

Debugging Using Time Machines

Replay Your Embedded Systems History

Henrik Thane and Daniel Sundmark

Mälardalen Real-Time Research Centre,
Department of Computer Engineering
Mälardalen University, Västerås, Sweden,

henrik.thane@mdh.se

Zealcore Embedded Solutions AB,
Hemdalsvägen 17, 723 35 Västerås, Sweden,

henrik.thane@zealcore.com

Abstract
Cyclic debugging is one of the most important and

most commonly used activities in program development.
During cyclic debugging, the program is repeatedly re-
executed to track down errors when a failure has been
observed. This process necessitates reproducible program
executions. Applying classical debugging techniques such
using breakpoints or single stepping in real-time systems
change the temporal behavior and make reproduction of
the observed failure during debugging less likely, if not
impossible. Consequently, these techniques are not
directly applicable for cyclic debugging of real-time
systems.

In this paper we present how do you turn standard CPU
instruction level simulator debuggers, JTAG/BDM
debuggers or in circuit emulator debuggers into veritable
time machines so you can debug your embedded
application both forwards and backwards in time –
repeatedly. By on-line recording significant system events,
and off-line deterministically replaying them, we can
inspect the real-time system in great detail while still
preserving its real-time behavior.

Keywords: Determinism, debugging, monitoring,
probe-effect, testing, distributed real-time systems, replay,
black-box, instruction simulators.

1 Introduction
Testing is the process of revealing failures by exploring

the runtime behavior of the system for violations of the
specifications. Debugging on the other hand is concerned
with revealing the errors that cause the failures. The
execution of an error infects the state of the system, e.g.,

by infecting variables, memory, etc, and finally the
infected state propagates to outputs. The process of
debugging is thus to follow the trace of the failure back to
the error. In order to reveal the error it is imperative that
we can reproduce the failure repeatedly. This requires
knowledge of the start conditions and a deterministic
execution. For sequential software with no real-time
requirements it is sufficient to apply the same input and
the same internal state in order to reproduce a failure. For
real-time software the situation gets more complicated due
to timing and ordering issues.

There are several problems to be solved in moving
from debugging of sequential programs (as handled by
standard commercial debuggers) to debugging of
distributed real-time programs. We will briefly discuss the
main issues by making the transition in three steps:

Debugging sequential real-time programs

Moving from single-tasking non-real-time programs to
single-tasking real-time programs adds the concept of
interaction with, and dependency of, an external context.
The system can be equipped with sensors, sampling the
external context and actuators, interacting with the
context. In addition, the system is equipped with a real-
time clock, giving the external and the internal process a
shared time base. If we try to debug such a program, we
will encounter two major problems: First, how do we
reproduce the readings of sensors done in the first run?
These readings need to be reproduced in order not to
violate the requirement of having exactly the same inputs
to the system. Second, how do we keep the shared time
base intact? During the debug phase, the developer needs
to be able to set breakpoints and single-step through the
execution. However, breaking the execution will only
break the progress of the internal execution while the

external process will continue. Consider, for instance, an
ABS-breaking system in a car. During the testing phase, a
failure is discovered and the system is run in a debugger.
While the system is run in the debugger, the testing crew
tries to reproduce the erroneous state by maneuvering the
vehicle in the same way as in the first run. However,
breaking the execution of the system by setting a
breakpoint somewhere in the code will only cause the
program to halt. The vehicle, naturally, will not freeze in
the middle of the maneuver and the shared time base of
the internal and external system is lost. This makes it
impossible to reproduce the failure deterministically and
simultaneously thoroughly examining the state of the
system at different times in the execution.

 A mechanism, which during debugging faithfully and
deterministically reproduces these interactions, is required.

Debugging multi-tasking real-time programs

In moving from debugging sequential real-time
programs to debugging multitasking real-time programs
executing on a single processor the problem of
concurrency surfaces. When the system consists of a set of
tasks instead of one, the tasks will interact with each other
both in a temporal and a functional manner. Kernel
invocations and hardware interrupts will change the flow
of control in the system. In addition, tasks sharing
resources leads to the problems with critical regions and
race conditions. Consider a system with two tasks, A and
B, both sharing the resource X. In a test run shown in
Figure 1, A beats B in a race situation for X and this leads
to a failure.

The developer tries to investigate what led to the
failure and inserts some kind of software probe in the
system in order to monitor what happened. When this
probe executes, it extends the execution-time such that B
beats A in the same race that A won in the first execution.
This scenario is illustrated in Figure 2.

This time, the execution does not encounter any failure
and the cause of the first failure is still unknown. This type
of behavior, when the insertion and removal of probes
affect the execution of the system, is called the probe
effect [3].

In moving from debugging sequential real-time programs
to debugging multitasking real-time programs executing
on a single processor we must consequently have
mechanisms for reproducing task interleavings, and races
between the executing tasks.

Debugging of distributed real-time systems

The transition from debugging single node real-time
systems to debugging distributed real-time programs
introduces the additional problems of correlating
observations on different nodes and break-pointing tasks
on different nodes at exactly the same time.

To implement distributed breakpointing we either need to
send stop or continue messages from one node to a set of
other nodes with the problem of nonzero communication
latencies, or we need á priori agreed upon times when the
executions should be halted or resumed. The latter is
complicated by the lack of perfectly synchronized clocks,
meaning that we cannot ensure that tasks halt or resume
their execution at exactly the same time. Consequently, a
different approach is needed.

Debugging by the use of Time Machines

We will in this paper present a debugging technique
based on deterministic replay [17][1][8][14][17], which
we call the TimeMACHINE. During runtime, information
is recorded with respect to interrupts, task-switches,
timing, and data. The system behavior can then be
deterministically reproduced off-line using the recorded
history, and inspected to a level of detail, which until now
has been unprecedented. The TimeMACHINE uses
standard debuggers and CPU instruction level simulators

Task A takes resource X

Priority

A

Failure

t

Figure 1. Task A takes resource X before being
preempted by B.

Probe executes

Priority

 A

B preempts A

t

B

B takes X

A

A resumes
A takes X

Figure 2. Task B preempts A before A takes
resource X.

Figure 3 Classic break-pointing and single-stepping
techniques violates the timing behavior of the inputs,
outputs and the executing tasks in a real-time system.

or JTAG or BDM debuggers as well as In Circuit
Emulators (ICE) without the risk of introducing temporal
side effects. Interrupts, task-switches and data can be
reproduced and the system debugged both forward and
backwards in time, with a timing precision corresponding
to the exact machine code instructions at which the events
occurred.

Deterministic replay is useful for tracking down errors
that have caused a detected failure, but is not appropriate
for speculative explorations of program behaviors, since
only recorded executions can be replayed.

We have adopted deterministic replay to single tasking,
multi-tasking, and distributed real-time systems. By
recording all synchronization, scheduling and
communication events, including interactions with the
external process, we can off-line examine the actual real-
time behavior without having to run the system in real-
time, and without using intrusive observations, potentially
leading to probe-effects [3]. We can thus deterministically
replay the task executions, the task switches, interrupt
interference and the system behavior repeatedly. This also
scales to distributed real-time systems with globally
synchronized time bases, or to systems with deterministic
broadcast buses like e.g. CAN [2]. If we record all
interactions between the nodes we can locally on each
node deterministically reproduce them using JTAG or
BDM debuggers, ICE debuggers or instruction level
simulator debuggers and then globally correlate them with
corresponding events recorded on other nodes.

Contribution

The contribution of this paper is a method for debugging
real-time systems, which to our knowledge is

• The first method for deterministic debugging of single
tasking and multi-tasking real-time systems using
standard debuggers.

• A refinement to the first method for deterministic
debugging of distributed real-time systems by Thane
and Hansson[17].

Paper outline: Section 2 presents our system model and
Section 3 our method for real-time systems debugging.
Section 4 provides a small example to illustrate the
method. Section 5 discusses some general issues related to
deterministic replay. Section 6 discuss different
approaches to monitoring and recording of information
from the target system. Section 7 gives an overview of
related work. Finally, in Section 8, we conclude and give
some hints on future work.

2 The System Model
We assume a distributed system consisting of a set of

nodes. Each node is a self sufficient computing element
with CPU, memory, network access, a local clock and I/O
units for sampling and actuation of an external process.
We further assume the existence of a global synchronized
time base [2][4] with a known precision δ, meaning that
no two nodes in the system have local clocks differing by
more than δ.

The software that runs on the distributed system
consists of a set of concurrent tasks and interrupt routines,
communicating by message passing or via shared memory.
Tasks and interrupts may have functional and temporal
side effects due to preemption, message passing and
shared memory.

We assume for each node an execution strategy ranging
from an interrupt driven single program system to a run-
time system with real-time kernels that supports
preemptive scheduling.

We further assume that we have either instruction level
simulator debuggers, JTAG/BDM debuggers or ICE
debuggers available We assume that the debuggers have
scripting languages or equivalent interfaces such that
macros or programs can be invoked conditionally at
specified breakpoints.

3 The Time Traveling process
There are three basic elements to this revolutionary

debugging technology

1. The Recorder, is a mechanism that collects all the
necessary information regarding task-switches,
interrupts, and data.

2. The Historian, is the system that that
automatically analyzes, and correlates events and
data in the recording, and compose these into a
chronological timeline of breakpoints and
predicates.

3. The Actor, deterministically replays the history in
the debugger by generating interrupts, task-
switches and restoring data as defined by the
timeline.

This process is performed without ever changing the
target executable code. The same code (including real-
time operating system) that is run in the target, during
runtime, is run during replay in the instruction level
simulator.

We will now in further detail discuss and describe our
method for achieving time travel and deterministic replay.

We follow the structure in the introduction and start by
giving our solution to handling sequential software with
real-time constraints, and then continue with multitasking
real-time systems, and distributed multitasking real-time
systems. We will then continue with a discussion on
different approaches to recording and how you extract
information from your embedded system.

3.1 Debugging single task real-time systems
Debugging of sequential software with real-time

constraints requires that the debugging is performed such
that the temporal requirements imposed by the
environment are still fulfilled. This means, as pointed out
in the introduction, that classical debugging with
breakpoints and single-stepping cannot be directly
applied, since it would invalidate timely reproduction of
inputs and outputs – You cannot breakpoint the world.

However, if we identify significant variables, like state
variables, and peripheral inputs like readings of A/D
converters or events like accesses to the local clock, and
record them we can off-line replay them. We only need to
run a historian off-line that constructs a timeline of the
recorded data and events. Using ordinary debuggers we,
off-line automatically, “short-circuit” all identified
variables, inputs or events according to the recorded
timeline, i.e., we substitute readings of actual values with
the recorded values.

This enables us to eliminate the time dependency of the
system and replay the systems history over and over. We
can even jump forth and back in time using the debugger
(thus the name the TimeMACHINE), while still allowing
the insertion of an arbitrary number of breakpoints and
watches without introducing the probe-effect.

3.2 Debugging multitasking real-time systems
To replay and debug multitasking real-time systems we

need, in addition to the data flow that is recorded for
single task real-time systems, to record the system control
flow. Essentially this corresponds to the task switches and
the interrupt interference, i.e., the transfers of control from
one task to another task, or from one task to an interrupt
service routine and back. To identify these events we
record where and when they occurred using timestamps
and the program counter (PC). However, since PC values
can be revisited in loops (Figure 4), and subroutine as well
as recursive calls, and due to the coarse and unpredictable
granularity of regular timers in CPUs it is necessary to
define a more unique marker.

If the target processor supports instruction counters
(IC) the unique marker can be defined by the tupel <t, PC,
IC>. However, since instruction counters are not very
common in commercial embedded micro-controllers, we

need another approach. An alternative approach is to make
use of software instruction counters (SIC) [10] that count
backward branches and subroutine calls in the assembly
code. However, these counters requires the compiler
manufacturer to provide this feature (which they do not) or
special target specific tools that scan through the assembly
code and instrument all backward branches and subroutine
calls. The approach also affects the performance, since it
usually dedicates one or more CPU registers to the
instruction counter, and therefore reduces the possibility
of compiler optimizations.

In our approach we make use of a much simpler and
much more efficient software based method that can be
applied to any processor and operating system without the
need for special processor features, special compilers or
tools. However due to patenting issues we cannot disclose
how…

The off-line historian does in addition to what it does
for the data flow in single tasking real-time systems create
a timeline of all task-switches and interrupt hits. This
timeline is an ordered list of breakpoints for each recorded
event. The historian also generates a program for each
breakpoint which resets the system to the state it had
during runtime. For example, one such breakpoint
program resets the real-time kernel scheduler such that
upon a simulated/generated timer interrupt the scheduler
starts the recorded task, or it generates an interrupt as
recorded.

3.3 Debugging distributed real-time systems
To deal with distributed systems or multiprocessor
systems we simply put separate recorders on each node.
For each local recording we run a historian that derives a
timeline for each node.

As we by design can record significant events like I/O
sampling and inter-process communication, we can on
each node record the contents and arrival time of messages
from other nodes. The recording of the messages therefore
makes it possible to locally replay, one node at a time, the
exchange with other nodes in the system without having to
replay the entire system concurrently. Globally
synchronized time stamps of all events make it possible to

For (i=0; i<10;i++)

{

a = a + i;

------------------- PC= 0x2340

b = q*2 + i;

}

Figure 4. The PC is not sufficient as a unique marker.

debug the entire distributed real-time system, and enables
visualizations of all recorded and re-executed events in the
system.

Alternatively, to reduce the amount of information
recorded we can off-line re-execute the communication
between the nodes. However, this requires that we order-
wise synchronize all communication between the nodes,
meaning that a fast node waits up until the slow node(s)
catch up. This can be done truly concurrently using several
nodes using JTAG/BMD or ICE debuggers, or simulated
on a single host computer using an instruction level
simulator for each node.

Global states

In order to correlate observations in the system we need
to know their orderings, i.e., determine which observations
are concurrent, and which precede and succeed a
particular event. In single node systems or tightly coupled
multiprocessor systems with a common clock this is not a
problem, but for distributed systems where there is no
common clock this is a significant problem. An ordering
on each node can be established using the local clocks, but
how can observations between nodes be correlated?

One approach is to establish a causal ordering between
observed events, using for example logical clocks [7]
derived from the messages passed between the nodes.
However, this is not a viable solution if tasks on different
nodes work on a common external process, without
exchanging messages, or when the duration between
observed events is of significance. In such cases we need
to establish a total ordering of the observed events in the
system. This can be achieved by forming a synchronized
global time base [2][4]. That is, we keep all local clocks
synchronized to a specified precision δ, meaning that no
two nodes in the system have local clocks differing by
more than δ.

 Figure 5 illustrates the local ticks in a distributed
system with three nodes, all with tick rate ∏, and

synchronized to the precision δ. There is no point in
having ∏ ≤ δ, because the precision δ dictates the margin
of error of clock readings, and thus a ∏ ≤ δ would result
in overlaps of the δ intervals during which the
synchronized local ticks may occur [6].

Consider Figure 6, illustrating two external events that
all three nodes can observe, and which they all timestamp.
Due to the sparse time base [5] and the precision δ, we
end up with timestamps of the same event that differ by 1
time unit (i.e., ∏) while still complying with the precision
of the global time base. This means that some nodes will
consider events to be This concurrent (i.e., having
identical time stamps), while other nodes will assign
distinct time stamps to the same events. is illustrated in
Figure 6, where node 2 will give the events e1 and e2
identical time stamps, while they will have difference 2
and 1 on nodes 1 and 3, respectively. That is, only events
separated by more than 2∏ can be globally ordered.

4 A small example
We are now going to give an example of how the entire
recording and replay procedure can be performed. The
considered system has four tasks A, B, C, and D (Figure
7). The tasks A, B, and C are functionally related and

Figure 6. The effects of a sparse time base.

δδδδ δδδδ

Event e2 Event e1

C1(t)

C2(t)

C3(t)

δ δ

A

Sample

B

Sample

C

Calculate

D

work

Figure 7. The data-flow between the tasks

δ δ

C1(t)
i+1 i

i+1

i+1

i

i

Π

C2(t)

C3(t)

Figure 5 The occurrence of local ticks on three nodes

exchange information. Task A samples an external process
via an analog to digital converter (A/D), task B performs
some calculation based on previous messages from task C
and samples an external process, and task C receives both
the processed A/D value and a message from B;
subsequently C sends a new message to B.

Task D has no functional relation to the other tasks, but
preempts B at certain rare occasions, e.g., when B is
subject to interrupt interference, as depicted in Figure 8.
However, task D and B both uses a function that by a
programming mistake is made non re-entrant. This
function causes a failure in B, which subsequently sends
an erroneous message to C, which in turn actuates an
erroneous command to an external process, which fails.
The interrupt Q hits B, and postpones B’s completion
time. Q causes in this case B to be preempted by D and
therefore becomes infected by the erroneous non-reentrant
function. This rare scenario causes the failure. Now,
assume that we have detected this failure and want to track
down the error.

We have the following control transfer recording for time
50 -117:

Together with the following data recording:

The historian then generates conditional breakpoints at
location x, and y as well as programs that cause the
Interrupt Q to occur at x and the preemption of task B by
task D at location y. Task A’s access to the read_ad()
function is short circuited and fed with the recorded value
instead. Task B gets at its start a message from D, which is
recorded before time 50.

The message transfers from A and B to C is performed by
the kernel in the same way as it would on-line.

The programmer/analyst can breakpoint, single step and
inspect the control and data flow of the tasks as he or she
see fit in pursuit of finding the error. Since the replay
mechanism reproduces all significant events pertaining to
the real-time behavior of the system the debugging will
not cause any probe-effects.

As can be gathered from the example it is fairly
straightforward to replay a recorded execution. The error
can be tracked down because we can reproduce the exact
interleavings of the tasks and interrupts repeatedly.
Experience has shown that reproducing failures of the
exemplified kind is very difficult in practice. A
deterministic replay mechanism is thus an invaluable tool.

5 Recording
With respect to recording we have several options

ranging from intrusive-free hardware and immobile
recorders, to intrusive but deterministic software and
mobile recorders. We also have the option of leaving the
recording mechanism in the deployed system, with the
equivalent benefit of a black-box (as in airplanes). If the
deployed system crashes we can extract the information
from the black-box and use it for deterministic replay of
the system up to the crash. We are going to describe three

1. Task A at time 51, read_ad() = 234

2. Task B at time 60, message from C = 78

Figure 8. The recorded execution order scenario

60 70 80 90 100 110 120

A

B

D

C

1. Task A starts at time 50

2. Task A stops at time 55

3. Task B starts at time 60

4. Interrupt Q starts at time 70, and preempts
task B at PC=x

5. Interrupt Q stops at time 72

6. Task B resumes at time 72, at PC=x

7. Task D starts at time 80, and preempts task B
at PC=y

8. Task D stops at time 87

9. Task B resumes at time 87, at PC=y

10. Task B stops at time 89

11. Task C starts at time 100

12. Task C stops at time 117

stereotypes. However, which one is most suitable depends
on the application.

Type 1. Non Intrusive Hardware Recorders.
Hardware in-circuit emulators using dual port ram are
used (e.g., Lauterbach, AMC, etc.)

This type of history recorder need no instrumentation
whatsoever of the target system, if the in circuit emulator
(ICE) has real-time operating system (RTOS) awareness,
or interrupt service routine awareness. Many commercial
ICEs (like e.g., Lauterbach, AMC, etc) provide this
functionality. That is, no instrumentation is needed and
you can observe the state of the RTOS by monitoring the
changes in the data structures of the RTOS via the dual
port memory. The same can be done for simpler event
triggered systems by observing interrupt occurrences, and
data (I/O, communication and access to memory) can be
recorded if you know the location of it in memory, of
which most compilers and linkers can provide.

This type of history recorder is non-intrusive since it
will not steal any CPU-cycles or target memory. One
drawback however is that this type of system cannot be
delivered with the deployed target system (the black-box)
since its too expensive, especially for high volume systems
like car subsystems or consumer electronics. Another con
is that these systems are hard to expand to multiprocessor
and distributed systems due to cost and synchronization
issues. The application of this type of history recorder is
consequently best suited for pre-deployment lab testing
and debugging.

Type 2. Hybrid Hardware Software Recorders. This
recorder type has hardware support and a minimum of
target software instrumentation. Hardware in-circuit
emulators or logic analyzers collect histories using bus
snooping and instrumented software. (e.g., Agilent,
Lauterbach, VisionICE, Microtek, etc.)

This type of recording system could also be intrusive
free if all data manipulations and states were reflected in
the systems external memory, and we had RTOS and data
awareness. However, many micro-controllers and CPUs
have on-chip memory and caches which means that any
changes in state or data of the system is not reflected in the
external memory. In the latter case it is necessary to
instrument the operating system such that interrupts and
task-switches are recorded and stored in external memory,
bypassing the cache. Many existing RTOSs have “hooks”
that can be used for instrumentation. The same goes for
data and internal state of the application. The cost for this
overhead is roughly 10-20 read write operations, and
about 12-20 bytes of data stored at every task switch,
depending on the CPU. The external historian then
collects all changes in this buffer and constructs a history.

This type of history recorder is cheaper than an ICE,
but has the same problem of scalability with respect to
multiprocessor systems and distributed systems as the type
1 recorder above. Likewise it is not possible to leave the
monitoring hardware monitoring mechanisms in the target
system (the black-box) due to cost and size issues.
Specially designed co-processors could however be
deployed with the target system to some expense. The

TARGET

Instrumented RTOS
and software write to
a buffer

Logic analyzer
e.g., AAggiilleenntt HISTORIAN

BUFFER
*Task Switch

*Data Logic analyser or
pod snoop data
written to the buffer

Figure 10. Monitoring via bus snooping and instrumented software.

Dual port
memory

ICE
e.g., Lauterbach

RTOS awareness
DATA awareness TARGET

HISTORIAN

Figure 9. Monitoring via dualport memories and in circuit emulators.

application of this type of history recorder is consequently
also best suited for pre-deployment lab testing and
debugging.

Type 3. Software Recorders. The target operating
system and software is automatically instrumented for
storage of histories in circular memory buffers of
programmable length.

This type of system is intrusive in the sense that is
consumes CPU cycles and memory for storing task switch
information and application data, but it is deterministic
since the intrusion is constant, i.e., what is run during
testing and debugging is run in the delivered system. The
instrumentation consists of a cyclic series of buffers in the
target RTOS and software for storage of tasks-switches,
interrupts, timing and application data, as well as code for
storing these events and data. In essence it is a type 2
system with more memory.

During testing you periodically upload the contents of
the cyclic buffers (history) to the historian for assembly of
longer histories, or you run the system until if crashes and
then upload the history stored in the target to the historian.

This approach, in contrast to the hardware and hybrid
approaches, makes it possible for us to diagnose and
debug the system after deployment (the blak-box). This
means that when a customer reports a failure, you can
relive the recorded history and diagnose what happened.
You can travel back in time and deterministically
reproduce exactly what happened during runtime.
Examples of suitable application areas are safety-critical
systems, like those in the automotive industry and medical

systems. More examples are robotic production lines, or
other systems were production stop costs plenty of money
and where it is not possible to stop the entire system for
debugging.

The cost for this software recording approach is an
overhead of roughly 10-20 read/write operations, and
about 12-20 bytes of data for every task switch depending
on the CPU. Each buffer entry contains data of an event,
for example, who started, who preempted, who terminated,
who resumed, etc? At which program counter value did it
happen, at what time, etc? The memory cost is a function
of the length of the recording and the size of the buffer
entries. Typically this amounts to ca 0.2kB – 2kB (10 –
100 events). It is also necessary to record the data that
cannot be restored off-line by re execution, e.g., sampling
via A/D converters, state, messages received via a
communication network, access to the real-time clock, etc.
Note, that it is not necessary to store data, like messages
passed between tasks since these transmission can be re
executed off-line. The memory need for data storage is
also a function of the length of the recording, but also
dependent of the size of the data.

Software recording is also a great deal cheaper for
multiprocessor and distributed systems applications, than
the hardware of hybrid approaches.

6 Discussion
Statement: One can only replay what has previously been
observed, and no guarantees that every significant system
behavior will be observed accurately can be provided.

TARGET

Instrumented RTOS and
software writes to a buffer
list of programmable
length.

CYCLIC
BUFFERS

*Task Switch
*Data *Task Switch
*Data*Task Switch
*Data *Task Switch

*Data *Task Switch
*Data

HISTORIAN
Pre deployment:
Periodically upload
buffers

Post deployment and crash:
Store in ram, flash memory or
equivalent. THE BLACK-BOX

HISTORIAN

Figure 11. Monitoring via instrumented RTOS and application software.

Since replay takes place at the machine code level the
amount of information required is usually large. All
inputs and intermediate events, e.g. messages, must be
kept.

Reply: The amount and the necessary information required
is of course a design issue, and it is not true that all inputs
and intermediate messages must be recorded. The replay
can as we have shown actually re-execute the tasks in the
recorded event history. Only those inputs and messages
which are not re-calculated, or re-sent, during the replay
must be kept. This is specifically the case for RTS with
periodic tasks, where we can make use of the knowledge
of the schedule (precedence relations) and the duration
before the schedule repeats it self (the LCM – the Least
Common Multiple of the task period times.) In systems
where deterministic replay has previously been employed,
e.g., distributed systems [11] and concurrent programming
(ADA) [14] this has not been the case. The restrictions,
and predictability, inherent to scheduled RTS do therefore
give us the great advantage of only recording the data that
is not recalculated during replay.

Statement: If a program has been modified (e.g.,
corrected) there are no guarantees that the old event
history is still valid.

If a program has been modified, the relative timing
between racing tasks can change and thus the recorded
history will not be valid. The timing differences can stem
from a changed data flow, or that the actual execution time
of the modified task has changed. In such cases it is likely
that a new recording must be made. However, the
probability of actually recording the sequence of events
that pertain to the modification may be very low. As
explained earlier, debugging in general and deterministic
replay especially is not suited for speculative
investigations of the system behavior. This is an issue for
regression testing, as explained in [15][16].

7 Related work
There are a few descriptions of deterministic replay

mechanisms (related to real-time systems) in the literature:

• A deterministic replay method for concurrent Ada
programs is presented by Tai et al [14]. They log the
synchronization sequence (rendezvous) for a
concurrent program P with input X. The source code
is then modified to facilitate replay; forcing certain
rendezvous so that P follows the same
synchronization sequence for X. This approach can
reproduce the synchronization orderings for
concurrent Ada programs, but not the duration
between significant events, because the enforcement
(changing the code) of specific synchronization
sequences introduces gross temporal probe-effects.

The replay scheme is thus not suited for real-time
systems, neither are issues like unwanted side-effects
caused by preempting tasks considered. The
granularity of the enforced rendezvous does not allow
preemptions, or interrupts for that matter, to be
replayed. It is unclear how the method can be
extended to handle interrupts, and how it can be used
in a distributed environment.

• Tsai et al present a hardware monitoring and replay
mechanism for real-time uniprocessors [17]. Their
approach can replay significant events with respect to
order, access to time, and asynchronous interrupts.
The motivation for the hardware monitoring
mechanism is to minimize the probe-effect, and thus
make it suitable for real-time systems. Although it
does minimize the probe-effect, its overhead is not
predictable, because their dual monitoring processing
unit causes unpredictable interference on the target
system by generating an interrupt for every event
monitored [1]. They also record excessive details of
the target processors execution, e.g., a 6 byte
immediate AND instruction on a Motorola 68000
processor generates 265 bytes of recorded data. Their
approach can reproduce asynchronous interrupts only
if the target CPU has a dedicated hardware instruction
counter. The used hardware approach is inherently
target specific, and hard to adapt to other systems.
The system is designed for single processor systems
and has no support for distributed real-time systems.

• The software-based approach HMON [1] is designed
for the HARTS distributed (real-time) system
multiprocessor architecture [13]. A general-purpose
processor is dedicated to monitoring on each
multiprocessor. The monitor can observe the target
processors via shared memory. The target systems
software is instrumented with monitoring routines, by
means of modifying system service calls, interrupt
service routines, and making use of a feature in the
pSOS real-time kernel for monitoring task-switches.
Shared variable references can also be monitored, as
can programmer defined application specific events.
The recorded events can then be replayed off-line in a
debugger. In contrast to the hardware supported
instruction counter as used by Tsai et al., they make
use of a software based instructions counter, as
introduced by [10]. In conjunction with the program
counter, the software instruction counter can be used
to reproduce interrupt interferences on the tasks. The
paper does not elaborate on this issue. Using the
recorded event history, off-line debugging can be
performed while still having interrupts and task
switches occurring at the same machine code
instruction as during run-time. Interrupt occurrences
are guaranteed off-line by inserting trap instructions at

the recorded program counter value. The paper lacks
information on how they achieve a consistent global
state, i.e., how the recorded events on different nodes
can consistently be related to each other. As they
claim that their approach is suitable for distributed
real-time systems, the lack of a discussion concerning
global time, clock synchronization, and the ordering
of events, diminish an otherwise interesting approach.
Their basic assumption about having a distributed
system consisting of multiprocessor nodes makes their
software approach less general. In fact, it makes it a
hardware approach, because their target architecture
is a shared memory multiprocessor, and their basic
assumptions of non-interference are based on this
shared memory and thus not applicable to distributed
uniprocessors.

8 Conclusions
Traditional debugging methods provide little insight

into the cause of a real-time system crash. The
TimeMACHINE records execution and data history, and
lets you re-execute and analyze the events leading up to a
crash. The TimeMACHINE allow you to replay the
history over and over again; forward, backward, and in
greater detail than recorded by means of an instruction
level simulator debugger or standard JTAG/BDM or ICE
debuggers.

Since the histories (task-switches, interrupts, inputs,
and communication) are replayed in the debugger, which
has its own timeline, we can replay (re execute) the system
history faster or slower than the recorded “executed real-
time” (this is specifically the case with instruction level
simulators). This also allows you to insert any number of
breakpoints, single-step, probe or poke the system while
still executing the exact same series of events that
occurred during run-time.

There exists now a commercial tool based on the
TimeMACHINE technology provided by ZealCore
Embedded Solutions AB (www.Real-TimeMachine.com).

9 References
[1] Dodd P. S., Ravishankar C. V. Monitoring and debugging

distributed real-time programs. Software-practice and
experience. Vol. 22(10): 863-877, October 1992.

[2] Eriksson C., Thane H. and Gustafsson M. A
Communication Protocol for Hard and Soft Real-Time
Systems. In the proceedings of the 8th Euromicro Real-
Time Workshop, L'Aquila Italy, June, 1996.

[3] Gait J. A Probe Effect in Concurrent Programs. Software
– Practice and Experience, 16(3):225-233, March, 1986.

[4] Kopetz H and Ochsenreiter W. Clock Synchronisation in
Distributed Real-Time Systems. IEEE Transactions on
Computers, August 1987.

[5] Kopetz H. Sparse time versus dense time in distributed
real-time systems. In the proceedings of the 12th
International Conference on Distributed Computing
Systems, pp. 460-467, 1992.

[6] Kopetz, H. and Kim, K. Real-time temporal uncertainties
in interactions among real-time objects. Proceedings of
the 9th IEEE Symposium on Reliable Distributed Systems,
Huntsville, AL, 1990.

[7] Lamport L. Time, clock, and the ordering of events in a
distributed systems. Communications of ACM, (21):558-
565: July 1978.

[8] LeBlanc T. J. and Mellor-Crummey J. M. Debugging
parallel programs with instant replay. IEEE Transactions
on Computers,36(4):471-482, April 1987.

[9] McDowell C.E. and Hembold D.P. Debugging concurrent
programs. ACM Computing Surveys, 21(4):593-622,
December 1989.

[10] Mellor-Crummey J. M. and LeBlanc T. J. A software
instruction counter. In Proc. of 3d International
Conference on Architectural Support for Programming
Languages and Operating Systerns, Boston, pp. 78-86,
April 1989.

[11] Netzer R.H.B. and Xu Y. Replaying Distributed Programs
Without Message Logging. In proc. 6th IEEE Int.
Symposium on High Performance Distributed Computing.
Pp. 137-147. August 1997.

[12] Schütz W. Fundamental Issues in Testing Distributed
Real-Time Systems. Real-Time Systems journal, Kluwer
A.P., vol. 7(2):129-157, 1994

[13] Shin K. G. HARTS: A distributed real-time architecture.
IEEE Computer, 24(5):25-35, May, 1991.

[14] Tai K.C, Carver R.H., and Obaid E.E. Debugging
concurrent Ada programs by deterministic execution.
IEEE Transactions on Software Engineering. Vol.
17(1):45-63, January 1991.

[15] Thane H. and Hansson H. Handling Interrupts in Testing
of Distributed Real-Time Systems. In proc. Real-Time
Computing Systems and Applications conference
(RTCSA’99), Hong Kong, December, 1999.

[16] Thane H. and Hansson H. Towards Systematic Testing of
Distributed Real-Time Systems. Proc. 20th IEEE Real-
Time Systems Symposium (RTSS’99), Phoenix, Arizona,
December 1999.

[17] Thane H. and Hansson H. Using Deterministic Replay for
Debugging of Distributed Real-Time Systems. In 12th
EUROMICRO CONFERENCE ON REAL-TIME
SYSTEMS, pages 265-272 Stockholm , June 2000. IEEE
Computer Society.

[18] Tsai J.P., Fang K.-Y., Chen H.-Y., and Bi Y.-D. A
Noninterference Monitoring and Replay Mechanism for
Real-Time Software Testing and Debugging. IEEE
Transactions on Software Engineering, 16: 897 - 916,
1990.

	Debugging Using Time Machines�Replay Your Embedded Systems History
	Introduction
	
	Debugging multi-tasking real-time programs
	Debugging of distributed real-time systems
	Debugging by the use of Time Machines
	Contribution

	The System Model
	The Time Traveling process
	Debugging single task real-time systems
	Debugging multitasking real-time systems
	Debugging distributed real-time systems

	A small example
	Recording
	Discussion
	Related work
	Conclusions
	References

