
Statistical-based Response-Time Analysis of Systems with Execution
Dependencies between Tasks

Yue Lu, Thomas Nolte, Johan Kraft and Christer Norström
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden
{yue.lu, thomas.nolte, johan.kraft, christer.norstrom}@mdh.se

Abstract

This paper presents a novel statistical-based approach
to Worst-Case Response-Time (WCRT) analysis of complex
real-time system models. These system models have been
tailored to capture intricate execution dependencies be-
tween tasks, inspired by real industrial control systems. The
proposed WCRT estimation algorithm is based on Extreme
Value Theory (EVT) and produces both WCRT estimates to-
gether with a probability of being exceeded. By using the
tools developed, an evaluation is presented using three dif-
ferent simulation models, and four other methods as refer-
ence: Monte Carlo simulation, MABERA, HCRR and tradi-
tional Response-Time Analysis (basic RTA). Empirical re-
sults demonstrate that the benefit of the proposed approach,
in terms of 1) reduced pessimism when compared to basic
RTA and 2) validated guarantee of never being less than
the actual response time values. The proposed approach
also needs much fewer simulations compared to other three
simulation-based methods.

1 Introduction

To date, most existing embedded real-time software sys-
tems have been developed in a traditional code-oriented
manner. Many such systems are maintained over extended
periods of time, sometimes spanning decades, during which
the systems become larger and increasingly complex. As a
result, these systems are difficult and expensive to main-
tain and verify. There are many industrial embedded sys-
tems consisting of millions of lines of C code, and con-
taining 50 - 100 tasks or more, out of which many tasks
have real-time constraints. One example of such systems is
the robotic control systems developed by ABB [1]. Look-
ing closer at these systems, contrary to the assumption in
most real-time theory, i.e., independent tasks in the analy-
sis model, tasks exhibit strong temporal dependencies, e.g.,

asynchronous message-passing, globally shared state vari-
ables (but not logical resources) and runtime changeability
of periods and priorities of tasks, which vary the execution
time of the tasks radically.

One desirable approach to avoid timing-related errors
in such complex systems is to use schedulability analysis
methods, such as Response-Time Analysis (RTA) [2, 3].
Nevertheless, RTA (and other schedulability analysis tech-
niques), although providing the prediction about temporal
behavior of execution in worst-case scenarios, rely on the
existence of a fixed Worst-Case Execution-Time (WCET)
of the tasks. Correspondingly, the quality of the analysis
is directly correlated to the quality of the WCET estimates.
Unfortunately, in the above described systems, the WCET
of tasks obtained by static WCET analysis techniques may
not easily be bounded. Sometimes a pessimistic WCET
bound can be found, while in other cases the WCET is com-
pletely unbounded until the behavior of dependent tasks is
known. Consider the following example in Figure 1, taken
from an industrial robotic control system, where a task reads
all messages buffered in a message queue and processes
them accordingly:

1 msg = recvMessage(MyMessageQueue);
2 while (msg != NO_MESSAGE){
3 process_msg(msg);
4 msg = recvMessage(MyMessageQueue);
5 }

Figure 1. Iteration-loop wrt. message passing

By using static WCET analysis, the upper bound on the
number of messages actually consumed by the task is equal
to maximum queue size. Nonetheless, tasks with a higher
significant priority may preempt the execution of the loop
and refill the queue at runtime. A pessimistic assumption
concerning the worst-case scenario, would be, for each pre-
emption, that the maximum queue length is refilled. How-
ever, our evaluation work presented in [4] and [5] showed
different results. In [4], the WCRT of the task under anal-
ysis is found when a loop has 42 iterations given a queue

2010 15th IEEE International Conference on Engineering of Complex Computer Systems

978-0-7695-4015-3/10 $26.00 © 2010 IEEE

DOI 10.1109/ICECCS.2010.26

169



of length of 40. Whilst in [5], this number is bounded and
typically smaller than the maximum queue size in the worst-
case scenario. Consequently, the WCRT obtained by using
basic RTA [6]1 with standard WCET estimation is 29.2%
more pessimistic when compared to the known WCRT.

The other approach, which avoids the state-space explo-
sion issue raised by model checkers such as UPPAAL [7]
and TIMES [8], for instance, is to use simulation-based
methods that sample the state space. The first type of sim-
ulation technology to use is Monte Carlo simulation, which
can be described as keeping the highest result from a set of
randomized simulations. Several frameworks already exist
in this realm, such as the commercial tool VirtualTime [9]
and the academic tool ARTISST [10]. However, the main
drawback of using Monte Carlo simulation is the low state-
space test coverage, which subsequently decreases the con-
fidence in the results of finding rare worst-case scenarios.
The other category is to apply an optimization algorithm
(e.g., (meta)heuristic search algorithm), on top of Monte
Carlo simulation, as in [4] and [11], which yield substan-
tially better results, i.e., tighter lower bounds of the WCRT
estimation.

Another approach is to use stochastic analysis of hybrid
task sets in priority-driven soft real-time systems, as in [12].
Nevertheless, this approach does not allow for dependencies
between tasks in the analysis, and the priority of jobs (a task
is comprised by a sequence of jobs) and task periods are
fixed.

In this paper, we present a novel statistical-based ap-
proach to response time analysis of systems with intri-
cate execution dependencies between tasks. The proposed
method uses samples collected by running Monte Carlo
simulation as the input, and produces WCRT estimates
on tasks along with a predictable probability of being ex-
ceeded, i.e., 10−9. Specially, the contributions of this paper
are four-fold:
• We propose a system model which captures the execu-

tion dependencies between tasks as mentioned previ-
ously, by using parametric WCET symbolic formula.

• We introduce the complexity of the problem about re-
sponse time analysis and give the problem definition.

• We design an algorithm based on Extreme Value The-
ory (EVT) [13] and two adhering search algorithms
used in the WCRT estimation, in order to get the best-
fit estimated parameters of the distribution.

• We present empirical results to demonstrate that our
solution can effectively reduce the pessimism when
compared to basic RTA, while covering the best results
obtained by using the simulation optimization-based
methods as presented in [11] with much fewer simula-
tions required to be run, 6% at most.

1Basic RTA in [6] is also called classical RTA or traditional RTA.

The remaining part of the paper is organized as follows:
in Section 2, we describe a system model, where each task’s
WCET is represented as a symbolic formula. Section 3 in-
troduces the complexity of RTA and gives the problem def-
inition regarding the work. Section 4 presents the proposed
method, i.e., WCRTEVT, and Section 5 describes the im-
plementation of our testbed and a toolchain developed. The
evaluation by using a set of case-study models, and scalabil-
ity of the method are presented and discussed in Section 6
and Section 7 respectively. Section 8 introduces the related
work, and finally, Section 9 concludes the paper and dis-
cusses future work.

2 System Model

In this paper we consider a system model inspired by
industrial control systems containing a number of tasks
communicating via asynchronous message-passing, sharing
Globally Shared State Variables (GSSVs), being executed
under Fixed-Priority Preemptive Scheduling (FPPS) on a
single processor. More important, task periods and priori-
ties can be changed by other tasks at runtime. Furthermore,
each task is associated with b input buffers and g GSSVs.
The novelty of the system model proposed in this work is
to represent the WCET of tasks as a symbolic formula cen-
tering around the number of messages in the buffers and the
value of the GSSVs. The reason for why parametric WCET
representation is used in this context is: it captures the intri-
cate task execution dependencies as described previously,
by preserving them in terms of the parameters in the for-
mula, which could for instance be used in basic RTA with
the purpose of reducing the pessimism brought in by using
a traditional, single numeric WCET representation.

In details, the system model S contains a set of non-
blocking tasks, of which each task consists n jobs, where
n ∈ N. Each deadline-constrained task τi is a tuple
τi(Ti,C

p
i ,Di,Oi, Ji, Pi), where Ti is the task period with

maximum jitter Ji, constant offset Oi and a priority Pi, Cp
i

is the WCET expressed as a function of b buffers (i.e.,
Ui,1, ...,Ui,b) and g GSSVs (i.e., Vi,1, ...,Vi,g) associated with
task τi and execution time on jobs, Di is the relative dead-
line (max(Cp

i ) ≤ Di ≤ Ti). The execution of task τi is di-
vided into two types of sections. Firstly, the non-volatile
(NV) section in which there is no input buffer and GSSV,
and secondly, the volatile (V) section containing either one
buffer, or a GSSV. In both sections, preemption caused by
higher priority task is allowed.

2.1 Execution-Time Modeling

Each NV section in a task τi consists of h jobs ji,x, where
x is in the range of [1, h]. The WCET of the job ji,x is rep-
resented as C( ji,x), and practically, such a value can be ob-

170



tained by using either static WCET analysis (which is safe
but more pessimistic compared to the exact WCET) that
are used in applications with hard real-time constraints, or
through dynamic WCET estimates based on measurements
with probability distribution when dealing with applications
with soft real-time constraints. The corresponding WCET
of the NV section containing h jobs is expressed as follows:

Ci,nv =

h∑
x=1

C( ji,x) (1)

The execution on a Volatile (V) section of a task τi is
heavily dependent on the number of processed messages in
the input buffer and data stored in the associated GSSV. Ac-
cordingly, the execution on a Volatile (V) section consists
of two parts: execution on GSSV and execution on message
passing.

The value of the GSSV Vi, j determining the control
branch in the model, where j is in the range of [1, g] and g
is the number of GSSVs associated to task τi, i.e., Val(Vi, j)
associated with task τi is a function of the model time t and
a set of Γ periodic tasks that can change the value of Vi, j at
runtime, given by (2).

Val(Vi, j) = f (t, Γ) (2)

The WCET estimate on the task with respect to Vi, j is:

Cp
i (Vi, j) = S el(Val(Vi, j),CVi, j ) (3)

where CVi, j = CVi, j,1, ...,CVi, j,k, CVi, j ,k is an execution-time
specified in the kth branch of the control structure in the
system, such as if-else, switch-case, S el is a function
returning the argument specified by the first argument, ex-
pressed as S el(x, y0..., yn−1) �→ yx. Since there are g GSSVs
associated with task τi, the corresponding WCET of g V
sections, considering the GSSVs, is expressed as follows:

g∑
j=1

Cp
i (Vi, j) =

g∑
j=1

S el(Val(Vi, j),CVi, j) (4)

The message passing between two non-blocking tasks in
the system model is asynchronous communication, i.e., the
sending and receiving tasks place no constraints on each
other in terms of completion, in the communication pro-
cess. For each task τi either as the sending or receiving task,
there are b input buffers associated, and the execution time
of message passing primitives invoked (i.e., sendMessage
and recvMessage) is denoted as Cmsg primitive. The execu-
tion time required to handle the messages (may include both
message passing primitives and l jobs) in the buffer Ui, j in
task τi, can be expressed as follows:

Cp
i (Ui, j) = mxi, j × (Cmsg primitive +

l∑
x=0

C( ji,x)) (5)

where mxi, j is either the number of messages sent by sending
task τi to buffer Ui, j, or the number of messages received
from buffer Ui, j by the receiving task τi. Further, the value
of mxi, j may not be bounded by the maximum size of the
buffer Ui, j as the preemption caused by higher priority tasks
may preempt the execution in terms of refilling the buffer
Ui, j with more messages at runtime. Moreover, the value of
Cmsg primitive is assumed to be a safe upper bound obtained
by using static WCET analysis.

In a summary, by combining the two parts of task execu-
tion time, i.e., V and NV sections in task τi, the parametric
WCET estimate of task τi is a function expressed as follows:

Cp
i =

b∑
j=1

Cp
i (Ui, j) +

g∑
j=1

Cp
i (Vi, j) +

c∑
j=1

Ci,nv j (6)

where c is the number of NV sections in task τi.

2.2 System Modeling

Practically, the system model presented previously is
specified by the modeling language used in RTSSim [14],
which can be considered as a domain-specific language
describing both architecture and behavior of task-oriented
real-time systems developed in C, and running on a sin-
gle processor. Its syntax and semantics are as expressive
as the C programming language, and it includes the typical
RTOS services to the task models, such as task scheduling
(e.g. FPPS), IPC via message passing and synchronization
(semaphore). RTSSim also measures response time and ex-
ecution time for each finished instance of a specified task,
and reports the maximum value observed during the simu-
lation. We intentionally miss out the details for the sake of
space, the interested reader can refer to [14] for a thorough
description of RTSSim.

3 Worst-Case Response-Time Analysis

In this section, we present 1) the time complexity of
computing the WCRT of a set of independent tasks, 2) the
feasible solution to RTA of the systems with intricate task
execution dependencies as introduced in Section 2, and fi-
nally, 3) give the problem definition.

3.1 Problem Complexity

As proposed in [6], the WCRT of a set of independent
tasks can be numerically obtained using the following re-
currence relation:

Rn+1
i = Ci +

∑
∀ j∈hp(i)

⌈
Rn

i

T j

⌉
× C j (7)

171



Basic RTAExact WCRT
Simulation optimization

Monte Carlo simulation

Value of WCRT
0

WCRTEVT

A tighter interval of WCRT
estimation given by the 
approximation algorithms 

Figure 2. Illustration of applying different WCRT analy-
sis methods in the system model presented in Section 2.

where hp(i) is the set of all tasks with a priority higher than
that of task τi.

Equation 7 can iteratively be solved using fix-point it-
eration [15, 16]. Starting with R0

i = Ci and iterating until
Rn+1

i = Rn
i is guaranteed to yield the smallest possible so-

lution and thus the response time for task τi. The research
in [17] recently proved that the complexity of computing
such WCRT of an independent task τi is NP-hard, unless
P = NP. Further, referring to the system model with intri-
cate task execution dependencies as introduced in Section 2,
the WCET of tasks Ci, i.e., the input to Equation 7, is bet-
ter off being represented in terms of the symbolic formula
expressed by Equation 6. Nevertheless, to use tasks’ para-
metric WCET representation in Equation 7 is still an open
and challenging question, which significantly increases the
complexity of the problem. Therefore, one feasible solution
is to find a tighter interval consisting of the lower and upper
bound of the WCRT of tasks, given by the approximation
algorithms.

3.2 Problem Formulation

In [11], a tighter lower bound of the WCRT of tasks in
system models with intricate task execution dependencies
as introduced in Section 2 is obtained by using a simulation
optimization-based method, where a heuristic search algo-
rithm runs on top of the traditional, Monte Carlo simulation.
In this paper, we present another approximation method,
WCRTEVT based on Extreme Value Theory, with the pur-
pose of determining a tighter, meaningful upper bound of
the WCRT of tasks, when compared to basic RTA. Con-
sequently, the problem can be defined as follows. We are
given a model, which can be simulated on RTSSim simula-
tion instance s. Let R(s) denote the highest response time
measured for the task under analysis in the simulation in-
stance s. Given m simulation instances s1, ..., sm as the sam-
ples in space S , i.e., S ← s1, ..., si, ..., sn, n ∈ N, the goal
of the problem is then to find an estimation that is bigger
than any instance si in space S . Moreover, the relationship
between the results obtained by different analysis methods
and the exact value of the WCRT of the task on focus in the
system model is illustrated in Figure 2.

4 WCRT Estimation Based on EVT

Extreme Value Theory (EVT) [13] is a separate branch
of statistics for dealing with the tail behavior of a distribu-
tion. It is used to model the risk of the extreme, rare events,
without the vast amount of sample data required by a brute-
force approach. The example applications are hydrology,
material sciences, telecommunications etc.

There are three models in EVT, i.e., the Gumbel (type I),
Frechét (type II) and Weibull distributions (type III), which
are intended to model random variables that are the maxi-
mum or minimum of a large number of other random vari-
ables. It is worth noting that the Frechét distribution is
bounded on the lower side (x > 0) and has a heavy up-
per tail, while the Weibull model relates to minima (i.e., the
smallest extreme value). Since the purpose of this work is
to find the higher response time of tasks concerning rare
worst-case scenarios, we therefore use the maximum case
in the Gumbel distribution, referred to as Gumbel Max in
the reminder of the paper.

The proposed method, WCRTEVT is shown in Algo-
rithm 1. It is a recursive procedure which, as first argu-
ment, takes m data sets of which each contains N samples of
the response time of the task under analysis. The algorithm
returns the WCRT estimation with a predictable probabil-
ity of being exceeded which is the second algorithm argu-
ment (i.e., 10−9 being for instance adopted by Airbus [18]
in the safety-critical system domain). The outline of our
WCRTEVT algorithm is as follows, which is discussed in
greater detail in the following sections.

1. Construct n reference data sets by running m Monte
Carlo simulations, and then choosing the n best sim-
ulations with the highest maximum value of response
time of the task under analysis.

2. Perform the WCRT estimates on the task under analy-
sis per each reference data set.

(a) Set the initial block size b to 100, for each refer-
ence data set.

(b) If the number of blocks k =
⌊N

b

⌋
is less than 30,

then algorithm stops since there are not enough
samples to generate an estimate.

(c) Segment N response times into blocks of b, and

for each of the
⌊N

b

⌋
blocks find the maximum val-

ues.
(d) Estimate the best-fit Gumbel parameters μ and β

to the block maximum values by following two
procedures using two different proposed search
algorithms as introduced in Section 4.2.3.

(e) Calculate the WCRT estimation based on the es-
timated Gumbel parameters, i.e., μ, β, and a tar-
get acceptance probability Pe, i.e., 10−9.

3. Return the lowest WCRT estimation of all the refer-

172



ence data sets.

4.1 The Reference Data Sets

In order to construct the input data sets to the
WCRTEVT, there are m Monte Carlo simulations in
RTSSim to run at first. Then the n best simulations with
the highest maximum value of response time, are selected
as the reference data sets. For each reference data set, there
are N samples of the response time taken from the task un-
der analysis. The value of N depends on simulation length,
i.e., how long the simulation will run. Due to that the upper
bound of the simulation length in the software program de-
veloped in C is 231 − 1, and in order to make sure that there
are enough samples used for both estimation and validation
for each reference data, we set the simulation length to be
2 000 000 000 which is quite near to the upper bound, for
all the simulation models used for the evaluation purpose
as introduced in Section 6. Correspondingly, for instance,
there are 199 990 samples, almost half of which i.e., 99 990
samples are used in WCRT estimation for the model MV
and M1 (refer to Section 6), whilst the rest of the samples
are used for the validation purpose. Moreover, empirical
evidence suggests that such number of samples in the esti-
mation part of the reference data set is usually sufficient to
make a good estimate. Therefore, in this work, N is either
100 000 for the model MV and M1, or 33 340 for the model
M2, which is slightly different with 99 990 and 33 334 sam-
ples that are practically used by the simulator in the evalua-
tion respectively.2 Furthermore, the construction is showed
in rows 1-3 in Algorithm 1, where xi in line 3 is the highest
response time of the task under analysis observed in simu-
lation per each data set.

4.2 WCRT Estimation of the Reference Data Sets

4.2.1 Blocking of N Samples

In order to avoid the risk of mistakenly fitting raw response
time data, that may not be from random variables, to
Gumbel Max, we use the method of block maxima [13] as
proposed in [19]. This is done by grouping N response time
samples in each reference data set into k blocks of size b,
and then choosing the maximum value from each block to
construct a new set of sample “block maximum” values, i.e.,
Y ← yi,1, ..., yi,k, yi,k ← maxima(S ) ← N(k−1)×b+1, ...,Nkb

as shown in row 6, 9 and 10 in Algorithm 1. The
samples at the end of the execution sequence in a simu-
lation that do not completely fill a block are discarded.
For instance, if there are 9 samples per data set, i.e.,
{1119, 1767, 2262, 2287, 1792, 2687, 1942, 1842, 1692},

2The differences are less than 0.018% (i.e., (33 340−33 334)÷33 334 =
0.018%, (100 000 − 99 990) ÷ 99 990 = 0.01%).

and b (i.e., the size of the blocks) is 2, then the last sample
(i.e., 1692) in the sequence is discarded since it can not be

grouped in the 4 (i.e.,

⌊
9
2

⌋
) blocks.

4.2.2 Search Space and Initial Value of Block Size b

The selection of b is a trade-off between the quality of fit
to the Gumbel Max distribution, and the number of blocks
(i.e., k) in each data set available and used in the estimation
of the Gumbel parameters. Generally, the higher value we
choose for b, the more likely it is that the block maximum
values will follow a Gumbel Max, but the fewer samples,
i.e., blocks, we will have available to use in the parame-
ter estimation. Further, in order to use Chi-square test (as
introduced in Section 4.2.3), the number of blocks should
not be less than 30. For instance, for the model MV and
M1, there are 99 990 samples in the sampling distribution
per each reference data set, the corresponding block size b
should be no bigger than 3 333, i.e., 99 990÷30. Therefore,
3 333 is the upper bound of the entire search space of block
size b concerning the best-fit Gumbel parameters. For the
lower bound of b, its theoretical value is 1, corresponding to
99 990 blocks. Unfortunately, so many blocks are extremely
hard to fit to a Gumbel Max, although they are very good for
parameter estimation. Moreover, empirical results showed
that block size b fitting to the best-fit parameters for the
Gumbel Max distribution is usually larger than 100. There-
fore, in this work, the initial value of b is chosen as 100.
While just in case that block size b concerning the best-fit
Gumbel Max parameters located in the range of 1 and 100,
Algorithm 1 will find it by performing the lower bound bi-
nary search as introduced in the following Section 4.2.3.

4.2.3 The Best-fit Gumbel Max Parameters Estimation

The estimation of the parameters of the Gumbel Max dis-
tribution is the core of WCRTEVT, which is also an itera-
tive procedure as shown in rows 8-35 in Algorithm 1. In
this paper, we introduce two procedures using two different
search algorithms, i.e., lwbsearch and upbsearch which can
find a proper value of b in the search space introduced in
Section 4.2.2 producing the best-fit Gumbel Max parame-
ters estimation. The algorithm lwbsearch is invoked at first
as shown in rows 8-26 in Algorithm 1, which focuses on
searching for the value of b to be as low as possible. In this
way, there are more blocks, i.e., the bigger value of k, used
as samples in the estimation. However, in some cases, lwb-
search may fail in finding such a value of b in best-fit tests.
If this is the case, then upbsearch will be adopted, which is
showed in rows 27-35 in Algorithm 1. Moreover, the best-fit
test is, in terms of examining the estimated Gumbel param-
eters, a goodness-of-fit (GOF) test, i.e., Chi-square test at
α-value of 0.05. Chi-squared test is used to determine if a

173



sample comes from a population with a specific distribution
[20], i.e., Gumbel distribution in this work. Further, the null
and alternative hypotheses are:

• H0: the data, i.e., the maxima of the blocks follow the
Gumbel max distribution;

• Ha: the data, i.e., the maxima of the blocks do not
follow the Gumbel max distribution.

Note that other more advanced (meta)heuristic search al-
gorithms can be applied. While the empirical results con-
cerning the three models presented in Section 6.1 show that
the two proposed algorithms worked well enough to reach
the goal. For the sake of space, we will not show the imple-
mentation of the two search algorithms proposed. Instead,
we illustrate how they work together with using a concrete
example based on the data shown in Table 1.

Table 1. Illustration of using two proposed search algo-
rithms.

step b ALG χ2 step b ALG χ2

1 100 lwb × 9 2600 upb ×
2 200 lwb × 10 2500 upb ×
3 400 lwb × 11 2450 upb ×
4 800 lwb × 12 2425 upb

√
5 1600 lwb × 13 2437 upb

√
6 3200 lwb × 14 2443 upb

√
7 2400 upb

√
15 2446 upb ×

8 2800 upb × 16 2444 upb ×

The columns b, ALG and χ2 in Table 1 represents block
size, search algorithm and result of Chi-square test at α-
value of 0.05 respectively (Chi-square test at α-value of 0.05
is referred to as χ2 test without indicating α-value of 0.05 in
the following context). Moreover, lwb stands for the algo-
rithm lwbsearch, upb means the algorithm upbsearch,

√
is

not reject χ2 test and × is reject χ2 test. At the beginning,
Algorithm 1 will try to find the value of b that is not bigger
than 3 200 (which is close to the upper bound of the search
space of b i.e., 3 333) and not be rejected by χ2 test, by dou-
bling the block size b. If such b value i.e., bdou is found,
then lwbsearch will start searching the lowest value of b in
the range of [100, bdou], i.e., b∗, in the way of the lower part
binary search, under the condition that the corresponding χ2

test is not rejected. b∗ is used to estimate the parameters for
the Gumbel Max distribution which are considered as the
best-fit parameters. While, as shown through Steps 1 to 6 in
Table 1, b∗ cannot be obtained by using lwbsearch. There-
fore, upbsearch is followed to perform with the purpose of
obtaining the highest value of b in the way of the upper part
binary search. E.g., at Step 7, blwb (i.e., the lower bound
of b) is set to be 1 600 (corresponding to Step 5) and bupb

(i.e., the upper bound of b) is 3 200 (corresponding to Step
6). The new b value to be verified by using χ2 test at Step 7
is 2 400, i.e., (3 200 + 1 600)/2. Further, there is one point
to highlight, i.e., at Step 16, the value of b is 2 444 which
fails in χ2 test. While at Step 14, when b value is 2 443,
the corresponding χ2 test passes. Hence b∗ is ensured to be
2 443.

4.2.4 The WCRT Estimations Formula

The two parameters of the Gumbel Max distribution: a lo-
cation parameter μ and a scale parameter β, are used in the
Gumbel percent-point function, which returns the WCRT
estimation that the block maximum Y cannot exceed with
a certain probability Pe, as shown in Equation 8. Its im-
plementation is the function wcrtevt with the arguments b
(block size), l (location parameter), s (scale parameter) and
Pe (acceptance probability) (refer to line 19 and 33 in Al-
gorithm 1). How to obtain the best-fit Gumbel Max distri-
bution parameters practically are explained in the following
Section 5.

est = μ − β × log(−log((1− Pe)b)) (8)

4.2.5 Selecting the Lowest WCRT Estimation

As the last step in WCRTEVT, the lowest WCRT estimate
is selected as the WCRT estimate on all m data sets. This
is confirmed by the empirical results by evaluating a valida-
tion model presented in Section 6.2.

5 Implementation

In this section, our testbed and the toolchain including
the implemented tools are introduced in details.

5.1 Testbed

Our testbed is running Microsoft Windows XP Profes-
sional, version 2002 with Service Pack 3. The computer
is equipped with the Intel Core Duo CPU E6550 processor,
2GB RAM and a 4MB L2 Cache. The processor has 2 cores
and 1 frequency level: 2.33 GHz.

5.2 Toolchain

The toolchain proposed in this work is showed in Fig-
ure 3. Moreover, the relevant tools are introduced in the
following sections.

174



5.2.1 RTSSim

In this work, RTSSim is extended with another functionality
of recording N samples of response time of a specific task
during each simulation, and storing such information in a
separate text file. When there are m simulations specified to
execute in the batch mode, then RTSSim will generate one
text file out.txt (which contains m lines simulation results of
the highest response time for a specific task observed during
each simulation), and m data set files of which each contains
N response time samples of the task corresponding to each
simulation.

5.2.2 ThinkStati

The core part of the toolchain, i.e., ThinkStati, is a prototype
of WCRTEVT as an executable program with a simple user
interface developed using Microsoft C# programming lan-
guage and .NET framework 2.0. The software 1) reads one
output of the RTSSim simulator, i.e., the reference data set
file containing N (i.e., either 100 000 or 33 340 for the dif-
ferent evaluation models as explained in Section 4.1) sam-
ples of response time of the task on focus, at first, then 2)
generates a text file yblock.txt for each reference data set af-
ter segmenting the samples as introduced in Section 4.2.1,
then 3) produces the WCRT estimation on tasks under anal-
ysis according to the best-fit Gumbel Max parameters (ver-
ified and returned by EasyFit introduced in the following
section) and the acceptance probability, i.e., 10−9 in this
work. Due to limited time, the investigation on how to
use the interfaces in EasyFit, concerning the verification re-
sult of the estimated Gumbel Max parameters, has not been
done yet. Correspondingly, the two proposed search algo-
rithms have not been implemented in ThinkStati.

5.2.3 EasyFit

Since Chi-square test is required by ThinkStati, in order to
decide if the estimated parameters of the Gumbel distribu-
tion are conforming to the underline samples after the seg-
ment, a commercial software EasyFit [20] is used in the
toolchain. Given the text file yblock.txt which contains cer-
tain number of samples generated by ThinkStati, as the in-
put, the Chi-square test engine embedded in EasyFit will
return the results in terms of the success or failure of the
hypothesis test concerning the acceptance of H0 or null hy-
pothesis. If Easyfit derives the conclusion that H0 or null
hypothesis is satisfied, which means that the estimated pa-
rameters are conforming to the underlying distribution and
should not be rejected; Otherwise, the parameters estimated
have to be rejected.

RTSSim
out.txt

m data set files

ThinkStati

EasyFit
Chi-square test engine

WCRT Estimation

Best-fit Gumbel Max 
parameters estimation

Monte Carlo simulation

yblock.txt

Figure 3. The toolchain in this work.

6 Empirical Results

In this section, we firstly introduce three models used
for method evaluation including one validation model, then
compare our solution with four other methods as reference:
Monte Carlo simulation, MABERA, HCRR, and basic RTA
by using the response-time computation formula (RTCF)
expressed by Equation 7. Furthermore, the models are in-
spired by two different industrial control systems.

6.1 Evaluation Models

The three models, i.e., Model 1 (M1), Model for Valida-
tion (MV) and Model 2 (M2), have similar architecture and
analysis problems as two industrial real-time applications
in use at ABB [1] and Arcticus Systems [21]. M1 is rep-
resenting a control system for industrial robots developed
by ABB Robotics, which is not possible to analyze using
methods such as RTA [2, 3]. M2 is constructed from a test
application used by Arcticus Systems [21], which develops
the Rubus RTOS used in many vehicular systems. We also
use a simplified version of Model 1 for validation (MV).
The sole purpose of this model is to investigate how close
the response time estimation given by WCRTEVT is to the
true, known WCRT. The scheduling policy is FPPS for all
models, apart from M1 (where FPPS is used as base but one
task changes its priority during runtime), M2 and MV both
use fixed priorities. Furthermore, both M1 and MV could
be described by the system model proposed in Section 2.
Besides, Table 2 shows the relevant information about the
number of tasks, jobs, message queues, and GSSVs con-
tained by each evaluation model.

6.1.1 Model 1 (M1)

This model represents a control system for industrial
robotics, developed by ABB. It is designed to include some
behavioral mechanisms from the ABB system which RTA
can not take into account:

1. tasks with intricate dependencies in temporal behavior
due to Inter-Process Communication (IPC) and glob-
ally shared state variables;

175



2. the use of buffered message queues for IPC, which
vary the execution time of tasks dramatically;

3. tasks that change scheduling priority or periods dy-
namically, in response to system events.

The modeled system controls a set of electric motors
based on periodic sensor readings and aperiodic events. The
calculations necessary for a real control system are, how-
ever, not included in the model; the model only describes
behavior with a significant impact on the temporal behavior
of the system, such as resource usage (e.g., CPU time), task
interactions and important state changes. The details of the
model are described in [14].

6.1.2 Validation Model (MV)

MV is constructed based on M1, but the adhering task
execution dependencies are simplified in that 1) globally
shared state variables have been removed, 2) priority and
period are strictly static, 3) loop bounds have been added
manually, and 4) the constant offset of tasks is removed.
As a consequence, MV has considerably lower complexity,
which makes both using the RTCF in basic RTA to calculate
the WCRT of tasks under analysis, and achieving the ex-
act WCRT by using simulation-based methods, e.g., Monte
Carlo simulation and HCRR [11], feasible.

6.1.3 Model 2 (M2)

M2 is based on a test application from Arcticus systems,
developers of the Rubus RTOS [21] which is used in heavy
vehicles. This model uses a pipe-and-filter architecture,
where tasks trigger other tasks through trigger ports, form-
ing transactions. The model contains three periodic trans-
actions and one interrupt-driven task; in total 11 tasks. The
interrupt has a small jitter, while the other transactions are
strictly periodic. M2 is less complex than M1 in the sense
that there exist no shared variables or IPC via message pass-
ing which can impact the tasks’ timing and functional be-
havior. Instead, the tasks have large variations in execution
times, which makes the state space of this model very large.
For M2, the evaluation focuses on the end-to-end response
time of the transaction which contains the tasks with the
lowest priority. More details of the model can be found
in [22].

Table 2. The number of the adhering tasks, jobs, message
queues, and GSSVs in the evaluation models.

Tasks Jobs Message Queues GSSVs
MV 5 35 7 0
M1 5 37 8 10
M2 4 13 0 0

6.2 Results Comparison

Before we present the results in the view of compar-
ing WCRTEVT with the other four reference methods, the
number of simulations required by WCRTEVT has to be
decided. The bigger such value is, the better coverage the
sampling distribution will give, whilst the more time will
be consumed. Empirical results show that, for WCRTEVT,
600 simulation runs of which each simulation length is
2 000 000 000 (as introduced in Section 4.1) are sufficient to
obtain the qualified reference data sets. However, the num-
ber of simulation runs in WCRTEVT could be optimized
when more investigation is conducted.

Table 3. Results comparison for three evaluation models,
when the different simulation budgets, i.e., the number of
simulations to run, are given to the methods.

MC MABERA HCRR Basic RTA WCRTEVT
MV 4332 4332 4332 5982 4574.556
M1 7682 8065 8474 NA 8610.766
M2 6031 6002 6299 NA 6368.742

As shown in Table 3, when different simulation budgets
(refer to Table 4) are given to different methods in order to
obtain the highest WCRT of the task under analysis, for MV,
the WCRT estimation achieved by WCRTEVT is 5.6% (i.e.,
(4 574.556 − 4 332)/4 332 × 100%) more pessimistic than
the exact value derived by HCRR and MC (Monte Carlo
simulation), but 23.5% (i.e., (5 982 − 4 574.556)/5 982 ×
100%) less pessimistic when compared to the value ob-
tained by basic RTA. While for the other two models, i.e.,
M1 and M2, to which the basic RTA cannot be applied,
the WCRT estimations given by WCRTEVT cover the best
results obtained by both MC (Monte Carlo simulation),
MABERA and HCRR as presented in [11]. This shows that
WCRTEVT has a potential to provide meaningful results,
i.e., as a tighter upper bound of the WCRT estimation in the
response time analysis of real-time systems with more com-
plex execution dependencies between tasks, specially when
basic RTA cannot be applied.

Table 4. The number of simulations required to execute
by each method.

MC MABERA HCRR WCRTEVT
MV 10000 10000 10000 600
M1 8140000 8140000 10000 600
M2 10000 10000 10000 600

176



Table 5. The computation time corresponding to the num-
ber of simulations required to execute by each method.

MC MABERA HCRR WCRTEVT
MV and M1 36133.46 s 36133.46 s 44.39 s 1716.73 s

M2 22.3 s 22.3 s 22.3 s 318.31 s

Moreover, as shown in Table 4, the number of sim-
ulations required to execute MC, MABERA and HCRR,
are far more than the simulations executed in WCRTEVT.
Especially, for the most realistic model M1, both MC
and MABERA spend 13565.67 times (i.e., (8 140 000 −
600)/600 ) as many simulations compared to what is
required by WCRTEVT. While for HCRR, such num-
ber is much lower, but still 15.67 times (i.e., (10 000 −
600)/600) as many compared to WCRTEVT. In other
words, WCRTEVT only needs 6% (600/10 000 × 100%)
simulation budget to produce the WCRT estimation which
covers the best results found by HCRR, i.e., the best of three
referenced simulation-based methods.

Regarding the computation time consumed by each
method used in the evaluation, Table 5 shows that the com-
putation time spent by WCRTEVT is either 37.67 times
(i.e., (1 716.73 − 44.39) ÷ 44.39) (for the model MV and
M1), or 13.27 (i.e.,, (318.31 − 22.3) ÷ 22.3) (for the model
M2) times, as much as the time consumed by the fastest
referenced method HCRR, respectively. This is because
the number of samples in each data set currently chosen in
WCRTEVT (which is not optimal) is more than the opti-
mal number of samples required by the other simulation-
based methods as introduced in [11]. However, by using
WCRTEVT to obtain the results covering the best results
found by other referenced methods can be managed at most
in 1716.73seconds, i.e., 28 minutes approximately, which
is reasonably acceptable.

On the other hand, if all the methods are given by
the same simulation budget, i.e., 600 simulations as exe-
cuted by WCRTEVT, with the exception of MV, both MC,
MABERA and HCRR could not reach the highest known
response time value as shown in Table 6. For MV, only
MABERA finds the true WCRT, i.e., 4 332. This shows that
when given the same simulation budget, WCRTEVT could
perform the best-effort response time estimations.

7 Scalability of the Method

In this work, the reference data sets to WCRTEVT are
collected by running Monte Carlo simulation, which in gen-
eral scales to the larger size systems that are for instance
constructed by creating independent “subsystems” where

Table 6. The results obtained by the methods as reference
when given the same simulation budget, i.e., 600 runs.

MC MABERA HCRR WCRTEVT True WCRT
MV 3987 4332 3962 4574.556 4332
M1 7279 7379 8349 8610.766 NA
M2 5976 4951 5942 6368.742 NA

each subsystem is a complete model out of the three mod-
els introduced in Section 6.1. More details of using “sub-
systems” for scalability evaluation can be found in [22].
Moreover, the maximum number of the task’s response time
samples in each reference data set is constant, i.e., 100 000,
which is easily handled by Chi-square test engine in EasyFit
with the estimated Gumbel distribution parameters returned
in a few seconds, on our testbed. One disadvantage of the
current implementation of WCRTEVT, i.e., in ThinkStati,
is that the two proposed search algorithms haven’t been in-
tegrated yet, therefore manual effort on finding the best-fit
Gumbel distribution parameters is necessary. Nevertheless,
we would like to separate the scalability of the method from
this issue, since when extra time and more investigation are
given, the integration could be managed given a reasonable
effort, with the purpose of toolchain automation.

8 Related work

This section introduces the work that are not mentioned
in Section 1, but related. [19] presents the work on pre-
dicting on how likely a WCET estimate generated by EVT
will be exceeded in the future, for a single trace. Moreover,
the search algorithm concerning the best-fit Gumbel distri-
bution parameters is done in a simple way, by only dou-
bling the block size. A tool for statistical analysis of hard
real-time scheduling algorithms is introduced in [23]. The
data which are used for statistical analysis can be collected
by running multiple simulation instances. However, the un-
derline simulation model cannot capture the tasks execution
dependencies inspired by real industrial control systems as
introduced in this work. Moreover, there is no discussion on
which kind of statistical analysis that could be performed.
In [24], another probabilistic framework extending RTA to
incorporate a probabilistic characterization of task arrivals
and execution times is presented. However, task execution
dependencies such as runtime changeability of tasks prior-
ity and period, message-passing, are not taken into consid-
eration.

177



9 Conclusions and Future Work

This paper has presented work on performing worst-
case response time analysis for system models with intri-
cate execution dependencies between tasks, by using the
proposed statistical-based method based on extreme value
theory. Specially, we have presented and validated the
method by using three models inspired by two real indus-
trial control systems, which shows the benefit over basic
RTA, in terms of reduced pessimism, and much fewer sim-
ulations required to execute when compared to three other
referenced simulation-based methods. Contrary to existing
stochastic real-time analysis, the proposed method is not re-
stricted by the assumption that tasks are independent, that
the job-level priority is fixed and that the worst-case sce-
nario only happens in the case of the critical instance. As
part of future work, our effort would be spent on evaluating
much larger system models by using “subsystems”, and ad-
dressing toolchain automation. More important, we will in-
vestigate the possibility of evaluating the proposed method
on real systems, by applying more industrial standards on
the toolchain. The investigation on confidence interval of
the WCRT estimation given by WCRTEVT is also one in-
teresting issue to assess.

Acknowledgment

This work was supported by the Swedish Foundation
for Strategic Research via the strategic research centre
Progress.

References

[1] “Website of ABB Group,” www.abb.com.

[2] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings,
“Fixed priority pre-emptive scheduling: an historical per-
spective,” Real-Time Systems, vol. 8, no. 2/3, pp. 129–154,
1995.

[3] C. Liu and J. Layland, “Scheduling Algorithms for Multi-
programming in a Hard-Real-Time Environment,” Journal
of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[4] J. Kraft, Y. Lu, C. Norström, and A. Wall, “A metaheuristic
approach for best effort timing analysis targeting complex
legacy real-time systems,” in Proc. of the 14th IEEE Real-
Time and Embedded Technology and Applications Sympo-
sium (RTAS 08), April 2008, pp. 258–269.

[5] Y. Lu, T. Nolte, I. Bate, and C. Norström, “Timing analyzing
for systems with execution dependencies between tasks,” in
Track on Real-Time Systems, The 25th ACM Symposium on
Applied Computing (SAC2010). ACM, March 2010.

[6] M. Joseph and P. Pandya, “Finding response times in a real-
time system,” The Computer Journal (British Computer So-
ciety), vol. 29, no. 5, pp. 390–395, October 1986.

[7] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on up-
paal,” in Formal Methods for the Design of Real-Time Sys-
tems: 4th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems,
SFM-RT 2004, ser. LNCS, M. Bernardo and F. Corradini,
Eds., no. 3185. Springer–Verlag, September 2004, pp. 200–
236.

[8] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi, “Times - a tool for modelling and implementation
of embedded systems,” in TACAS ’02: Proceedings of the
8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. London, UK:
Springer-Verlag, 2002, pp. 460–464.

[9] “Rapita systems, www.rapitasystems.com, 2008.”

[10] D. Decotigny and I. Puaut, “ARTISST: an extensible and
modular simulation tool for real-time systems,” in Proc. of
the 5th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’02), 2002, pp.
365–372.

[11] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte,
“Simulation-based timing analysis of complex real-time sys-
tems,” in The 15th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications,
RTCSA 09, August 2009, pp. 321–328.

[12] G. A. Kaczynski, L. L. Bello, and T. Nolte, “Deriving ex-
act stochastic response times of periodic tasks in hybrid
priority-driven soft real-time systems,” in Proceedings of
12th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’07). IEEE Industrial
Electronics Society, September 2007, pp. 101–110.

[13] J. S. J. Beirlant, Y. Goegebeur and J. Teugels, Statistics of
Extremes: Theory and Applications. Wiley Press, 2004.

[14] J. Kraft, “RTSSim - A Simulation Framework for Complex
Embedded Systems,” Mälardalen University, Technical Re-
port, March 2009.

[15] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings,
“Hard real-time scheduling: The deadline-monotonic ap-
proach,” in in Proc. IEEE Workshop on Real-Time Operating
Systems and Software, 1991, pp. 133–137.

[16] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static prior-
ity pre-emptive scheduling,” Software Engineering Journal,
vol. 8, pp. 284–292, 1993.

[17] F. Eisenbrand and T. Rothvoβ, “Static-priority real-time
scheduling: Response time computation is np-hard,” in RTSS
’08: Proceedings of the 2008 Real-Time Systems Symposium.
Washington, DC, USA: IEEE Computer Society, 2008, pp.
397–406.

[18] “Airbus, www.airbus.com/en/, 2009.”

[19] S. H. J. Hansen and G. Moreno, “Statistical-based wcet esti-
mation and validation,” in 9th Int’l Workshop on Worst-Case
Execution Time Analysis, 2009, pp. 123–133.

[20] “Easyfit, www.mathwave.com/products/easyfit.html, 2009.”

[21] “Website of Arcticus Systems,” www.arcticus-systems.se.

178



[22] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte, “Best-
effort simulation-based timing analysis using hill-climbing
with random restarts,” Mälardalen University, Technical Re-
port ISSN 1404-3041 ISRN MDH-MRTC-236/2009-1-SE,
June 2009.

[23] J. Goossens and C. Hernalsteen, “A tool for statistical anal-
ysis of hard real-time scheduling algorithms,” in SS ’98:
Proceedings of the The 31st Annual Simulation Symposium.
Washington, DC, USA: IEEE Computer Society, 1998, pp.
58–65.

[24] A. Burns, G. Bernat, and I. Broster, “A probabilistic frame-
work for schedulability analysis,” in Proceedings of the Third
International Conference on Embedded Software (EMSOFT
2003, 2003, pp. 1–15.

Algorithm 1 WCRT EVT (m, Pe)
1: RT ← rt1, ..., rtm ← MonteCarlo(m, rnd inst())

2: n← m
100

3: X ← x1, ..., xi, ..., xn ← selectHRT (n,RT )
4: for all xi such that 1 ≤ i ≤ n do
5: b← 100

6: k ←
⌊N

b

⌋
7: success← f alse
8: while k ≥ 30 and success = f alse do
9: S ← si,1, ..., si,k ← segment(N, b)

10: Y ← yi,1, ..., yi,k ← maxima(S )
11: if passChiS quareT est(Y) > 0 then

12: lwb← b
2

13: upb← b

14: b←
⌊

lwb + upb
2

⌋

15: while success = f alse do
16: success← lwbsearch(b, Y)
17: if success = true then
18: l, s← ChiS quareT est(Y)
19: esti ← wcrtevt(b, l, s, Pe)
20: end if
21: end while
22: else
23: b← 2 × b

24: k ←
⌊N

b

⌋
25: end if
26: end while
27: upb← b

28: b← b+ b
2

2
29: while success = f alse do
30: success← upbsearch(b, Y)
31: if success = true then
32: l, s← ChiS quareT est(Y)
33: esti ← wcrtevt(b, l, s, Pe)
34: end if
35: end while
36: end for
37: ES T ← esti, ..., estn

38: rtest ← min(ES T )
39: return rtest

179


