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Abstract—Semi-partitioned scheduling has become the subject
of recent interest for multiprocessors due to better utilization re-
sults, compared to conventional global and partitioned scheduling
algorithms. Under semi-partitioned scheduling, a major group
of tasks are assigned to fixed processors while a low number of
tasks are allocated to more than one processor. Various task
assigning techniques have recently been proposed in a semi-
partitioned environment. However, a synchronization mechanism
for resource sharing among tasks in semi-partitioned scheduling
has not yet been investigated. In this paper we propose and
evaluate two methods for handling resource sharing under semi-
partitioned scheduling in multiprocessor platforms. The main
challenge addressed in this paper is to serve the resource requests
of tasks that are assigned to different processors.

I. INTRODUCTION

Research on real-time scheduling techniques for multipro-
cessor platforms has received a dramatic rise of attention due
to large interest towards usage of multi-core technology in
embedded systems. The shift towards multi-core technology
has revealed the demand for real-time scheduling algorithms
along with synchronization protocols to support real-time
applications on multiprocessors.

Two major conventional algorithms for real-time task
scheduling on multiprocessors are global and partitioned
scheduling. In partitioned scheduling, separate schedulers are
utilized for each processor to which the tasks are statically
assigned. However, in global scheduling, one global scheduler
selects tasks from the unique global ready queue and tasks are
allowed to migrate between different processors.

On the other hand, the semi-partitioned scheduling approach
has compound both the partitioned and global techniques
to create a middle approach for multiprocessor scheduling,
which first has been introduced by Anderson et al. in [1].
Semi-partitioned scheduling extends partitioned scheduling by
allowing a low number of tasks to migrate among different
processors which has lead to an improvement of the schedula-
bility. Similar to the partitioned scheduling approach, in semi-
partitioned scheduling separate ready queues are used for each
processor in which an individual scheduler manages tasks from
the ready queue to have access to the processor capacity.
Different task assigning techniques have been investigated in
prior works [2], [3], [4], [5]. Guan et al. in [5] have increased
the utilization bound of task sets as high as the utilization
bound of Liu and Layland’s Rate Monotonic Scheduling
(RMS) for any task set.

Any scheduling approach for multiprocessors consists of
three parts: (i) the partitioning method which specifies how
to assign tasks to different processors, (ii) the scheduling

algorithm which determines how to schedule the tasks on
each processor, and (iii) the synchronization protocol which
handles mutually exclusive resource sharing between tasks
and is also the focus of this paper. Execution of tasks on
multiprocessors can cause longer blocking delays compared
to the uniprocessor case since other processors in the system
can contribute in incurring delays for one specific proces-
sor. Therefore, an efficient real-time synchronization protocol
is needed for accessing the shared resources under semi-
partitioned scheduling. In this paper we present two solutions
to handle resource requests in a shared environment under
semi-partitioned scheduling.

A. Contributions
Our contributions in this paper are as follows:
• We first propose two algorithms for handling resource

sharing under semi-partitioned scheduling. We formulate
the system model and deploy some rules to manage
requests on local and global resources along with defining
the resource queue structure.

• Then we elaborate the blocking conditions and formulate
the blocking terms based on the system model.

• Finally we perform experimental evaluations for both
proposed algorithms to evaluate and compare the schedu-
lability results of both algorithms under semi-partitioned
scheduling.

B. Related Work
The goal of a synchronization protocol is to bound the

waiting times of tasks which share resources in the system.
Vast amount of work has been done on resource sharing
under partitioned scheduling algorithms. In the following,
we will present a brief description of most related existing
synchronization protocols developed for partitioned scheduling
algorithms.

Rajkumar et al. proposed a synchronization protocol [6]
which later was called Distributed Priority Ceiling (DPCP)
[7]. DPCP is a synchronization protocol for shared memory
multiprocessors. In DPCP a job executes its local and non-
critical sections on its assigned processor while its global crit-
ical sections may execute on processors other than its allocated
processor. Processors which execute global critical sections are
called synchronization processors. There can exist more than
one synchronization processor in a system, however global
critical sections which request the same resources should be
executed on the same synchronization processor. The protocol
utilizes local agents for handling resource requests.



Later, Rajkumar et al. proposed the Multiprocessor Priority
Ceiling Protocol (MPCP) in [6] which is the extension of the
Priority Ceiling Protocol (PCP) [8] proposed by Sha et al.
for multi-core platforms under fixed priority scheduling. In
MPCP a task requesting a resource is suspended if the resource
is not available at the moment. Tasks related to different
processors waiting on a specific resource in the system will be
enqueued in a global prioritized queue. According to MPCP
the priority of a task requesting global resources is boosted
within its critical section to a priority higher than any task
in that processor. As a result the remote blocking duration of
a job is bounded to critical sections of other jobs, which is
negligible compared to tasks execution times.

Multiprocessor the Stack Resource Policy (MSRP) proposed
by Gai et al. in [9] is another synchronization protocol which is
the extension of Stack Resource Policy (SRP) by T. Baker [10]
for multiprocessors. In MSRP when a task tries to get access to
a global resource which is already locked in another processor,
it is inserted to a global FIFO queue and performs busy wait
which is called spin lock. The implementation complexity is
higher for the MPCP protocol compared to the MSRP protocol
while MSRP waste the capacity of the CPU more due to spin
lock waiting on a global resource. At first sight it seems that
MSRP performs better when the critical sections are small, and
MPCP performs better when the critical sections are longer.
Yet it should be considered that due to more blocking in
MPCP the CPU faces more context switch overhead which
is considerably high compared to MSRP.

Flexible Multiprocessor Locking Protocol (FMLP) was in-
troduced by Block et al. in [11] for both partitioned and
global scheduling algorithms. Later the partitioned FMLP was
extended by Brandenburg and Anderson in [12] for fixed
priority scheduling. According to FMLP, resources are divided
to long and short resources while the classification of resources
in terms of long or short is upon the definition of the user.
Tasks blocked on long resources are suspended and wait
in a FIFO queue while tasks blocked on short resources
perform busy-wait. A difference of FMLP compared to other
algorithms such as MPCP and MSRP is that FMLP supports
nested global critical sections.

O(m) Locking Protocol (OMLP) proposed by Branden-
burg and Anderson in [13] is another locking protocol for
handling resource sharing in multiprocessors. OMLP is a
suspension-oblivious protocol. Under a suspension-oblivious
protocol suspensions are contributed in execution time of tasks
which means that suspended jobs are assumed to occupy
the processor. In contrast, other suspension-based protocols
are suspension-aware protocols in which true suspension of
tasks is considered and suspended jobs are not assumed to
occupy the processor. Furthermore OMLP is implied as an
asymptotically optimal protocol. This means that the blocking
duration for the whole task set in the system is confined
to a fixed factor of blocking which is unavoidable in the
worst case for some task sets. Tasks that compete with each
other for global resources under the partitioned OMLP first
have to acquire a unique token devoted to each processor
through waiting in the local priority-based queue of the related
processor. As soon as the task holds the token it enqueues in

the global FIFO queue of the resource.
Multiprocessor Synchronization Protocol for Open Systems

(MSOS) is a synchronization protocol for resource sharing
among independently-developed real-time applications pre-
sented by Nemati et al. in [14]. Under MSOS applica-
tions/subsystems have been developed independently, meaning
that their scheduling algorithm and priority settings may differ
from each other. There is one FIFO queue for each global
resource in the system in which the processors requesting
the resource will be enqueued. The requests for a global
resource in each processor are handled by a local queue in
that processor in which tasks requesting the resource will be
enqueued. The local queues are either FIFO or priority based
queues.

Inspired by the previous works we have investigated
two techniques for handling resource requests under semi-
partitioned scheduling regardless of the partitioning algo-
rithms. In the rest of this paper we present the proposed
methods besides analysis the relevant blocking terms and
evaluate the performance results.

II. SYSTEM MODEL

In this section we introduce the system model. The multi-
processor platform consists of a task set of n periodic tasks
{τ1,τ1, ...,τn} running on m processors {P1,P2, ...,Pm}. Each
task τi is identified by the (Ci,Ti,ρi) model where Ci is the
worst-case execution time, Ti is the minimum inter-arrival time
between two successive jobs of task τi, and ρi is the priority
of the task τi. Tasks in the system have implicit deadline, i.e.,
the relative deadline of any job of task τi is equal to Ti. A task
τi is assumed to have priority higher than that of task τ j, if
ρi > ρ j. For the ease of evaluation, we assume that each task
in the system, has a unique priority.

Under the semi-partitioned approach, some tasks are as-
signed just to one processor and they are called non-split tasks.
The tasks which can not completely fit into one processor
are split and allocated to more than one processor and they
are called split tasks. However each single part of a split
task which is allocated to different processors is called a
subtask of a split task. All subtasks of each split task are
assumed as normal tasks in the system, however, they should
be synchronized with each other. This means that a subtask
should finish its execution prior to its successive subtasks. In
other words, a subtask of a split task can not start to execute
before the former subtask has completed.

In the example shown in Figure 1, task τi has three subtasks:
τ1

i , τ2
i and τ3

i which are the first, second and third subtasks
respectively of the split task τi. The arrival time of the task τi
is denoted by a and Ti shows τi’s deadline. As it can be seen, τ2

i
becomes ready to execute with a constant offset which is equal
to the τ1

i ’s worst-case response time denoted by r1
i . Similarly τ3

i
arrives with a constant offset equal to the worst-case response
time of τ2

i . Yet the deadline of all subtasks and therefore
the whole task is Ti. Accordingly, we present the subtasks
of split tasks except the first subtask with the (Ci,Ti,ρi,Oi)
model, where Oi denotes the constant offset caused by the
delay imposed from the former subtask’s maximum response
time. The priority of all subtasks belonging to a split task τi



is identical and the same as task τi’s priority. This is because
having various priorities assigned to different subtasks of a
split task will lead to different worst case blocking durations
under the first proposed algorithm for a specific resource
request, since the resource may be requested in any subtask
of the split task.
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Fig. 1. Subtasks in a split task

The set of tasks on processor Pk that request a specific
resource such as Rq are denoted by τq,k. On the other hand, the
tasks on processor Pk may share a set of resources. These re-
sources are identified by Rpk and are protected by semaphores.
The shared Rpk resources can be either the local or global
resources. Local resources are resources which are only shared
by tasks on the same processor, while global resources are
resources shared by tasks on different processors. Without loss
of generality, the set of local and global resources are denoted
by RL

Pk
and RG

Pk
respectively. Moreover, Csi,q denotes the worst-

case execution time of the longest critical section of task τi in
which it requests the resource Rq. Furthermore, nG

i,q identifies
the number of global critical sections of task τi (gcs) in which
it requests the resource Rq.

III. GENERAL DESCRIPTION

Under semi-partitioned scheduling, a major group of tasks
is assigned to fixed processors while a low number of tasks
which can not completely fit into one processor during the allo-
cation process will be split among different processors. Similar
to partitioned scheduling, in semi-partitioned scheduling, each
processor has its own scheduler and ready queue in which
tasks competing for the processor capacity are enqueued.
However, the allocation mechanism, i.e., how to assign tasks
to the processors in the system or how to split them once
they can not totally fit in one processor is not investigated in
this paper. Instead, our focus in this paper is how to handle
resource requests according to the fact that some tasks in the
system are allocated to more than one processor. Therefore, we
assume that there exists a proper algorithm under which tasks
are assigned to processors in the sense of a semi-partitioned
protocol, e.g., the approach of Guan et al. introduced in [5].

Once a processor can not dedicate enough capacity to a task,
the task will be divided into subtasks. The first part of the task
is assigned to the current processor until the processor capacity
is filled in the sense that no more tasks can be allocated to the
processor. The capacity criteria under which tasks are assigned
until the processor is filled, is the utilization bound of the
processor in this case. The remainder of the task which could
not fit in the current processor, will be assigned to the next
processor. If the remainder of the task could not fit completely

in the next processor, it will be split in the same way. The
subtasks of a split task which fill the processor capacity are
called the body of the split task. It may happen that during
the process of splitting a task into different processors, the
remainder of a split task can not fill the processor. The subtask
which do not fill the last processor, i.e., other tasks can still
be allocated to the processor, is called the tail of a split task.

Note that, the allocation process is done before the system is
scheduled. This means that, first the task set is allocated to the
processors in the system and then the tasks will be scheduled
during runtime on each processor.

Each processor in the system can only contain one body of
any split task, since according to the notion of split tasks,
the body fills the processor during the allocation process,
and no other task can be allocated to the processor anymore.
Therefore, if more than one subtask is allocated to a processor,
at most one of them is the body of split task and all the other
subtasks are tail of other split tasks.

Both split and non-split tasks may request mutually ex-
clusive resources under semi-partitioned scheduling. The re-
sources are guarded by semaphores to guarantee the mutual
exclusive access.

A priority-based global queue is considered for each global
resource in the system in which tasks requesting the related
resource are enqueued. Furthermore, a priority-based local
resource queue is devoted to each processor to enqueue the
tasks allocated to the processor which have been granted
access to different global resources. A task is granted access
to a resource when the resource is available and the task locks
the resource. But it may happen that a task which has locked
a resource can not execute its critical section immediately. As
soon as the task starts to execute its critical section, the task
get access to the resource. When a task requests a resource, if
the resource is not available at the moment, the task is inserted
to a priority-based queue which has to wait with all other tasks
from other processors that have requested the same resource.
As soon as the resource is granted to the task, it is removed
from the global resource queue and inserted to a local priority-
based queue on its assigned processor. The task on the local
resource queue has to wait for the processor time along with
all other tasks of the processor which also have been granted
other global resources.

In general, most computer tasks do not have a fixed ex-
ecution time. The possible execution flows of a task, i.e.,
different execution paths in the code, cause certain variations
of executions for a typical task. Variations in the execution of
a task can happen in terms of different input data, and software
characteristics such as loop iterations, nested loops, infeasible
paths, execution frequencies of code parts, etc [15], [16], [17].
As a general model of this behavior, it can be observed that the
critical sections of tasks may happen at different times within
the task execution. In other words, a conservative assumption
is to assume that a critical section may occur at any time
during the task execution in different task instances. In the
case of split tasks, this leads to the situation that the critical
sections may happen in different subtasks of the split task and
consequently on different processors. Therefore, there is no
guarantee that a specific critical section happens in the same



subtask in different instances of the task and subsequently
on the same processor. However, it should be noticed that a
specific critical section in a split task can only occur in one of
the subtasks in each task instance, and once it is finished the
same request will not occur in any other subtask of that task
instance. Note that, the same resource can be requested many
times by a task, but as it is obvious, once it is requested in
one of the subtasks, it can not be repeated in other subtasks.
Next we will elaborate more the structure of queues which are
suggested to manage the global resources under the proposed
synchronization protocols.

All resources requested by subtasks of split tasks are global
resources. Since a critical section of a split task may occur in
any of the subtasks of the split task which are on different
processors, the resources requested by split tasks are by
definition global resources. Variations in execution times of
a task is the reason that the same critical section may occur
in different subtasks in various task instances.

A. Resource queues structure

As mentioned above, a priority-based global queue is con-
sidered for each global resource in the system, in which the
tasks requesting the same resources are enqueued. The tasks on
the same processor that are granted access to different global
resources are served in a local priority-based queue. The tasks
are enqueued in both global and local resource queues with
their original priority. An example of the resource queues has
been presented in Figure 2.
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Fig. 2. System resource queues

Whenever a task requests a resource, if the resource is
not available, the task is inserted to the global queue of the
resource. As soon as the global resource is granted to a task,
if the processor is busy with executing a task using a global
resource it is inserted to the local queue of the assigned
processor. A task is granted access to a resource, either when
the resource is available at the time when the task requests it,
or when the task has the highest priority among all tasks in

the related global resource queue and the resource has been
released by any other task in the system. After the task is
granted access to its requested resource, it has to wait in the
local resource queue of its assigned processor along with all
other tasks on that processor which have requested and also
granted access to other resources. However, if the task which
has been granted access to a resource is the highest priority
task in the local resource queue and also the processor is free,
the priority of the task is boosted to the highest priority on the
processor on which it should execute. Therefore, the task starts
to execute its gcs non-preemptively and releases the resource
once it is completed.

In the Figure 2, Rq
i denotes the request of task τi to Rq.

As it can be seen, tasks requesting the same global resources
from different processors are enqueued in the same queue.
In this example, the global queue for resource Rq denoted by
RG

q , holds requests of tasks from different processors on global
resource Rq. In this example, task τ1 on processor P1 and task
τ5 on processor P2 both have requested resource Rq and are
enqueued in Rq’s related global queue since the resource was
not available at the time (task τ4 on processor P1 has already
locked it). The same situation has been shown for tasks τ2 and
τ6 from processors P1 and P2 respectively, that have requested
the global resource Rs which already has been locked by task
τ3 from processor P1.

Local queues RL
1 and RL

2 in this example are local queues
of processors P1 and P2 respectively, which enqueues requests
of tasks in P1 and P2 on different global resources. As it can
be seen in Figure 2, task τ3 which has requested Rs and task
τ4 which has requested Rq on processor P1, are waiting in the
RL

1 queue since the resources Rs and Rq have been granted to
them but the processor was not yet free.

Example. An example of global resource handling is de-
picted in Figure 3. As shown, P1, P2 and P3 are processors in
the system to which the tasks τ1 to τ8 are allocated. The tasks
τ2, τ3 and τ8 are assigned to processor P1, while the tasks
τ4, τ5, τ6 and τ7 are assigned to processor P2 and τ1 belongs
to processor P3. As mentioned, subtasks of split tasks behave
as normal tasks in the system, although each subtask has a
constant offset according to its previous subtask. The period
of all tasks in this example is 20. Consider that, two subtasks
of a split task can not execute simultaneously, therefore during
one period which has been depicted in this example none of the
tasks belong to one split task. There are three global resources
R1, R2 and R3 which are shared among the tasks on three
processors. In this example a task τi has a priority higher than
that of τ j, if i > j, e.g., τ7 has a priority higher than that of
τ6.
• At time 1 τ1 requests R1 and as it is available, τ1 locks

the resource. As processor P3 is free, τ1 starts using its
resource. Therefore, when at times 2, 5 and 6 the tasks
τ3, τ4 and τ6 respectively request R1, they are all blocked
on R1 and are inserted into R1’s global queue.

• At time 3 τ2 requests R2 and since it is available, it
starts using R2. Therefore, when at time 4 τ5 requests
R2, it is blocked and therefore inserted to R2’s global
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queue. Notice that, τ8 arrives at time 5 and although it
is the highest priority task on P1, it has to wait until τ2
completes executing its gcs (with the boosted priority)
until time 9.

• τ7 requests R3 at time 7 and since it is available, it starts
to execute its gcs using R3. As a result, τ5 and τ6 which
are granted access to their requested resources, since τ1
releases R1 at time 8 and τ2 releases R2 at time 9, have
to wait in P2’s local resource queue until τ7 finishes its
gcs (with the boosted priority on P2). When τ7 completes
its gcs at time 10, τ6 starts to execute using R1 since it
has a higher priority than that of τ5 in the local resource
queue of P2.

• τ8 requests R2 at time 10 and is blocked since τ5 has
already been granted access to R2 at time 9. τ8 waits
until τ5 releases R2 at time 14 and then starts to execute
its gcs.

• As soon as τ6 is completed, τ4 is granted access to R1,
but has to wait until time 14 for the higher priority task
τ5 to complete its gcs.

• When τ4 releases R1 at time 16, R1 is granted to τ3
immediately since no higher priority task has requested
it. τ4 blocks τ8 at time 16 as it has exited its gcs, and
starts to execute its gcs (with the boosted priority).

B. MLPS

Migration-based Locking Protocol under Semi-partitioned
scheduling (MLPS) is the first proposed algorithm which is
based on centralizing critical sections of each split task into
one marked processor. The marked processor is the processor
on which always all critical sections of the original task will

be executed. For each split task in the system one marked
processor is defined on which all resource requests in any
subtask of the related split task is served. Under MLPS, every
time a job in a subtask of a split task requests a resource,
it releases its allocated processor (source) and migrates to
the marked processor (destination). The migrated task then
executes its critical section non-preemptively on the marked
processor. Once the job finishes its critical section on the
marked processor, it will migrate back to its original processor.

Note that, two different kinds of migration can occur related
to the split tasks in a semi-partitioned protocol. One type of
migration is the migration of each split task from a subtask to
the next subtask on another processor. This migration happens
at specific time slots for each split task. These specific points in
time are distinguished by the worst case response time of each
subtask. At the point of implementation, these fixed points can
be specified by using timers in the system. The second type of
migration is the migration happening under MLPS, in which
a subtask of a split task migrates to its marked processor to
execute its critical section.

Note that, if the migration to the next subtask on a marked
processor occurs within a critical section, an overrun will
happen on the marked processor, i.e., the task will continue to
execute its gcs. In other words, the task stays on the processor
until it finishes execution of its gcs, and then migrates to the
next processor. This will prevent extra migrations under this
situation. This will not cause any problem for the schedula-
bility of the other tasks on the processor, since the marked
processor by the definition mentioned previously, can fit all
critical sections of a split task. The migration to the next
subtask in a split task within a critical section do not occur
on processors other than the marked processor, since the tasks
migrate once they request a resource.

Next, we will clarify the MLPS protocol in terms of a set
of rules which is discussed as follows:
Rule 1: Access to local resources in both algorithms is handled
by a uniprocessor synchronization protocol, e.g. PCP or SRP.
Rule 2: Tasks execute their gcs with the boosted priority. If ρh
is the highest priority of any task in processor Pr on which a
task τi is supposed to execute its gcs, then τi’s boosted priority
will be ρh+1 within its critical section. This priority boosting
allows the task to execute its critical section non-preemptively.
When the task exits its gcs, its priority is changed back to its
original priority.
Rule 3: When a task requests a global resource, if the resource
is not available at the moment, the task is suspended, and it is
enqueued in the resource’s global queue. The task is inserted to
the resource’s global queue with its original priority. As soon
as the task becomes the highest priority task in the queue, the
resource is granted to the task and the task is removed form
the queue.
Rule 4: When a non-split task is granted access to a global
resource, if the processor to which it is allocated, is not idle at
the moment, the task is inserted to the processor’s local queue
with its original priority.
Rule 5: As soon as any task is in the head of the local resource
queue of a processor, i.e., it is the highest priority task in the
queue, its priority is boosted to a priority higher than any



priority on that processor (boosted priority).
Rule 6: When a subtask located on a processor other than its
marked processor requests a global resource, it is migrated
to the marked processor. Once the resource is granted to
the subtask, it is inserted to the local queue on the marked
processor if the processor is not free.
Rule 7: Resource requests of a subtask on its marked processor
are served on the same marked processor and no migration
happens in this case. The resource requests are in this case
handled similar to non-split tasks mentioned in Rule 4.
Rule 8: When a task releases a resource the resource becomes
available to the next highest priority task in the global queue of
the resource, if any. The subtask that migrated to the marked
processor will migrate back to its original processor as soon
as it finishes its critical section.

Note that, requests of the non-split tasks in the system are
served on the processor they are allocated.

As a result of extra migrations under MLPS, the subtasks
will incur overhead mainly due to cache-related migration
overhead [18]. This overhead is caused by additional cache
misses that a job incurs when it resumes after migrating to
the marked processor.

As it can be seen in Figure 4 subtask τ2
i requesting a

resource in processor P2 migrates to processor P1 which is its
marked processor and it migrates back to its original (assigned)
processor P2 after executing its critical section. As shown
in the figure, two migration overheads can occur during the
execution of τ2
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Fig. 4. Resource handling in migration-based synchronization protocol

C. NMLPS
Non Migration-based Locking Protocol under Semi-

partitioned scheduling (NMLPS), is the second proposed al-
gorithm in which the resource requests by split tasks will be
served on the same processor where the requests occur. As a
result, no extra migration happens under NMLPS. Rules 1, 2,
3, 4 and 5 in MLPS are also applicable for NMLPS, so we
will continue with Rule 6.
• Rule 6: If a subtask on any processor is granted access

to a resource, if the processor to which it is assigned to
is not idle at the moment, it is inserted to the resource
local queue of the processor with its original priority. A
subtask will start executing its critical section with the
boosted priority as soon as it is the highest priority task
in the queue.

• Rule 7: The task releases the resource once it completes
its critical section, and the resource becomes available for
the next highest priority task in the global queue of the
resource, if any.

Under NMLPS, since subtasks are assumed to access global
resources in their original processors, they introduce a delay

to the local tasks due to the access of global resources which
is not the case in MLPS. As shown in the example in Figure 5,
subtask τ2

i executes its critical section on its original processor
P2. Please notice that at any time only one subtask of a split
task can be located in a global queue.
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Fig. 5. Resource handling in non-migration-based synchronization protocol

A task requesting a global resource may also be blocked
by tasks on other processors, which is called remote blocking.
Accordingly, the processors causing this blocking are called
remote processors. Under NMLPS, all subtasks of a split task
are assumed to share resources with other tasks that share
resources with the original task. Therefore the number of tasks
which cause remote blocking to other tasks in the system
are increased under NMLPS. In contrast, under MLPS, by
centralizing critical sections of split tasks into one processor
the number of tasks that cause remote blocking is decreased
by this approach. However, we can not ignore the fact that
overhead is increased under MLPS due to migration of the
subtasks to the marked processors.

IV. SCHEDULABILITY ANALYSIS

In this section we present the schedulability analysis of the
two proposed algorithms. A task is said to be blocked on a
resource when the resource is not available for the task at the
moment it requests the resource. There are various possible
situations which may cause a task to be blocked on resources.
Next, we will enumerate four possible scenarios in which a
task may experience blocking in a multiprocessor platform
under semi-partitioned scheduling. We categorize the blocking
terms into local and remote blocking. When the blocking is
imposed by local tasks, i.e., the tasks executing on the same
processor, it is called local blocking. On the other hand, the
blocking caused due to tasks on remote processors is called
remote blocking.

A. Local blocking due to local resources

We denote nG
i as the number of global critical sections that

any job of τi executes before its completion. Each time a task
τi is suspended on a global resource, it gives a chance to a
lower priority task τ j to lock a local resource with a ceiling
higher than τi’s priority. τ j can then block τi in its non-gcs,
(after it resumes and completes its gcs), e.g. the local resource
handling under PCP). This kind of blocking can happen each
time τi requests a global resource. In addition, according to
PCP and SRP, τi can be blocked on a local resource by at most
one critical section of a lower priority task which has arrived
earlier than τi which leads to nG

i +1 times. On the other hand,
τ j can release a maximum number of

⌈
Ti
Tj

⌉
+1 jobs before τi is

finished. In addition, each job of τ j can also block τi’s current
job at most up to nL

j (τi) times, where nL
j (τi) is the number of



critical sections of task τ j in which it requests local resources
with ceiling higher than the priority of τi. This specifies that
at most (

⌈
Ti
Tj

⌉
+ 1)nL

j (τi) times each lower priority task can
introduce this type of blocking to τi. Thus the first blocking
term denoted by Bi,1 is as follows:

Bi,1 = min{nG
i +1, ∑

ρ j<ρi

(dTi/Tje+1)nL
j (τi)} max

ρ j<ρi
∧ τi,τ j∈Pk
∧ Rl∈RL

Pk
∧ ρi≤ceil(Rl)

{Cs j,l}

(1)
where ceil(Rl) = max{ρi| τi ∈ τl,k}.

B. Local blocking due to global resources
Each time τi is suspended on a global resource, a lower

priority task τ j may request another global resource. As a
result τi will be blocked by τ j later when it is resumed. This
situation can be seen in Figure 3. When τ5 is blocked on R2
at time 4, the lower priority task τ4 requests another resource
(R1) and later at time 14 blocks τ5 after it has finished its gcs.

τi may experience this kind of blocking up to nG
i +1 times

due to all its global resource requests besides the situation in
which τ j has arrived and requested a global resource before
τi arrives. τ j can release a maximum number of

⌈
Ti
Tj

⌉
+1 jobs

before τi is finished. However, each job of τ j can preempt τi’s
current job at most up to nG

j times. The blocking introduced
under this terms, denoted by Bi,2, is calculated as follows:

Bi,2 = ∑
∀ρ j<ρi
∧ τi,τ j∈Pk

(
min{nG

i +1,(dTi/Tje+1)nG
j } max

Rq∈RG
Pk

{Cs j,q}
)

(2)
C. Remote blocking

Whenever a task has to wait for a global resource which is
locked by another task on other processors, it incurs a remote
blocking. In our proposed algorithms under two situation tasks
may experience remote blocking, which we discuss next.

1) Tasks with lower priority: A task τi on a processor Pk
that requests a global resource Rq may get blocked since a
lower priority task τ j on another processor Pr already has been
granted access Rq. In this case τi has to wait until τ j releases
the resource. τi can be blocked by at most one lower priority
task τ j on other processors which requests a resource Rq. This
is because, as soon as the resource is released by τ j, no other
lower priority task than τi can be granted access to Rq, and if
there is no other higher priority tasks than τi in Rq’s global
queue, τi locks it.

On the other hand, τ j which is granted access to Rq may also
wait in the local resource queue of Pr, if processor Pr is not
free. Regardless of which of the proposed algorithms is used,
τi has to wait in the local resource queue of Pr along with all
other tasks which have been granted access to other resources.
As soon as Pr becomes free and τ j is the highest priority task
in the local resource queue, it will get access to Rq and start to
execute its gcs. In the worst-case τ j has to wait for all higher
priority tasks in Pr which are granted access to resources other
than Rq. As a result, these tasks with higher priority than τ j
also contribute in blocking of task τi by indirectly delaying τi
on Rq.

This kind of blocking can be seen in the example in Figure 3
at time 10, when τ8 requests R2 but is blocked since the lower
priority task τ5 has already been granted access to R2 at time
9. τ8 is also indirectly delayed by the higher priority task τ6
than that of τ5 on P2 which finishes its gcs at time 12 and let
τ5 to start its gcs and release R2 at time 14.

In order to calculate the worst-case delay introduced by
these tasks, all delays caused by lower priority tasks on τi’s
remote processors are calculated and the maximum value is
selected. This scenario may happen each time τi requests a
global resource, therefore the related blocking term which is
denoted by Bi,3 is as follows:

Bi,3 = ∑
∀Rq∈RG

Pk∧ τi∈τq,k

nG
i,q RWRLq,k′ (3)

where nG
i,q is the number of τi’s global critical sections in which

it requests Rq and RWRLq,k′ is the waiting time for resource Rq
on remote processors of processor k due to tasks with lower
priority than τi and is calculated as follows:

RWRLq,k′ = max
∀ρ j<ρi
∧ τ j∈τq,r
∧ k 6=r

{Cs j,q +wlh j,q} (4)

where wlh j,q is the waiting time introduced by τ j’s local higher
priority tasks on the τi’s remote processor Pr. In other words,
this is the amount of time which τ j has to wait before it can
execute its gcs and release Rq.

wlh j,q = ρh, j(R′q) max
τt∈Pr∧ ρt>ρ j
∧ Rs∈RG

r
∧ s 6=q

{Cst,s} (5)

where ρh, j(R′q) is the number of local tasks with priority higher
than τ j that share global resources other than Rq.

2) Tasks with higher priority: A task τi assigned to pro-
cessor Pk which gets blocked on Rq has to wait for all higher
priority tasks in the Rq’s global queue to release Rq. These
tasks may repeatedly block τi before it is granted access to
Rq. τi incurs remote blocking from the higher priority tasks in
the Rq’s global queue which are located on processors other
than Pk. On the other hand, a higher priority task τt assigned
to processor Pr may also have to wait in the Pr’s local resource
queue for at most one critical section per each with priority
higher than τt that requests resources other than Rq. In the
worst-case τt has to wait for all higher priority tasks in Pr
which are granted access to resources other than Rq. As a
result, these tasks with higher priority than τt also contribute
in blocking task τi by indirectly delay τt on Rq.

This situation can be seen in the example shown in Figure 3,
where τ3 which has requested R1 sooner than τ4, has to wait
also for global critical sections of higher priority tasks τ6 and
τ5 than that of τ4 on ¶2, besides waiting for τ4 gcs.

On the other hand, similar to the term in Section IV-C1, τt

may generate up to
⌈

Ti
Tt

⌉
+ 1 jobs and each job may request

Rq several times during the time that τi waits for Rq. Each
job of τt can also block τi’s current job up to nG

t,q times. The



related blocking term which is denoted as Bi,4 is calculated as
follows:

Bi,4 = ∑
∀Rq∈RG

Pk∧ τi∈τq,k

RWRHq,k′,i
(6)

where RWRHq,k′,i is the maximum blocking time on Rq
introduced to τi by remote tasks with priority higher than τi.

RWRHq,k′,i = ∑
∀ρt>ρi
∧ τt ∈τq,r
∧ r 6=k

nG
t,q(dTi/Tte+1)(Cst ,q +wlht,q) (7)

The total blocking of a task τi in the system is then
calculated as follows:

Bi = Bi,1 +Bi,2 +Bi,3 +Bi,4 (8)

V. MIGRATION OVERHEAD

As mentioned before, under MLPS, the critical sections
of split tasks will migrate to a specific processor (marked
processor). As a result of these migrations an overhead is
introduced due to migration delay. The execution time of the
task which is migrated is inflated by per migration overhead
twice. The migrated task incurs a delay once when it migrates
to the marked processor and once it migrates back to its
original processor as it can be seen in Figure 4. However, the
migrated critical section is also inflated with one migration
overhead itself. This is because, when a task is delayed due to
a migrated task executing its gcs, besides the critical section
length, it also incurs a delay caused by the migration overhead.
Therefore, an overhead is also included in the critical section
length.

Cimigrated =Ci +Coverhead (9)

Csimigrated ,q =Csi,q +Coverhead (10)

VI. EVALUATION

In this section we present our experimental evaluation
for comparison of the performance of MLPS and NMLPS.
In our experiments, we compared the performance of the
proposed algorithms in terms of schedulability. We generated
a set of platforms each representing a multiprocessor system.
Experiments are based on generating random number of
processors in each platform. The assigning mechanism of
allocating tasks to processors in the generated platform for
both algorithms is based on first-fit partitioning.

The partitioning algorithm in a platform selects a random
processor and fills it up to its assigned maximum utilization
capacity. As soon as the processor is filled, the next processor
is selected for assigning new tasks. If a task can not fit in
the processor completely, it is split in two subtasks. The first
subtask fills the current processor capacity and the next subtask
will be assigned to the next processor under same procedure.
The platform partitioning scheme can be seen in Figure 6.

In order to compare both algorithms schedulibility perfor-
mance under identical conditions, we first generate a platform
for MLPS and evaluate the schedulibility of the platform.

Afterwards, the platform is changed upon NMLPS and again
the schedulability is checked. In this way, the resource alloca-
tion to different tasks in the platform is the same under both
algorithms and the comparison is valid.
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Fig. 6. Assigning mechanism based on first-fit partitioning

The experimental results show that the migration over-
heads in MLPS has a greater effect in making the platforms
unschedulable. With large overhead values, generally the
platforms become more unschedulable under MLPS. This is
an important factor which makes the MLPS approach more
suitable for multiprocessor platforms with tasks having small
working set size (WSS) [18].

A. Experimental setup
In our experiments we have employed the same resource

allocation and setups to evaluate the schedulability perfor-
mance of both algorithms under the same circumstances. We
have randomly generated 1,000,000 platforms. The number of
processors is randomly selected through a specified range {4,
8, 12, 16}. The maximum utilization capacity of all processors
in the platform is identical and selected through a set of
predefined values {0.3, 0.4, 0.5, 0.6}. Furthermore, the number
of resources which are shared among tasks in a platform is
constant in each generated platform, and is 10. On the other
hand, the number of critical sections created in each task are
selected randomly through a set of specified values {1, 2, 3,
4, 5, 6}. The critical sections length is also selected randomly
via the range {5, 25, 45, 65, 85, 105, 125, 145, 165, 185,
205}.

The migration overhead which is mostly the result of cache-
related delay has been chosen randomly for MLPS algorithm
from a set of values {0, 20, 60,140, 300, 620, 1260, 2540},
providing small as well as large amounts. The small overhead
values has been included in the setup in order to compare
MLPS with negligible overhead amounts against the perfor-
mance of NMLPS.

The experiments have been applied for 1,000,000 platforms
and repeated more than 3 times which each time yielded close
to the same results. This indicates that this 1,000,000 samples
can be representative.

B. Results
In this section we present the evaluation results of our exper-

iments for both algorithms. The Figures depict schedulibility
factor versus different parameters such as critical sections
length, the number of critical section per task, the number
of processors and the utilization capacity of each processor,
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Fig. 7. Performance of synchronization protocols as the critical section
lengths increases. Number of processors = 8, Processor maximum utilization
capacity = 0.4, Number of critical sections per task = 3
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Fig. 8. Performance of synchronization protocols as overhead increases.
Number of processors = 8, Critical sections Length = 45, Number of critical
sections per task = 3, Processor maximum utilization capacity = 0.4

and the value of per-migration overhead. The results show that
the migration overhead play a prominent role in degrading the
performance of MLPS. On the other hand, MLPS performs
better under negligible amount of overhead.

The results shown in Figures 7, 9, 8, 10, 11 shows
that there are some important factors which affects schedu-
lability of the platforms considerably. These factors are the
length of critical sections, number of resources requested by
tasks, number of processors in the system, and the utilization
capacity specified for the processors. However, considering the
migration overhead, the schedulibility is affected negatively by
imposing the overhead under MLPS algorithm. The schedu-
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Fig. 9. Performance of synchronization protocols as the number of critical
sections per task increases. Number of processors = 8, Processor maximum
utilization capacity = 0.4, Critical section length = 45

lability under MLPS versus the migration overhead has been
presented in Figure 8.

The results show that MLPS suffers from migration over-
head which leads to lower schedulability. However ignoring
the overhead incurred by migration in MLPS, the performance
of MLPS is better compared to NMLPS. This confirms the
better handling of resources by concentrating the critical
sections of split tasks under MLPS algorithm. This makes
MLPS suitable for platforms with low migration overhead.

However, for systems with high migration overhead,
NMLPS performs better, although the parameters discussed
above have a prominent effect on the platform schedulability.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed and evaluated two synchroniza-
tion protocols under semi-partitioned scheduling for multipro-
cessor platforms. The protocols handle the resource sharing
between tasks among different processors in the platform,
where some tasks have been allocated to more than one
processor. The first algorithm centralizes all resource requests
of the split tasks to one specific processor while in the second
proposed algorithm, the requests are served on the processors
they occur. We have performed experimental evaluation of our
proposed algorithms in terms of comparing the performance
of both algorithms against each other. The results shows that
the first algorithm performs better in terms of scheduling a set
of random task compared to the second protocol in presence
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Fig. 11. Performance of synchronization protocols as the maximum processor
utilization capacity increases. Number of processors = 8, Number of critical
sections per task = 3, Critical section length = 45

of low amounts of overhead. However, the first algorithm
impose overheads to the system due to extra migrations, which
degrades it performance compared to the second algorithm.

In the future we plan to work on a new allocation mecha-
nism that takes the presence of resource sharing in the system
into consideration, to deliver a complete solution. Another
interesting area of extension to this work is changing the first
algorithm in such a way that the subtasks do not have to wait
for a constant amount of time to migrate to their next subtasks,
which is a pessimistic solution for soft real-time applications.
Therefore instead of constant offsets for subtasks of a split
task, a variant jitter is introduced, which should be considered
in the analysis, as well.
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