calling the database server. In
addition, that a hard proxy only translates native data types such as an integer,
character or float, implies that no unpredictable type conversions or translation
of complex data types that require unbounded iterations are allowed.
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/*** Original code example ***/
void function(){
DisableAllInterrupts();
Read_Value_Port_1(&Port_1_data_1->value);
EnableAllInterrupts();
}
/*** Database proxy code ***/
void function_DBProxy(){
MimerRTGetInteger(DBP_Actuator, &Port_1_data_1->value);
}

Figure 3.4: Differences between regular code and database proxy code

Figure 3.4 illustrated the code differences, using c-code, between an im-
plementation not using, and using hard database proxies. In the original code
example, all interrupts are disabled before the call to read the value is made.
After the value has been read, interrupts are enabled. When using a database
proxy to read the value from the database using a database pointer, the differ-
ence to the original code, is that the interrupt disable is not needed within the
database proxy, since this is managed by the database.

A soft proxy is typically used for graphical interface components, logging
components, and diagnostics components. Therefore, soft proxies emphasize
support for more complex data structures by using an SQL interface, towards
the RTDBMS.

3.2 Research Process
The methodology that has permeated all of the research presented in this thesis
is based on the technology transfer model presented by Gorschek et al. [37]; see
Figure 3.5. However, since this thesis is not a fully integrated industrial project,
steps 5 and 7 have not been included and are left for future work. In addition,
we have used research approaches: techniques and descriptive models, as well
as the validation techniques: implementation, evaluation, and experience tech-
niques described by Shaw [38].

Our research has been guided by the following process (see Fig 3.6), where
each item corresponds to specific elements of the technology transfer model:

• Identifying Problems: A literature study of the state-of-the-art and a
case-study conducted at five industrial companies identified that the cur-
rent status within data management in component-based embedded real-
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time systems is indeed becoming an increasing challenge for developers
and system architects. The case-study, which constitutes Paper A, iden-
tifies a number of problem areas and possible remedies. These research
advances correspond to steps 1 and 2 in Figure 3.5.

• Developing Solutions: The continued research, directly targeting the
identified problem areas, was sub-divided into two research directions,
design-time and run-time data management, which resulted in papers
B and C. Paper B presents the data-entity approach that complements
design-time tools and techniques with an additional architectural view
as well as tools for data management. Paper C presents a solution, de-
noted database proxies, for a successful integration of an RTDBMS into
a CBSE setting. Both papers B and C correspond to steps 3 and 4 in
Figure 3.5.

• Evaluating results: In the next phase, to validate our approach in an
industrial setting, the implementation and evaluation of database proxies
in AUTOSAR, a state-of-the-art component-based development archi-
tecture, was carried out. An authentic automotive hardware node was
used in the evaluation. This resulted in Paper D, which corresponds to
step 6 in Figure 3.5.

• Deploying results: Paper E presents techniques for how to integrate
our approach into the commercially available development tool suite,
Arctic Core. The use of an RTDBMS in conjunction with database prox-
ies will be included in the meta-model and presented in the graphical
user interface, as an additional application design option. This final step
corresponds to step 6 in Figure 3.5.

3.3 Problem Description, Restated
The continuous increase of complexity and new requirements on data man-
agement enhances the challenges with respect to performing design-time and
run-time data management in a predictable, efficient and structured manner.
Developers need new tools and techniques to aid them with the problems of
today and tomorrow.

In an effort to understand the problem concerning data management, (i) this
thesis investigates the current issues within industrial embedded systems devel-
opment, and (ii) what tools and techniques could facilitate that development,
i.e. how and in which contexts such systems/tools could be deployed.
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To be precise, the thesis focuses on the following:

F1 How is data currently managed in the industry and what are the main
problems concerning design-time and run-time data management?

F2 How can we support design-time data management within CBSE?

F3 How can we support run-time data management within CBSE by utiliz-
ing state-of-the-art RTDBMS technology?

F4 How can real-time data management techniques be integrated into an
industrial development setting?

3.4 Thesis Contributions
The present thesis makes the following major contributions to the area of com-
plex component-based embedded real-time systems:

1. A case-study that emphasizes the importance of data management in or-
der to increase the knowledge and understanding of the system. Ten
problem areas within documentation, tool support and routines, as well
as remedies, are presented to achieve a more data-centric development
strategy. This contribution corresponds to research focus F1.

2. The concept of data entity, which enables design-time modeling, man-
agement, documentation and analysis of run-time data. This contribution
corresponds to research focus F2.

3. A technique denoted database proxies, which enables the integration of
an RTDBMS into a component technology. Database proxies are auto-
matically generated glue-code that translates data between component
ports and an RTDBMS that resides in the component framework. This
contribution corresponds to research focus F3.

4. An implementation of tools and techniques for the realization of data
entities into a component-based development suite named Save CCT.
This contribution serves as a validation of contributions 2 and 3.
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5. An implementation and evaluation of database proxies in AUTOSAR,
using industrial tools and hardware. This contribution serves as a pos-
sible technology transfer of contribution 3 and corresponds to research
focus F4.

Part II of the thesis contains five papers, denoted Paper A to Paper E. Each
of these papers is summarized below.

My contribution to each of the papers has been to define the different
concepts, implement the tools, perform the evaluations and be the main author.

3.4.1 Paper A
Paper A: Design-Time Management of Run-Time Data in Industrial Embed-
ded Real-Time Systems Development, Andreas Hjertström, Dag Nyström, Mik-
ael Nolin and Rikard Land, 13th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Hamburg, Germany, Septem-
ber, 2008

In this paper, we present the results of an industrial case-study conducted at
five companies where we have studied the current state of practice in data
management and documentation in embedded real-time systems. The case-
study identifies a lack of design-time data management, which often results in
costly development and maintenance. It confirms that new processes and tech-
niques for achieving an efficient, up-to-date and satisfactory documentation are
needed. Furthermore, inadequate tools and routines for data management of in-
ternal ECU data results in costly development and maintenance, which is often
entirely dependent on the know-how of single individual experts. Ten specific
problems are identified, four key observations and six suggested remedies are
presented.

3.4.2 Paper B
Paper B: A Data-Entity Approach for Component-Based Real-Time Embed-
ded Systems Development, Andreas Hjertström, Dag Nyström and Mikael
Sjödin, 14th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Palma de Mallorca, Spain, September, 2009

This paper presents our design-time data management approach, denoted the
data entity approach. The motivation for this approach stems from identified
problems presented in Paper A.
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The approach allows efficient design-time management of run-time data to
be included in component-based real-time embedded systems development as
an additional architectural view that complements the traditional architectural
component inter-connections and development view. The data entity approach
elevates run-time data to be acknowledged as first class objects of the architec-
tural design, and allows data to be modeled and analyzed in an early phase of
the development.

The paper also presents a design-time data management tool suite called
Embedded Data Commander (EDC), where data entities can be created, re-
trieved and modified. Furthermore, they can be associated with design entities
such as message channels created from the ProCom component architecture
development. In addition, the tool allows documentation to be generated from
an ongoing project as well as presenting data dependencies, e.g., who the pro-
ducers and consumers of a data item are. EDC provides tools for data modeling
and analysis.

3.4.3 Paper C

Paper C: Data Management for Component-Based Embedded Real-Time Sys-
tems: the Database Proxy Approach, Andreas Hjertström, Dag Nyström and
Mikael Sjödin, Journal of Systems and Software, vol 85, nr 4, p821-834, Else-
vier, April, 2012

To close the gap between two existing techniques used by the industry to man-
age the complexity and increase the flexibility, of component-based embedded
real-time systems development, we introduce the concept of database prox-
ies. Database proxies are automatically generated glue-code synthesized from
the system architecture and used to decouple components from the underlying
database in order for components to preserve the components encapsulation
and possibility of reuse. A component with direct access to an RTDBMS is
dependent on that specific RTDBMS and may not be useable in an alternative
environment.

The use of an RTDBMS in the component-based setting provides a new
range of possibilities, such as structured data management, as well as flexible
and predictable access to both critical and non-critical data. By using data-
base proxies in conjunction with state-of-the-art database pointer techniques,
developers can employ the full potential of both CBSE and an RTDBMS. With
this approach, developers can focus on application development instead of
reinventing data management techniques or develop solutions using internal
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data structures. As proof of concept this work has been implemented in the
SaveCCT framework where a system can be designed with or without a data-
base. In addition, the database proxy properties are generated to glue-code
from its specifications and further to target c-code. Furthermore, an evaluation
of the execution time overhead and additional memory overhead is in the order
of 1-2%.

3.4.4 Paper D
Paper D: Introducing Database-Centric Support in AUTOSAR, Andreas Hjer-
tström, Dag Nyström and Mikael Sjödin, 7th IEEE International Symposium
on Industrial Embedded Systems (SIES), Karlsruhe, Germany, June, 2012

In this paper we take the database proxy concept from research-oriented tech-
niques to an industrial setting by showing how a real-time database manage-
ment system can be integrated into the basic software of AUTOSAR by using
database proxies. The aim with the approach is to show how a database-centric
strategy can facilitate the development and maintenance of an automotive sys-
tem by providing the proven capabilities of an RTDBMS. Database proxies are
used to manage the communication between components on the AUTOSAR
Virtual Function Bus (VFB). The COMET RTDBMS is successfully integrated
into the AUTOSAR Basic Software (BSW), and evaluated on an authentic
automotive hardware node. The evaluation shows that our approach can be
used without components being aware of it, jeopardizing system performance
or safety. Moreover, this greatly simplifies the development of soft real-time
functions that process large data volumes, e.g., for statistics and logging. Our
measurements show that the concept only introduces a CPU overhead in the
order of 4% under typical workload conditions.

3.4.5 Paper E
Paper E: Data Management in AUTOSAR: a Tool Suite Extension Approach,
Andreas Hjertström, Dag Nyström and Mikael Sjödin, MRTC Report, submit-
ted for conference publication

In this paper, our research is transferred from academia to industry as a proof of
concept and to demonstrate the usefulness of our research results. We present
how a database proxy can be integrated into the development of automotive
systems using industrial tools. Our approach enables a clear separation of
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concerns between the system architect, component developer, and the Data-
Base Administrator (DBA). This separation of concerns allows each part to be
managed and reconfigured independent of each other. Furthermore, a plug-in
approach, developed for the Arctic Core tool suite and an integration of the
Mimer SQL Real-Time [4] database into the basic software of AUTOSAR is
presented.



Chapter 4

State-of-the-Art

The aim with this chapter is to present relevant background information re-
garding the development of automotive systems and we introduce some tools
and techniques that are important in this respect. This chapter complements
Chapter 2 in that we describe the related areas that are mostly orthogonal to the
work performed in this thesis.

4.1 Automotive Systems

Vehicles have in recent years evolved from mechanical systems to advanced
computer-controlled systems where mechanical parts are continuously replaced
by computer-controlled functions to achieve higher safety, less pollution, and
more comfort. In the early phase of this technological transformation, non-
critical tasks such as central locking and parts of the engine-control were han-
dled by small embedded computers. In today’s automotive systems, more and
more safety-critical functionality is replaced by computers that control breaks,
steering, airbags, etc.

In addition, the trend is that automotive systems are evolving from closed
stand-alone systems to highly dynamic systems interconnected and communi-
cating with the surrounding environment. There is a lot of research on new
technologies such as Car-to-Car (C2C), and Car-to-Infrastructure (C2I) [6]
communication. As an example, the system can be used to inform nearby
vehicles of possible dangers that have been discovered and even of its own lo-
cation to avoid a possible collision. In addition, the user demand for integrating
third-party applications, such as smart phones and internet connectivity, poses

31



32 State-of-the-Art

a range of new challenges concerning areas such as secure data access and han-
dling shared data between safety-related and non-safety-related functionalities.

The amount of software in high-end automotive systems is increasing and
is estimated to have reached 1 GB [39]. In addition, an advanced vehicular
system can include more than 80 Electrical Control Units (ECUs) which ex-
change in excess of 2500 signals [40] on several separate bus systems such
as CAN, FlexRay, LIN and MOST [41, 42, 43, 44]. To complicate matters
further, a high-end system can have more than 2000 functions that often are
highly dependent on each other. Consequently, the costs related to software
development and electronics have surged and can reach as much as 40% of the
total development costs of a car [2]. This has increased the need for flexible
platforms that can accommodate entire product lines for several years, in an
effort to reduce development costs [45].

The development of functionality in these complex automotive systems
requires expertise within the areas of infotainment, engine control, safety-
critical applications, etc. As a result of this, Original Equipment Manufac-
turers (OEM), in-house development is increasingly replaced by Commercial-
Off-The-Shelf (COTS) parts from various suppliers with expertise in certain
areas [2]. Integrating heterogeneous subsystems from different sources while
managing their evolution and maintenance constitutes a great challenge [46].
In addition, as stated by Schulze et al. [39] and Saake et al. [3], the ad-hoc
and/or reinvented management of data for each ECU with individual solutions
using internal data structures can lead to concurrency and inconsistency prob-
lems. A standardized and overall data model and management system has great
potential as a solution to deal with the distributed and uncoordinated data in
these complex systems [1].

A lot of focus within the automotive industry is the use of a standardized
software architecture such as the AUTOSAR [16]; see section 2.3.4. Another
approach targeting complexity, cost, time-to-market, etc. when developing au-
tomotive systems is Model Driven Engineering (MDE).

4.1.1 Model Driven Engineering
Model Driven Engineering (MDE) supplies an abstraction of reality by pro-
viding a model of reality that relates to a given aspect of the system. It often
does this by only representing a selected part of the system, thus simplifying
the overall view. To build a model that represents all aspects of reality or of
a system would not only be hard, it would in many respects be impossible to
understand [47]. Within computer science, systems are often divided into mod-
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els that represent aspects such as requirements, system architecture, validation,
etc. MDE has also evolved modeling from being a quite rudimentary form
of documentation to serving as formal interchange formats used by tools for
precise implementation purposes within computer engineering.

A model must conform to some specified (language and grammar) rules
called meta-model in order to be interpretable. There is also the possibility
to build hierarchical models, i.e., models of models. An important feature of
MDE are to transform one model into another or to generate e.g. code or
reports [48].

In the automotive sector, MDE often uses several different modeling lan-
guages such as EAST-ADL2 [49], TADL [50], MARTE [51] or SysML [52],
which are based on and/or extend concepts from UML.

4.1.2 EAST-ADL2
EAST-ADL2 [49] is an automotive architecture description language, devel-
oped as a UML 2.0 profile [53] within the ATESST project [54]. EAST-ADL2
aims to support the development of complex automotive software by providing
structured system information management at five levels: vehicle level, design
level, analysis level, implementation level and operation level.

1. Vehicle level: focuses on the features visible to the end users, such as
breaks or collision warning. A feature is specified by use cases and re-
quirements to meet, for instance, the configuration of a specific vehicle
variant.

2. Analysis level: provides analysis support of what the system shall do
and describes the functions that enable the available vehicle features.
This allows functions to be integrated and validated before the actual
software and hardware are developed.

3. Design level: includes a behavior description of the functionalities with-
out any implementation constraints in order to meet non-functional con-
straints such as specific supplier concerns or reusability issues. The fo-
cus is on the interaction and behavior of functions.

4. Implementation level: a system description of software components,
middleware etc.

5. Operation level: describes low-level details concerning the deployment
on to hardware.
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The implementation and operation levels are highly related and comple-
ment the AUTOSAR basic software description. In short, AUTOSAR defines
the final implementation details and EAST-ADL2 defines the logical and func-
tional architecture aspects.

Neither EAST-ADL2 nor any other of the previously mentioned modeling
languages provides specific techniques or support for data management.

4.2 Design-Time Tools for Automotive Data Man-
agement

Design-time data management is a recognized problem in the automotive in-
dustry. Hence, a couple of tools that provide partial solutions to the problem
have been developed. To provide data management support at design-time, the
dSpace Data Dictionary tool [20] holds information about an ECU for calibra-
tion and code generation. It is a central data container for model-independent
data management that is used to share information such as interface variables,
their scalings, typedefs, etc. throughout an entire project.

A data dictionary is also used for managing AUTOSAR properties, along-
side AUTOSAR specification properties at block level in Targetlink [20]. The
input to the dSpace data dictionary is templates generated from Simulink [55].
The data dictionary provides access to information such as specifics on C mod-
ules, function calls, tasks, variable classes, and data variants. In addition, de-
velopers are provided with support to import and export AUTOSAR software-
component XML description-files, which can be used by other tools. The infor-
mation included in the dSpace data dictionary reflects the information included
in the software component templates and does not include information about
the overall system and what data and signals are included. It is also possible to
specify and produce signal lists and spreadsheets with information regarding
data. The start of the development process in this tool is to model components
and their structure. In contrast to the data entity approach presented in this
thesis, the tool does not focus on managing or visualizing the data flow in the
system. Neither does it include analysis techniques to make data dependencies
visible.

The Automotive Data Dictionary (ADD [21]), is an additional tool that
provides a repository solution to centralize data declarations and ensure la-
bel and variable uniqueness for companies. ADD has an interface towards
MATLAB and Simulink and is used to develop ECUs within the automotive
industry. The main goal is to close the gap between software development and
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requirements engineering in order to avoid inconsistency throughout the whole
development process. It gives the developers an overview of the data specifi-
cation but does not include any implementation details. Contrary to our data
entity approach, ADD mostly focuses on requirements engineering and unique
labeling and does not cover information about data flow and data dependencies.





Chapter 5

Conclusions and
Contingency

In this thesis, we bring together new techniques in order to take a holistic ap-
proach to data management in the development of component-based embedded
real-time systems.

5.1 Conclusions

This research stems from the rapidly growing complexity when it comes to
the amount of data and data flow between components in today’s embedded
real-time systems. This has so far not been addressed by contemporary devel-
opment techniques. Instead, the focus tends to be on achieving a higher level
of abstraction by encapsulating functionality. Current research shows that the
state-of-practice for managing data on the system level and internally in indi-
vidual nodes is not adequate to meet the increasing complexity when building
the embedded systems of tomorrow. This was also confirmed by the case-study
presented in this thesis.

A starting point was to develop techniques that would enable a Real-Time
Database Management System (RTDBMS) to become a native part of the de-
sign and to manage the data flow between components. The use of an RT-
DBMS within data-intensive applications, with high demands on flexibility
and structured data management, is not new. It has been a natural next step as
systems have evolved and the requirements on data have become increasingly
complex. However, the use of an RTDBMS in an embedded setting, and partic-
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ular in real-time systems, is still somewhat unconventional, even though today
there are several commercial RTDBMSs tailor-made for resource-constrained
real-time embedded systems.

To manage data complexity, the use of an RTDBMS in conjunction with
Component-Based Software Engineering (CBSE) is an interesting challenge,
which we have tackled in this thesis. This approach is not obvious since the
design goals of CBSE and RTDBMSs stand in opposition to each other. To
overcome these contradictions we have introduced the concept of database
proxies. In addition, we have shown, through implementations and evaluations
using AUTomotive Open System ARchitecture (AUTOSAR) compliant tools
and automotive hardware, that this approach offers a number of new possi-
bilities at limited cost with respect to execution time overheads and resource
consumption.

Furthermore, this thesis presents a new design-time artifact named data
entity. The idea behind a data entity is to elevate run-time data to becoming
a first-class citizen in the system architectural design and to introduce a data
architectural view. Data entities allow data to be documented, modeled and
analyzed separately from the actual component implementation. Since data
entities are designed in separate, they could be used in other component mod-
els, with channels, regular connections or other design approaches then those
investigated within this thesis.

In this thesis we have implemented support for data-entities within the
SaveComp component technology as well as support for database-proxies with
the ProCom and AUTOSAR component technologies. However, the two con-
cepts have not been designed for use with any particular underlying component
technology and we believe that results could be generalized to most component
technologies that are based on statically configured pipes-and-filter style com-
ponents. As a run-time backend we have use Mimer Real-Time edition; how-
ever any underlying storage-technology could be used with appropriate modi-
fication of our glue-code generators. One should note though, that in order to
achieve hard real-time support, the storage-technology needs to hard real-time
primitives.

It is our firm belief that new, adequate data management techniques are cru-
cial to meet future requirements and to contribute to the evolution of component-
based embedded real-time systems development.
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5.2 Contingency
There is much work to be done in the area of data management in component-
based embedded real-rime systems. Existing techniques must incorporate data
management as a natural part of the development. In addition, new techniques
and tools have to be developed to keep up with the evolution of systems. In this
thesis we present techniques that could be of use with respect to some aspects
of the development of large complex systems. However, a lot more research
and many more solutions are needed in an effort to cover the whole area.

Although we have implemented and evaluated database proxies using com-
mercial tools, this has been done in a "controlled" research environment. A
natural next step would be to test the approach in an industrial project to eval-
uate its usefulness in practice and in the development process. This would be a
final step corresponding to steps 5 and 7 in the methodology presented in sec-
tion 3.2. This would require full-scale integration, in for instance Arctic Core,
complete with automatic code generation and validation procedures. Since our
implementation is not entirely complete with all functionalities, additional im-
plementation efforts would be necessary.

Some work has been done on the visualization of data entities, as a con-
tingency of the Embedded Data Commander (EDC) tool, which displays data
dependency graphs and analytic information. This is an interesting continua-
tion that should be developed and evaluated against other tools and approaches
to evaluate its usefulness in an industrial development project.

An additional venue of research, which we have not yet touched upon, is
the relation between our proposed techniques and contemporary techniques
for model-based development (MBD). While we don’t anticipate any conflicts
between MBD and our proposals, it remains to be studied, e.g., how and where
our data-modeling with data-entities fits into the workflow of an MBD-process.

EDC allows timing requirements to be modeled. However, to validate this
type of requirements it would be useful to relate these requirements to timing
requirements onto the execution of producers and consumers of data. It would
therefore be interesting to map data-timing requirements to Timing Augmented
Description Language (TADL) [50] descriptions to allow automated validation
through scheduling-analysis.
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Abstract

Efficient design-time management and documentation of run-time data ele-
ments are of paramount importance when developing and maintaining modern
real-time systems. In this paper, we present the results of an industrial case-
study in which we have studied the state of practice in data management and
documentation. Representatives from five companies within various business
segments have been interviewed and our results show that various aspects of
current data management and documentation are problematic and not yet ma-
ture. Results show that companies today have a fairly good management of
distributed signals, while internal ECU signals and states are, in many cases,
not managed at all. This lack of internal data management results in costly de-
velopment and maintenance and is often entirely dependent of the know-how
of single individual experts. Furthermore, it has, in several cases, resulted in
unused and excessive data in the systems due to the fact that whether or not a
data is used is unknown.
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6.1 Introduction
Most of today’s embedded system developers are experiencing a vast increase
of system complexity. The growing amount of data, the increasing number
of electrical control units (ECUs) and inadequate documentation are in many
cases becoming severe problems. The cost for development of electronics in
for instance high-end vehicles, have increased to more than 23% of the total
manufacturing cost. These high-end vehicle systems contain more than 70
ECUs and up to 2500 signals [1, 2].

A lot of research has been done in the area of run-time data management for
real-time systems. This has lead to the development of both research-oriented
data management solutions, such as [3, 4, 5], and commercial real-time data
management tools, such as [6, 7, 8]. However, in most cases this research
and these tools focus on run-time algorithms and concepts, but do not man-
age data documentation. In this case-study we investigate state of practice in
design-time data management and documentation of run-time data in indus-
trial real-time systems. An earlier case-study on data management in vehicle
control-systems has indicated a lack of data management and documentation
internally in the ECUs [9]. The case-study in this paper covers a broader scope
of companies, and focuses on the development process and documentation of
real-time data.

The study includes five companies, four vehicle companies active in differ-
ent domains and one company producing electrical control systems. The study
identifies ten problem areas in the development process and suggests remedies
and directions for further studies. Furthermore, we show that the importance
of adequate data management is growing along with the increasing complexity
of real-time and embedded systems [10].

The main observation from our study is the rudimentary, or in some cases
total lack of, data management and data documentation for internal ECU data.
This should be compared to distributed network data that, due to adequate tool
support, are fairly well managed and documented. We observed that this lack
of management, in some cases leads to inadequate development routines when
handling data.

Currently, companies developing safety-critical systems are becoming in-
creasingly bound to new regulations, such as the IEC 61508 [11]. These reg-
ulations enforce stronger demands on development and documentation. As an
example, for data management it is recommended, even on lower safety lev-
els, not to have stale data or data continuously updated without being used.
Companies lacking techniques for adequate data management and proper doc-
umentation will be faced with a difficult task to meet these demands.
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The main contributions of this paper include:

• A case-study investigating state-of-practice in data management for real-
time systems.

• Ten identified problem areas in current practice.

• Suggestions of remedies and future research directions.

The outline of the following parts of the paper is as follows. Section 6.2
describes our research method and the five participating companies. Section
6.3 reports the state-of-practice in data management and documentation of in-
dustrial embedded real-time systems. In section 6.4 we present four key ob-
servations and ten identified problem areas in current practice. In section 6.5
we propose six remedies and future research directions. In section 6.6 and 6.7
we conclude the paper and suggest future work based on the findings in this
case-study.

6.2 Research Method

This qualitative case-study [12] has been conducted at five companies, mostly
in various vehicular business segments, developing systems in various appli-
cation areas within the embedded real-time domain. The main source of in-
formation has been interviews with open-ended questions [13] conducted at
the companies. One person at each company with in depth knowledge of their
system development, both on high and low level were interviewed. All inter-
views have, after promises of anonymity, been recorded to be able to have open
discussions that could later be evaluated.

The work-flow of these interviews has been as follows; (i) the interviewee
was contacted and asked to take part in this interview with a short explanation
of the contents. (ii) A short summary explaining our area of interest was sent
one week before the interview. (iii) The interview was executed, and set to
last for approximately one hour. (iv) After each interview, the recording from
the interview was analyzed and the answers written down as a summary ques-
tion by question. (v) A document with all of the questions and their respective
summaries where sent back to the interviewee for possible commenting and
approval. In some cases, the document included additional requests for clarifi-
cation of certain areas.
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The interview questions were divided into five parts, with some general
questions in the beginning, more detailed in the middle, and open discussions
towards the end.

The interviews consisted of the following five parts:
Part one of the interview was a series of personal questions to get background
information such as the interviewees position at the company, years employed
and area of expertise. This was made to ensure that the interviewee had the
desired background and knowledge.
Part two was a series of short yes/no questions to get some basic understand-
ing about the business domain, product characteristics, and how they manage
the system and information today.
Part three was the main part which included more exhaustive questions about
how data is managed and documented during the development. This section
also included questions regarding how and if documentation is continuously
updated when changes or corrections occur after release or during mainte-
nance.
Part four covered the development process and the organization.
Part five consisted of a more open part with a chance for the interviewee to
speak more freely about his/her own experiences and observed problems within
the area.

6.2.1 Case-Study Validity
All of the studied companies are among the world-leaders within their respec-
tive domains which indicate a representative selection. Based on this and the
fact that the findings are so conclusive among the companies, we believe that
the study provides a representative overview of the common practice and can
therefore be considered important. However, the purpose of this study is not
to claim, based on this population, that the results are statistically confident or
valid for all companies in these business segments.

6.2.2 Description of Companies
The studied companies have requested to be anonymous and are therefore de-
scribed in this paper as COMP1-COMP5.

COMP1 is a producer of heavy vehicular systems. They have a produc-
tion volume in the range of 50.000-70.000 units per year. Their system are
resource-constrained, distributed and with both critical and non-critical parts.
In their development they mainly use software components that are developed
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in-house. The information is distributed between ECUs via two redundant
CAN [14] networks. The system is built on a software platform that is con-
tinually evolving.

COMP2 produces heavy vehicular systems in the range of 60.000-80.000
units per year and they base their systems on a software platform. Distribution
of critical data is performed on three CAN networks with different criticality
levels where the communication on the most critical bus is cyclic whereas the
other two are event triggered.

COMP3 is another vehicular company with annual volumes in the range of
450.000-550.000 units. Their system can be considered highly safety-critical
and resource-constrained. Furthermore, they use several different types of net-
works to distribute data. Most of the hardware and software are developed
by subcontractors. Data is distributed using network protocols, such as CAN,
LIN [15] and MOST [16].

COMP4 is a manufacturer of public transportation systems producing about
1000 units per year. Network communication is made on fieldbuses. They are
now shifting to Ethernet communication with their own protocol layers in their
latest platform. There are both periodic data and event triggered data on the
bus. They have a small amount of software redundancy but are moving to-
wards hardware redundancy. Almost all development is made in-house. Their
systems are based on software platforms that are continuously refined during
their 30 year product lifetime. Old products are during their lifetime updated
with new software platforms.

COMP5 develops around 10.000 units of large stationary logic control sys-
tems that are less resource-constrained than the other systems in the study.
Their systems are based on regular software development and where parts of
the system are developed separately as components. Their systems are con-
tinuously changing and functionality is added throughout the life-time of the
system. Network communication is quite limited and based on Ethernet [17].
They have developed their own standard for development based upon the water-
fall model [18]. The ECUs in the system contain both critical and non-critical
functionality. The system is built using a centralized configuration database
where involved nodes collect information such as system parameters and store
them locally before usage.

All five companies selected for this study have been active within research
and development of distributed embedded real-time systems for many years.
This also applies to the interviewees which all could be considered highly com-
petent and have at least five years of company experience. The companies de-
velop products that mainly incorporate both hard and soft real-time properties.
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Figure 6.1: Company description.
Range: Low=1 and High=5. Yes=Y and No=N

The investigation concerns how their systems are developed and maintained
throughout their life-cycle.

Figure 6.1 shows some of the main similarities and differences between the
companies. As seen in the figure, four of the involved companies produce ve-
hicular systems and one company, COMP5 develops stationary industrial sys-
tems. The column "Product Variance" indicates if a company has large vari-
ances between their products. For example at COMP2, less than two products
delivered have the same configuration while almost all of COMP1 products
are off-the-shelf. Annual sales volume has a range between 1000 delivered
products to several hundreds of thousands. The products of all five companies
have both soft and hard real-time properties. Furthermore, all of the compa-
nies develop resource-constrained systems but systems developed at COMP1-
COMP3 are more resource-constrained than the others. The most resource-
constrained product developer is in this case COMP3 with high volumes and
limited amount of system resources. Finally, the column "Platform-oriented",
indicates if the company develops a company-common software platform as a
base used in several manufactured products but with different configurations.
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6.3 Design-time Data Management

In this section we present some state-of-practice issues on how the interviewed
companies perform their documentation and process at design-time followed
by a number of use cases and scenarios.

6.3.1 State of Practice

In the following part we present how the individual companies perform their
documentation and what kind tools and processes are used. The main focus is
to provide a better understanding of how data is managed throughout develop-
ment and maintenance. Since there is a lot of information about each company
in this section, we have classified each of the companies with a few keywords
for readability and overall understanding.

COMP1 uses Rubus Visual Studio [19], which is a development environ-
ment that is tightly integrated with the Rubus operating system. In this tool
they have adequate documentation complying with the J1939 and J1587 stan-
dard for bus messages. Except from bus messages they only have sparse doc-
umentation on data types in the internals of the ECUs. For most of the docu-
mentation they are entirely dependent on the person responsible for a specific
part of the system. According to the interviewee this has worked quite well
previously when their old software platform was used and the projects where
smaller. Now they are introducing a new, more advanced, platform and are ex-
periencing a big increase in data flow and system complexity. Current practice,
where a small group or a single person alone is responsible for this information,
is not sufficient anymore.

Company classification: Dependent on individual developers.

COMP2 Internally within an ECU, documentation and mechanisms such
as special control groups evaluating the work are not so extensive. It is more
up to the developer to manage data. The documentation and high-level devel-
opment of internal behavior is made in Enterprise Architect [20] and follows
Rational Unified Process (RUP) [21] as their development process.

For network communication they recently moved from text-based speci-
fications to a database built on Vectors CAN db-admin [22], with their own
company specific communication layer. An integration group has control of
the network documentation and is responsible for how the signals are used.
This enables them to have control of the network and its contents. Also, once
a month, a more detailed review that works as a filter for detecting errors is
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performed. The documentation regarding the network is continuously updated
with new information but old data is never removed. A problem for them has
been the growing amount of documentation with several hundred pages of text
to describe small parts of the system.

They strictly follow a defined process for adding, removing or searching
for data or data properties but have also worked out a "speedy" process if you
need fast decisions. They also have a routine to once a year go through the
system and check if all data on the bus is used and all code really executes.

Company classification: Network controlled by an integration group. Little
control on internal ECU data management

COMP3 uses Rational Rose [23] both for documenting internal signals
within the ECU and for external, public network signals. From Rational Rose,
function, system and software descriptions are generated. All signals are then
semi-automatically put in a signal database and also in spread-sheets. From
the spread-sheets, a special appendix is generated with specifications on tim-
ing requirements, semantics signals etc. The appendix is open for viewing to
all involved developers. They struggle with large amount of text, sometimes
several thousand pages, needed for describing models etc. Most of the devel-
opment, both hardware and software is made by subcontractors.

This company builds their systems on different software platforms. Each
platform has a leader that has a lot to say about documentation. Except from
deciding what should be added or removed in the system, they also look at
the entire business case if a change is doable from a technical and economical
point of view. If not, they have the power to abort the introduction of new
functionality if deemed necessary. The company’s knowledge about signals is
documented in a signal database on a global level but it is more up to the re-
sponsible person for each software component to have internal control of each
ECU. This is, according to them, a known problem. For internal ECU changes,
there is a standardized document revision on dedicated meetings. Nothing is
released to a subcontractor until it is approved due to legal aspects.

They work according to a so called "superset" thinking in their software
platform where they have excessive signals to support different versions of
the system. A unique configuration file containing specific information for a
specific system is then distributed to all nodes in the system to enable or disable
desired functionality.

Company classification: Good global knowledge on signals. The platform
leader controls functionality. Each software developer is responsible for how
data is managed internally on the ECU.
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COMP4 uses spread-sheets for both signals and the fieldbus. During de-
velopment all staff in a project can search and update these spread-sheets until
they do a freeze. A first freeze is done before the actual implementation but
is changed if faults are discovered. After a freeze, only a special reference
group can perform changes in the freezed version. It is a living process un-
til the product is type approved at the customer. All developers can read and
reserve signals during development. A company defined process is used to
decide when freezes are supposed to be done.

Company classification: Reference group controlled. Uses freezed version
and spread-sheets for signals.

COMP5 uses Serena Dimensions [8], an application life-cycle tool where
documentation is done together with the code. They also use high-level draw-
ing tools for component development with a specified system interface and c-
code generation. Both code and documentation is versioned in Serena Dimen-
sions. The main idea with their system is that data values can be changed in
their central database even when the system is up and running. When a change
is made in the configuration database and committed, all involved nodes are
notified that there are new data in the database. ECUs that use this data, collect
a local copy from the database for internal use. Which kind of data a person is
able to change in the central database depends on which authorization level the
user is assigned. The majority of the data communication is done internally on
the ECU and not on the network.

Company classification: Central configuration database. Access rights
controlled.

6.3.2 Use Cases and Scenarios
This section illustrates some of the important use cases that occur during devel-
opment and maintenance. What are the main differences in how the involved
companies handle adding, removing, and searching for data in their system?

Adding data to the system This is done differently in all companies. In
COMP1, the responsible technician verifies the system architecture, then de-
cides which node to use and how the data should be transported. This is then
discussed with the developer in an effort to find flaws in the solution. After that
there are no special routines for how this is done. It is up to the developer. This
same action is handled completely differently in COMP2 where a developer
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has to write a function specification which is approved by the configuration
manager. In the change process, applicable on modeling and signaling COMP3
uses a rudimentary web interface to ask for a change. A team then examines
the change and physically synchronizes it to see if the change is technically
justified. If it is a major change to the system, the business case is also eval-
uated. In COMP4, adding data is managed within the project but all signals
should be added and approved before implementation. If a change is requested
after the documentation is freezed, a reference group has to verify and approve
the change. COMP5 uses a similar process. If the new data is approved by an
authorized person it can be added and used.

Removal of data Even if companies have some routine for adding data to
the system, routines on how to remove data is usually non-existent. This raises
the question if it could be the case that there are signals in the system that are
produced but not consumed.

As in the previous section, in COMP1 it is up to the system responsible.
Rubus has no support for checking if a produced signal is used or not. In
COMP2, COMP3, and COMP5 they do not remove anything at all. COMP2
does a consistency check against a spread-sheet once a year to see if all code
in the system actually runs. If a signal on the bus is not to be used anymore, its
CAN ID is defined as occupied and is never used again. This is made in order
to minimize future mistakes. COMP3 has no technique to automatically do a
mapping and see if data is not used and can be removed without affecting the
system. It is considered too time consuming to do this mapping. Instead they
keep the old data and calculate with a 15% overhead in the system. In an effort
to minimize the need for removal of data, COMP4 does a consistency check
in the beginning of each project and only include required signals. They also
try to remove unnecessary signals during system updates but normally there are
buffers for extra signals in a project. This is because they want to avoid changes
in the system that can possibly have unknown consequences. If something is
removed in COMP5, it is verified in system tests. However they do not really
remove the data, instead they hide it so that it cannot be used in the future.

What seems to be unanimous for all of these companies is that removal of
signals is problematic. Since there is no good support for this in the tools or
routines, it is again up to the developer in COMP1 to take such a decision. In
the other companies they either try to eliminate signals when starting a new
project, use overhead in the system or do a consistency check and hide unused
signals.
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Searching and usage of data How can a developer or system architect know
if a data is already produced or not? COMP1 has a developer responsible for
this knowledge and if a signal is needed by another developer, he/she has to
ask that person. They have no documentation regarding the contents of the
nodes. The network however is better documented. In the other companies it
is possible to search for signals in a spread-sheet, signal database or some type
of development tool with more or less detailed information. COMP2 is very
strict on signals on the bus and developers have to go through an integration
group to require information, if a signal exists and can be used. They have
less knowledge about the internals of an ECU, what exists and can be used.
However a group of people review the system regularly to avoid errors. Both
COMP3 and COMP4 uses a spread-sheet where all developers involved can
search for a signal. In COMP3 you have to go through the platform group for
usage approval.

COMP4 does not have the same control mechanism for the usage of signals.
If a signal is broadcasted on the bus it is open for usage, no additional decisions
has to be made when using the signal. There is however only one that can write
to any given signal. Except from COMP1, it is possible to search for a signal
and use after approval by some kind of control group.

6.4 Observations and Problems Areas

In this section we have, based on the above use cases and scenarios, formulated
four key observations and ten problem areas.

6.4.1 Key Observations

O1. Impact of product variability on documentation. All of the involved com-
panies in this study have different approaches and a variation of techniques
for preserving knowledge about their systems. These companies also produce
products that vary more or less. It seems that there is a relationship between
the quality of the documentation and the product variability. Figure 6.1 showed
how variances differ between different companies. COMP1 manufactures off-
the-shelf products. COMP2 and COMP3 both have large product variances
to support usage in different environment settings or to suit various vehicular
equipment alternatives. COMP4 and COMP5 have small variances. In COMP4
the variances mostly concern HMI settings.
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With this information in mind, we can clearly see that this is reflected in
their system documentation. COMP1 that produces off-the-shelf products has
the least amount of documentation on their system. COMP2 and COMP3 has
large variances and both have a more rigorous documentation process. One of
the reasons for this could be that large product variances in COMP2-COMP3
are one of the reasons that have forced them to have a more developed preser-
vation of system knowledge.

O2. Inclusion of Excessive Signals. All of the involved companies have ex-
cessive signals in the system as well as functionality that is turned on an off.
COMP2 always has excessive signals included in the system to support sev-
eral vehicle variations. Each system is then configured to suit the individual
vehicle configuration. An example of this is to have signals that support both
automatic and manual gearboxes. In this way they turn on and off required
functionality to suit their needs. The reasons for having excessive signals in
their systems vary. In most cases excessive signals are included, either to sup-
port product variations or because there is a desire to keep them in the system
since a change can have unknown effects to the system.

One reason for having excessive signals and functions in the system is to
minimize modifications to the system. If proper tools and documentation tech-
niques were available, it would be possible to build the system more optimized,
without unused signals and functionality to save system resources and reduce
cost.

O3. Prioritization of selected parts of the system. As a result of ineffective and
inadequate tools for documentation, parts of systems are prioritized. Although
COMP3 uses several different techniques to manage and document their sys-
tem, it is a known problem that they prioritize more critical parts of the system
as engine control, compared to the more soft infotainment functionality which
is lagging behind.

O4. Awareness that common practice is not enough. To get a flavor of how
companies and interviewees consider their documentation and development
process they where asked to rank themselves and how they compare to their
competitors at the end of each interview.

When ranking themselves on a scale from one to ten where one is the low-
est, a majority of the companies ranked themselves below average. One com-
pany ranked itself high with the motivation that as long as they don’t have to
extend their system with new signals and interfaces, current practice is suffi-
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cient. This indicates that it is hard to expand, change or add new functionality
to their system, which could be a direct result of poor system documentation.
The fact that most companies rank themselves below average regarding their
documentation and development process indicates that there is much to be done
within this area.

When they ranked themselves compared to their competitors, the ranking
follows the same pattern with a below average score. This is interesting since
these companies use a variation of documentation, from person dependent to
extensive signal databases and processes to handle signals, although mostly for
distributed signals.

In order to successfully manage these advanced systems, new techniques
for how to handle data has to be introduced. As stated earlier one single person
having extensive knowledge about the internals of an ECU is not ideal and
could be considered as a possible single point of failure.

The overall statement here is that this is how documentation is believed to
be handled within their application area. A question that arises here is why
companies that produce highly safety-critical applications in their own opinion
have below average control of their system, documentation and process.

6.4.2 Identified Problem Areas

There are several important aspects to consider regarding how these compa-
nies treat and documents data internally on ECUs or on the communication
network. We have from the above use cases and scenarios identified ten prob-
lems, divided into three areas:

Documentation volume and structure
P1. Growing information volume. A major problem that was repeatedly raised
during the interviews was the growing volume of information [10]. As an ex-
ample, model descriptions are today made in different tools and sometimes in
plain text. This is a major problem since there sometimes can be several thou-
sand pages of text. In most cases everything is backward compatible and noth-
ing is ever removed. This continuously adds to the complexity of the documen-
tation and the amount of text. It is not efficient to supply a system-responsible
person with several hundred of pages of information with some small changes.
This seems to be a neglected problem that is becoming an overwhelming issue
for developers and system architects.
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P2. Obsolete documentation. Documentation is perceived as hard to maintain,
requiring a lot of effort and time. As a direct consequence of this, correct and
up-to-date documentation is lagging behind. One individual person or a group
of persons can be responsible for updating reported changes in documentation.
However it is hard to do this in parallel with development and this often intro-
duces a delay until the change is reflected in the documentation.

If a company has documentation, it is versioned and there is also some kind
of template specifying the how this should be done. However in all cases, how
this is done in practice is highly dependent on the individual person managing
the documentation. This has in one company lead to a special template used as
a simple speedy possibility to go around their own rules. One way companies
do this is to let everybody change according to their needs and freeze a version
of the documentation regularly. COMP3 does not have this problem since a
developer has to request a change beforehand.

P3. Stale data. Poor preservation of knowledge and inadequate documenta-
tion techniques often lead to stale signals in systems that the companies are or
are not aware of. An issue with this is that these stale data items, except from
adding to memory, bandwidth and CPU usage, may cause failures or unwanted
system behavior. Unknown effects such as these are addressed in new, more
stringent regulations such as IEC61508.

P4. Inadequate ECU data documentation. One thing correspond for all of the
involved companies. There is a difference in how they treat data and signals on
the network compared to internal data on ECUs. The network is documented
using various tools and techniques whereas internal ECU data in most cases are
not. The lack of efficient tools and techniques have made individual develop-
ers responsible for much of the knowledge about data items and functionality
inside an ECU.

P5. Dependency on individual developers. Internal knowledge of an ECU is
in several of the involved companies left to a single individual or a group of
developers. This is an important issue since companies could lose valuable
information due to poor, or non-existent, documentation. As an example, an
individual developer in COMP1 can have all information about a certain part
of the system or functionality. When other developers need a signal or infor-
mation regarding that system or function, they have to ask the developer for it.
When asked how this would influence the company if a staff member would
leave the company, they say that it would not be a disaster but it would mean a
lot of effort for someone else to get up to date.
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The systems that COMP1 are developing have so far been quite small since
large parts of the product have been mechanically controlled. The current trend
is to introduce more and more computer-controlled parts, thus rapidly increas-
ing the system complexity. The small size and amount of data in the system
made it possible for persons to keep track of most things. This worked up until
now.

New platforms are being released with more computer controlled systems
that are too complex for a single developer to handle. The new systems are re-
dundant, safety-critical, contain more diagnostics, more signals, human-machine
interface (HMI), and other functionalities.

Tool support
P6. Lack of efficient tool support. More efficient documentation, tools and pro-
cesses are needed and could in the end reduce development costs. Companies
themselves indicate that within a few years they will need to use a small set of
tools or one single flexible tool to limit the amount of text describing models
today.

Since systems and functions require a lot of effort and are costly to develop,
companies reuse as much of the system as possible. This puts high demands on
documentation in order for developers to be able to understand how a function
will work if it is reused in another setting with other dependencies. This is es-
pecially true if it is a safety-critical function which often is rigorously verified
and tested.

P7. Lack of visualization. As systems are getting more heterogeneous and
more complex, in the sense of more signals, increasing number of ECUs and
more distributed data items, developers have raised the question of a need for
a graphical view of the whole development chain to aid developers and system
architects.

Important aspects to visualize are;

• how functions are connected

• how data is shared between functions

• how ECUs are connected

• where the nodes are physically placed
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Routines
P8. Poor support for adding data. Routines for adding data to the system differ
a lot between the companies. A problem here is that there is a lot of manual
work done by individual developers, or just open discussions to verify how ad-
ditional data affects the system and there is no effective tool support for this
matter.

P9. Difficult to search for data. As long as a data item is distributed on the
network, it is in most cases possible to search for a data item. However the
possibility to search for an internal ECU data item is in most cases limited.

P10. No support for removal of data. Despite the fact that some of these
systems are resource-constrained and available resources are sparse, a lot of
unnecessary data items remain unused in the system. In an effort to reduce the
number of unused data items, some of the companies try to remove old data
when starting a new project but they are careful about doing so because they
lack knowledge about system dependencies such as, who are producing and
who are consuming this data. Instead they either try to hide data, leave it as it
is, or mark them as occupied so there will be no new users. It seems that the
overall problem here is a lack of feedback from the development tools. There
is no way to automatically see dependencies for internal data.

6.5 Remedies and Vision for Future Directions
In this section we elaborate, based on the problems (P1-P10), observations
(O1-O4) from the study, and future standards and regulations, on possible im-
provements in data management tools and processes for embedded real-time
system’s development.

To improve data management we propose to lift data to a higher level dur-
ing development. A more data centric development is needed, where data is
considered early in the development phase and seen as its own entity. To sub-
stantially elevate existing data management and documentation towards a more
data centric development, we propose six remedies;

R1. A unified development environment. To successfully be able to manage the
problems stated in P1, P2, P5 and P6, scattered information needs to be gath-
ered in one development environment. As seen in the study, some companies
successfully use a signal database for bus messages. By extending this to also
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include internal signal and state data, an integrated data management environ-
ment supporting the entire development chain including requirements, model-
ing, design, implementation, and testing is achieved. This data management
environment could aid developers by filtering out only the relevant documen-
tation for each development activity. Correctly implemented this environment
should provide an easy interface for developers from different sub-systems can
share to update and manage documentation.

R2. Global data warehousing and data-flow graphs. Data warehousing is
an effective technique, providing means to store, analyze and retrieve data.
By introducing global data warehousing, and data-flow graphs to the devel-
opment environment a company-common documentation base that develop-
ment projects of different sub-system can access and share is provided. It also
gives developers the possibility to identify and visualize data providers and
subscribers and thereby aiding designers when adding, managing and remov-
ing data. This gives developers the means to solve problems identified as P3,
P4, P8-P10.

R3. Automated tools and techniques. To additionally aid developers solving
P2, P4-P5 and maximize the impact of a unified development environment,
automated tools and techniques must be introduced to link design-time docu-
mentation against run-time mechanisms.

R4. Physical visualization. By introducing physical visualization, showing the
physical layout and data streams of the system, identified as P7, we solve a
problem that was explicitly pointed out by some interviewees in the study.

R5. Meta-data information. To aid in solving P2 and P6, a natural coupling be-
tween system requirements and data properties meta-data information such as
resolution, real-time properties, priorities, criticality, etc. needs to be included
into the development environment.

R6. Integrated data modeling tool. During our previous case-study [9] it be-
came obvious that using internal data structures for internal data storage lead
to difficulties to keep track of data and to perform memory optimization. A
integrated data modeling tool can provide developers with means to organize
and structure all system data, thereby aiding in solving P5. Within the data-
base community several data modeling techniques, such as entity-relationship
modeling, [24] exist.
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Problems R1 R2 R3 R4 R5 R6
P1 X
P2 X X X X
P3 X
P4 X X
P5 X X X
P6 X X
P7 X
P8 X
P9 X

P10 X

Figure 6.2: Problem areas with associated remedy or remedies.

Introducing these remedies and forming a uniform development environ-
ment give developers the prerequisite needed for effectively managing their
system development and maintenance. Figure 6.2 illustrates how the problems
are linked with the proposed remedies.

6.6 Conclusions
In this paper, we show that due to the increasing system complexity, current
state of practice in data management is not adequate. There are many im-
portant issues observed in this case-study. From these, we have identified ten
problem areas and formulated four key observations, based on current practice
and future needs. These problem areas and observations set the path for future
research and improvement.

It is confirmed by all involved companies that new processes and tech-
niques for achieving a satisfactory documentation on a software system are
needed to be able to handle the needs of today and tomorrow. This is some-
thing that could be required to meet the upcoming safety regulations, eg. as
specified by IEC 61508, and will be a complex and difficult transition for these
companies.

The study shows that there is much to be done within the area, especially
documentation of data internally on ECUs. Inefficient, or lack of, routines for
adding, removing or searching for data or data properties has in some cases
made companies completely dependent on individual experts instead of thor-
ough documentation. As the systems grow, this approach is no longer feasible.
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Another more unwanted effect of inadequate data management is that there
are also data included which no one knows exists. These stale signals is an
important safety issue since they could have unknown consequences to the
system. An important fact is that these systems are in many cases resource-
constrained and stale data waste resources. This could be a major cost factor
for mass producing companies with high demands of cost-efficiency.

Currently, adequate tools to manage distributed data exist, resulting in a
much better data management for distributed data compared to internal ECU
data. In this paper, suggestions for improved tool-support for internal data,
as well as overall system data management is presented. It is our belief that
a novel tool that incorporate adequate data documentation, management and
design views, both for design and run-time would significantly improve current
data management practices.

6.7 Future Work
From this case-study we could also see an emerging need for more flexible
and efficient run-time data management. Several interviewees indicated that
there is an increasing need to manage both hard and soft real-time requirements
within their systems. There are also indications that a more secure handling of
data is needed since there is a desire to connect to the system at run-time for
maintenance, upgrades and infotainment purposes. This issue is seems espe-
cially important when using telematics to access these safety critical systems.
Another issue is the coming standards and regulation which will put higher
demand on data management. These are some of the important issues still to
investigate based on the outcome from this case-study.
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Abstract

In this paper the data-entity approach for efficient design-time management of
run-time data in component-based real-time embedded systems is presented.
The approach formalizes the concept of a data entity which enable design-time
modeling, management, documentation and analysis of run-time data items.
Previous studies on data management for embedded real-time systems show
that current data management techniques are not adequate, and therefore im-
pose unnecessary costs and quality problems during system development. It is
our conclusion that data management needs to be incorporated as an integral
part of the development of the entire system architecture. Therefore, we pro-
pose an approach where run-time data is acknowledged as first class objects
during development with proper documentation and where properties such as
usage, validity and dependency can be modeled. In this way we can increase
the knowledge and understanding of the system. The approach also allows
analysis of data dependencies, type matching, and redundancy early in the de-
velopment phase as well as in existing systems.
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7.1 Introduction
We present the data-entity approach for efficient design-time management of
run-time data in embedded real-time systems. We propose methods, techniques
and tools that allow modeling of data into a design entity in the overall software
architecture. This enables developers to keep track of system data, retrieve
accurate documentation and perform early analysis on data items. The goal
is to achieve higher software quality, lower development costs, and to provide
higher degree of control over the software evolution process. We show how our
approach can be coupled to a development environment for component-based
software engineering (CBSE), thus bridging the gap between CBSE and tradi-
tional data management. For example, it bridges the encapsulation paradigm
of CBSE and the blackboard paradigm of traditional data-management tech-
niques.

Our approach primarily targets data intensive and complex embedded real-
time systems with a large degree of control functions, such as vehicular, in-
dustrial and robotic control-systems. These domains, and also software inten-
sive embedded systems in general, has in recent years become increasingly
complex; up to the point that system development, evolution and maintenance
is becoming hard to handle, with corresponding decreases in quality and in-
creases of costs [1].

For instance, the cost for development of electronics in for instance high-
end vehicles, have increased to more than 40% of the total development cost
and systems contain more than 70 electronic control-units (ECUs) and up to
2500 signals [2, 3, 4].

In an effort to handle the increasing complexity of embedded real-time sys-
tems, various tools and techniques, such as component-based software engi-
neering [5, 6], real-time data management [7, 8], and network bus manage-
ment [9], has previously been introduced. While these techniques and tools
have the common aim to reduce software complexity, they target different ar-
eas of system complexity. CBSE, for example, targets encapsulation of func-
tionality into software components that are reusable entities. Components can
be mounted together as building blocks, with a possibility to maintain and im-
prove systems by replacing individual components [5]. On the other hand,
real-time data management, e.g. database technologies, target data produced
and consumed by functions by providing uniform storage and data access,
concurrency-control, temporal consistency, and overload and transaction man-
agement. Network management in turn, aim to handle the increasing amount
of data that is distributed throughout ECUs in the system and, e.g. manage the
temporal behavior of distributed data.
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However, despite their common aim of reducing complexity, these tech-
niques in some cases have contradicting means of achieving their goals. For
example, the requirement of information hiding and component data interfac-
ing in component-based systems might conflict with the common blackboard
data storage architecture using real-time databases. To overcome these contra-
dictions, it is our belief that data management must be made to be an integral
part of the design environment as an architectural view. It is also becoming ad-
ditionally important to consider data freshness in embedded real-time systems
as have been done within the real-time database community [10].

The main contributions of this paper include:

• We introduce the concept of a data entity to encapsulate all metadata,
such as documentation, type, dependencies, and real-time properties con-
cerning a run-time data item in a system. The data-entity approach pro-
vides designers with an additional architectural view which allows for
data searching, dependency visualization, and documentation extraction.

• The data-entity approach provide techniques which are tightly coupled
with component-based software engineering.

• Our approach allows properties of data to be analyzed any time during
the development process. A model of data entities can be constructed
before development commences, thus giving the possibility to provide
early feedback to designers about consistency and type compatibility.
Alternatively, a model can be extracted from existing designs, allowing
analysis of redundancies and providing a base for system evolution.

• The data-entity architectural view complements other architectural views,
such as component-based architectural views, without violating para-
digms such as information-hiding, encapsulation and reuse.

• Finally, we have realized this approach by implementing it into a tool-
suite, using the existing component model ProCom [11] that also offers
a development environment. The tool includes data entity editors as well
as a number of analysis tools.

The rest of this paper is structured as follows; in section 7.2, we present
background and motivation for the approach. We also present four specific
problems that our approach addresses. In section 7.3, a definition of the data
entity is presented and the data entity approach is discussed in section 7.4.
Further, in section 7.5, we describe the ProCom component-model which is
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used in our data entity tool-suite, presented in section 8.6.3. An example of
how the data entity tool-suite can be used is presented in section 7.7. Finally,
the paper is concluded in section 7.8.

7.2 Background and Motivation

The aim of our approach is to bridge the current gap between component-
based software engineering and data management by extending the architec-
tural views with a data-centric view that allow run-time data to be modeled,
viewed and analyzed. Current system design techniques emphasize the design
of components and functions, while often neglecting modeling of flow and de-
pendencies of run-time data. A recent study of data management at a number
of companies producing industrial and vehicular embedded real-time systems
clearly showed that this gap is becoming increasingly important to bridge, and
that current design-techniques are not adequate [1].

The study showed that documentation and structured management of inter-
nal ECU data is currently almost non-existent, and most often dependent on
single individual persons. Traditionally, the complexity of an ECU has been
low enough so that it has been possible for a single expert to have a fairly
good knowledge of the entire architecture. However recently, companies are
experiencing that even internal ECU data complexity is growing too large for a
single person to manage. This has led to a need for a structured data manage-
ment with adequate tool support for system data. A similar development took
place within the vehicular domain in the late 1990s, when the industry took a
technological leap with the introduction of bus-management tools, such as the
Volcano tool [9]. By that time, the distributed vehicular systems had grown
so complex that it was no longer feasible to manage bus packet allocation and
network data-flow without proper tool support. It is pointed out in the study,
that there is a clear need for a similar technological leap for overall system data
management.

7.2.1 Problem Formulation

The case study [1] identifies a number of problems related to poor data man-
agement in practice today. In this paper, four of these problems are specifically
addressed.
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Addressed problems:

P1 ECU signals and states are, in many cases, not managed and documented
at all, companies often are entirely dependent of the know-how of single
individual experts

P2 The lack of structured management and documentation has in several
cases led to poor routines for adding, deleting and managing data. Often
a "hands-off" approach is used where currently functioning subsystems
are left untouched when adding additional functionality, since reuse of
existing data is considered too risky due to lack of knowledge of their
current usage.

P3 Some companies calculate with up to 15% overhead for unused and stale
data being produced. It is considered too difficult to establish if and how
these stale data are being consumed elsewhere in the system.

P4 A lack of adequate tool support to model, visualize and analyze system
data.

To further complicate matters, companies developing safety-critical sys-
tems are becoming increasingly bound to new regulations, such as the IEC
61508 [12]. These regulations enforce stronger demands on development and
documentation. As an example, for data management it is recommended, even
on lower safety levels, not to have stale data or data continuously updated with-
out being used. Companies lacking techniques for adequate data management
and proper documentation will be faced with a difficult task to meet these de-
mands.

7.2.2 Related Work
Several tools within code analysis and code visualization have been devel-
oped to be able to explore data-flow and how functions are connected [13, 14].
These are however mainly built to interpret existing code and not focusing on
high level data management during development. The increase in complexity
and the amount of signals used within ECU development has also been ad-
dressed within the data modeling area. A number of data dictionary tools such
as dSpace Data Dictionary, SimuQuest UniPhi and Visu-IT Automotive Data
Dictionary [15, 16, 17], have been developed in an effort to get an overall
view of the systems signals as well as structured labeling and project man-
agement. These tools are tightly coupled with MATLAB/Simulink and MAT-
LAB/Targetlink [18] which is line with current state-of-practice. However
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none of these tools specifically target CBSE. dSpace Data Dictionary does
however additionally provide techniques for managing AUTOSAR [6] prop-
erty specifications. Furthermore, non of these tools target high-level data man-
agement where data can be modeled, analyzed and visualized in an early phase
of development.

To confront the intricacy of embedded system development of today and
tomorrow, CBSE will play a more central part. However, supporting tools,
specifically targeting component-based systems, needs to be developed to sup-
port the technological leap needed within data management.

Common for both CBSE and the data entity approach is that they aim to as-
semble and design systems at a higher level by encapsulating information and
functionality into components or entities. The aim with our approach is to add
to the functionality of the above stated tools. In our approach, data is seen as a
component/entity in the development strategy. This allows data to be modeled
separately with a possibility to perform early analysis such as relative validity.
It also allows system architects and developers to graphically view data depen-
dencies, similar as components can viewed during system development. This
information can then be connected to the data flow in the component model
and used as input to the system architect when developing the system.

7.3 The Data Entity
In this section we will first introduce the concept of data entity. Secondly we
present how data entities can be used and analyzed, both in an early phase of
development and for already developed systems.

7.3.1 Data Entity Definition
The concept of a data entity that encapsulates all metadata is the basis of our
approach. A data entity is a compilation of knowledge for each data item in
the system. A data entity can be defined completely separate from the develop-
ment of components and functions. This enable developers to set up a system
with data entities based on application requirements and perform early analysis
even before the producers or consumers of the data are developed. The infor-
mation collected by data entities are also valuable for developers and system
architects when redesigning or maintaining systems. Another important fea-
ture is that since a data entity is completely separated from its producers and
the consumers, it persists in the system regardless of any component, function
or design changes.



80 Paper B

Figure 7.1: Data Entity Description Model

A data entity consists of the following metadata (illustrated in Figure 7.1):

• Data Entity, is a top level container describing the overall information
of a set of data variants. Data entities are created to aid developers with
problem P1 and P2, by elevating the importance level of data during de-
velopment and maintenance. Required information is associated with the
data entity and its data variants, enabling it to persist on its own during
all the phases of a system life-cycle. As an example, a data entity could
be vehicleSpeed. The data entity also includes a top level description to
facilitate for a developer in need of high level information.

• Data Variant, is the entity that developers will come in closer contact
with and consist of properties, requirements, dependencies and docu-
mentation. A data variant can be of any type, size or have any reso-
lution. To continue our example from above where the top level data
entity is vehicleSpeed, we can add a number of variants. For example
vehicleSpeedSensorValue, vehicleSpeedInt, vehicleSpeedDouble, vehi-
cleSpeedMph and vehicleSpeedKmh. Each of these variants with their
own properties, requirements, dependencies and documentation. A data
variant could for instance be specified with consumer requirements, but
without any existing producer properties. The requirements then can
later be used as input when searching for an existing producer or when
creating a new producer.

• Data Producers, the set of components producing the given data variant.

• Data Consumers, the set of components consuming the given data vari-
ant.
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• Data Variant Properties, is either an existing producer’s property or a
set of properties that is based on the consumer requirements. If there
is no existing producer, these properties can be used as requirements by
the system architect. Examples of properties are: name, type, size, initial
value, minimal value, maximal value and frequency.

• Data Variant Requirements, are directly related to the requirements
of a consumer. These requirements can be matched against producer
properties or be the source for the producer properties. Example require-
ments are: frequency, accuracy and timing consistency parameters.

• Data Variant Dependencies, enables a possibility to see which data en-
tities that is dependent on each other regarding for instance temporal
consistency and precedence relations.

• Data Variant Documentation, gives the developer an opportunity to
describe and document the specifics of each data variant.

• Keywords, Data entities and data variants can be tagged with keywords
to facilitate a better overview and give developers additional benefits
where a data entity or a data variant with related information can be
searched for using keywords. Since companies can have their own unique
naming ontologies, keywords can be adapted to suite a specific need. As
an example, if a developer is interested a data entity regarding the ve-
hicle speed with a certain type and resolution. He/she can then search
using the keyword, for instance "speed", to receive all speed related sig-
nals. From there, find the appropriate data entity and its different data
variants.

7.3.2 Data Entity Analysis
Using the information contained in the data entities, data-entity analysis is pos-
sible during the entire development process, even in the cases where producers
or consumers are yet undefined. The approach open up for a number of possi-
ble analysis methods such as:

• Data Flow Analysis. This analysis show producers and consumers of
a specific data entity variant. It is able to detect unproduced as well as
unconsumed data, and is thereby directly addressing problem P2, P3 and
P4. The output of this analysis can the be forwarded to system archi-
tecture tools to expose which components that would be affected by a
change to a data entity.



82 Paper B

• Data Dependency Analysis. Data dependency analysis can facilitate
for developers and aid with problem P3, by providing information about
which producers and consumers that based on their properties and re-
quirements are dependent on each other regarding temporal behavior and
precedence relations.

• Type Check Analysis. Data types from the producer properties and the
requirements of the consumer is analyzed to make sure that there is a
match.

• Resolution/Domain Analysis. Matches the data resolution and possible
data domains to the connected producers and consumers.

• Absolute Validity Analysis. Absolute validity is a measurement of data
freshness [19]. An absolute validity interval can be specified for a data
entity variant, which specifies the maximum age a data can have before
being considered stale. The importance of knowing the end-to-end path
delay i.e. data freshness, in an execution chain, especially within the
automotive systems domain, have been identified in previous work, such
as [20]. Properties from producers are analyzed to see if the requirements
of the consumers are achieved.

• Relative Validity Analysis. Relative validity is a measurement of how
closely two interacting data entity variants have been produced [21].
Even though both data might be absolute consistent, they might be rela-
tive inconsistent, which indicate that any derived data would be consid-
ered inconsistent. Additional research on methods, tools and techniques
for how to find the relative data dependency between several execution
chains and their end-to-end deadline is needed in order to guarantee
the relative data freshness demanded by a consuming component. To
achieve this, we propose an extension of [20], with a formal framework
for relative dependency. Similar to absolute validity, properties from
producers are analyzed to see if the requirements of the consumers are
achieved.

7.4 The Data Entity Approach
The data entity approach provides designers with an additional architectural
view, the data architectural view. This view allows data to be modeled and
analyzed from a data management perspective during development and main-
tenance of component-based embedded systems.
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Figure 7.2: The data entity approach

Figure 7.2 show our proposed data entity approach (right-hand side). The
figure illustrates how our approach complements the traditional component-
based design approach (left-hand side). The central database in the middle of
the figure acts as the communicating link between the two approaches as well
as the main storage for information.

In the data modeling tool, data entities can be created, retrieved and modi-
fied. Furthermore, they can be associated with design entities such as message
channels created from the ProCom component architecture development [11].
The data analysis tool extracts data and data producer properties based on the
requirements placed upon the data from the data consumers. These properties
could then be propagated to a system architecture tool as component require-
ments on the components producing the data. It can also be used as input
to system synthesis and scheduling tools. Furthermore, the data analysis tool
could provide graphical visualization of all data dependencies, both with re-
spect to data producers and consumers for a certain data, but also visualize
dependencies between different data, such as relative consistency and prece-
dence relations.

System design using the data entity approach can start from data architec-
ture design, from system architecture design, or from a combination of both.
If for example, in the early stages of an iterative design process, a set of com-
ponents that provide a given function is designed, it is often the case that the
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input signals to this function is not yet defined, and therefore left unconnected
in a functional design. If these unconnected data signals are modeled using a
data entity, the data analysis tool can be used to derive required properties of
this data, which can later be sent as input to a system architect tool as com-
ponent requirements of the component that is later connected as producer of
this data. On the other hand, consider that a commercial, off-the-shelf (COTS),
component that provides certain functionality is integrated in a system archi-
tecture tool, and that component produces a set of signals of which a subset
is currently not needed, these data can still be modeled, and made searchable
for future needs. In this case, the data analysis tool can be used to derive the
properties of this data.

Also in management and extension of existing systems, the data modeling
tool can be used to search for existing data that might be used as producers
for the new functionality. The requirements for the new functionality can then
be matched towards the existing properties and requirements of the other con-
sumers of the data, to determine whether or not the data can be used for this
functionality. This solves the "hands off" problem presented in problem P2.

7.5 The ProCom Component Model
The ProCom component model aims at addressing key concerns in the de-
velopment of control-intensive distributed embedded systems. ProCom pro-
vides a two-layer component model, and distinguishes a component model
used for modeling independent distributed components with complex function-
ality (called ProSys) and a component model used for modeling smaller parts
of control functionality (called ProSave). In this paper we only focus on the
more large scale ProSys. The complete specification of ProCom is available
in [11].

In ProSys, a system is modeled as a collection of concurrent, communicat-
ing subsystems. Distribution is modeled explicitly; meaning that the physical
location of each subsystem is not visible in the model. Composite subsys-
tems can be built out of other subsystems, ProSys is an hierarchical component
model. This hierarchy ends with the so-called primitive subsystems, which
are either subsystems coming from the ProSave layer or non-decomposable
units of implementation (such as COTS or legacy subsystems) with wrappers
to enable compositions with other subsystems. From a CBSE perspective, sub-
systems are the components of the ProSys layer, i.e., they are design or imple-
mentation units that can be developed independently, stored in a repository and
reused in multiple applications.
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Figure 7.3: ProSys Component Model

For data-management purposes, the communication between subsystems is
the most interesting issue. The communication is based on asynchronous mes-
sage passing, allowing location transparency in communication. A subsystem
is specified by typed input and output message ports, expressing what type of
messages the subsystem receives and sends. The specification also includes
attributes and models related to functionality, reliability, timing and resource
usage, to be used in analysis and verification throughout the development pro-
cess. The list of models and attributes used is not fixed and can be extended.

Message ports are connected though message channels. A message chan-
nel is an explicit design entity representing a piece of information that is of
interest to one or more subsystems. Figure 7.3 shows an example with three
subsystems connected via one message channel. The message channels make
it possible to express that a particular piece of shared data will be required in
the system, before any producer or receiver of this data has been defined. Also,
information about shared data such as precision, format, etc. can be associated
with the message channel instead of with the message port where it is produced
or consumed. That way, this information can remain in the design even if, for
example, the producer is replaced by another subsystem.

7.6 Embedded Data Commander Tool-Suite
The embedded data commander (EDC) is a tool-suite that implements the data
entity approach for the ProSys component-model. The tool-suite, which so
far is implemented in the Eclipse framework [22] as a stand alone application
that provides a tight integration between Data Entities and ProSys message
channels.
The tool-suite, consists of four main parts:

• The Data Collection Center (DCC), which is the common database that
holds all information regarding data entities, channels, requirements and
subsystems.
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• The Data Entity Navigator (DEN), which is the main application and
modeling tool where data entities are administrated.

• The Data Analysis Tool (DAT), which performs data analysis on data
variants and subsystems.

• The Channel Connection Tool (CCT), which is the interface tool towards
the ProCom tool-suite.

The Data Collection Center, DCC is the central database that all EDC tools
communicates through. A commercial relational SQL database is used to im-
plement the DCC [7], allowing multiple tools to concurrently access the DCC
enabling use of the tool-suite in large development projects.

The DCC consists of three main storage objects (Figure 7.4), the data
entity-, the message channel- and the system description-object.

The Data Entity Navigator, DEN is the main application of EDC. In DEN
developers can create, retrieve or modify data entities. It is also in DEN devel-
opers can manage data entity properties, requirements, dependencies, descrip-
tion and documentation.

An important feature in DEN is that developers can view to which other
channels and component a data variant is connected, thereby providing valu-
able information regarding dependencies and an opportunity to navigate be-
tween data entities and related subsystems to access information.

The information available in the DEN can also be filtered and divided into
sections to facilitate for developers to find the appropriate information. It
would also be possible to extend the tool to produce custom-tailored reports
containing only the necessary information for its specific purpose.
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Figure 7.5: Existing ProSys Stability Control System application

The Data Analysis Tool, DAT, handles all analysis regarding data entities vari-
ants. The current version of the tool support analysis on data flow, type check,
resolution and domain analysis but will be extended to support absolute-, and
relative-validity analysis.
The Channel Connection Tool, CCT, is the connection point between the data
entity and the ProCom tool-suite. Since the ProCom tools has been separately
developed, a tool to extract architectural information and message channel in-
formation was needed.

7.7 Use Case

To illustrate our ideas, this section will describe two simple scenarios. The first
is, expanding an existing system and the second, verification of the consistency
between data-producers and consumer in connection with system validation.
This example is illustrated using the concept of data entities and the EDC tool
together with ProCom.
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Figure 7.6: Extended ProSys example

7.7.1 Expanding an Existing System

This example starts with an existing vehicle application which has already been
developed. A part of this system [23] is illustrated in Figure 7.5. We now face a
situation where we should add additional functionality. The new functionality
demand an additional component, called C_1, to be added that requires two
signals as input. To make it easier for the developer when adding these signals
and additional functionality the EDC tool can be used to facilitate reuse of
existing signals (if suitable signals exists) to avoid redundancy and also to gain
knowledge about possible dependencies between data entities.

The new component C_1 is added to the application with a number of re-
quirements. For simplicity we only consider those that are interesting for this
example. The signals required are vehicle steering wheel angle and vehicle
speed, with the following requirements:
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Data variant Type Size Unit P(ms)
SteeringAngle Int 16 Arcsec 20

VehicleSpeedMph Int 16 MPH 10

Figure 7.7: Producer properties.

SteeringAngle: VehicleSpeedMph:
Type: Integer Type: Integer
Size: 16 bit Size: 16 bit
Unit: Arcsec Unit: MPH
Absolute validity Absolute validity
interval: 20 ms interval: 20 ms

To be able to locate an existing data entity, a search in the existing ap-
plication can be performed using relevant keywords. A keyword search for
"steering" generated a possible candidate variant SteeringAngle, that is already
used in the system and can be seen in the center of Figure 7.6. If the pro-
perties of the proposed data variant satisfy the requirements, it can be used,
and no additional producer have to be added or implemented. A appropriate
data variant using the keyword "speed" results in several possible variants but
none that matches the requirements of "vehicle speed". A new data variant
VehicleSpeedMph in the lower center of Figure 7.6, is created and associated
to a message channel, with properties such as type, size and unit according to
the requirements of C_1. These properties will then be the requirements of the
producer component.

7.7.2 Validation
When the system modifications are completed, a validation of the whole system
should be performed. However in this example we only focus on the newly
introduced component C_1. A series of analysis can be performed to validate
that the requirements of C_1 is fulfilled.

In this example we will focus on three types of analysis, type, size and
absolute validity analysis. The producer properties is stated in Figure 7.7.

• Type check analysis is performed by comparing the properties assigned
to SteeringAngle and VehicleSpeedMph and to make sure that they cor-
respond to the requirements of C_1. In this case requirements to receive
an integer is fulfilled.
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• Size analysis is a similar analysis as type check where properties of
SteeringAngle and VehicleSpeedMph are compared with the requirements
of C_1. Requirements are fulfilled.

• Absolute validity is achieved if both SteeringAngle and VehicleSpeed-
Mph is updated within 20 ms. Requirements are fulfilled.

This example illustrates developers can use the data entity approach when
adding functionality to an existing application and how to locate and use exist-
ing signals in the system. It also shows how a new data variant can be created
and defined according to requirements and how data entity analysis can be used
to validate the system or to how to use requirements as input to a system archi-
tect tool and scheduler. In this example we perform the analysis on one level
in the system. A next step could be to be to support timing and dependency
analysis through several steps in the chain, from sensor trough a chain on con-
sumers and producers. The DEA tool is still in an early stage of development
and additional research is needed to be able to deal with these more complex
issues.

7.8 Conclusions
We have presented our new data entity approach towards development of real-
time embedded systems. The data entity approach gives system designers a
new architectural view, the data architecture, which complements traditional
architectural views for e.g. component inter-connections and deployment. Us-
ing the data architecture view, run-time data entities becomes first level cit-
izens of the architectural design, and data can be modeled and analyzed for
consistency irrespectively any other implementation concerns, e.g. even before
implementation begins.

The motivation for our approach stems from observations industrial prac-
tices and needs [1]. Related to the four key problems that we stated in sec-
tion 7.2.1 the approach provides:

P1 A uniform way to document external signals and internal state data in
ECUs.

P2 A unified view of data in a whole system and their interdependencies.
Thus, providing the basis for safe modifications, updates and removal of
data entities.
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P3 Tracking of data dependencies and dependencies to producers and con-
sumers of data. Thereby enabling removal of stale and obsolete data
without jeopardizing system integrity, allowing system resource to be
re-claimed when data entities are no longer needed.

P4 The foundation to build tools for automated analysis and visualization of
data in a system.

We have implemented support for our approach in a tool suite called Em-
bedded Data Commander (EDC). EDC provides tools for data modeling, visu-
alization and analysis.

EDC also provides integration with the ProCom component-model and al-
lows automated mapping between data entities and ProCom’s message chan-
nels. While our data entity approach is independent of any target platforms, the
integration with an implementation environment (ProCom in this case) gives
significant benefits since the transformation from the data-model to the imple-
mentation model can be automated. Our implementation also supports the pos-
sibility to generate a data-model from an existing component assembly; hence
allowing developers to re-gain control of their data in an existing legacy sys-
tem. To better understand how the data entity approach and the EDC tool-suite
could be used, a use case example is also presented.

In the future we will extend the analysis capabilities of the EDC to in-
clude end-to-end and relative validity by extending [20], introduce graphical
data modeling, implement EDC as an integrated part of ProCom development
environment and evaluate the tool-suite in real software development projects.
We also plan to release the EDC as open source, to enable other researchers
to provide integrations to other implementation environments. Specifically, it
would be interesting to study how the data entity approach would be mapped
to the AUTOSAR [6] component technology.
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Abstract

We introduce the concept of database proxies intended to mitigate the gap
between two disjoint productivity-enhancing techniques: Component Based
Software Engineering (CBSE) and Real-Time Database Management Systems
(RTDBMS). The two techniques promote opposing design goals and their co-
existence is neither obvious nor intuitive. CBSE promotes encapsulation and
decoupling of component internals from the component environment, whilst an
RTDBMS provide mechanisms for efficient and predictable global data shar-
ing. A component with direct access to an RTDBMS is dependent on that
specific RTDBMS and may not be useable in an alternative environment. For
components to remain encapsulated and reusable, database proxies decouple
components from an underlying database residing in the component frame-
work, while providing temporally predictable access to data maintained in a
database. Our approach provide access to features such as extensive data mod-
eling tools, predictable access to hard real-time data, dynamic access to soft
real-time data using standardized queries and controlled data sharing; thus al-
lowing developers to employ the full potential of both CBSE and an RTDBMS.
Our approach primarily targets embedded systems with a subset of function-
ality with real-time requirements. The implementation results show that the
benefits of using proxies do not come at the expense of significant run-time
overheads or less accurate timing predictions.
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8.1 Introduction

This paper propose database proxies [1] as a solution to integrate a Real-Time
DataBase Management System (RTDBMS) [2, 3] into a Component-Based
Software Engineering (CBSE) [4, 5] setting. Database proxies are automati-
cally generated glue code synthesized from the system architecture that trans-
lates data between components ports and an RTDBMS residing in the compo-
nent framework.

Data management of embedded real-time systems is becoming increasingly
important as systems evolve from simple stand-alone devices into becoming
complex systems, often interconnected with its surrounding environment. This
trend has lead to that developers are confronted with a substantial amount of
functions, design-time and run-time data that needs to be managed. In addi-
tion, developers are increasingly faced with new requirements such as secure
and dynamic data sharing and advanced diagnostics. To reduce the resulting
complexity, model driven development [6] and CBSE, are increasingly used
in industry today. However, these techniques mainly focus on the functional
aspects of the software, and rarely target management of data.

The introduction of database proxies enable a clear separation of system
functionalities and data management, thereby letting developers focus more on
the functional behavior of the system rather than developing in-house special-
ized solutions for managing data. Predictable access to hard real-time data,
dynamic run-time data access, secure data sharing and data modeling tools are
just some of the benefits that the usage of database proxies in conjunction with
an RTDBMS can provide. Both CBSE and RTDBMS, aims to reduce complex-
ity and enhance productivity when developing these systems. CBSE promotes
encapsulation of functionality into reusable software entities that communicate
through well defined interfaces and that can be assembled as building blocks.
This enables a more efficient and structured development where, for instance,
available components can be reused or COTS (Commercial Of The Shelf) com-
ponents effectively can be integrated in the system to save cost and increase
quality.

An RTDBMS provides a blackboard storage architecture to share global
data predictably and efficiently by providing concurrency-control, temporal
consistency, overload management and transaction management. The usage of
an RTDBMS allows real-time systems to be built around a data layer, support-
ing safe sharing of data between applications, both proprietary as well as third
party software. Access to data is made through standardized query languages,
providing advanced access control mechanisms. This implies that potentially
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unsafe software, such as third party software, can be granted access to data in
a controlled manner. Furthermore, RTDBMSs significantly cuts time to mar-
ket by providing high-level query languages, supporting logging, diagnostics,
monitoring, and efficient data modeling [7].

However, the coexistence between the techniques is non-trivial since their
design goals are contradicting.

The techniques offered by an RTDBMS allow the internal representation
and management of data to be decoupled from the data usage. However, RT-
DBMSs promotes the use of shared data with potentially hidden dependencies
amongst data-users.

CBSE, on the other hand, strives to decouple components from the context
in which they are deployed. One aspect of this is that a component should
not have should not have hidden dependencies on the existence of certain data-
elements. This decoupling is achieved by encapsulating component-functiona-
lity and making visible only a component-interface describing a component’s
provided and required services.

Using an RTDBMS in existing component-based systems would require
RTDBMS specific code to be used from within a component. This introduces
negative side effects that violate several basic principles of CBSE, for instance:

1. A component with direct access to the database from within, violates the
component’s aim to be encapsulated and only communicate through its
interface.

2. Direct access to shared data introduces hidden dependencies between
components.

3. If an RTDBMS is called from inside the component, the component is
dependent on that specific RTDBMS and cannot be used in an alternative
setting.

In order to succeed with the integration of an RTDBMS into a component
framework, we present the concept of database proxies.

As illustrated in Figure 8.1, a database proxy is part of the synthesized
architecture, thus external to the component. The purpose of the database proxy
is to enable for components to interact with an RTDBMS using their normal
interfaces. This is possible since the coupling, i.e. the database proxy, between
the component and the RTDBMS is embedded in the component framework.

The database proxies are used to bind and integrate components to form
the final running system. By decoupling components from the database, and
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Figure 8.1: Database Proxies Connecting Components to an RTDBMS

placing the database in the component framework, the decision to use a data-
base or some other data management strategy is removed from the component
level and becomes a system design decision.
Database proxy characteristics

1. Database proxies are automatically generated as glue code in the synthe-
sized architecture, leaving the component code unchanged.

2. Components can gain access to an RTDBMS in the component frame-
work with maintained encapsulation and decoupling.

3. Components with soft real-time requirements can access multiple data
items using dynamic run-time queries without blocking hard real-time
data accesses.

4. Components can be reused regardless of the existence of a database in
the component framework.

In our previous work, database proxies was limited to only support native
data types e.g. integer, char, float etc., from one port to another [1]. The work
has now been augmented so that components can have efficient and predictable
access to complex data structures to/from multiple ports of the same compo-
nent in hard real-time. In addition, data transfers between components can be
extracted to the database, for logging purposes or to share data, without inter-
fering with the regular component communication.
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The remainder of this paper is structured as follows; in section 8.2, we
present motivation for the approach. Section 8.3 present the specific problems
that our approach targets, related work and state of practice. In section 9.3,
we present the system model. Section 8.5 gives a detailed description of the
database proxy and its constituent parts. Further, in section 8.6, we illustrate
our ideas with an implementation example. Finally, we show a performance
and real-time predictability evaluation in section 8.7 and conclude the paper in
section 8.8.

8.2 Motivation
The characteristics of today’s embedded systems are changing. According to
Fürst [8] and Grimm [9], 90% of all innovations within the automotive indus-
try stems from software and electronics. In a high end vehicle there can be
more than 800 functions, 70 ECUs, and thousands of signals needs to be man-
aged [10]. This has led to increasingly complex and costly to development of
embedded systems.

When developing modern large scale IT systems, the use of standardized
platforms as a base for service-oriented architectures, error recovery etc. is
widely used. They provide features such as several abstraction layers, virtual-
ization techniques and scalability. However, in resource constrained embedded
systems with limited memory size, limited computing capacity and demand for
low energy consumption, this approach is not sufficient since abstraction layers
and virtualization techniques add to the amount of resources needed. [11].

Within the embedded community, modern techniques such as model driven
development and component-based software engineering are widely used to
reduce complexity and increase the understanding and reusability of software
functions by elevating the abstraction level [6, 12, 13]. However, these tech-
niques do not include methods and tool support for efficient and management
of data.

Many of today’s systems are developed by different subcontractors in form
of whole applications or just individual functions, sometimes each with their
own in-house developed solution for how to manage data. In addition, it has
been shown that documentation and structured management of internal ECU
data is sometimes almost non-existent and dependent on individual developers
own solutions [14].

The increasing need for more structured, flexible, reliable and secure data
management techniques to coordinate data both at run-time and at design-time
is continuously pointed out has been pointed out as major challenges for the
future [7, 15, 16]. As stated by Pretschner et al. [17] and Broy [18], a stan-
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dardized and overall data model and management system has great potential as
a solution to deal with the distributed and uncoordinated data in these complex
systems. Furthermore, Schulze et al. [7] and Saake et al. [19] points out that
the ad-hoc and/or reinvented management of data for each ECU with individual
solutions using internal data structures, can lead to concurrency and inconsis-
tencies problems. In addition, maintainability, extensibility and flexibility of
the system decreases.

Furthermore, sophisticated techniques for diagnostics, error detection, log-
ging and secure data sharing are much needed to improve reliability and sys-
tem quality. Due to the ineffective diagnostics and error tracing techniques,
less than 50% of the replaced ECUs were, in fact, defect [17]. Much of the
diagnostics messages and logging that can be retrieved from these systems are
statically predefined at design time. An example of this is in the AUTOSAR
standard [12]. In techniques a such as the Program Monitoring and Measuring
System (PMMS), it is up to the user to specify pre-conditions and insert code
in order to collect data [20]. This put high demands on developers to predict
future needs of, for instance, service technicians. In difference, the flexible and
dynamic behavior of an RTDBMS can provide any single data element or a set
of data elements with a single query, providing that the user is granted access.

Secure data sharing is becoming increasingly important when systems are
opening up to the surrounding environment using techniques such as CAR2-
CAR communication [21] and/or connecting to PDAs, smart phones, GPS, etc.
The diversity of these devices have led to in-house proprietary solutions to en-
able a connection to the infotainment system [22]. A proposed standardized
solution to this could be to use a data management system, such as an RT-
DBMS [7, 19]. An RTDBMS provides both access control to data as well as
dynamic data access using a well known standard query language (SQL). In
addition, in order to achieve a separation of data management and application
logic, a general data management infrastructure is needed [23].

The usage of an RTDBMS when designing and building real-time embed-
ded systems could not only aid developers with standardized tool support for
modeling system data at design-time [24], but also provide predictable and
efficient routines for managing data at run-time. This could, as an example
shorten time-to-market, since developers can manage complex data structures
with a single database query instead of using complex programming routines.

It is thereby well established that CBSE and RTDBMS are two important
technologies for future development of embedded real-time systems. An inte-
gration of these two technologies is not trivial and requires new methods that
can bridge the gap between their contradictive design goals.
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8.3 Background
In CBSE, a component encapsulates functionality and only reveals an inter-
face of provided and required services. A component which communicates
with a database outside its revealed interface, i.e., directly from within the
component-code, introduces a number of unwanted side effects such as hid-
den dependencies and limited reusability. We define such a component to be
database aware.

To utilize the benefits of CBSE, a component must be fully decoupled from
the database. From a components perspective, it should not matter if the con-
sumed or produced data originates in data structures or in a database. We define
a component to be database unaware if it has no notion of an underlying data
storage. Furthermore, a database unaware component does not introduce any
side effects such as database communication outside the component’s specified
interface, thus retaining the reusability of the component.

The usage of an RTDBMS in a CBSE framework should not introduce any
side effects that violate CBSE principles [5, 25].

For the purpose of this paper, we define a component to be side effect free,
with respect to the introduction of an RTDBMS, if it is:

• Reusable: A component can still be used in another setting, with or
without an RTDBMS.

• Substitutable: A component should be substitutable by a component
implementing the same interface; regardless if a RTDBMS is used or
not.

• Without implicit dependencies: A component should not introduce im-
plicit dependencies such as database access from within a component.

• Using only interface communication: A component may only com-
municate through its interface. Our approach does not consider manage-
ment of the internal state in a component.

8.3.1 Solution Requirements
This section identifies a number of requirements, R1-R3, which needs to be ful-
filled in order to enable the introduction of an RTDBMS into a CBSE-setting.

R1 The decision to use an RTDBMS should be made on system level in
order to be integrated in existing development models and systems.
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R2 The usage of an RTDBMS should not introduce any side effects to the
components.

R3 The real-time predictability of the system should not be compromised by
using a RTDBMS.

8.3.2 Related Work and State of Practise

The research which explicitly aims at combining CBSE and an RTDBMS is
novel. Figure 8.2 illustrates that there is a gap between CBSE and RTDBMS
techniques.

Within the CBSE community there are specialized in-house and propri-
etary techniques such as Koala [26] or global automotive initiatives such as
AUTOSAR [12]. However, these techniques do not prioritize data manage-
ment. As an example, AUTOSAR provides a uniform way for managing data
e.g., save and load data from non volatile memory. However there is no uni-
form technique to manage run-time data in RAM.

Lau et al. [27] presented a research direction within CBSE on how to man-
age data by having data flow and data access completely encapsulated within
connectors. In this way, components only encapsulate computation. Another
approach by Lau et al. [28] is to encapsulate data inside components to achieve
encapsulated reusable building blocks, where data is included.

Efforts within the database community, illustrated in the rightmost part in
Figure 8.2, aim at developing solutions to downsize and optimize RTDBMSs
to suite embedded systems. There are solutions for componentizing and/or
customizing the database management system to only include features that is
actually used in a particular resource constrained system [19]. In addition,
there are also techniques, such as database pointers, that can manage both soft
and hard real-time transactions predictably [29]. These techniques are available
in both research-based and commercial RTDBMSs [30, 31, 32].

Both the CBSE and the RTDBMS community have solutions suitable for
their respective areas. However, in between CBSE & RTDBMSs, there is a gap
with respect to data management, illustrated in Figure 8.2. The lack of research
within this area has left this gap as an open problem. The aim of this paper is
to bridge this gap.

There are mechanisms within the RTDBMS community that aims to sim-
plify the database access by hiding some of the underlying complexity as well
as making the access to the RTDBMS more efficient.
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Figure 8.2: Combining CBSE and DBMS is an open problem.

The standardized interface-language SQL defines the following mecha-
nisms [33]:

• Pre-compiled statements, enable a developer to bind a certain database
query to a statement at design-time. The statement is compiled once
during the setup phase, instead of compiling the statement for each use
during run-time. This has a decoupling effect since the internal database
schema is hidden. Each statement is bound to a specific name that is
used to access the data.

• Views, are virtual tables that represent the result of stored queries. A
database view has a similar decoupling effect as pre-compiled statements
since schema changes can be masked to users by enabling a user to re-
ceive information from several tables perceived as a single table.

• Stored procedures, enable developers to decouple logical functions from
the application and move them into the database. A stored procedure is a
program used when several SQL statements need to be executed within
the database in order to achieve the result. This is achieved with a single
call to the procedure.

• Functions, are programs within the database, similar to a stored proce-
dure. A function performs a desired task and must return a single value.

These mechanisms provide partial decoupling of a component from the
DBMS. However none of them are completely sufficient to use in a component-
based setting, since:
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1. The database is still accessed from within the component code, not thr-
ough the component’s defined interface. (Violation of R1-R2.)

2. The component is still only partially decoupled from the database since
the database name, login details and connection code still need to reside
in the component. A component using these mechanisms is therefore no
longer generic or reusable. (Violation of R1-R2.)

3. The requirements expressed by the components interface does not reflect
the components internal database dependency. (Violation of R2.)

4. These mechanisms are not intended for real-time performance (typically
only non-real time DBMS support is available), e.g., the usage of these
mechanisms alone would be a violation of R3.

8.4 System Model
The tools and techniques in this paper primarily target data intensive, and
complex, component-based embedded real-time systems with a large degree
of control functions, such as vehicular, industrial and robotic control-systems.
These applications involve both hard real-time functionality that include safety-
critical control-functions, as well as soft real-time functionality.

Our techniques are equally applicable to distributed and centralized sys-
tems (however current implementations as described in latter sections, are for
single node systems).

To clarify some terms that will be used throughout this paper, we define;

1. A native data type to be a basic data type such as an integer, char
or float.

2. A complex data type to be a C-struct or an array that consists of
a number of native data types.

3. A fixed-length data as a data that have a fixed size. An example
of this is a single struct containing only native data types.

4. A variable-length data as a data that can vary in size. An ex-
ample of this is an array of structs.
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Figure 8.3: RTDBMS Architectural Overview

We consider a system where functionality is divided into the following
classes of tasks:
Hard real-time tasks, that control critical functionality, uses hard real-time
transactions [34] to read and write values from sensors/actuators and execute
real-time control loops. Hard real-time tasks communicate with fairly simple
data structures such as native data types and more complex but fixed-length
data structures such as a C-struct. Variable-length data are not supported since
hard real-time tasks require predictable access to data elements.
Soft real-time tasks, that control less timing sensitive functionality. Soft real-
time tasks uses soft real-time transactions [34] to read and write variable-length
complex data structures typically to present statistical information, logging, or
used as a gateway for service access to the system by technicians in order
to perform system updates. Soft real-time tasks could also be used for fault
management and perform ad-hoc queries at run-time.

In order to support a predictable mix of both hard and soft real-time trans-
actions, we consider an RTDBMS with two separate interfaces where hard
real-time predictability is not compromised by soft transactions. Note that we
allow both hard, and soft tasks to access any data element, thus we do not
separate between hard and soft data elements.

Figure 8.3 illustrates an RTDBMS which has a soft interface that utilizes
a regular SQL query interface to enable flexible access from soft real-time
tasks. For hard real-time transactions, a database pointer [35] interface is used
to enable the application to access individual data elements or a set of data
elements in the database with hard real-time performance. Two RTDBMSs
that provide these types of interfaces are COMET [31] and Mimer SQL Real-
Time Edition [30].
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8.4.1 Database Pointers

Database pointers [29] are pointer variables that are used for real-time access to
data in a real-time database, see Figure 9.1. The figure shows an example of an
I/O task that periodically reads a sensor and propagates the sensor value to the
database using a database pointer, in this case the data element, oil temperature,
in the engine relation. The task consists of two parts, an initialization part (lines
2 to 4) executed when the system is starting up, and a periodic part (lines 5 to
8) scanning the sensor in real-time. During the initialization part (lines 2 to 4)
the database pointer is created and bound to a data element in the database.

1 TASK oilTemp(void){
//Initialization part

2 int temp;
3 DBPointer *dbp;
4 bind(&dbp,"Select TEMP from ENGINE

where SUBSYSTEM=’oil’");
//Control part

5 while(1){
6 temp=readOilTempSensor();
7 write(dbp,temp);
8 waitForNextPeriod();

}
}

Figure 8.4: An I/O Task That Uses a Database Pointer

During the control part of the task in Figure 9.1, the write function writes
the new value temp to the database pointer. During this operation, only a
few lines of non-blocking code (with a bounded number of instructions) that
performs type checking, synchronization with other accesses with the same
data element, and writing of the data are executed.

Database pointers can be bound to either individual single data elements,
or to sets of data.

Depending on the organization of the data in a set, different types of data-
base pointers are used [30]:

Single database pointer: A single database pointer can only be bound to an
individual data element, e.g., an integer, string or a float. This type of
pointer is useful for storing sensor and actuator values. The data element
is the atomic unit, i.e., a single database pointer provides atomic reads
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and writes of a single value. This implies that a single database pointer
does not have any transactional properties such that atomic commits of
multiple single value database pointers.

Multicolumn database pointer: A multicolumn database pointer is bound to
a set of attributes (columns) of a single database record (row in a table).
When a multicolumn database pointer is read or written, all data in the
set are read or written atomically. This provides a simple transactional
behavior, in the sense that a snapshot of data can be kept consistent.

Multirow database pointer: A multirow database pointer is bound to a cer-
tain attribute but spans a set of database records in a table. When a
multirow database pointer is bound, the pointer is set to point at the first
element in the set. Writes to the database pointer are performed on a row
by row basis, and after each write, the pointer is set to point to the next
element in the set. When all elements in the set have been written to, the
pointer is reset to point to the first element again.

Multicolumn-Multirow database pointer: A multicolumn-multirow database
pointer combines the functionality of a multicolumn database pointer
and a multirow database pointer thus being able to bind a matrix of data
elements. These pointers are especially suited for event logging where
for example log event information, event data and a timestamp can be
logged in a database for future analysis.

The cost and predictability of database pointer execution is, as shown in
the performance evaluation in section 8.7, comparable to the performance of a
shared variable that is protected by a semaphore.

Since database pointers can co-exist with relational (SQL) query manage-
ment, data can be shared between hard and soft real-time tasks. However, in
order to maintain real-time predictability in a concurrent system, some form
of concurrency-control is needed. The 2-version database pointer concurrency
algorithm (2V-DBP) [35] uses a 2-version versioning algorithm that guaran-
tees that database pointers will never be aborted or subjected to unpredictable
blocking.

2V-DBP allow soft real-time transactions to concurrently access the data
without experiencing blocking or aborts due to operations through database
pointers.
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8.4.2 System Architecture and Modeling

In the application design and modeling we employ a pipe-and-filter [4] com-
ponent model where data is passed between components (filters) using con-
nections (pipes). The entry point for the connection to the components is the
interface (port). Figure 8.5 shows an example of a component-based system
design and modeling architecture.

The communication between components in the system is made by con-
necting output-ports, where a component provides data, to input-ports where
components receives data. An output-port can be connected to one or many
input-ports.

8.5 Database Proxies

A database proxy consists of pieces of code that translates data from a com-
ponents port to a database call and further on to an RTDBMS residing in the
component framework and vice versa. These pieces of code are neither a part
of the component nor a part of the RTDBMS, instead database proxies are au-
tomatically generated glue code synthesized from the system architecture e.g.,
the structure and behavior of the system, see Figure 8.1.
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Figure 8.6: Database Proxy Overview

A database proxy contains the following parts:

• Input/output ports that connects to one or many ports of a component
or a pair of connected components.

• Initialization code that connects to the RTDBMS and initiate database
accesses.

• Data translation code that performs database accesses (database reads
and write) and translates the result to a data set that match the component
ports.

• Uninitialization code that closes database accesses and disconnects from
the RTDBMS.

Figure 8.6 gives an overview of the different proxy parts which will be
presented more in detail in the remainder of this section.

A database proxy achieves decoupling between the components and the RT-
DBMS by enabling components to remain encapsulated and reusable. From a
component perspective, communication to the RTDBMS is transparently per-
formed through the regular in- and out ports in the component interface.

From an RTDBMS perspective, decoupling is achieved by encapsulating
the underlying database schema from the components, only allowing data ac-
cess to database proxies through pre-compiled statements, views, stored pro-
cedures or database pointers.
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As a result, database proxies target requirements R1-R3 presented in Sec-
tion 8.3.1, since database proxies are:

• Automatically generated from the system architecture. The decision to
use an RTDBMS has been moved from component level to system level.
(Targets R1)

• Implemented as glue code, leaving the component code unchanged, and
all communication is still performed through the components interface.
No side-effects are introduced. (Targets R2)

• Uses database pointers, that provides hard real-time guaranties. (Targets
R3)

To support the different requirements of hard and soft real-time tasks (see
Section 8.4), we distinguish between two proxy types, hard real-time data-
base proxies (hard proxies) that is used by hard real-time tasks and soft real-
time database proxies (soft proxies) that is used by soft real-time tasks.

Figure 8.7: Single-Port and Multi-Port Proxies.

Database proxies can have one of the following configurations:

1. A read proxy, is used to retrieve data from the database and output the
data to a component. This is illustrated by proxies connected to compo-
nents Consumer_1-3 to the right in Figure 8.7 which each is provided
with data from a read proxy.
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Figure 8.8: Proxy Through

2. A write proxy, is used either to update or to insert data that is provided
by a component to the database. An update is used to refresh data that is
already in the database. An insert is used to add a new data e.g., a new
row, in a dynamic database table. An example of a write proxy connected
to component Producer is illustrated to the left in Figure 8.7.

3. A proxy through, is connected as a communication link between two
components. The proxy through is used to listen in on a regular com-
ponent connection and propagate data to the database as a write proxy.
The result is normal communication between the components. However,
a copy of the value is stored in the database for example to; perform
logging, usage by other components or to be accessed in cross platform
communication and telematic services. An example is illustrated in Fig-
ure 8.8.

8.5.1 Proxy Ports
The entry point of the database proxy is through a port or a set of ports. A
port is an interface entity for receiving/sending different data elements to its
connected components. A graphical example of proxies with a single port or
multiple ports is illustrated in Figure 8.7. The ports of a read proxy or a write
proxy are always connected to a single component with a one to one mapping
between the number of proxy ports and component ports. However, a proxy
through is always connected to a pair of components and there is a one to one
mapping between the number and types of input and output ports.

A proxy port receives or sends data which can be of two types, either a
native data type or a complex data type.

A complex data type will however be transformed for further processing
by the proxy into a set of native data types and vice versa. An example is
illustrated in Figure 8.6 where the complex data type in Port_2 is transformed
into data elements (b, c, d) by the proxy and put into an ordered data set. In
a similar manner the transformation can be performed in the other direction,
elements in the ordered set to the complex data type.
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8.5.2 Proxy Data Sets
Database proxy’s supports either read or write operations. The data flow and
data transformation from a proxy port to the database is thereby made in two
directions.

The data type of each port connected to a write proxy is transformed into
an ordered data set. An ordered data set consists of a number of data elements
which are all native data types. A complex data type will therefore be trans-
formed into a set of native data types and included as data elements in the
ordered data set. This ordered data set is then directly mapped to a database
query where each data element in the ordered set corresponds to a specific row
and column in the database.

An example is illustrated in Figure 8.6 where Port_1 has a native data
type a and Port_2 has a complex data type that includes three the native data
types. a is directly put in the ordered data set whereas the complex data type
is transformed into elements b, c and d and put in the ordered data set for
further transformation via a database query to the database.

The flow of a read proxy is the opposite. A database query provides the
proxy with data elements that match the ordered data set. Each data element
is then transformed into a type that matches the type of the individual output
port/ports.

Since both native and complex data types are known during system devel-
opment, the transformation routines are created during the glue-code genera-
tion.

8.5.3 Hard Real-Time Database Proxies
Hard proxies are intended for hard real-time components, which need efficient
and deterministic access to individual data elements or a predefined set of data
elements. Typical usages of hard proxies are for hard real-time data that is
shared between several hard real-time components, or a mix of hard and soft
real-time components. Hard proxies are implemented using database pointers.

A proxy with an ordered data set that consists of a single data element
utilizes a single database pointer for predictable data access. However, a proxy
with an ordered data set which consists of two or more data elements, utilizes a
multi-column database pointer, as stated in section 8.4.1, to perform an atomic
update or read of a defined set of columns on a single row in the database.

In order to be predictable, a hard proxy only translates native data types
and fixed-length complex data types. This implies that no unpredictable type
conversions or translations that require unbounded iterations are allowed. A
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complex data type, such as a C-struct or an array must be of fixed-length. A
hard proxy ordered data set is therefore always directly related to a fixed num-
ber of columns on a single row in the database.

Regardless of the number of ports, the database pointer interface will al-
ways ensure an atomic update/read of all data elements in the ordered data set.

By using database pointers, that provide hard real-time guaranties, to access
individual/multiple data items in a database, our requirement R3 is satisfied.
A hard real-time database proxy:

• Communicates with the database through a database pointer, thereby
providing predictable data access.

• Reads or updates multiple data items atomically.

• Translates native and complex data types between components and data-
base, using predictable data translation mechanisms.

Hard real-time database proxies can also be used to perform efficient and
predictable logging. In this case, a table is defined with a fixed number of rows
which are updated sequentially as a circular buffer using a multirow database
pointer that automatically moves to the next row at the end of each transaction.

8.5.4 Soft Real-Time Database Proxies
Soft proxies are intended for soft real-time components, which usually have a
more dynamic behavior and thus might have a need for more complex variable-
length data. Typical usages for soft proxies include graphical interface compo-
nents, logging components, and diagnostics components. Therefore, soft prox-
ies emphasize support for more complex data structures by using a relational
interface provided by SQL, towards the RTDBMS.
A soft real-time database proxy;

• Communicates with the database through a relational interface, thereby
providing a flexible data access.

• Translates complex data types, thereby providing means for components
to access complex data.

Since the relational interface is capable of accessing complex data, more
elaborate data translation is needed in order for the components to remain
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Figure 8.9: Description of TABLE Type

database unaware. To solve this, a special data template denoted TABLE is
introduced. A TABLE is automatically instantiated as a C language represen-
tation of a record (row) in a relational table, and the database proxy produces
(or receives) a vector of these instantiations. The component model is then
augmented to allow components to communicate using ports with data types
matching the instance of the TABLE.

Consider the following example (see Figure 8.9):

• A component used to log temperatures in a vehicle needs information
about all temperature variables that exist in the system and their current
value.

• An instance of a TABLE called Table_SystemTemp is created in the
generation of glue-code, represented by a C-struct containing the mem-
bers SubSystem and Temp.

• The type of the port in the component is then set by the component de-
veloper to a (Table_SystemTemp ∗).

• The database proxy is then implemented using a query that matches the
members in the TABLE.

• The translation glue code iterates through the result set from the database
and fills the vector with data from the result set.
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Proxy Support Hard Proxy Soft Proxy
Database Interface Database Pointer SQL

Predictable Data Access X -
Flexible Data Access - X

Allowed for Hard Task X -
Allowed for Soft Task X X
Multi Value Support X X
Multi Port Support X X

Database Read X X
Database Update X X
Database Insert - X

Support Complex Data Type X X
Support Fixed-Length Data X -

Support Variable-Length Data - X

Table 8.1: Hard and Soft Proxy Support Overview

Introducing a TABLE data template does not make components database
aware since components still can communicate using a TABLE instance in ab-
sence of a database. Table 8.1 presents an overview of the similarities and
differences between hard proxies and soft proxies presented in Sections 8.5.3
and 8.5.4.

8.5.5 Extended System Design and Modeling

We complement the classical architectural view, presented in section 8.4.2,
with a new additional design view, the CBSE database-centric view. This
new view identifies which component ports are connected, via different types
of database proxies, to data elements in an RTDBMS. An example of this is
illustrated in Figure 8.10. The notation simplifies the view of the system by
removing the actual connection between the producing and consuming compo-
nent, thus replacing it with a database symbol.

To enable traceability, this view can be transformed at any time to reveal the
data flow through the connections such as shown in Figure 8.5. This is similar
to an off-page connector that is used when designing electrical schemas which
involve a large number of components and connections. A connection ends
in a symbol or an identification name that is displayed at each producer and
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consumer. Displaying all connections in a complex schematic diagram would
make the electrical schema impossible to read. This approach is also being
used by CBSE-tools such as Rubus Integrated Component Environment (Rubus
ICE) [36].
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Figure 8.10: Database View of Application Model

During system design, an architect or developer can utilize both traditional
data passing through connections or via an RTDBMS providing a blackboard
data management architecture. An RTDBMS can be used as the single source
of memory management or it is possible to utilize a mix of both connections
and an RTDBMS when additional data management is needed to meet the sys-
tem requirements.

As an example, the usage of an RTDBMS could be considered useful when
several components and tasks share data and/or there is a need to perform log-
ging, diagnostics or to display information on an HMI. However, if two com-
ponents share a single data item that is of no additional interest, it is probably
not necessary to map that item to the RTDBMS.
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DBProxy.h

DBProxy.c

int DBInit(){

setupDbSession();

….

initDB_Task_1();

initDB_Task_2();

}

int DBUninit(){

endDBSession();

unInit_Task_1(); 

unInit_Task_2();

}

main(){

…

DBInit();

start Task_1();

start Task_2();

…

DBUnInit();

}

Applica!on.c

#include DBProxy.h

declare DBPointer dbp1;

int initDB_Task_1(){

bind_DBP(…);

}

int unInit_Task_1(){

unbind_DBP(…); 

}

void hardProxy_r1(int *r1){

readDBPInt(..., r1);

}

void hardProxy_Mul _w1_w2(

int *w1, int *w2){

writeDBPInt(..., w1);

writeDBPInt(..., w2);

setMul!col();

}

void Task_1(){

int r1, w1;

hardProxy_r1(&r1);

call_Component_C1(r1);

…

call_Component_C2(…);

hardProxy_Mul _w1(&w1);

} 

Task_1.c    (code simplified for readability)

#include DBProxy.h

Session sess;

Statement stmnt;

int initDB_Task_2(){

BeginSession(sess, …);      

BeginStatement(sess,…,&stmt);

}

int unInit_Task_2(){

EndStatement(&stmnt);

EndSession(&sess);

}

void so!Proxy_r2(Table_Mode *log){

Fetch(stmnt);

GetInt(stmt, log[0].read);

Fetch(stmnt);

GetInt(stmt, log[1].read);

}

void Task_2(){

Table_Mode *log;

so!Proxy_r2(log);

call_Component_C3(log);

} 

Task_2.c  (code simplified for readability)

DB DBC1 C2

w2r1

DB C3
r2

Task _1

Task _2

w1

Figure 8.11: Hard and Soft Proxy Glue-Code Generation Example

8.5.6 Database Proxy Example

Figure 8.11, which has been simplified for readability, shows a simple example
of how the glue-code generated from the database proxy specification for hard
and soft database proxies of different types are implemented. In the upper left
of the figure, the architecture of two tasks is displayed. Task_1 is a hard real-
time task that consists of components C1 & C2. Task_2 is a soft real-time task
that consists of component C3.

Task_1 implements two hard database proxies. Component C1 uses a data-
base proxy to read a native data type from the database, filters it and outputs
the result to component C2. C2 writes its output to the database using a single
database proxy to achieve an atomic write of data from two ports. This is il-
lustrated by hardProxy_Multi_w1_w2(), where the two input values are
sequentially written by the call to function writeDBPInt() and atomically
committed by setMulticol(). These data items can then be used by any
other component in the system using a database proxy.

Task_2 shows an example of a soft database proxy implementation where
component C3 reads a type Table_Mode ∗ which include the two values
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updated by the proxy connected to two ports in Task_1. The flow pointed out
by the arrows in Figure 8.11, for the hard real-time task, Task_1.c, is also valid
for the flow in the soft real-time task, Task_2.c.

The flow of the execution can be divided in three phases, initialize, running
task and un-initialize.
Phase 1: Initialize

1. application.c is the main application file. Before the task/tasks contain-
ing a database proxy/proxies are called, the database is initialized by
calling the DBInit() function declared in the separate DBProxy.c file.

2. Each task’s individual, initialization function, initDB_Task_1() and
initDB_Task_2()respectively, is called to bind hard proxy real-time
database pointers and to setup soft proxy real-time statements.

Phase 2: Task execution

1. The database proxies are included in the task files, Task_1.c and Task_2.c.

2. The database proxies are declared as separate functions which are called
before the component call if it is connected to an input port in order to
read the required value/values.

3. If the database proxy is connected to an output port the call to the data-
base proxy is made after the component’s call to write/update the data-
base.

Phase 3: Un-initialize

1. When the task has completed its execution, DBUninit() is called.

2. DBUninit() un-initializes the database connections in all tasks.

8.6 Implementation
To demonstrate the practicability of database proxies and as a proof of concept,
we have implemented our approach. Three existing tools and technologies,
namely the SaveComp Component Technology (SaveCCT) [13], Mimer Real-
Time edition (Mimer RT) [30] and the Embedded Data Commander (EDC)
[37], have been used to manage the different parts of the development. A
brief introduction and the role of these tools and technologies are presented
in the following three parts of this section. In the last two parts, presents our
development framework and discuss the predictability of our implementation.
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8.6.1 SaveCCT Component Technology

The SaveComp Component Technology (SaveCCT) [13] distinguishes between
manual design, automated activities, and execution. The developer can create
his/her application in the graphical tool Save Integrated Development Environ-
ment (Save-IDE). Automated synthesis activities generate code used to glue
components together and group them into tasks. The tasks can then be exe-
cuted on a real-time operating system. SaveCCT is intended for applications
with both hard and soft real-time requirements.

In our implementation, the SaveCCT synthesis has been extended to also
support database proxies.

8.6.2 Mimer SQL Real-Time Edition

The Mimer SQL Real-Time Edition (Mimer RT) [30] is a real-time database
management system intended for applications with a mix of hard and soft real-
time requirements. Mimer RT implements the database pointer interface to ac-
cess real-time data in an efficient and deterministic manner. All hard real-time
data access is performed in main-memory using predictable real-time algo-
rithms. Mimer RT supports single, multirow and multicolumn database point-
ers, which can be flushed to persistent storage without interrupting real-time
predictability of read and write operations.

For soft real-time database access SQL queries are used. To enable both
flexibility and predictability, Mimer RT combines the traditional client/server
architecture with a shared memory approach in which all real-time clients ac-
cess the real-time data directly through shared memory areas. This enable
efficient and predictable access to real-time data without introducing sources
of unpredictability otherwise found in most traditional database managers. Ex-
amples of such sources are; context-switches between client and server, query
management, index lookups, disc I/O, and data searches. Synchronization be-
tween concurrent database pointers and soft real-time SQL-queries are per-
formed using optimized and predictable real-time locks with bounded blocking
times.

8.6.3 Embedded Data Commander Tool-Suite

The Embedded Data Commander (EDC) is a tool-suite intended for high-
level data management of run-time data. The tool suite has been extended with
new functionality to support SaveCCT.
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1.<SIGNAL id="P_FindFB_W" component="Find">
2.<SNIPPETDEF type="int Fi_FindFB;"
pointerdefine="MimerRTDbp dbp_P_FindFB_W;"/>

3.<SNIPPETINIT bindquery="MimerRTBindDbp(
&hrtsess,&dbp_P_FindFB_W,DBP_DEFAULT,
L"SELECT state FROM Mode WHERE
Subsystem="find");"/>

4.<UPDATECALL call="MimerRTPutInt(&
dbp_P_FindFB_W,Fi_FindFB);"/>

5.</SIGNAL>

Figure 8.12: Hard Proxy Representation

Save-IDE generated description files are used by EDC in order to model
the database and generate a database definition file. A database proxy descrip-
tion file is also generated using the Save-IDE description files and the database
model. The database proxy description file is then used by Save-IDE to gener-
ate the glue code.

A database proxy definition is represented in XML. Figure 8.12 shows an
example of a hard proxy description using Mimer RT. The XML code is dis-
posed as follows. (1) The id of the signal and which component it resides in.
(2) The definition of type and pointer declaration. (3) The function used to bind
the database pointer with a pre-compiled statement. In this example however
represented by an SQL query to enhance readability. (4) The type of call to use,
in this case an update call since it is a write proxy. (5) End of proxy definition.

8.6.4 The Database Proxy Development Framework
In our implementation of the database proxy development framework (see Fig-
ure 8.13), SaveCCT is used to manage the development chain from system
design to target code generation. EDC is used to model and generate database
definition files and database proxy description files. Mimer RT manages all
database activities at run-time.

In our framework, the system architect can utilize a database as an addi-
tional design feature. If a database is included in the design, the generated
System Description File is extracted from SaveCCT to the EDC in order to
perform the data modeling and generate a Database Proxy Descriptions File.
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Figure 8.14: Graphical Representation of Implementation

These files are then weaved together using the Code Generator in SaveCCT
to form the C-code for the target system. A Database Definition File is also
generated from the EDC to setup Mimer RT.

8.6.5 Predictability of Implementation

For hard proxies, the generated code contains no unbounded behavior and
WCET and memory usage can easily be statically bounded (although such
analysis is beyond the scope of this paper). Also, the database-pointer interface
of Mimer RT provides the same functions that has been proven temporally and
spatially predictable within the COMET project [35]. Thus, our implementa-
tion is suitable for use in hard-real time systems.

Soft proxies do not affect the predictability properties of the system.

8.7 Performance Evaluation

This section presents the results of a performance evaluation where we have
implemented an embedded control system and measured execution times and
memory overheads. The aim of the evaluation is to measure if the database
proxies will have an impact on the observed worst- or average-case execution
time and how it will affect memory consumption of the system compared to
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using internal data structures. Two separate implementation configurations are
evaluated. (1) Using only single-port, native values database proxies and (2) A
more complex configuration which includes logging and a mix of single-port,
native value database proxies and multi-port proxy through.

8.7.1 The Application

To evaluate our approach, an application that includes two subsystems and two
configurations has been implemented using the Save-IDE. The implementation
is done according to Figure 8.14, which utilizes a mix of both internal data
structures and an RTDBMS. The application consists of seven components and
simulates a truck that first follows a line. At the end of the line, the truck turns
for a certain amount of time until it finds the line and starts following it again
(see Figure 8.15).

Figure 8.15: Truck Application

The first subsystem consists of a hard real-time control loop including six
components that are periodically executed every 10ms.
In configuration (1), six single-port, native value proxies are used in a feed-
back loop. The feedback values read by the three proxies are then used as input
to the Modechange component in the same subsystem. In addition, these values
are also used as input via a proxy to the second soft real-time HMI subsystem.
In configuration (2), four proxy through is added to the six proxies in config-
uration (1). This more complex configuration is used to monitor and log the
output from components Sensor, Follow, Turn and Find. For each component
there is a log that consists of a 1000 rows that is updated as a circular buffer.
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The second subsystem consists of a soft real-time HMI component that is
periodically executed every 20ms. Common for the two subsystems is that they
share data that needs to be protected. However, when a database proxy is used,
this is managed automatically by the database.

In order to measure the impact of introducing database proxies in a CBSE
system under typical workload conditions, a standard worst case execution time
benchmark code called ndes has been used as workload in the control compo-
nents. The workload is a part of a collection of benchmark codes used by
different research groups and tool vendors around the world to mimic the be-
havior of a typical embedded system [38].

8.7.2 Benchmarking Setup
We have conducted a performance evaluation with four different implementa-
tions variants, and the above stated two configurations of the truck application.
Each implementation is evaluated using both configurations, except for the us-
age of regular SQL in configuration 2. In this evaluation, the result from the
usage of SQL in configuration 1 covers our interest by showing that it is not a
predictable solution.

The tests have been performed on a Hitachi SH-4 series processor [39]
with VxWorks v6 [40] as real-time operating system. Furthermore, Mimer RT,
SaveCCT and EDC have been used throughout the implementation.

The descriptions of the four implementations (shown in Figure 8.16), are
as follows:

Test 1 A baseline implementation using internal data structures without any
database connection. All component glue-code is generated by Save-
IDE. Protection of shared data is hand coded using semaphores.

Test 2 An implementation using database unaware components that is gener-
ated by Save-IDE. The hard real-time subsystem utilizes hard real-time
database proxies to manage access to the database. The soft real-time
subsystem utilizes a soft real-time database proxy to manage access to
the database. The RTDBMS manages protection of all shared data.

Test 3 An implementation using database aware components. The access to
the database is made from within the components using database point-
ers. The components are generated by Save-IDE. However, the code to
access the RTDBMS has been hand coded. The RTDBMS manages all
protection of shared data.
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Test 4 An implementation using database aware components with access to a
non real-time database from within the component using regular SQL
queries without hard real-time performance. The components are gen-
erated by Save-IDE. Thus, the SQL queries inside the components have
been hand coded. The DBMS manages protection of shared data.

8.7.3 Proxy Real-Time Performance Results

Figure 8.16 shows the result of the execution times for 1800 executions of
the hard real-time control applications for the four test-cases explained in sec-
tion 8.7.2 and the two configurations explained in section 8.7.1.

The graphs clearly illustrate that the introduction of a real-time database
using database pointers, either directly in the component-code or through data-
base proxies, does not affect the real-time predictability and adds little extra
execution time overhead. On the other hand, using SQL queries directly in
the component-code severely affects both predictability and performance neg-
atively.

The table in the lower right hand corner of Figure 8.16 shows the evalua-
tion results for each test and configuration. The change of the Average Case
Execution Time (ACET) and observed Worst Case Execution Time (WCET)
in the two rightmost columns shows the change in percent, compared to our
baseline, Test 1.

For the first three tests, the ACET and WCET values do not differ from one
test to another with more than a few percent. Test four, configuration 1 does,
as could be expected, not perform anywhere near the other tests.

As this evaluation aims to measure and evaluate the performance of data-
base proxies, Test 2 is most interesting. Configuration 1 shows that the ACET
is increased by only 1.82% and the WCET by 2.19%. For configuration 2,
which includes more complex operations the result shows that the ACET is
increased by 7.81% and the WCET by 6.55%.

Figure 8.17 shows more detailed information of the first 100 executions for
both configurations of Test 1 and Test 2. The evenness of the results clearly
illustrates that the usage of database proxies in combination with an RTDBMS
such as Mimer RT is predictable, and the amount of overhead in average and
worst-case execution time is limited. Furthermore, these results confirm our
predictability of implementation discussion in Section 8.6.5.
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Figure 8.16: Evaluation Results From Configuration 1 and 2
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Our conclusion is that the slight decrease in ACET and WCET for Test 3 is
the result of optimized synchronization primitives used by Mimer RT compared
to the regular POSIX semaphore routines used in Test 1.

Access Method Code Size Change (%)
No Database 653 512 bytes -
Database Pointers 666 564 bytes 1.99
Database Proxies 666 988 bytes 2.06

Table 8.2: Application Code Size

8.7.4 Memory Consumption Results
Table 8.2 shows how the client code size changes when using different data
management methods. As can be seen in the table, integrating a real-time
database client with the calls hand coded in the component code introduces
1.99% extra code size. By using database proxies that have been automatically
generated, the code size grows with as little as 2.06%.

Introducing a real-time database server in the system of course also intro-
duces extra memory consumption, but embedded database servers are becom-
ing smaller and smaller. The Mimer SQL database family that is used in this
evaluation has a code footprint ranging from 273kb for the Mimer SQL Nano
database server, up to 3.2Mb for the Mimer SQL Engine for enterprise systems.

The RAM usage for Mimer SQL Nano is as low as 24kb. The limited in-
crease of client code size, as well as the small size of modern embedded data-
base servers makes the memory overhead for database proxies in conjunction
with a real-time database affordable for many of today’s real-time embedded
systems. This added code size and memory overhead should also be considered
in balance with the added value of the techniques.

8.8 Conclusions
This paper presents the database proxy approach which enables an integration
of real-time database management systems into a component-based software
engineering framework. While maintaining strict component encapsulation,
we achieve benefits such as the possibility to access data via standard SQL in-
terfaces, concurrency-control, temporal consistency, and transaction manage-
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ment. In addition, a new possibility to use dynamic run-time queries to aid in
logging, diagnostics and monitoring is introduced.
The motivation for our approach stems from observations of industrial prac-
tices and documented needs for a standardized and overall data model and man-
agement system to deal with the distributed and uncoordinated data in these
complex systems. Furthermore, it is clearly stated that the adhoc/reinvented
management of data as well as individual solutions using internal data struc-
tures, can lead to concurrency- and inconsistency problems and decreases main-
tainability, extensibility and flexibility of the system [7, 14, 17, 19].

To evaluate our approach, an implementation that covers the whole devel-
opment chain has been performed, using both research oriented and commer-
cial tools and techniques. The system architecture is implemented in Save-IDE.
The architectural information is then generated and exported to a data manage-
ment tool, where the database proxies and interface to the database is created.
The data management tool then generates the database proxy information back
to Save-IDE for further generation of glue-code and tasks for the entire system.

To validate our approach further, a series of execution time tests has been
performed on the generated C-code for a research application. These tests
show that our approach using native value communication, only increases the
average and the worst-case execution time with approximately 2%. In ad-
dition, complex database proxies connected to several ports of a component
which performs atomic updates of circular logs, each consisting of 1000 rows,
only increases the average execution time with approximately 7.8% and the
worst-case execution time with approximately 6.5%. Furthermore, the mem-
ory overhead, also about 2%, introduced by database proxies can be affordable
for many classes of embedded systems.

We conclude that the database proxy approach enables an RTDBMS to be
successfully integrated into a component-based software engineering frame-
work. This enables developers to utilize the benefits from an RTDBMS which
offers a range of valuable features that can solve current and future issues when
developing, maintaining and evolving real-time embedded systems at a mini-
mal cost with respect to resource consumption.
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Abstract

We propose to integrate a real-time database management system into the ba-
sic software of the AUTOSAR component model. This integration can be per-
formed without violating the fundamental principles of the component-based
approach of AUTOSAR. Our database-centric approach allows developers to
focus on application development instead of reinventing data management tech-
niques or develop solutions using internal data structures. We use state-of-
the-art database pointer techniques to achieve predictable timing, and database
proxies to maintain component encapsulation and independence of data-mana-
gement strategies. The paper illustrates the feasibility of our proposal when
database proxies are used to manage the data communication between com-
ponents and to perform run-time monitoring on the virtual function bus. Our
implementation results show that the above benefits do not come at the expense
of less accurate timing predictions while only introducing a total application
CPU overhead, in the order of 4%.
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9.1 Introduction

By integrating an RTDBMS into AUTOSAR, developers gain access to well
established and powerful tools and techniques that have facilitated data man-
agement in complex, data intensive systems within other areas such as finan-
cial markets for decades. Techniques to achieve more dynamic and structured
data management which include data extraction, management of user access
rights and dynamic or static runtime monitoring would thereby be made avail-
able even for such critical domains as automotive systems. In addition, this
approach allows information to be shared, traced, logged and viewed using
diagnostics tools or third party tools.

Database proxies [1] has been presented as a successful technique that
enables the integration of a Real-Time DataBase Management System (RT-
DBMS) [2] into a component technology [3]. Database proxies are automati-
cally generated glue code, synthesized from the system architecture, that trans-
lates data between the ports of the components and an RTDBMS residing in
the component framework.

For component-based automotive systems such as AUTomotive Open Sys-
tem ARchitecture (AUTOSAR) [4], integrating an RTDBMS is not trivial since
the component-based approach of AUTOSAR favor encapsulation and reuse,
while the database centric approach favor an open blackboard data architecture.

Component-Based Software Engineering (CBSE), strives to decouple com-
ponents from the context in which they are deployed. One aspect of this is that a
component should not have built-in assumptions about external data-elements.
This decoupling is achieved by encapsulating component-functionality and
making visible only a component-interface describing the provided and re-
quired services. Using an RTDBMS in existing component-based systems
would require database calls from within the component thereby making the
component unusable in an alternative setting. In order to succeed with the in-
tegration of an RTDBMS into AUTOSAR, components need to be decoupled
from the RTDBMS and the underlying database schema.

The contribution of this paper presents a solution for how to integrate
a real-time database management system, COMET [5], into an AUTOSAR
platform and tool suite, such as the Arctic Core [6]. This is achieved without
violating the fundamental principles of the component-based approach or, the
fundamentals of the AUTOSAR standard itself. The feasibility of our approach
is demonstrated with an implementation of an Adaptive Cruise Control (ACC)
using database proxies for all component communication on the VFB.
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Finally, we present an evaluation which shows that the cost for introducing
database management support via database proxies in AUTOSAR is negligi-
ble. Under typical workload conditions, our concept only introduces a total
application CPU overhead, in the order of 4%.

9.2 Background and Motivation

Since the computerization of cars, automotive software systems have evolved
from in-house monolithic control-systems to integrated component-based soft-
ware-systems. Initially, automotive software controlled only fundamental func-
tions as fuel and ignition control; today automotive software has become fully
interconnected with the surrounding environment through entertainment soft-
ware, internet access and advanced diagnostics systems. This evolvement has
led to an increasing complexity resulting in costly development and mainte-
nance [7, 8].

To reduce this complexity, model driven development and component-based
software engineering, e.g. using AUTOSAR, are widely used in industry to-
day [9]. However, these techniques mainly focus on the functional aspects of
the software, and rarely target management of data. In addition, the lack of
run-time data management was pointed out as a significant problem for the
automotive domain, as well as for transportation and industrial control [10].
Moreover, the increasing need for more structured, flexible, reliable and secure
data management techniques to coordinate data both at run-time and at design-
time is continuously pointed out as major challenges for the future [11, 12, 13].

As stated by Pretschner et al. [8] and Broy [14], a standardized and over-
all data model and management system has great potential as a solution to deal
with the distributed and uncoordinated data in these complex systems. Further-
more, Schulze et al. [11] and Saake et al. [15] points out that the ad-hoc and/or
reinvented management of data for each ECU with individual solutions using
internal data structures, can lead to concurrency and inconsistency problems.
In addition, maintainability, extensibility and flexibility of the system decrease.

Moreover, sophisticated techniques for diagnostics, error detection, log-
ging and secure data sharing are much needed to improve reliability and sys-
tem quality. Inefficient diagnostics and error tracing techniques has led to that
more than 50% of replaced ECUs are in fact not defect [8]. Much of the di-
agnostics messages and logging that can be retrieved from these systems are
statically predefined at design time. A possibility to perform dynamic run-time
monitoring and/or diagnostics of the system could greatly aid developers.
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In other techniques such as the Program Monitoring and Measuring System
(PMMS), it is up to the user to specify pre-conditions and insert code in order
to collect data [16]. This put high demands on developers to predict future
needs of what could be of interest to for instance a service technician.

There are well established database techniques that can aid developers with
the above stated complexity available, such as Mimer SQL Real-Time Edi-
tion [17] and ExtremeDB [18]. These database systems include efficient and
predictable concurrency-control, temporal consistency, and overload and trans-
action management [19, 20, 21]. In addition, there are efficient and well proven
tools available from the database community that can aid developers in dealing
with the data complexity. In spite of the fact that RTDBMSs are available, they
remain unused in automotive embedded systems.

It is thereby well established that the integration of an RTDBMS into AU-
TOSAR could not only aid developers with standardized tool support for mod-
eling system data at design-time, but also provide predictable and efficient rou-
tines for managing data at run-time.

9.3 System Model and Related Techniques

AUTOSAR supports hard real-time functionality that include critical control-
functions, as well as soft real-time functionality. We therefore consider a sys-
tem where functionality is divided into the following classes of tasks:
Hard real-time tasks, typically have high arrival rates. Hard real-time tasks
use hard transactions to read and write simple values from sensors/actuators
and execute real-time control loops. Hard real-time tasks cannot manage com-
plex data structures. This limitation however, is fairly small in practice, since
hard real-time components often are static, communicating with fairly simple
data structures. When a database is used, hard real-time tasks require pre-
dictable access to data elements.
Soft real-time tasks, often with a lower arrival rate, control less critical func-
tionality. Soft real-time tasks uses soft transactions to read and write dynamic
and complex data structures typically to present statistical information, logging
or used as a gateway for service access to the system by technicians in order to
perform system maintenance. Soft real-time tasks could also be used for fault
management and perform ad-hoc queries at run-time.

In order to support a predictable mix of both hard and soft real-time trans-
actions, we consider an RTDBMS with two separate interfaces.



140 Paper D

1 TASK oilTemp(void){
//Initialization part

2 int temp;
3 DBPointer *dbp;
4 bind(&dbp,"Select TEMP from ENGINE

where SUBSYSTEM=’oil’");
//Control part

5 while(1){
6 temp=readOilTempSensor();
7 write(dbp,temp);
8 waitForNextPeriod();

}
}

Figure 9.1: A task that uses a database pointer

For hard real-time transactions, a database pointer [21] interface is used to
enable the application to access individual data elements in the database with
hard real-time performance. For soft real-time transactions, a standardized
SQL interface is used.

9.3.1 Database Pointers
A database pointer [22] is a hard real-time database access-method which uses
an application pointer variable to access individual data in an RTDBMS, see
Figure 9.1. The figure shows an example of a task (thread) that reads a sen-
sor and propagates the sensor value to the database using a database pointer.
During the initialization part (lines 2 to 4) the database pointer is created and
bound to a data element in the database using the bind function. The bind
function calls the database server which creates a handle directly to the data
element.

During the control part, the write function uses this handle to directly
write to the data element without calling the database server. The write opera-
tion consists of only a few lines of sequential code that performs type checking,
synchronization, and writing of the data.

A key property of the database-pointer concept is that reads and writes
through database-pointers have deterministic execution-time with bounded and
negligible blocking [21]. They also allow SQL-based transactions to be exe-
cuted in the background without any predictability loss due to any concurrent
database-pointer accesses (i.e. no starvation, conflicts, or restarts of transaction
can be caused by database pointers [22]).
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9.3.2 COMET

The COMponent-based Embedded real-Time database system [5] (COMET
RTDBMS) is a real-time database management system intended for applica-
tions with a mix of hard and soft real-time requirements. The COMET RT-
DBMS implements the database pointer interface to access individual data el-
ements in an efficient and deterministic manner. For soft real-time database
access, SQL queries are used. To guarantee hard real-time predictability for
database accesses while eliminating starvation issues for soft real-time SQL
queries, COMET RTDBMS uses the 2V-DBP concurrency-control algorithm
[21] that combines versioning and pessimistic concurrency-control. 2V-DBP
is suited for resource-constrained, safety critical, real-time systems that have
a mix of hard real-time control applications and soft real-time management,
maintenance, or user-interface applications.

Some technologies developed for COMET RTDBMS, including the data-
base pointer concept, has later been adopted by the commercially available
RTDBMS, Mimer SQL Real-Time Edition [17].

9.3.3 Arctic Core

Arccore AB [6] is a provider of the open-source Arctic Core embedded AU-
TOSAR platform developed in Eclipse [23]. The open-source solution, to be
used for education and testing, includes Arctic Core and Arctic Studio which
is an Integrated Development Environment (IDE). The commercial solution
offers a number of licensed professional graphical tools to facilitate develop-
ment of a complete AUTOSAR system. Arctic Core includes build scripts and
services such as, network communication, memory, and operating system. In
addition, drivers for different microcontroller architectures are also provided.

Components and their port-based interfaces are developed using the Soft-
Ware Component Builder tool. The Extract Builder tool is used to add selected
components to the ECU, connect ports and to validate the extract. The Run-
Time Environment Builder models the VFB and generates a run-time imple-
mentation of the component communication. The configuration of the target
platform is done in the Basic Software Builder tool which also generates the
configuration files. Since Arctic Core is provided as open source, it is possible
to extend it to also include RTDBMS support.
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9.4 AUTOSAR Concept Overview

AUTOSAR [4] is a standard component model and middleware platform for
the automotive electronic architecture. One of the fundamental concepts of
AUTOSAR is to have a clear separation between the underlying infrastructure
and the applications which consists of interconnected software components.
A simplified explanation is that AUTOSAR consists of the following layers,
see Figure 9.2; the SoftWare Component layer (SWC), Virtual Function Bus
(VFB), and the Basic SoftWare layer (BSW).

The main focus in this paper is the VFB, which is the central mechanism
that manages the connections and data sharing between AUTOSAR compo-
nents residing in an Electronic Control Unit (ECU) or between ECUs in the
system. The purpose of the VFB is that it enables a virtual integration of com-
ponents early in the development phase. Since the VFB manages all component
interactions, there is a clear separation between the software components and
the underlying infrastructure. The realization of the VFB is the Run-Time En-
vironment (RTE) which is generated from the specifications and the underlying
BSW components. The RTE acts as a communication center for both internal
ECU communication and information exchange between ECUs in the system.

SWC-1 SWC-2

BSW

VFB

PPort

VFB Trace 

Messages

ECU Hardware

….

OS 

module

BSW 

module
…. DLT 

module
…. ..

InterfaceInterfaceInterface

RPort

Figure 9.2: Autosar Overview
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Data is shared between components by creating connections between Pro-
vider Ports (PPort) and Receiver Ports (RPort) of components. Data sets passed
between components on an ECU is usually realized through shared RAM areas
which have to be protected using semaphores to ensure data consistency. This
makes data internal on the ECU, and visible only to those components which
have been specified as receivers when developing the system.

Regulatory requirements and the complexity of automotive systems have
increased the need for run-time diagnostics and system monitoring. To meet
this need, AUTOSAR has, from version 4.0 included support for system mon-
itoring via the Diagnostic Log and Trace (DLT) module. The DLT is capable
of managing multiple types of diagnostic log and trace messages and trans-
mit them to external clients remotely connected over the network. One such
trace-type is the VFB trace message which is used to collect component com-
munication in the VFB, see Figure 9.2.

Today, all diagnostics messages must be statically defined at design time,
thus is it not possible to view or subscribe to VFB communication that has
not been tagged for VFB tracing. An external client can initiate a session to
the DLT and request that a subscription of a VFB trace should be initiated and
periodically published on the network.

9.5 Database Proxies

Database proxies [1] are shown to be an efficient and predictable technique
that offers a range of valuable features to component-based embedded real-
time systems development, maintenance and evolution at a minimal cost with
respect to resource consumption. A database proxy translates data between
component ports and an RTDBMS that resides in the component framework
(i.e., the AUTOSAR BSW) and vice versa. This allows full decoupling of
the RTDBMS from the component, i.e., the component and the RTDBMS are
unaware of the existence of the other. Database proxies remove the need for
database calls within the component, thus preserving component encapsulation
and enable component reuse. Furthermore, the schema of the database can
be modeled and optimized separately and is independent of the component
implementation.

Database proxies are automatically generated from the system architecture,
and the run-time implementations are synthesized by the system generation
tool. Therefore, database proxies are a part of the system architecture, and
are realized in the form of glue code. The internal mapping of data in the
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RTDBMS to the database proxies is made using database pointers for hard
real-time components, or pre-compiled SQL statements or stored procedures
for soft real-time components. A pre-compiled statement enables a developer
to bind a certain database query to a statement which is compiled once during
system setup. This has a decoupling effect since the internal database schema
is hidden from the component.

To support the different requirements of hard and soft real-time tasks, we
distinguish between hard real-time database proxies (hard proxies) and soft
real-time database proxies (soft proxies).

9.5.1 Hard Real-Time Database Proxies

Hard proxies are intended for hard real-time components, which need efficient
and deterministic access to individual data elements. Hard proxies support
hard real-time data to be shared between several hard real-time components, or
a mix of hard and soft real-time components.

Since hard real-time components manage hard real-time data, hard proxies
emphasize predictable and efficient data access. Hard proxies are therefore
implemented using database pointers.

A hard real-time database proxy:

• communicates with the database through a database pointer, thereby pro-
viding predictable data access.

• translates native data types only, thereby providing predictable data trans-
lation.

That a hard proxy only translates native data types such as integer, char-
acter, or float implies that no unpredictable type conversions or translation of
complex data types that require unbounded iterations are needed.

9.5.2 Soft Real-Time Database Proxies

Soft proxies are intended for soft real-time components, which usually have a
more dynamic behavior and thus might have a need for more complex data-
structures. Typical usages for soft proxies include graphical interface compo-
nents, logging components, and diagnostics components. Therefore, soft prox-
ies emphasize support for more complex data structures by using a relational
interface provided by SQL, towards the RTDBMS.
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A soft real-time database proxy:

• Communicates with the database through a relational interface, thereby
providing a flexible data access.

• Translates complex data types, thereby providing means for components
to access complex data.

9.5.3 Database Proxy Constituents
The realization of a database proxy contains the following constituent parts:

• Initialization code that connects to the RTDBMS and opens a pre-com-
piled database statement or database pointer. The initialization code is
executed at system startup.

• Data translation code which is the glue code that access the database
and translate the result to/from the components. The data translation
code is executed prior to or after every component execution.

• Uninitialization code that closes the database statement or database
pointer and disconnects from the RTDBMS. The uninitialization code
is executed at system shutdown.

9.6 Integrating Database Proxy Support in AU-
TOSAR

To enable efficient and dynamic data management in AUTOSAR, our approach
proposes that communication between components over the VFB is handled
by the RTDBMS using database proxies instead of internal RAM areas. This
has substantial benefits both during design-time and run-time of the system.
At design-time, all system data could be explicitly modeled using well estab-
lished data modeling techniques, such as Entity/Relationship modeling [24], to
achieve an efficient and optimized data model. Run-time system management
would benefit from the approach since all communication would be stored in
the database, thus dynamically enabling monitoring and tracing of any data
during run-time. This is especially beneficial for testing and debugging pur-
poses since internal data now can be made available for external access.

To implement a VFB using database proxies, the virtual function bus needs
to be extended and the RTDBMS needs to be integrated into the BSW.
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9.6.1 Integrating the RTDBMS

The RTDBMS is integrated in the system as a BSW module that is responsible
for all system data that has been designated to be managed by the RTDBMS,
see Figure 9.3. However, if two components share a single data item that is of
no additional interest for other components, nor for logging or diagnostics pro-
poses, a mapping to the RTDBMS could be superfluous. All real-time accesses
to the database from the VFB are made through the Real-Time database pointer
APplication Interface (RTAPI), while internal soft real-time accesses or exter-
nal tools and 3rd party applications, use an SQL-based interface. These APIs
are also utilized internally by other BSW modules such as the DLT module.
The DLT module extracts information from the database and uses the BSW
diagnostic services to forward the data to an external client.

SWC-1 SWC-2

BSW

VFB

OS 

module

BSW 

module

.. ..

PPort

ECU Hardware

DLT 

module

..

InterfaceInterfaceInterface

Provider

DB Proxy
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DB Proxy

RTAPI

RTDBMS

RPort

SQL

API

3 PY Tools

Figure 9.3: Database proxies support in the VFB
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9.6.2 Extending the VFB with Database Proxies

The current model of the VFB, where connections are using RAM areas to
connect one PPort of the providing component to the RPort of the receiving
component needs to be extended to contain the following constituents:

• PPort: The port that provides the data.

• RPort: The port that requires the data.

• Database statement: A database statement that uniquely associates the
data with a data element in the database.

During the realization of the VFB these constituents are used to create the
proxies as follows (see Figure 9.3):

• Provider DB Proxy: The provider DB Proxy translates data from the
PPort to the database using a database pointer which is bound to the
database statement of the connection.

• Receiver DB Proxy: The receiver DB proxy translates data from the
database to the RPort using a database pointer which is bound to the
database statement of the connection.

The initialization code and uninitialization code of the two proxies are gen-
erated and placed in the AUTOSAR standard startup and shutdown routines,
and the data translation code is placed in the connection, e.g., glue code, itself.
This implies that all communication between components will be performed
through the RTAPI interface of the RTDBMS, thus removing the need to use
RAM areas or inter process communication operations from the operating sys-
tem.

Figures 9.4 and 9.5 presents a simplified illustration of the differences of
the execution trace between the original generated implementation and using
database proxies for a task that includes a component.
Execution trace for the original generated implementation:

1 The task invokes the RteRunnable.

2 The software component is invoked by RTE.

3 The component performs its task and write the data to its port.
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Rte.c
RteRunnable(){

SwcRunnable();

RtePostRunnable();

}

RteRostRunnable(){

DisableAllInterrupts();

WriteDataToBuf(value);

EnableAllInterrupts();

}

Task1(){ 

RteRunnable(); 

}

Component_X.c
SWC_Runnable(){

…..

RteWriteDataPort(…);

}

Rte_Runnable.c
RTE_WriteDataPort(){      

WriteDataToPort(…);

}

Rte_Data.c
WriteDataToBuf(value){

data = value;

}1

2 3 4

5

6

7

Figure 9.4: Execution trace for the original AUTOSAR code

Tasks.c
StartupHook(){

DBInit();

}

ShutdownHook(){

DBUnInit();

}

DBProxies.c
DbInit(){

Setup DB;

}

DBUninit(){

Shutdown DB;

}

Rte.c
RteRunnable(){

SwcRunnable();

RtePostRunnableDBProxy();

}

RtePostRunnableDBProxy(){

DisableAllInterrupts();

DbpWriteIntDb(dbp,data->value);

EnableAllInterrupts();

}

Task1(){

RteRunnable(); 

}

Component_X.c
SWC_Runnable(){

…..

RTE_WriteDataPort(…);

}

Rte_Runnable.c
RTE_WriteDataPort(){

WriteDataToBuf(…);

}

Performed once

3

2

1

6

5
4

7

8

10

9

Figure 9.5: Execution trace using database proxies
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4 The RTE writes to a port variable.

5 Since it is a provider port, the RTE writes the data after the component invo-
cation.

6 The RtePostRunnable function disables all interrupts and calls function
to write the data.

7 The data is written to the buffer. When finished, all interrupts are enabled.

Execution trace using database proxies:
Performed once during system startup:

1 The AUTOSAR StartupHook calls functions to setup and initialize the data-
base.

2 The database is initialized during startup.

Performed during component communication:

3-6 Corresponds to steps (1-4) in the previous example without database prox-
ies.

7 RtePostRunnableDBProxy is called.

8 The data is written to the database.

Performed once during system shutdown:

9 The AUTOSAR ShutdownHook is called during system shutdown.

10 The database is uninitialized.

For proxies connected to an RPort, the execution flow is similar apart from
that the database proxy is executed before the component is called.

The differences in call flow, except from the initialization part of the data-
base, which is executed once during system startup is what happens when data
is stored during post write. In the case of not using a database, the task of
Rte_Data.c, is in some sense a predefined static data manager which provides
functions to read and write data for each port.

When using database proxies, the post write is made to the database. Pro-
vided that a user have the correct data access rights, any data item from a
single component port or data items from several port, even from different
components can be queried. In addition, if the outcome from a query is a large
volume of data, the data can be filtered to not provide the user with superfluous
information.
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Figure 9.6: Illustration of the ACC system implementation in AUTOSAR

9.7 System Design and Implementation

As a proof of concept and to demonstrate and evaluate the usefulness of our
approach, we have implemented an application that mimics the behavior of
an Adaptive Cruise Control (ACC) system and deployed it on an AUTOSAR
hardware node. The software tools and techniques that have been used are
ArcCore AUTOSAR open source and professional solutions and the COMET
RTDBMS. The design of the ACC application, a brief introduction and the
role of included tools and technologies as well a discussion regarding the pre-
dictability of our implementation is presented in the remainder of this section.

9.7.1 Application System Design

The system has been designed according to the proposed approach in section
9.6 with the RTDBMS residing in the BSW and database proxies that manages
all component communication. As illustrated in Figure 9.6, the nine compo-
nents communicate via the RTE. The database proxies in the RTE manage the
communication between PPorts and RPorts via the RTDBMS. However, the
figure is simplified with a focus on a few connections to clearly illustrate the
approach.

As seen in Figure 9.7, the application design consists of nine components
distributed over five hard real-time tasks, T1-T5 and a soft real-time task, T6.
The internal implementation of the components varies from simple Propor-
tional Integral Derivative (PID) controllers to more complex controller logic
[25].
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Figure 9.7: ACC application design

The nine components assignments are as follows:

• HMI Input, controls if the ACC is active or not as well as the desired
speed. (Task 1)

• Internal Sensor, handles the throttle level and the actual speed.
(Task 2)

• Radar, measures and outputs the distance to a vehicle in front. (Task 3)

• Mode Logic, handles the logic for different states of the vehicle and sets
mode accordingly. (Task 4)

• Object Recognition, determine if there is an obstacle in front. If so,
calculate the relative velocity and trigger a mode switch to for instance
reduce speed. (Task 4)

• ACC Controller, manages speed control according to the distance and
mode. (Task 5)

• HMI Output, outputs information regarding the vehicle state and dis-
plays it to the driver. (Task 5)

• Actuator, control throttle and speed of the vehicle. (Task 5)

• Run-Time Monitor, Monitors the output from system sensors. (Task 6)
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The whole application is developed and generated using the different tools
in Arctic Studio.

9.7.2 Predictability of the Implementation
The ACC implementation includes a mix of hard and soft database proxies, the
code contains no unbounded behavior and WCET and memory usage can be
calculated (although such analysis is beyond the scope of this paper). A hard
real-time database-pointer provides direct access to a data element in memory
without calling the database server.

This implies that from a predictability perspective, database proxies do not
introduce any additional context switches, compared to the original implemen-
tation. A write operation consist a few lines of sequential code that performs
type checking, synchronization, and writing of the data. This is similar ap-
proach as using a pointer variable and semaphores in C.

In addition, the database-pointer interface has been proven temporally and
spatially predictable within the COMET project [21]. Thus, our implementa-
tion is suitable for use in hard-real time systems.

The use of an RTDBMS, which is developed for this purpose and have un-
dergone extensive validation, could be seen as single point of failure. However,
this must be compared to the ad hoc and individual solutions, currently used in
these complex systems [11, 15].

9.8 Evaluation
In order to evaluate the performance of our approach and to validate the prac-
ticality of database proxies under realistic workload conditions, a performance
evaluation of the ACC application has been conducted. In addition, the eval-
uation includes a soft run-time monitor component that continuously extracts
data, using a soft proxy. The aim of the evaluation is to verify the predictability
and measure the CPU overhead introduced by integrating database proxies.

9.8.1 Benchmark Setup
The evaluation was performed on a board, named VK-EVB-M3, equipped with
a STM32F107 ARM Cortex M3 processor, fitted with 256 kB Flash and 64 kB
RAM [26]. The AUTOSAR OS included in Arctic Core was used and the
application was compiled using the GNU C compiler (gcc) version 4.3.4. An
Olimex ARM-USB-OCD was used as the communication link to the board,
and for debugging; the GDB Hardware Debugger.
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The reported execution times are the measured execution times based on
5000 task executions. The elapsed time is measured using the OS system tick
function and the collected measurements were written to the Arctic Core ram-
log, which is a defined RAM area for logging. The data from the measurements
was then read separately after the test case was completed.

The two performance tests each contain three test cases, A-C as follows:

A AUTOSAR generated code using original Arctic Core mechanisms. In this
test case, component communication is performed using shared variables
without any RTDBMS support in the BSW. This case does not include
the run-time monitor (Task 6), since database support is not included.

B AUTOSAR generated code with database proxies. In this test case, the data-
base proxies ensure mutual exclusion and atomic access, but performs no
data type or access right checking, i.e., the same level of checking as in
test case A is used. This approach is useful for static systems where all
component communication is known beforehand and type checking and
access rights can be validated at design-time. In addition, the run-time
monitor component periodically queries the system for shared data.

C AUTOSAR generated code with database proxies. This test also includes
data type and access right checking at run-time. This approach is useful
in more dynamic environments which could include third party appli-
cations and communication with the surrounding environment. In ad-
dition, the run-time monitor component periodically queries the system
for shared data.

9.8.2 Test 1: Communication Performance
In this test, the execution times of the individual read and write operations of
a single data element (16-bit integer) are measured using the three test cases
A-C. Test 1A in Table 9.1 is the benchmark reference to which Tests 1B and
1C are evaluated.

Table 9.1, shows the results of the test. The numbers are shown in aver-
age time in nanoseconds (ns) and in the two rightmost columns, difference in
percentage and number of CPU clock cycles is shown. From the table it can
be seen that a data read (where data are read from the shared variable or RT-
DBMS and propagated to a component) using database proxies introduces an
overhead of 151ns (18 % or 10 CPU cycles) for test case B, and 303ns (36 %
or 22 CPU cycles) for test case C, compared to not using database proxies. For
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Test

1 A

Test

1 B

Test

1 C

Diff B 

(ns)

Diff C

(ns)

Diff B

% / CPU c

Diff C

% / CPU c

1R 828 979 1131 151 303 18 / 10 36 / 22

1W 825 904 1016 79 191 10 / 6 23 / 14

Table 9.1: Result of test 1
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Figure 9.8: Execution times for read and write operations

the data write case (where data is propagated to the RTDBMS from a com-
ponent) the introduced overhead is 79ns (10 % or 6 CPU cycles) for test case
B, and 191ns (23 % or 14 CPU cycles) for test case C, compared to not using
database proxies.

Figure 9.8, presents the execution time for test cases A-C. As the graph
shows, the time for reading a value is constant in the three test cases, whereas
the write operations have some fluctuations. Since the tasks are periodically
executed, these fluctuations could be the result of a probe effect from the time
measurement routines, cache misses or a combination of both. In any case, this
is not the result of introducing database proxies since identical fluctuations are
also present in the original generated code.

The number of executions in the graph is limited for readability. Worth
noting is that these numbers are representative for the rest of the executions in
the evaluation.
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Monitor func 1 int (ns) 2 int (ns) 3 int (ns)

So� Read 20631 21431 22011

Table 9.2: Result of soft read by the run-time monitor

Table 9.2, display the time, in nanoseconds, for reading 1-3 shared data
elements using the SQL interface. As seen to the right in the table, 22011ns
is the time required to read the output from components 1-3, as seen in Figure
9.7. Worth noting is that the predictability of the hard real-time tasks reading
and writing the shared data is not compromised. No fluctuations or increased
execution times were observed.

A code analysis showed that the difference in execution time between test
case A and B is mainly caused by that the database proxy pushes two parame-
ters (the value and the database pointer handle) to the stack when performing
the read/write compared to in test case A where only the value needs to be
pushed to the stack. Our analysis show that the extra parameter alone cost 6 of
the 10 CPU cycles that differs (see Table 9.1).

9.8.3 Test 2: System Performance
In this test, the execution time for each individual task including the component
logic as well as the component communication is measured. Test 2A in Table
9.3 is the benchmark reference to which Tests 2B and 2C are evaluated. The
soft task (T6) is not included in this table since it cannot be evaluated against
the reference implementation which does not include the Run-Time Monitor
component. However, in this performance test, T6 is included and monitors
the sensor input values throughout the evaluation for test 2B and 2C in order
to show that it will not negatively affect hard proxies while providing enlarged
support for sharing, tracing, monitoring and logging.

The aim is to measure the impact of introducing database proxies in relation
to the execution time of the whole application.

Table 9.3, shows the results of the average execution times. The measure-
ments shows that the overhead of using database proxies under typical work-
load conditions introduces an overhead of only between 1-10% in test case B
and slightly higher in test case C, with the exception of task T1. In this case
the increased overhead of 10% or 17% for case B-C can be explained by the
fact that the component executed within task T1 is the smallest, therefore in-
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Tasks

Test

2 A

Test

2 B

Test

2 C

Diff B 

(ns)

Diff C

(ns)

Diff B

% / CPU c

Diff C

% / CPU c

T1 1271 1407 1490 136 219 10 / 10 17 / 16

T2 5671 5726 5892 55 221 1 / 4 4 / 16

T3 4719 4899 5064 180 345 4 / 13 7 / 25

T4 24191 24936 26537 745 2346 3 / 53 10 / 168

T5 16905 17760 19002 855 2097 5 / 61 12 /150

Table 9.3: Result of test 2

Total Execu�on Time 

Test

2 A (ns)

Test

2 B (ns)

Test

2 C (ns)

OH

 %

OH 

%

T1-T5 527 57 547 28 579 85 3,74 9,91

Table 9.4: Total application CPU overhead

troducing data type and access right checking in the communication accounts
for a larger relative overhead than in the other tasks. It is worth noting that the
introduced overhead in test case B and C corresponds to as little as 10 and 16
CPU cycles respectively.

So far the focus has been on the overhead for the individual tasks. To get
a better overview of the overhead on an application level, the execution time
for the whole application is measured and presented in Table 9.4. The table
shows that the total application CPU overhead of using database proxies under
typical workload conditions in test case B is as low as 3.74%, and in test case
C, 9.91%.

9.9 Conclusions and Future Work
In this paper, we propose a technique to integrate predictable database man-
agement support in the AUTOSAR basic software layer and the virtual func-
tion bus without violating the fundamental principles of the component-based
approach of the AUTOSAR standard. To achieve this, the database proxy con-
cept in conjunction with database pointer techniques, adopted by COMET, is
used as the communication link on the VFB. This database-centric approach
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provides predictable timing guarantees, dynamic access to data, maintained
component encapsulation and independence from the data-management strat-
egy. Developers and maintenance personal can now exploit the full potential of
using a real-time database and extract any trace information from the compo-
nent interactions in contrast to the static predefined approach that exists today.
Furthermore, the approach provides means for any BSW module to act as a
database client using a standard API.

To validate the feasibility of our approach, we have performed a series of
execution time tests which shows that the database proxy approach offers a
range of added value features for AUTOSAR systems development, mainte-
nance and evolution at a minimal cost with respect to resource consumption.

Our conclusion is that an RTDBMS that implements the concept of data-
base pointers can be successfully integrated into AUTOSAR, without compo-
nents being aware of it, or jeopardizing system performance. This in turn,
greatly simplifies development of soft real-time functions that process large
data volumes, e.g., for statistics and logging.

In the future we plan to further extend the support for our approach in the
Arctic Core open source tool by integrating modeling and configuration tools.
Furthermore, the data-entity approach that provide techniques for visualization
of data dependencies and documentation extraction for efficient design-time
management of run-time data will be included [27].
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Abstract

In this paper, we show how a tool for database proxies can be implemented
into an industrial AUTOSAR environment. AUTOSAR has been introduced as
a remedy for the increasing complexity and rising costs within automotive sys-
tems development. However, AUTOSAR does not provide sufficient support
for the increased complexity with respect to data management. Database prox-
ies have been presented as a promising solution to provide software component
technologies with the capabilities of a state-of-the-art real-time database man-
agement system.
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10.1 Introduction

This paper presents an approach for introducing real-time data management
tool support into AUTOSAR development environments. This is made possible
due to the usage of database proxies [1] which is a technique to provide run-
time data management support to component-based real-time systems using a
Real-Time Database Management System (RTDBMS). We also present a tool
implementation that extends the commercially available AUTOSAR tool suite
Arctic Core [2].

Managing run-time data in complex embedded real-time systems is consid-
ered as one of the major challenges for the future development of automotive
systems [3, 4]. The automotive industry is continuously evolving and introduc-
ing new complex techniques, such as active safety and infotainment systems to
improve the competitiveness of their products. This development introduces
an increased dependency between vehicle-internal functions, as well as an in-
creased demand for communication with external applications or infrastruc-
ture [5]. This increases the demand for open, secure, and flexible access to data.
Solutions using a customisable database in an automotive context to manage
the security aspects of interconnected systems have been proposed in [6].

It has been reported that the lack of techniques and tools for data manage-
ment has led to the use of ad hoc techniques and redundant work in reinventing
management of data for each Electrical Control Unit (ECU).

Current solutions have reached their limits and are no longer adequate to
deal with the future requirements on data, neither at design-time [7] nor at
run-time [6, 8].

Database technologies are well established and have proven their useful-
ness to manage data in complex systems. In our previous work, database prox-
ies have been presented as a promising solution to integrate an RTDBMS into
a component-based setting [1]. In addition, the approach has been successfully
implemented and evaluated on an AUTOSAR hardware node [9]. Database
proxies allow components to communicate through their defined interfaces,
remaining unaware of the database, while providing temporally predictable ac-
cess to data maintained in a database. Database proxies use the state-of-the-art
database pointer technique [10], which enables predictable hard real-time ac-
cess to data along with a flexible SQL-based soft real-time interface. We have
evaluated the efficiency of database proxies and shown that it is an affordable
technique with very low overheads and large a degree of flexibility [1]; thus
we conclude that database proxies can be an attractive technique when trying
to improve data management in vehicular software.
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In this paper, we present how a database proxy can be integrated into the
development of automotive systems using industrial tools. Our approach en-
ables a clear separation of concerns between the system architect, component
developer, and the DataBase Administrator (DBA). This separation of con-
cerns allows each part to be managed and reconfigured independent of each
other. Furthermore, a plug-in approach, developed for the Arctic Core tool
suite and an integration of the Mimer SQL Real-Time [11] database into the
basic software of AUTOSAR is presented.

In the remainder of this section, the main tools and technologies used are
briefly presented.

10.1.1 AUTOSAR

The Automotive Open System Architecture (AUTOSAR) [12] defines a stan-
dard component model and middleware platform for automotive electronic ar-
chitectures. AUTOSAR defines a set of layers to separate the underlying infras-
tructure from the interconnected software components. AUTOSAR employs
the Component-Based Software Engineering (CBSE) approach, where soft-
ware is encapsulated as components which communicate through well defined
interfaces. The communication between system wide components is managed
by a Virtual Function Bus (VFB), which acts as a virtual abstraction of the un-
derlying hardware. The realisation of the VFB to a concrete implementation of
the final target system is the Run-Time Environment (RTE).

10.1.2 ArcCore - Development Environment

ArcCore AB [2] is a provider of the Arctic Core open source AUTOSAR plat-
form developed in Eclipse [13]. Arctic Studio is an Integrated Development
Environment (IDE) for Arctic Core, which offers a number of professional
graphical tools to facilitate development. Figure 10.1 shows the different tools
provided by the Arctic Core tool suite. (1) Components and their interfaces are
developed, configured, and generated using the SoftWare Component (SWC)
builder tool. (2) The Extract Builder tool is used to add components to an
ECU, connect ports and to validate the extract. (3) The Run-Time Environ-
ment Builder models the VFB and generates a run-time implementation of the
component communication. (4) The configuration of the target platform e.g.
operating system, communication, and memory etc., and generation of target
c-code is done in the Basic Software Builder tool.
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Figure 10.1: Arctic Core tool suite overview

10.1.3 Mimer SQL Real-Time

Mimer SQL Real-Time (Mimer RT) [11] is a commercial RTDBMS that allows
applications with both hard real-time and non real-time requirements to safely
share data without risking real-time predictability. Hard real-time applications
use the RTAPI interface to access data using database pointers [10] while non
real-time applications use standard SQL interfaces. Mimer RT combines the
standard client/server architecture for SQL queries to enable tools and/or ap-
plications to access data both locally and remotely, with an embedded library
architecture for real-time access.

10.1.4 Database Proxies

Database proxies [1] translates data between component ports and an RTDBMS
that resides in the component framework (i.e., the AUTOSAR BSW) and vice
versa. This allows full decoupling of the RTDBMS from the component, i.e.,
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the component and the RTDBMS are unaware of the existence of the other.
Database proxies remove the need for database calls within the component,
thus preserving component encapsulation and enable component reuse. The
schema of the database is modelled and optimised separately and is thereby
independent of the component implementation.

The internal mapping of data in the RTDBMS to the database proxies is
made using database pointers for hard real-time components, or pre-compiled
SQL statements or stored procedures for soft real-time components. A pre-
compiled statement enables a developer to compile and bind a certain database
query to a statement. This has a decoupling effect since the internal database
schema is hidden from the component.

Database proxies are shown to be an efficient and predictable technique
that offers a range of valuable features to real-time embedded systems devel-
opment, maintenance and evolution at a minimal cost with respect to resource
consumption [1].
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10.2 System Development Roles
To support efficient use of database proxies in a development setting we divide
system development into the following three roles, see figure 10.2:

• The DataBase Administrator (DBA), manages the database design,
data modelling & optimisation, managing access rights, and generation
of the database configuration. Database objects are mapped to signals,
which are used by the system architect. With this approach, a complete
separation of concerns is achieved, since the database model is separated
from the run-time signal. This allows for a reconfiguration of the data-
base without affecting the system configuration. At compile time, an
embedded custom made database is synthesised into the final system.

• The component developer, provides the system architect with a set of
components according to specifications provided by the system archi-
tect. The component developer takes no consideration of database con-
nections and calls, since database proxies provide a full separation of
concern between these entities. The component implementation details
are provided to the system generation and compilation tools.

• The system architect, has the overall architectural system view. The
system architect assembles the system from components available in the
repository or provides the component developer with specifications. The
components ports are mapped to signals provided by the DBA. BSW
modules such as the operating system, memory, and network communi-
cation are configured and components are mapped to tasks. Finally the
system is compiled and ready to be deployed.

This approach enables the three roles to be fully decoupled from one an-
other. Thus, the tasks of each role can be performed independently.

10.3 Data Management Tool Suite Extension
This section describes the proposed database proxy integration into the Arctic
Core tool suite. The tool suite is extended to support the three development
roles introduced in section 10.2. Figure 10.3 illustrates the tool suite extended
with database management support. In short, a database modelling tool and
a data management module plug-in has been introduced in the BSW builder.
Since database proxies decouple the RTDBMS from the components, the SWC
builder is kept as it is. Finally, the tool suite is extended with a synthesis tool
that incorporates the database and database proxies into the run-time system.
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Figure 10.3: Data Management module integration overview

10.3.1 The Database Modelling Tool
During the development, the DBA uses a standard database modelling tool
(DbVisualizer [14]) to model, optimise and implement the database schema.
The DbVisualizer was selected because of its tight integration with the Mimer
SQL Real-Time database and its support for precompiled statements. When
the database is modelled, the DBA maps database values to signals using pre-
compiled statements which are stored in the database. These signals are later
used to map database proxies to objects in the database.

10.3.2 The Data Management Module
The Data Management Module, which is implemented as an Arctic Core Ec-
lipse Plug-in, allows the system architect to create database proxies to connect
component ports to signals in the database.

The Data management module includes four main configuration settings
for each added database proxy, see figure 10.4:

1. A global setting to enable the usage of database proxies and to include
the Mimer RT in the BSW.

2. A list of all hard and soft proxies in the system.



10.3 Data Management Tool Suite Extension 169

1

2

3

4

Figure 10.4: The Data Management Module

3. A configuration area where the database proxy is named and assigned to
either a provider or requester port of a component.

4. A configuration area where the database proxy is associated with a spe-
cific signal in the database. The tool automatically retrieves the available
signals names from the database.

10.3.3 Synthesis Tool
When the runnable system is generated, a synthesis tool is called that automat-
ically performs the following:

• Extraction of the relevant information from the development database
and transformations of this into an embedded database file that is opti-
mised for execution on the target platform.
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• Generation of the initialization code for database proxies. This includes
the creation of the proxies.h and proxies.c files which contain the ini-
tialization and uninitialisation functions of the database proxies that the
RTE invokes during system startup and shutdown [1].

• Substitution of the original ArcCore component communication code
with the database proxy component communication code.

Figure 10.5 shows the differences between the original communication
code sequence and the code sequence that uses database proxies. In the original
code, Rte_ActuatorRunnable is called from within the task. Since the compo-
nent has a requester port, the call to retrieve the data from memory is made
before the component itself is called. The Rte_PRE_ActuatorRunnable func-
tion disables all interrupts, calls an additional function that reads the data from
the buffer, and enables all interrupts. After this, the component is called.

/*** Original Arctic Core code ***/
void Rte_ActuatorRunnable(){
Rte_PRE_ActuatorRunnable();
ActuatorRunnable();
}
void Rte_PRE_ActuatorRunnable(){
DisableAllInterrupts();
Rte_ReadBuffer_Rte_Buf_Actuator_RPort_1_data_1
(&Rte_Inst_Actuator.Act_RPort_1_data_1->value);
EnableAllInterrupts();
}
/*** Database proxy code ***/
void Rte_ActuatorRunnable(){
Rte_PRE_ActuatorRunnable_DBProxy();
ActuatorRunnable();
}
void Rte_PRE_ActuatorRunnable_DBProxy(){
MimerRTGetInteger(DBP_Actuator, &Rte_Inst_
Actuator.Act_RPort_1_dataElem_1->value);
}

Figure 10.5: Example of original code and database proxy code

When using database proxies, Rte_ActuatorRunnable calls the Rte_PRE_
ActuatorRunnable_DBProxy function to read the value from the database using
a database pointer. In contrast to the original code, the interrupt disable is not
needed within the database proxy, since this is managed by Mimer RT.
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Since Mimer RT in addition to the RTAPI provides a standard SQL-based
interface, data access is not limited to database proxies. Data can also be made
available to external tools and 3rd party applications as well as to other internal
BSW modules such as the Data Log and Trace (DLT) module that can utilise
the data for diagnostic purposes.

10.4 Conclusions and Future Work
This paper has presented an approach for introducing real-time data manage-
ment in a commercial AUTOSAR development tool suite. This has been made
possible with the usage of database proxies which is a technique to provide
predictable run-time data management support for component-based real-time
embedded systems. Our approach, together with a proposed tool support, en-
ables a clear separation of concerns for the system architect, component devel-
oper and the database administrator.

As future work, we plan to complement the tool suite presented in this pa-
per to support automated validation and an augmentation of our existing syn-
thesis tool [1] to fully support the AUTOSAR component model.
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