
Towards Resource Sharing under Multiprocessor
Semi-Partitioned Scheduling

Sara Afshar, Farhang Nemati, Thomas Nolte
Mälardalen University, Västerås, Sweden

Corresponding author: farhang.nemati@mdh.se

Abstract—Semi-partitioned scheduling has been subject of
recent interest, compared with conventional global and parti-
tioned scheduling algorithms for multiprocessors, due to better
utilization results. In semi-partitioned scheduling most tasks are
assigned to fixed processors while a low number of tasks are split
up and allocated to different processors. Various techniques have
recently been proposed to assign tasks in a semi-partitioned en-
vironment. However, an appropriate synchronization mechanism
for resource sharing between tasks in semi-partitioned scheduling
has not yet been investigated. In this paper we propose two
methods for handling resource sharing under semi-partitioned
scheduling in multiprocessor platforms. The main challenge is to
handle the resource requests of tasks that are split over multiple
processors.

I. INTRODUCTION

Research studies on real-time scheduling techniques suitable
for multiprocessor systems has largely increased due to the
dramatic rise of interest towards usage of multi-core tech-
nology in embedded systems. The shift towards multi-core
technology has emerged the need for real-time scheduling
algorithms and resource sharing protocols, which support
real-time applications on multiprocessors. Two major con-
ventional algorithms developed for scheduling real-time tasks
on multiprocessors are categorized as global and partitioned
scheduling. In partitioned scheduling each task is statically
assigned to a single processor on which all of its jobs will
execute. In global scheduling a global ready queue is used to
store all ready tasks in the system.

Semi-partitioned scheduling is a mix between the pure
partitioned and global scheduling approaches, which has been
first introduced by Anderson et al. in [1]. Semi-partitioned
scheduling extends partitioned scheduling by allowing a low
number of tasks to be split among different processors and
thereby improving the schedulability, while other tasks in the
system are allocated to fixed processors. Similar to partitioned
scheduling, semi-partitioned scheduling utilizes separate ready
queues for each processor in which the individual scheduler
of each processor manages ready tasks from the ready queue
to access the processor capacity. Different task allocation
methods have been proposed in [2], [3], [4], [5]. Guan et
al. in [5] allow the utilization of task sets to be as high as
the utilization bound of Liu and Layland’s Rate Monotonic
Scheduling (RMS) for any task set.

A semi-partitioned scheduling approach consists of three
parts: 1) the partitioning algorithm which determines how to
allocate tasks, or split them if required, among processors, 2)
the scheduling algorithm which specifies how to schedule the
tasks assigned to each processor, and 3) the synchronization

protocol to manage sharing of mutually exclusive resources
between tasks which is the focus of this paper. Execution of
tasks on multiprocessors can cause longer blocking delays
comparing to executing the tasks on uniprocessors due to
delays caused by other processors in the system. Therefore,
the need of an efficient real-time synchronization protocol
for accessing the shared resources is magnified under semi-
partitioned scheduling. For this purpose we present two solu-
tions in this paper for handling shared resources undr semi-
partitioned scheduling.

The goal of a synchronization protocol is to bound the
waiting times of tasks which share resources in the system.
Vast amount of work has been done on resource sharing under
partitioned scheduling algorithms. Rajkumar et al. proposed
the Multiprocessor Priority Ceiling Protocol (MPCP) in [6].
The Multiprocessor Stack Resource Policy (MSRP) introduced
by Gai et al. in [7] is another resource sharing technique for
multiprocessors. The Flexible Multiprocessor Locking Proto-
col (FMLP) proposed by Block et al. in [8] for partitioned and
global scheduling algorithms and later the partitioned FMLP
was extended by Brandenburg and Anderson in [9] for fixed
priority scheduling. Another locking protocol for handling
resource sharing in multiprocessors is O(m) Locking Protocol
(OMLP) introduced by Brandenburg and Anderson in [10].
Multiprocessor Synchronization protocol for Open Systems
(MSOS) is another synchronization mechanism for resource
sharing among independently-developed real-time applications
presented by Nemati et al. in [11].

Inspired by the previous protocols we have investigated two
methods for handling resource requests under semi-partitioned
scheduling regardless of the partitioning algorithms. In the rest
of this paper we present the proposed methods and analyze the
relevant blocking durations.

II. SYSTEM MODEL

In this section we introduce the system and task model. The
multiprocessor platform consists of a task set comprising of n
periodic tasks {τ1,τ1, ...,τn} which is running on m processors
{P1,P1, ...,Pm}. Each task τi conforms to the (Ci,Ti,ρi) model
where Ci is the worst-case execution time, Ti is the period and
ρi is the priority of the task τi. Tasks have implicit deadline,
i.e., Ti is also τi’s relative deadline. Without loss of generality,
task τi is assumed to have priority higher than that of task τ j,
if ρi > ρ j.

Tasks which are assigned to one processor are called non-
split tasks and those which are split over more than one
processor are called split tasks. However each single part of a



split task allocated to different processors is called a subtask of
a split task. The subtasks of each split task in the system should
be synchronized with each other in the sense that each subtask
finishes its execution prior to its successive subtasks. This
means that a subtask of a split task can not be executed before
the former subtask is finished. As shown in the example in
Figure 1 task τi has three subtasks: τ1

i , τ2
i and τ3

i which are the
first, second and third subtasks respectively of the split task τi.
a denotes the arrival time of the task τi and Ti is the deadline.
τ2

i arrives with a constant offset which is equal to the τ1
i ’s

worst-case response time r1
i . Similarly τ3

i becomes ready to
execute with a constant offset equal to the worst-case response
time of τ2

i . Yet the deadline of subtask τ3
i and the whole task is

Ti. Accordingly, we present the subtasks of split tasks except
the first subtask with (Ci,Ti,ρi,Oi) where Oi determines the
constant offset caused by the delay imposed from the former
subtask’s maximum response time. For subtasks of the split
tasks, ρi is identical and the same as task τi’s priority.

P1

P2

P3


1

i


2

i


3

i

r i
1

r i
2

raO i
1

2 

a

rraO ii
21

3 

r i
3

T i

Fig. 1. Subtasks in a split task

The tasks on processor Pk share a set of resources Rpk
which are protected by semaphores. The set of tasks on
processor Pk that request resource Rq are known as τq,k.
The shared resources Rpk can be either the local or global
resources. Local resources are only shared by tasks on the
same processor, while global resources are shared by tasks on
different processors. The set of local and global resources are
denoted by RL

Pk
and RG

Pk
respectively. All resources requested

by subtasks of split tasks are assumed as global resources
since a critical section requesting a resource may happen in
different processors. Moreover, Csi,q denotes the worst-case
execution time of the longest critical section in which τi
requests resource Rq. nG

i,q is the number of τi’s global critical
sections (gcs) in which it requests Rq.

III. ALGORITHM DESCRIPTION

In semi-partitioned scheduling a major group of tasks is
allocated to one fixed processor and a low number of tasks
which can not completely fit into one processor during the
allocation process will be split among different processors.
Each processor has its own scheduler and ready queue in
which tasks competing for the processor capacity are en-
queued. The allocation mechanism, i.e., how to assign tasks
to the processors in the system and how to split tasks once
they can not totally fit in one processor is not investigated in
this paper. Our focus in this paper is how to manage resource
requests according to the fact that some tasks in the system
are allocated to more than one processor. Therefore we assume
that there exists an appropriate algorithm under which tasks

are assigned to processors according to a semi-partitioned
protocol, e.g., the approach of Guan et al. [5].

Once a processor can not dedicate enough capacity to a task,
the task will be split to subtasks such that the first subtask fills
the processor and the other subtasks are assigned to the next
processors. In other words the processor which contains the
first subtask of a split task will have no extra space for more
tasks to be assigned.

Under semi-partitioned scheduling both split and non-
split tasks may request mutually exclusive resources. The
tasks requesting mutual exclusive resources are guarded by
semaphores.

A priority-based global queue is considered for each global
resource in which tasks requesting the resource are enqueued.
As soon as the resource is granted to the task, it is inserted in
a local priority-based queue along with all other tasks of the
processor which also have been granted other global resources.

Different execution characteristics of a task such as loop
iteration bounds, recursion depth bounds and infeasible paths
cause different executions paths. Accordingly, the critical
sections of tasks may happen at different times within the
task execution time. As a general model of this behavior, this
means that a critical section may occur at any time during the
task execution. In the case of split tasks, the critical sections
may happen in different subtasks of the split task. There is no
guarantee that a specific critical section happens in the same
subtask and subsequently on the same processor in different
instances of the task. However, it should be noticed that a
specific critical section in a split task can only occur in one
of the subtasks, and once it is finished it can not happen in
any other subtask of that task instance. Under this terms we
suggest two algorithms for handling the resource requests in
split and non-split tasks.

A. Migration-based synchronization protocol
The first algorithm is based on centralizing all critical

sections happening in different subtasks on one marked pro-
cessor. The marked processor is the processor that contains
the subtask which can fit all critical sections of the original
task. This means that every time a job in a subtask of a
split task requests a resource, it will migrate to the marked
processor and execute its critical section non-preemptively in
that processor. In other words, the task which has requested
a resource releases the source processor and migrates to the
marked processor (destination), therefore other tasks in the
processor can have access to the processor capacity [12]. Once
the job executes its critical section it will migrate back to
its original processor. Note that, requests of the subtasks on
marked processor are served on the marked processor and
no migration happens in this case. As a result of migrations,
the subtasks will incur overhead mainly due to cache-related
migration overhead [13]. This overhead is caused by additional
cache misses that a job incurs when resuming execution after
a migration.

As it can be seen in Figure 2 subtask τ2
i requesting a critical

section in processor P2 migrates to processor P1 and after
executing its critical section, it migrates back to its original
processor P2. As it can be seen, two migration overheads are
produced during the execution of τ2

i .



P1

P2


1

i


2

i T i


2

i


2

i

critical section

migration overhead

Fig. 2. Resource handling in migration-based synchronization protocol

Once each subtask of a split task is considered as an
independent task, requests on global resources of all tasks are
served identically. First the requesting task is enqueued in the
related global prioritized queue and then when the resource
is granted to the task, it is inserted in the prioritized local
queue in its processor. In the case of subtasks which migrate
to the marked processor, the task which has been granted
the resource is inserted to the local queue of the marked
processor. The tasks enqueued in the local queue are granted
access to different resources and are waiting for the processor.
The highest priority task in the local queue can start using its
requested resource. The priority of the task which gets access
to the resource is boosted to a priority higher than any priority
in that processor allowing the task to execute its critical section
non-preemptively. If ρh is the highest priority in the processor
Pr the task’s priority is boosted to ρh + 1 while it access a
global resource. Note that, tasks are enqueued in the global
and local resource queues with their original priority.

B. Non-migration-based synchronization protocol

In the second algorithm the resource requests by split tasks
will be served on the same processor where the request occurs
and as a result no migration happens. This implies that every
time a job requests a resource, first it will be added to the
global resource queue and when the resource has been granted,
it will wait in its original processor local queue. Similar to
the first solution each subtask of a split task is assumed to
be an independent task having a constant offset caused by
previous subtasks’s response time. In difference with the first
solution all subtasks are assumed to access global resources
in their original processors and they thus incur delay to the
local tasks due to the access of global resources. As it can be
seen in Figure 3 subtask τ2

i executes its critical section on its
original processor P2. Please notice, that at any time only one
subtask can be located in a global queue.

P1

P2


1

i


2

i T i
critical section

Fig. 3. Resource handling in non-migration-based synchronization protocol

Tasks in other processors may cause blocking for a specific
task requesting a global resource. This blocking is called
remote blocking and the processors causing this blocking
are called remote processors. In case of split tasks, subtasks
are treated as individual normal tasks in the schedulability

analysis. In the second algorithm, more than one subtask
of a split task may share resources with other tasks in the
system. Therefore the number of tasks which cause remote
blocking to other tasks in the system are increased in case of
different subtasks requesting resources. In the first approach by
centralizing critical sections of split tasks into one processor
the number of tasks that cause remote blocking is decreased.
However, we can not ignore the fact that overhead is increased
by the first algorithm over migration of the subtasks to the
marked processor.

Access to local resources in both algorithms is controlled
by a uniprocessor synchronization protocol, e.g. PCP or SRP.

IV. SCHEDULABILITY ANALYSIS

In this section we present the schedulability analysis of the
two proposed approaches. There are various possible situations
which may cause a task to get blocked on resources by other
tasks. Next, we will enumerate four possible blocking terms
which a task may experience in a multiprocessor platform un-
der semi-partitioned scheduling. We will categorize blocking
terms into local and remote blocking. When the blocking is
imposed in terms of local tasks, i.e., the tasks are executing
on the same processor, it is called local blocking. On the
other hand, the blocking caused in terms of tasks on remote
processors is identified as remote blocking.

A. Local blocking due to local resources

We denote nG
i as the number of gcs that τi executes before

its completion. Each time a task τi is suspended due to a global
resource it gives the chance to a lower priority task τ j to lock a
local resource which in turn may block τi in any of its non-gcs.
This kind of blocking can happen up to nG

i times in the case
of τi suspending on a global resource. Additionally, according
to PCP and SRP, τi can be blocked on a local resource by
at most one critical section of a lower priority task which has
arrived before τi. However, τ j can release a maximum of

⌈
Ti
Tj

⌉
jobs before τi is finished. In addition, each job can also block
τi’s current job at most up to nL

j (τi) times, where nL
j (τi) is the

number of critical sections of task τ j in which it requests local
resources with ceiling higher than the priority of τi. Thus the
first blocking term denoted by Bi,1 is as follows:

Bi,1 = min{nG
i +1, ∑

ρ j<ρi

dTi/TjenL
j (τi)} max

ρ j<ρi
∧ τi,τ j∈Pk
∧ Rl∈RL

Pk
∧ ρi≤ceil(Rl)

{Cs j,l}

(1)
where ceil(Rl) = max{ρi| τi ∈ τl,k}.

B. Local blocking due to global resources

Each time τi is suspended on a global resource a lower
priority task τ j may get access to a global resource (enters a
gcs) and preempt τi in any of its non-gcs. τi may experience
this kind of blocking up to nG

i +1 times due to all its resource
requests besides the situation in which τ j has arrived and
entered a gcs before τi arrives. Similar to Section IV-A, τ j

can release a maximum of
⌈

Ti
Tk

⌉
jobs before τi is finished and

each job of τ j can preempt τi’s current job at most up to nG
j



times. Hence the blocking introduced under this terms denoted
by Bi,2 is calculated as follows:

Bi,2 = ∑
∀ρ j<ρi
∧ τi,τ j∈Pk

(
min{nG

i +1,dTi/TjenG
j } max

Rq∈RG
Pk

{Cs j,q}
)

(2)
C. Remote blocking

Whenever a task has to wait for global resources due to
tasks on other processors, it incures a remote blocking. In our
proposed algorithms tasks may experience remote blocking
from two group of tasks:

1) Tasks with lower priority: It may happen that a task τi
on a processor Pk requests a global resource Rq which has
already been granted to a lower priority task τ j on processor
Pr. In this situation τi has to wait until τ j releases the resource
after executing its gcs on Pr. On the other hand, τ j may wait
in the local resource queue of Pr in which all tasks that have
been granted a resource are waiting. As soon as τ j is the
highest priority task in the local queue, it will access Rq.
In the worst-case τ j has to wait for all higher priority tasks
in Pr which are already granted access to resources other
than Rq. Consequently, these tasks indirectly delay τi on Rq.
In order to calculate the worst-case delay caused by these
tasks, all delays caused by lower priority tasks on τi’s remote
processors are calculated and the maximum value is selected.
This scenario may happen for each global resource request of
τi, therefore the related blocking term which is denoted by
Bi,3 is as follows:

Bi,3 = ∑
∀Rq∈RG

Pk∧ τi∈τq,k

nG
i,q max
∀ρ j<ρi
∧ τ j∈τq,r
∧ k 6=r

{Cs j,q +ρh, j(R′q) max
τt∈Pr∧ ρt>ρ j
∧ Rs∈RG

r
∧ s 6=q

{Cst,s}}

(3)
where nG

i,q is the number of τi’s global critical sections in which
it requests Rq and ρh, j(R′q) is the number of local tasks with
priority higher than that of τ j that share global resources other
than Rq.

2) Tasks with higher priority: A task τi assigned to pro-
cessor Pk waiting for a resource Rq in its related prioritized
global queue have to wait for all higher priority tasks of other
processors in the queue. On the other hand, a higher priority
task τt assigned to processor Pr may generate several jobs up
to
⌈

Ti
Tt

⌉
and each job may request Rq several times during the

time that τi waits for Rq. Each job of τt can block τi’s current
job up to nG

t,q times; where nG
t,q is the number of τt ’s global

critical sections in which it requests Rq. Similar to the term in
Section IV-C1, τt may also wait in the local resource queue
in Pr for at most one critical section of each higher priority
task which has requested a resource other than Rq. The related
blocking term which is denoted as Bi,4 is calculated as follows:

Bi,4 = ∑
∀Rq∈RG

Pk∧ τi∈τq,k

∑
∀ρt>ρi
∧ τt ∈τq,r
∧ r 6=k

nG
t,qdTi/Tte(Cst ,q

+ ρh,t(R′q) max
τ j∈Pr
∧ ρ j>ρt

∧ Rl∈RG
r

∧ l 6=q

{Cs j, l}) (4)

where ρh,t(R′q) is the number of local tasks with priority higher
than that of τt , that share global resources other than Rq.

V. MIGRATION OVERHEAD

As mentioned before in the first proposed approach the
critical sections of split tasks will migrate to a specific pro-
cessor (marked processor). This migration produces overhead
due to migration delay. The execution time of the migrated
task is inflated by per migration overhead twice. Since the
migrated task incurs a delay once when it migrates to the
marked processor and once it has migrated back to its original
processor as it can be seen in Figure 2. Hence the migrated
critical section is also inflated with one migration overhead
itself. This is because, when a task is blocking due to a
migrated task, besides the critical section length, it also incurs
a delay caused by the migration overhead. Therefore, this
overhead is included in the critical section length.

Cimigrated =Ci +Coverhead (5)

Csimigrated ,q =Csi,q +Coverhead (6)

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed two synchronization protocols
under semi-partitioned scheduling for multiprocessor plat-
forms. The protocols handles the resource sharing between
tasks among different processors in the platform where some
tasks have been allocated to more than one processor as the
result of the semi-partitioned allocation mechanism.

Currently, we are developing the experimental evaluations of
these synchronization protocols. Furthermore, we will work on
a new allocation mechanism that take the presence of resource
sharing in the system into consideration, to deliver a complete
solution.

REFERENCES

[1] J. Anderson, V. Bud, and U. Devi, “An edf-based scheduling algorithm
for multiprocessor soft real-time systems,” in ECRTS’05.

[2] S. Kato and N. Yamasaki, “Portioned static-priority scheduling on
multiprocessors,” in IPDPS’08.

[3] K. S. and Y. N., “Semi-partitioned fixed-priority scheduling on multi-
processors,” in RTAS’09.

[4] K. Lakshmanan, R. Rajkumar, and J. Lehoczky, “Partitioned fixed-
priority preemptive scheduling for multi-core processors,” in ECRTS’09.

[5] N. Guan, M. Stigge, W. Yi, and G. Yu, “Fixed-priority multiprocessor
scheduling with liu and layland’s utilization bound,” in RTAS’10.

[6] R. Rajkumar, “Real-time synchronization protocols for shared memory
multiprocessors,” in ICDCS 1990.

[7] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca,
“A comparison of mpcp and msrp when sharing resources in the janus
multiple-processor on a chip platform,” in RTTAS’03.

[8] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible
real-time locking protocol for multiprocessors,” in RTCSA’07.

[9] B. B. Brandenburg and J. H. Anderson, “An implementation of the pcp,
srp, d-pcp, m-pcp, and fmlp real-time synchronization protocols in litmus
rt,” 2008.

[10] B. Brandenburg and J. Anderson, “Optimality results for multiprocessor
real-time locking,” in RTSS’10.

[11] F. Nemati, M. Behnam, and T. Nolte, “Independently-developed real-
time systems on multi-cores with shared resources,” in ECRTS’11.

[12] P.-C. Hsiu, D.-N. Lee, and T.-W. Kuo, “Task synchronization and
allocation for many-core real-time systems,” in EMSOFT’11.

[13] A. Bastoni, B. Brandenburg, and J. Anderson, “Is semi-partitioned
scheduling practical?” in ECRTS’11.


