
Code as Design Material
Rikard Lindell

Mälardalen University
Box 883 S72123 Västerås Sweden

rikard.lindell@mdh.se

Abstract
The new ubiquitous assistive devices have increased
design space for innovative highly interactive design.
Designers can no longer rely on a design process based
on the known interaction idioms. This impedes the
design process because the non-interactive material -
sketches, scenarios, storyboards - does not provide
designers the essential talk-backs needed to be able to
make reliable assessments of the design characteristics.
Whereas, interactive prototypes provide these talk-backs.
What if we think of code as a design material,
programming as a design craft, and what if the
designer's repertoire include material consciousness
with code?

Introduction
The new landscape of ubiquitous device with
multitouch screens, accelerometers, gyros,
compass, microphone, and camera make it more
difficult for interaction designers to rely on a
design repertoire based on the known interaction
idioms. It requires quality-driven interaction
designers and programmers with the ability to
simultaneously establish and solve problems to
create innovative, useful, and thought-provoking
digital artefacts with rich experience qualities.

Interaction design describes itself as a design
practice that form appearance and function of
digital artefacts (Fällman 2008). Interaction design
contributions are often based on research through
design (Zimmerman et al. 2007). The appearance
and functionality are portrayed by sketches,
storyboards, videomatics, and interactive
prototypes to communicate requirements to the
software and product developers (Löwgren
Stolterman 2004, Buxton 2007, Lindell 2009). The
result of such design work is rich in clues to the
finished product's appearance, behaviour, and
function. However, the material in the design
process is radically different from the code need to
be written to implement the design as a working
artefact (Lindell 2009, Vallgårda Sokoler 2010).

There is a big problem in how a development
project runs between the phases of interaction
design and engineering (Memmel et al. 2007).
These two activities have different epistemology;
interaction design is a design practice (Fällman
2008), while software engineering is struggling to
describe itself as engineering and science (Boehm
2006). People who are active in these fields have
different ways of thinking about how they work
(Buxton 2009). Designers are trained to see a
plethora of future designs for a situation. Whereas,
engineers are trained to solve well-defined specific
problem (Buxton 2007).

Sketches, moodboards, storyboards, and paper
prototypes (figure 1) work in design situations
where the designer experiments with known
interaction idioms. Users, design colleagues, and
programmers fill the gaps and imagine the user
experience for the finished artefact based on their
experience with these idioms. However, this
approach does not work for innovative forms of
interaction and user experience. To get talk-back
from the interaction design it is necessary to create
interactive prototype programs. Memmel et al.
(2007) shows that the gap between designing
digital artefacts and implementing them is not easy
to bridge. The designer depicts the function and
appearance in a different material than what the
programmer uses to construct a program. A
material has inherent characteristics that affect and
provides the preconditions for what can be created
with it - compared to wood, fabric, iron. Code
provides other types of talk-backs than scenarios,
sketches, storyboards and paper prototypes
provide. The design process does not stop when
the programming start, on the contrary,
programming is a vital part of the design process.

Conversation with the material
Schön (1983: 78) describes how design is a
"conversation with the materials of a situation." He
portrays how experienced designers have a
habitual ability to handle situations that are known
to them. Designers create controlled situations by
constructing virtual worlds for thought
experiments and reflection-in-action in which time
can be slowed down so that there is more space for

Keywords: design, interaction design, experience design,
experiential qualities, highly interactive prototypes,
explorative programming, material, materiality, craft

reflection. Habitual skills are
necessary for reflection-in-
action.

“But the virtual world of the
drawing can function
reliably as a context for
experiment only insofar as
the results of experiment
can be transferred to the
built world. The validity of
the transfer depends on
with which quality the
drawn world represents the
built one. ... He learns, for
example, how drawings fail
to capture qualities of
materials, surfaces, and
technologies.” (Schön 1983:
159).

Schön describes the
architect's material
consciousness with both
plans, drawings, and the
finished building and his/hers ability to move
between these materials. This ability can be
transferred to the interaction design. In many
design situations, designers can experiment with
known interaction idioms. Users, design
colleagues, and programmers can fill in the gaps
based their experience and imagine the interaction
experience of the finished artefact. However, this
approach does not work for innovative forms of
interaction and user experience (Löwgren 2011).

Interactive prototypes are needed to provide talk-
backs from design’s features. The moulding of
code is thus, a part of the design process for
innovative highly interactive digital artefacts.
Writing code to explore the design is similar to the
ability of craftsmen who simultaneously are setting
and solving the problem (Sennett 2008:26).
According to Sennett problem, setting and problem
solving has a rhythm. This rhythm relates
subconscious and conscious reflection-in-action.

"Every good craftsman conducts a dialogue
between hand and head. Every good craftsman
conducts a dialogue between concrete practices
and thinking; this dialogue evolves into sustaining
habits, and these habits establish a rhythm between
problem solving and problem finding. The
relationship between hand and head appears in
domains seemingly as different as bricklayering,
cooking, designing a playground, or playing the
cello. ." (Sennett 2008:9)

Craftsmanship is thus characterised by the ability
to see and solve problems through dialogue
between hand and mind. Other characteristics are
material consciousness and quality-driven
approach on the edge of the manic (Sennett 2009:
234).

The profession, the practice, and ability to design
and create interactive artefacts is a creative craft.
McCullough (1998) discusses the craft related to
interactive technology use and how an artisan
approach can enrich interaction design. According
to McCullough, there is a wide gap between the
design of digital artefacts, and computer science
and software engineering. Within software
engineering craftsmanship is sometimes used
derogatory to describe careless programming.
Boehm (2006) for instance, uses the notion of
craftsmanship as analogy for the 1960s, lack of
professional discipline and careless "cowboy
programming." However, negligence has nothing
to do with craft making. On the contrary, describes
Sennett (2008) the craftsman as a quality-driven
bordering on manically busy perfecting his work.
The craftsman must be patient and not tempt to do
quick fixes. External factors - social and economic
conditions, poor tools, or bad work environment,
can be obstacles to the craftsman's good work. But,
the craftsman's commitment is to do a good
craftsmanship for its own sake. Sennett also
describes the small-scale approach is still relevant.

Figure 1. Interaction design materials; sketches, moodboards, and mockups.

Empirical study
In an empirical study on programming with 33
participants, including some interaction designers.
An open and informal question was sent: "I wish
that you write a sentence or two describing how
you think and feel about your favourite
programming language?"

Out of the collected data we created descriptive
categories and concepts using grounded theory
(Glaser Strauss 1967). A grounded theory grows in
three or four phases, according to Hartman (2001:
40) or Guvå Hylander (2003: 70) respectively. The
machinery of grounded theory in each of these
phases; theoretic selection, theoretic coding,
comparison, and conceptualising (Guvå Hylander
2003: 34). Here, the theoretical selection is the
community of users of programming languages.
During coding, sentences or words are marked or
labeled as indicators that contribute to the growing
theory. Preconceptualised ideas to theories are
written as memos. Then, the indicators are
compared, sorted and commented to be weaved
into a theory during conceptualising. The
machinery is used analogous in the following
phases, but for each phase the theory gets more
general and saturated.

Material
Material was the core category in the collected data.
The material sets the conditions for the context and
use of programming languages. It is also material
that provides talk-backs for the creation of models,
sketching, or exploration of a design. Utterances on
flexibility and simplicity occurred repeatedly in the
data. The material; the language and data have an
inner pliability that enables designs to be moulded
and reshaped, typically dynamic scripting
languages (figure 2).

Explorative Programming
Another category that was identified was
exploration. With explorative programming
designers strive to portray aesthetic expression,
function or interaction. They try their way into
conversation with the material to find a design, in
a continuous, problem setting and problem solving
rhythm. Move-making-experiments explore mini-
hypothesis via reflection-in-action. Here,
programming languages are tools to incrementally
explore and understand a problem. “What I
cherish the most is that [Processing] is
incrementally so that I can test my way. Sometimes
it feels like sketching in the truest/best sense,
when I can try my way to a new idea into an
interactive behaviour. Sometimes.”

Here is another quote that shows the exploration
and problem-setting approach: “Both in the case of
Flash and Processing you get to see directly and
graphically the results of your coding, a kind of
feedback that really enhances your comprehension
of programming concepts, such as: “Oh, that's
what happens if I loop it!”, and “Hold it right there
till someone presses a button!”.” This quote
indicates that interaction designers explorative
programming is about exploring a design, to do
both problem setting and problem solving. They
obtain a material consciousness of digital artefacts.
Explorative programming can be seen as part of a
design repertoire and as a craft.

Rational
In the rational category the respondents described
language specific theoretical and technical features,
such as polymorphism, abstraction levels, and
performance. The language paradigm was
important in this category. But, there were also
those who liked multi-paradigm languages with
focus on the languages’ technical features. Here's
an illustrative quote: "... the language supports
multiple levels of abstraction. Depending on the
application, you can choose to either write code at
a high level of abstraction, with object orientation,
encapsulation, inheritance, dynamic binding and
so on., Or on a more "hardware related " level, with
standard C functions, simple data types and
structer so on. "

The utterances in the rational category are not
about what a language can be used for, and there
are no emotional reasons as to why they prefer a
specific language. The rational approach is also
closest to a scientific approach to language that is
derived from academic studies on this topic and
bears witness to a technically rational approach.
The respondents in this category do credit to their
university education in computer science.

Discussion
The future challenges in the interaction design field
are how we can meet the need for innovative
highly interactive design for the drastically
increased design space so that designers and
programmers can reason about artefacts’
materiality and the material they are built of. There
are already programmers who have more of an
exploitative approach to programming, where the
code is a design material. Whereas, there are
programmers who have a rational and scientific
approach to software engineering. How can we
develop tools and programming languages that
provide richer feedback and facilitating the
transition between designing and crafting
interactions? How can the designer's repertoire be

expanded to include material
consciousness with the code
for explorative programming?
I believe the answer is in how
the think of programming. The
development of software –
programming – is an activity
that is closer to the craft than to
science or engineering. Sennett
(2008:24-26) depicts the Linux
programmer as the modern
craftsman. Valverde et al.
(2006) has shown how open
source communities are self-
organising. An open source
community is similar to a
guild, where the masters are in
control but also share
knowledge and teach those
who are less skilled. With this
view on programming the
epistemology of interaction
design and programming is
similar. We will have craft, but
with different material.

Acknowledgements
I thank all the participants of the study. I thank
professor Jonas Löwgren of Malmö University for
our conversations on the design and the craft of
making interactive artefacts.

References
Boehm, B. 2006. A view of 20th and 21st century software
engineering. In Proceedings of the 28th international
conference on Software engineering (ICSE '06). ACM,
New York, NY, USA, 12-29.

Buxton, B. 2007, Sketching User Experiences - getting the
design right and the right design, Morgan Kaufmann, ISBN
978-0-12-374037-3

Buxton, B. 2009. On Engineering and Design: An Open
Letter. Businessweek. April 29, 2009. http://
www.businessweek.com/innovate/content/apr2009/
id20090429_083139.htm

Fällman, D. 2008. The Interaction Design Research Triangle
of Design Practice, Design Studies, and Design Exploration,
Design Issues, MIT press 2008 4-18.

Glaser, B., Strauss, A. 1967. Discovery of Grounded Theory.
Strategies for Qualitative Research. Sociology Press

Guvå, G., Hylander, I. 2003 Grundad teori ett
teorigenererande forskningsperspektiv. Liber, ISBN
9147050837

Hartman, J. 2001. Grundad Teori. Studentlitteratur AB,
ISBN 9144006527

Lindell, R. 2009, “Jag älskar att allt ligger överst” – En
designstudie av ytinteraktion för kollaborativa multimedia-

framträdanden. MDH University Press Dissertation: 72,
ISBN 978-91-86135-24-9.

Löwgren, J., Stolterman, E. 2004, Desgin av
informationsteknik - materialet utan egenskaper,
Studentlitteratur 2004, ISBN 91-44-04203-5

Löwgren. J, 2011. In personal correspondence on
prototyping digital artefacts using Processing. Nov 2011.

McCullough, M, 1998.Abstracting Craft - the practiced
digital hand, MIT Press, ISBN 0-262-13326-1

Memmel, T., Gundelsweiler, F., and Reiterer, H. 2007.
Agile human-centered software engineering. In Proceedings
of the 21st British HCI Group Annual Conference on
People and Computers: HCI...but not as we know it -
Volume 1 (BCS-HCI '07), Vol. 1. British Computer
Society, Swinton, UK, UK, 167-175.

Schön, D. 1983, The Reflective Practitioner - how
professionals think in action. Basic Books, ISBN
0-465-06878-2

Sennett, R. 2008. The Craftsman. Penguin Books, ISBN
978-0-141-02209-3

Vallgårda, A., Sokoler, T. 2010, A Material Strategy:
Exploring Material Properties of Computers. International
Journal of Design 2010, Vol 4, No 3

Valverde, S., Theraulaz, G., Gautrais, J., Fourcassie, V.,
Sole, R.V. 2006. Self-organization patterns in wasp and open
source communities. Intelligent Systems, IEEE , vol.21, no.
2,

Zimmerman, J., Forlizzi, J., and Evenson, S. 2007.
Research through design as a method for interaction design
research in HCI. In Proc. CHI 2007, 493-502, ACM Press
2007

Figure 2. A screen dump of Lua code – a dynamic scripting language

