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Populärvetenskaplig

sammanfattning

Klassiska programvarusystem som exempelvis ordbehandlare, bildbehandlare

och webbläsare har typiskt en förväntad funktion att uppfylla, till exempel,

en användare ska kunna producera typsatt skrift under relativt smärtfria for-

mer. Man kan generalisera och säga att korrekt funktion är av yttersta vikt

för hur populär och användbar en viss programvara är medans exakt hur en

viss funktion realiseras är av underordnad betydelse. Tittar man istället på så

kallade realtidssystem så är, utöver korrekt funktionalitet hos programvaran,

också det tidsmässiga utförandet av funktionen av yttersta vikt. Med andra ord

så bör, eller måste, de funktionella resultaten produceras inom vissa specificer-

ade tidsramar. Ett exempel är en airbag som inte får utlösas för tidigt eller för

sent. Detta kan tyckas relativt okomplicerat, men tittar man närmare på hur re-

altidssystem är konstruerade så finner man att ett system vanligtvis är uppdelat

i ett antal delar som körs (exekveras) parallellt. Dessa delar kallas för tasks

och varje task är en sekvens (del) av funktionalitet, eller instruktioner, som

genomförs samtidigt med andra tasks. Dessa tasks exekverar på en processor,

själva hjärnan i en dator. Realtidsanalyser har tagits fram för att förutsäga hur

sekvenser av taskexekveringar kommer att ske givet att antal tasks och deras

karakteristik.

Utvecklingen och modernisering av processorer har tvingat fram så kallade

multicoreprocessorer - processorer med multipla hjärnor (cores). Tasks kan nu,

jämfört med hur det var förr, köras parallellt med varandra på olika cores, vilket

samtidigt förbättrar effektiviteten hos en processor med avseende på hur my-

cket som kan exekveras, men även komplicerar både analys och förutsägbarhet

med avseende på hur dessa tasks körs. Analys behövs för att kunna förutsäga

korrekt tidsmässigt beteende hos programvaran i ett realtidssystem.
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I denna doktorsavhandling har vi föreslagit en metod att fördela ett re-

altidssystems tasks på ett antal processorer givet en multicorearkitektur. Denna

metod ökar avsevärt både prestation, förutsägbarhet och resursutnyttjandet hos

det multicorebaserade realtidsystemet genom att garantera tidsmässigt korrekt

exekvering av programvarusystem med komplexa beroenden vilka har direkt

påverkan på hur lång tid ett task kräver för att exekvera.

Inom industriella system brukar stora och komplexa programvarusystem

delas in i flera delar (applikationer) som var och en kan utvecklas oberoende

av varandra och parallellt. Men det kan hända att applikationer delar olika

resurser när de exekverar tillsammans på en multi-core arkitektur. I denna

avhandling har vi föreslagit nya metoder för att hantera resurser som delas

mellan realtidsapplikationer som exekverar på en multi-core arkitektur.



Abstract

In recent years multiprocessor architectures have become mainstream, and

multi-core processors are found in products ranging from small portable cell

phones to large computer servers. In parallel, research on real-time systems

has mainly focused on traditional single-core processors. Hence, in order for

real-time systems to fully leverage on the extra capacity offered by new multi-

core processors, new design techniques, scheduling approaches, and real-time

analysis methods have to be developed.

In the multi-core and multiprocessor domain there are mainly two schedul-

ing approaches, global and partitioned scheduling. Under global scheduling

each task can execute on any processor at any time while under partitioned

scheduling tasks are statically allocated to processors and migration of tasks

among processors is not allowed. Besides simplicity and efficiency of par-

titioned scheduling protocols, existing scheduling and synchronization tech-

niques developed for single-core processor platforms can more easily be ex-

tended to partitioned scheduling. This also simplifies migration of existing

systems to multi-cores. An important issue related to partitioned scheduling is

the distribution of tasks among the processors, which is a bin-packing problem.

In this thesis we propose a blocking-aware partitioning heuristic algorithm

to distribute tasks onto the processors of a multi-core architecture. The objec-

tive of the proposed algorithm is to decrease the blocking overhead of tasks,

which reduces the total utilization and has the potential to reduce the number

of required processors.

In industrial embedded software systems, large and complex systems are

usually divided into several components (applications) each of which is devel-

oped independently without knowledge of each other, and potentially in paral-

lel. However, the applications may share mutually exclusive resources when

they co-execute on a multi-core platform which introduce a challenge for the

techniques needed to ensure predictability. In this thesis we have proposed a
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new synchronization protocol for handling mutually exclusive resources shared

among real-time applications on a multi-core platform. The schedulability

analysis of each application is performed in isolation and parallel and the re-

quirements of each application with respect to the resources it may share are

included in an interface. The protocol did not originally consider any prior-

ities among the applications. We have proposed an additional version of the

protocol which grants access to resources based on priorities assigned to the

applications. We have also proposed an optimal priority assignment algorithm

to assign unique priorities to the applications sharing resources. Our evalua-

tions confirm that the protocol together with the priority assignment algorithm

outperforms existing alternatives in most cases.

In the proposed synchronization protocol each application is assumed to

be allocated on one dedicated core. However, in this thesis we have further

extended the synchronization protocol to be applicable for applications allo-

cated on multiple dedicated cores of a multi-core platform. Furthermore, we

have shown how to efficiently calculate the resource hold times of resources

for applications. The resource hold time of a resource for an application is the

maximum duration of time that the application may lock the resource whenever

it requests the resource. Finally, the thesis discusses and proposes directions

for future work.
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Mäki-Turja.

I also thank people at IDT; Carola, Gunnar, Malin, Åsa, Jenny, Ingrid, Su-
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Chapter 1

Introduction

Inherent in problems with power consumption and related thermal problems,

multi-core platforms seem to be the way forward towards increasing perfor-

mance of processors, and single-chip multiprocessors (multi-cores) are today

the dominating technology for desktop computing.

The performance improvements of using multi-core processors depend on

the nature of the applications as well as the implementation of the software. To

take advantage of the concurrency offered by a multi-core architecture, appro-

priate algorithms have to be used to divide the software into tasks (threads) and

efficient scheduling techniques and partitioning algorithms to distribute tasks

fairly on processors are required to increase the overall performance.

Two main approaches for scheduling real-time systems on multiprocessors

exist [1, 2, 3, 4]; global and partitioned scheduling. Under global scheduling

protocols, e.g., Global Earliest Deadline First (G-EDF), tasks are scheduled by

a single scheduler and each task can be executed on any processor. A single

global queue is used for storing tasks. A task can be preempted on a processor

and resumed on another processor, i.e., migration of tasks among cores is per-

mitted. Under a partitioned scheduling protocol, tasks are statically assigned to

processors and the tasks within each processor are scheduled by a uniprocessor

scheduling protocol, e.g., Rate Monotonic (RM) and EDF. Each processor is

associated with a separate ready queue for scheduling task jobs. There are sys-

tems in which some tasks cannot migrate among cores while other tasks can

migrate. For such systems neither global or partitioned scheduling methods

can be used. A two-level hybrid scheduling approach [4], which is a mix of

global and partitioned scheduling methods, is used for those systems.

3
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In the multiprocessor research community, considerable work has been

done on scheduling algorithms where it is assumed that tasks are indepen-

dent. However, synchronization in the multiprocessor context has not received

enough attention. Under partitioned scheduling, if all tasks that share the same

resources can be allocated on the same processor then the uniprocessor syn-

chronization protocols can be used [5]. This is not always possible, and some

adjustments have to be done to the protocols to support synchronization of

tasks across processors. The uniprocessor lock-based synchronization pro-

tocols have been extended to support inter processor synchronization among

tasks [6, 7, 8, 9, 10, 11, 12]. However, under global scheduling methods, the

uniprocessor synchronization protocols [13, 1] can not be reused without mod-

ification. Instead, new lock-based synchronization protocols have been devel-

oped to support resource sharing under global scheduling methods [9, 14].

Partitioned scheduling protocols have been used more often and are sup-

ported widely by commercial real-time operating systems [15], inherent in their

simplicity, efficiency and predictability. Besides, the well studied uniproces-

sor scheduling and synchronization methods can be reused for multiprocessors

with fewer changes. However, partitioning is known to be a bin-packing prob-

lem which is a NP-hard problem in the strong sense; hence finding an optimal

solution in polynomial time is not realistic in the general case. Thus, to take ad-

vantage of the performance offered by multi-cores, partitioned scheduling pro-

tocols have to be coordinated with appropriate partitioning algorithms [15, 16].

Heuristic approaches and sufficient feasibility tests for bin-packing algorithms

have been developed to find a near-optimal partitioning [2, 3]. However, the

scheduling protocols and existing partitioning algorithms for multiprocessors

mostly assume independent tasks.

The availability of multi-core platforms has attracted a lot of attention in

multiprocessor embedded software analysis and runtime policies, protocols

and techniques. As the multi-core platforms are to be the defacto processors,

the industry must cope with a potential migration towards multi-core platforms.

The industry can benefit from multi-core platforms as these platforms facilitate

hardware consolidation by co-executing multiple real-time applications on a

shared multi-core platform.

An important issue for industry when it comes to migration to multi-cores

is the existing applications. When migrating to multi-cores it has to be possible

that several applications can co-execute on a shared multi-core platform. The

(often independently-developed) applications may have been developed with

different techniques, e.g., several real-time applications that will co-execute on

a multi-core may have different scheduling policies. However, when the appli-
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cations co-execute on the same multi-core platform they may share resources

that require mutual exclusive access. Two challenges to overcome when mi-

grating existing applications to multi-cores are how to migrate the applications

with minor changes, and how to abstract key properties of applications suffi-

ciently, such that the developer of one application does not need to be aware of

particular techniques used in other applications.

Looking at industrial software systems, to speed up their development,

it is not uncommon that large and complex systems are divided into several

semi-independent subsystems each of which is developed independently. The

subsystems which may share resources will eventually be integrated and co-

execute on the same platform. This issue has got attention and has been studied

in the uniprocessor domain [17, 18, 19]. However, new techniques are sought

for scheduling semi-independent subsystems on multi-cores.

1.1 Contributions

The main contributions of this thesis are in the area of partitioning heuristics

and synchronization protocols for multi-core real-time systems. In the follow-

ing two subsections we present these contributions in more details.

1.1.1 Partitioning Heuristic Algorithm

As mentioned in Section 1, the partitioning algorithms that partition an ap-

plication on a multi-core have not considered resource sharing. Considering

resource sharing in partitioning algorithms leads to decreased blocking and

better schedulability of a task set. We have proposed a partitioning algorithm,

based on bin-packing, for allocating tasks onto processors of a multi-core plat-

form (Chapter 3). Tasks may access mutually exclusive resources and the aim

of the algorithm is to decrease the overall blocking overhead in the system. An

efficient partitioning algorithm may consequently increase the schedulability

of a task set and reduce the number of processors. We proposed the partition-

ing algorithm in Paper A and we compared it to a similar algorithm originally

proposed by Lakshmanan et al. [15]. Our new algorithm has shown to have

the potential to decrease the total number of required processors and it mostly

performs better than the similar existing algorithm.
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1.1.2 Synchronization Protocols for Real-Time Applications

in an Open System on Multiprocessors

The multi-core platforms offer an opportunity for hardware consolidation and

open systems where multiple independently-developed real-time applications

can co-execute on a shared multi-core platform. The applications may, how-

ever, share mutually exclusive resources, imposing a challange when trying to

achieve independence. Methods, techniques and protocols are needed to sup-

port handling of shared resources among the co-executing applications. We

aim to tackle this important issue:

1. Synchronization Protocol for Real-Time Applications under Parti-

tioned Scheduling

(a) In Paper B we proposed a synchronization protocol for resource

sharing among independently-developed real-time applications on

a multi-core platform, where each application is allocated on a ded-

icated core. The protocol is called Multiprocessors Synchroniza-

tion protocol for real-time Open Systems (MSOS). In the paper,

we have presented an interface-based schedulability condition for

MSOS. The interface abstracts the resource sharing of an applica-

tion allocated on one processor through a set of requirements that

have to be satisfied to guarantee the schedulability of the applica-

tion. In Paper B, we further evaluated and compared MSOS to two

existing synchronization protocols for partitioned scheduling.

(b) The original MSOS assumes no priority setting among the applica-

tions, i.e., applications waiting for shared resources are enqueued

in a First-In First-Out (FIFO) manner. We extended MSOS to sup-

port prioritized applications which increases the schedulability of

the applications. This contribution is directed by Paper C. In the pa-

per, we extended the interface of applications and their schedulabil-

ity analysis to support prioritized applications. To distinguish the

extended MSOS from the original one we call the original MSOS

and the extended one as MSOS-FIFO and MSOS-Priority respec-

tively. In Paper C, by means of simulations, we evaluated and

compared MSOS-Priority to the key state-of-the-art synchroniza-

tion protocols as well as to MSOS-FIFO.

(c) In Paper C, we proposed an optimal priority setting algorithm which

assigns priorities to the applications under MSOS-Priority. As con-



1.1 Contributions 7

firmed by the evaluation results, the algorithm increases the schedu-

lability of applications significantly.

2. Synchronization Protocol for Real-Time Applications under Clus-

tered Scheduling

(a) In Paper D, we proposed a synchronization protocol, called Clus-

tered MSOS (C-MSOS), for supporting resource sharing among

real-time applications where each application is allocated on a ded-

icated set of cores (cluster). In the paper we derived the interface-

based schedulability analysis for four alternatives of C-MSOS. The

alternatives are distinguished by the way the queues in which ap-

plications and tasks wait for shared resources are handled. In a

simulation-based evaluation in Paper D we have compared all four

alternatives of C-MSOS.

(b) In Paper D, in order to minimize the interference of applications

regarding the shared resources, we let the priority of a task holding

a global resource (i.e., a global resource is shared among multiple

applications) be raised to be higher than any priority in its appli-

cation. In this way no other task executing in non-critical sections

can delay a task holding a global resource. This means that the Re-

source Hold Times (RHT) of global resources are minimized. The

RHT of a global resource in an application is the maximum time

that any task in the application may hold (lock) the resource. How-

ever, boosting the priority of any task holding a global resource

may make an application unschedulable. Therefore the priorities

of tasks holding global resources are raised as long as the applica-

tion remains schedulable, i.e., boosting the priorities should never

compromise the schedulability of the application. Under unipro-

cessor platforms, it has been shown [20, 21] that it is possible to

achieve one single optimal solution, when trying to set the best pri-

ority ceilings for global resources. However, this is not the case

when an application is scheduled on multiple processors (i.e., tasks

in the application are scheduled by a global scheduling policy). In

Paper E we calculated the RHT’s for global resources while as-

suming that the priorities of tasks holding global resources can be

boosted as far as the application remains schedulable. We have

shown that despite of uniprocessor platforms where there exists
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one optimal solution, on multiprocessors there can exist multiple

Pareto-optimal solutions.

1.2 Thesis Outline

The outline of the thesis is as follows. In Chapter 2 we give a background

describing real-time systems, scheduling, multiprocessors, multi-core archi-

tectures, the problems and the existing solutions, e.g., scheduling and syn-

chronization protocols. Chapter 3 gives an overview of our proposed heuristic

partitioning algorithm. In Chapter 4 we have presented our proposed synchro-

nization protocol for both non-proiritized and prioritized applications. In the

chapter we have further presented the extension of our proposed protocol to

clustered scheduling, i.e., where one application can be allocated on multiple

dedicated cores. In Chapter 4 we have also discussed efficient resource hold

time calculations. In Chapter 5 we present our conclusion and future work. We

present the technical overview of the papers that are included in this thesis in

Chapter 6, and we present these papers in Chapters 7 - 11 respectively.



Chapter 2

Background

2.1 Real-Time Systems

In a real-time system, besides the functional correctness of the system, the

output has to satisfy timing attributes as well [22], e.g., the outputs have to be

delivered within deadlines. A real-time system is typically developed following

a concurrent programming approach in which a system may be divided into

several parts, called tasks, and each task, which is a sequence of operations,

executes in parallel with other tasks. A task may issue an infinite number of

instances called jobs during run-time.

Each task has timing attributes, e.g., deadline before which the task should

finish its execution, Worst Case Execution Time (WCET) which is the maxi-

mum time that a task needs to perform and complete its execution when exe-

cuting without interference from other tasks. The execution of a task can be

periodic or aperiodic; a periodic task is triggered with a constant time, denoted

as period, in between instances, and an aperiodic task may be triggered at any

arbitrary time instant.

Real-time systems are generally categorized into two categories; hard real-

time systems and soft real-time systems. In a hard real-time system tasks are

not allowed to miss their deadlines, while in a soft real-time system some tasks

may miss their deadlines. A safety-critical system is a type of hard-real time

system in which missing deadlines of tasks may lead to catastrophic incidents,

hence in such a system missing deadlines are not tolerable.

9
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2.2 Multi-core Platforms

A multi-core (single-chip multiprocessor) processor is a combination of two

or more independent processors (cores) on a single chip. The cores are con-

nected to a single shared memory via a shared bus. The cores typically have

independent L1 caches and may share an on-chip L2 cache.

Multi-core architectures are today the dominating technology for desktop

computing and are becoming the defacto processors overall. The performance

of using multiprocessors, however, depends on the nature of the applications as

well as the implementation of the software. To take advantage of the concur-

rency offered by a multi-core architecture, appropriate algorithms have to be

used to divide the software into tasks (threads) and to distribute tasks on cores

to increase the system performance. If an application is not (or cannot) be fairly

divided into tasks, e.g., one task does all the heavy work, a multi-core will not

help improving the performance significantly. Real-time systems can highly

benefit from multi-core processors, as they are typically multi-threaded, hence

making it easier to adapt them to multi-cores than single-threaded, sequential

programs, e.g., critical functionality can have dedicated cores and independent

tasks can run concurrently to improve performance. Moreover, since the cores

are located on the same chip and typically have shared memory, communica-

tion between cores is very fast.

While multi-core platforms offer significant advantages, they also intro-

duce big challenges. Existing software systems need adjustments to be adapted

on multi-cores. Many existing legacy real-time systems are very large and

complex, typically consisting of huge amount of code. It is normally not an

option to throw them away and to develop a new system from scratch. A sig-

nificant challenge is to adapt them to work efficiently on multi-core platforms.

If the system contains independent tasks, it is a matter of deciding on which

processor each task should be executed. In this case scheduling protocols from

single-processor platforms can easily be reused. However, tasks are usually not

independent and they may share resources. This means that, to be able to adapt

the existing systems to be executed on a multi-core platform, synchronization

protocols are required to be changed or new protocols have to be developed.

For hard real-time systems, from a practical point of view, a static assign-

ment of processors, i.e., partitioned scheduling (Section 2.3.1), is often the

more common approach [2], often inherent in reasons of predictability and

simplicity. Also, the well-studied and verified scheduling analysis methods

from the single-processor domain has the potential to be reused. However,

fairly allocating tasks onto processors (partitioning) is a challenge, which is a
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bin-packing problem.

Finally, the processors on a multi-core can be identical, which means that

all processors have the same performance, this type of multi-core architec-

tures are called homogenous. However, the architecture may suffer from heat

and power consumption problems. Thus, processor architects have developed

multi-core architectures consisting of processors with different performance in

which tasks can run on appropriate processors, i.e., the tasks that do not need

higher performance can run on processors with lower performance, decreasing

energy consumption.

2.3 Real-Time Scheduling on Multiprocessors

The major approaches for scheduling real-time systems on multiprocessors are

partitioned scheduling, global scheduling, and the combination of these two

called hybrid scheduling [1, 2, 3, 4].

2.3.1 Partitioned Scheduling

Under partitioned scheduling tasks are statically assigned to processors, and

the tasks within each processor are scheduled by a single-processor scheduling

protocol, e.g., RM and EDF [23]. Each task is allocated to a processor on which

its jobs will run. Each processor is associated with a separate ready queue for

scheduling its tasks’ jobs.

An advantage of partitioned scheduling is that well-understood and veri-

fied scheduling analysis from the uniprocessor domain has the potential to be

reused. Another advantage is the run-time efficiency of these protocols as the

tasks and jobs do not suffer from migration overhead. A disadvantage of parti-

tioned scheduling is that it is a bin-packing problem which is known to be NP-

hard in the strong sense, and finding an optimal distribution of tasks among

processors in polynomial time is not generally realistic. Another disadvan-

tage of partitioned scheduling algorithms is that prohibiting migration of tasks

among processors decreases the utilization bound, i.e., it has been shown [3]

that task sets exist that are only schedulable if migration among processors is

allowed. Non-optimal heuristic algorithms have been used for partitioning a

task set on a multiprocessor platform. An example of a partitioned scheduling

algorithm is Partitioned EDF (P-EDF) [2].
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2.3.2 Global Scheduling

Under global scheduling algorithms tasks are scheduled by a single system-

level scheduler, and each task or job can be executed on any processor. A

single global queue is used for storing ready jobs. At any time instant, at most

m ready jobs with highest priority among all ready jobs are chosen to run on a

multiprocessor consisting of m processors. A task or its jobs can be preempted

on one processor and resumed on another processor, i.e., migration of tasks

(or its corresponding jobs) among cores is permitted. An example of a global

scheduling algorithm is Global EDF (G-EDF) [2]. The global scheduling algo-

rithms are not necessarily optimal either, although in the research community

new multiprocessor scheduling algorithms have been developed that are op-

timal. Proportionate fair (Pfair) scheduling approaches are examples of such

algorithms [24, 25]. However, this particular class of scheduling algorithms

suffers from high run-time overhead as they may have to increase the num-

ber of preemptions and migrations significantly. However, there have been

research works on decreasing this overhead in the multiprocessor scheduling

algorithms; e.g., the work by Levin et al. [26].

2.3.3 Hybrid Scheduling

There are systems that cannot be scheduled by either pure partitioned or pure

global scheduling; for example some tasks cannot migrate among cores while

other tasks are allowed to migrate. An example approach for those systems is

the two-level hybrid scheduling approach [4], which is based on a mix of global

and partitioned scheduling methods. In such protocols, at the first level a global

scheduler assigns jobs to processors and at the second level each processor

schedules the assigned jobs by a local scheduler.

Recently more general approaches, such as cluster-based scheduling [27,

28], have been proposed which can be categorized as a generalization of par-

titioned and global scheduling protocols. Using such an approach, tasks are

statically assigned to clusters and tasks within each cluster are globally sched-

uled. Cluster-based scheduling can be physical or virtual. In physical cluster-

based scheduling the virtual processors of each cluster are statically mapped to

a subset of physical processors of the multiprocessor [27]. In virtual cluster-

based scheduling [28] the processors of each cluster are dynamically mapped

(one-to-many) onto processors of the multiprocessor. Virtual clustering is more

general and less sensitive to task-cluster mapping compared to physical clus-

tering.
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2.4 Resource Sharing on Multiprocessors

Generally there are two classes of resource sharing, i.e., lock-based and lock-

free synchronization protocols. In the lock-free approach [29, 30], operations

on simple software objects, e.g., stacks, linked lists, are performed by retry

loops, i.e., operations are retried until the object is accessed successfully. The

advantages of lock-free algorithms is that they do not require kernel support

and as there is no need to lock, priority inversion does not occur. The disad-

vantage of these approaches is that it is not easy to apply them to hard real-time

systems as the worst case number of retries is not easily predictable. In this the-

sis we have focused on the lock-based approach, thus in this section we present

an overview of a non-exhaustive list of the existing lock-based synchronization

methods.

On a multiprocessor platform a job, besides lower priority jobs, can be

blocked by higher priority jobs that are assigned to different processors as

well. This does not rise any problem on uniprocessor platforms. Another issue,

which is not the case in the existing uniprocessor synchronization techniques,

is that on a uniprocessor, a job Ji can not be blocked by lower priority jobs

arriving after Ji. However, on a multiprocessor, a job Ji can be blocked by the

lower priority jobs arriving after Ji if they are executing on different proces-

sors. Those cases introduce more complexity and pessimism into schedulabil-

ity analysis.

The existing lock-based synchronization protocols can be categorized as

suspend-based and spin-based protocols. Under a suspend-based protocol a

task requesting a resource that is shared across processors suspends if the re-

source is locked by another task. Under a spin-based protocol a task requesting

the locked resource keeps the processor and performs spin-lock (busy wait).

2.4.1 The Multiprocessor Priority Ceiling Protocol (MPCP)

Rajkumar proposed MPCP (Multiprocessor Priority Ceiling Protocol) [6], that

extends PCP (Priority Ceiling Protocol) [13] to shared memory multiproces-

sors hence allowing for synchronization of tasks sharing mutually exclusive re-

sources using partitioned FPS (Fixed Priority Scheduling). MPCP is a suspend-

based protocol under which tasks waiting for a global resource suspend and are

enqueued in an associated prioritized global queue. Under MPCP, the priority
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of a task within a global critical section (gcs), in which it requests a global re-

source, is boosted to be greater than the highest priority among all local tasks.

This priority is called remote ceiling. A gcs can only be preempted by other

gcs’s that have higher remote ceiling. Lakshmanan et al. [15] extended a spin-

based alternative of MPCP.

MPCP is used for synchronizing a set of tasks sharing lock-based resources

under a partitioned FPS protocol, i.e., RM. Under MPCP, resources are di-

vided into local and global resources. The local resources are protected using

a uniprocessor synchronization protocol, i.e., PCP.

Under MPCP, the blocking time of a task, in addition to the local blocking,

has to include the remote blocking terms where a task is blocked by tasks

executing on other processors. However, the maximum remote blocking time

of a job is bounded and is a function of the duration of critical sections of

other jobs. This is a consequence of assigning any gcs a ceiling greater than

the priority of any other task, hence a gcs can only be blocked by another

gcs and not by any non-critical section. Assume ρH is the highest priority

among all tasks. The remote ceiling of a job Ji executing within a gcs equals

to ρH + 1 +max{ρj |τj requests Rk and τj is not on Ji’s processor}.

Global critical sections cannot be nested in local critical sections and vice

versa. Global resources potentially lead to high blocking times, thus tasks

sharing the same resources are preferred to be assigned to the same processor

as far as possible. We have proposed an algorithm that attempts to reduce the

blocking times by assigning tasks to appropriate processors (Chapter 3).

2.4.2 The Multiprocessor Stack Resource Policy (MSRP)

Gai et al. [7] presented MSRP (Multiprocessor SRP), which is an extension

of SRP (Stack-based Resource allocation Protocol) [1] to multiprocessors and

it is a spin-based synchronization protocol. MSRP is used for synchronizing

a set of tasks sharing lock-based resources under a partitioned EDF (P-EDF).

The shared resources are classified as either local or global resources. Tasks

are synchronized on local resources using SRP, and access to global resources

is guaranteed a bounded blocking time. Further, under MSRP, when a task is

blocked on a global resource it performs busy wait (spin lock). This means that

the processor is kept busy without doing any work, hence the duration of the

spin lock should be as short as possible which means locking a global resource

should be reduced as far as possible. To achieve this goal under MSRP, the

tasks executing in global critical sections become non-preemptive. The tasks

blocked on a global resource are added to a FIFO queue. Global critical sec-



2.4 Resource Sharing on Multiprocessors 15

tions are not allowed to be nested under MSRP.

Gai et al. [8] compared their implementation of MSRP to MPCP. They

pointed out that the complexity of implementation as a disadvantage of MPCP

and that wasting more local processor time (due to busy wait) as a disadvantage

of MSRP. They have performed two case studies for the comparison. The re-

sults show that MPCP works better when the duration of global critical sections

are increased while MSRP outperforms MPCP when critical sections become

shorter. Also in applications where tasks access many resources, and resources

are accessed by many tasks, which lead to more pessimism in MPCP, MSRP

has a significant advantage compared to MPCP.

2.4.3 The Flexible Multiprocessor Locking Protocol (FMLP)

Block et al. [9] presented FMLP (Flexible Multiprocessor Locking Protocol)

which is a synchronization protocol for multiprocessors. FMLP can be applied

to both partitioned and global scheduling algorithms, e.g., P-EDF and G-EDF.

In FMLP, resources are categorized into short and long resources, and

whether a resource is short or long is user specified. There is no limitation

on nesting resource accesses, except that requests for long resources cannot be

nested in requests for short resources.

Under FMLP, deadlock is prevented by grouping resources. A group in-

cludes either global or local resources, and two resources are in the same group

if a request for one is nested in a request for the other one. A group lock is as-

signed to each group and only one task can hold the lock of the group at any

time.

The jobs that are blocked on short resources perform busy-wait and are

added to a FIFO queue. Jobs that access short resources hold the group lock

and execute non-preemptively. A job accessing a long resource holds the group

lock and executes preemptively using priority inheritance, i.e., it inherits the

highest priority among all jobs blocked on any resource within the group. Tasks

blocked on a long resource are added to a FIFO queue.

Under global scheduling, FMLP actually works under a variant of G-EDF

for Suspendable and Non-preemptable jobs (GSN-EDF) [9] which guarantees

that a job Ji can only be blocked, with a constraint duration, by another non-

preemptable job when Ji is released or resumed.

Brandenburg and Anderson in [10] extended partitioned FMLP to the fixed

priority scheduling policy and derived a schedulability test for it. Under parti-

tioned FMLP global resources are categorized into long and short resources.

Tasks blocked on long resources suspend while tasks blocked on short re-
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sources perform busy wait. However, there is no concrete solution how to

assign a global resource as long or short and it is assumed to be user defined. In

an evaluation of partitioned FMLP [31], the authors differentiate between long

FMLP and short FMLP where all global resources are only long and only short

respectively. Thus, long FMLP and short FMLP are suspend-based and spin-

based synchronization protocols respectively. In both alternatives the tasks

accessing a global resource executes non-preemptively and blocked tasks are

waiting in a FIFO-based queue.

2.4.4 Parallel PCP (P-PCP)

Easwaran and Andersson proposed a synchronization protocol [14] under the

global fixed priority scheduling protocol called Parallel PCP (P-PCP). The au-

thors have derived schedulability analysis for the previously known Priority

Inheritance Protocol (PIP) under global scheduling algorithms as well as for P-

PCP. For resource sharing under global fixed priority scheduling policies, this

is the first work that provides a schedulability test.

Under PIP, while a job Jj accesses a resource, the job’s effective priority

is raised to the highest priority of any job waiting for the resource if there is

any, otherwise Jj executes with its base priority. A synchronization protocol

may temporarily raise the priority of a job which is called effective priority of

the job. Under PIP the priority of a job locking a global resource is not raised

unless a higher priority job is waiting for the resource. We call this alternative

of PIP as Basic PIP (B-PIP). In [32] we extended the schedulability analysis to

Immediate PIP (I-PIP) where the effective priority of a job locking a resource

is immediately raised to the highest priority of any task that may request the

resource.

P-PCP is a generalization of PCP to the global fixed priority scheduling

policy. For each task sharing resources, P-PCP offers the possibility of a trade-

off between the interference from lower priority jobs and the amount of parallel

executions that can be performed. The tradeoff for each task is adjusted based

on an associated tuning parameter, noted by α. A higher value for α of the task

means that more lower priority jobs may execute at effective priority higher

than the task’s base priority thus introducing more interference to the task.

However, at the same time a higher value of α will increase the parallelism on

a multiprocessor platform.
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2.4.5 O(m) Locking Protocol (OMLP)

Brandenburg and Anderson [11] proposed a new suspend-based locking proto-

col, called OMLP (O(m) Locking Protocol). OMLP is an suspension-oblivious

protocol. Under a suspension-oblivious locking protocol, the suspended tasks

are assumed to occupy processors and thus blocking is counted as demand. To

test the schedulability, the worst-case execution times of tasks are inflated with

blocking times. In difference with OMLP, other suspend-based protocols are

suspend-aware where suspended tasks are not assumed to occupy their proces-

sors. OMLP works under both global and partitioned scheduling. OMLP is

asymptotically optimal, which means that the total blocking for any task set

is a constant factor of blocking that cannot be avoided for some task sets in

the worst case. An asymptotically optimal locking protocol however does not

mean it can perform better than non-asymptotically optimal protocols.

Under global OMLP, each global resource is associated with two queues in

which requesting jobs are enqueued, i.e., a FIFO queue of size m where m is

the number of processors and a prioritized queue. Whenever a job requests a

resource if its associated FIFO queue is not full the job will be added to the end

of the FIFO queue, otherwise it is added to the prioritized queue of the resource.

The job at the head of the FIFO queue is granted access to the resource. As

soon as the full FIFO gets a free place, i.e., the job at the head of the FIFO

queue releases the resource, the highest priority job from the prioritized queue

is added to the end of the FIFO queue.

Under partitioned OMLP, each processor has a unique token and any local

task requesting any global resource should hold the token to be able to access

its requested resource. The tasks requesting global resources are enqueued in

a prioritized queue to receive the token. The tasks waiting for a global re-

source are also enqueued in a global FIFO queue associated with the resource.

Any task accessing a global resource cannot be preempted by any task until it

releases the resource.

Recently, the same authors extended OMLP to clustered scheduling [33].

In this work, in despite of global and partitioned OMLP where each resource

needs two queues (a FIFO and a prioritized), the authors have simplified OMLP

under clustered scheduling so that it only needs a FIFO queue for each global

resource in order to be asymptotically optimal. To achieve this, instead of

priority inheritance and boosting in global and partitioned OMLP respectively,

they propose a new concept called priority donation which is an extension of

priority boosting. With priority boosting a job can be repeatedly preempted

while with priority donation, each job can be preempted at most once. Under
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priority donation a higher priority job may suspend and donate its priority to a

lower priority job requesting a resource to accomplish accessing the resource.

2.4.6 Multiprocessor Synchronization Protocol for Real-Time

Open Systems (MSOS)

We proposed MSOS (Multiprocessor Synchronization protocol for real-time

Open Systems) [12] which is a suspend-based synchronization protocol for

handling resource sharing among real-time applications in an open system on

a multi-core platform. In an open system, applications can enter and exit dur-

ing run-time. The schedulability analysis of each application is performed in

isolation and its demand for global resources is summarized in a set of require-

ments which can be used for the global scheduling when co-executing with

other applications. Validating these requirements is easier than performing the

whole schedulability analysis. Thus, an run-time admission control program

would perform much better when introducing a new application or changing

an existing one.

We refer to the original MSOS as MSOS-FIFO. The protocol assumes

that each real-time application is allocated on a dedicated core. Furthermore,

MSOS-FIFO assumes that the applications have no assigned priority and thus

applications waiting for a global resource are enqueued in an associated global

FIFO-based queue. However, in real-time systems assigning priorities often

increases the schedulability of systems. We have proposed an alternative of

MSOS, called MSOS-Priority [34] to be applicable for prioritized applications

when accessing mutually exclusive resources. MSOS-Priority together with

an optimal priority assignment algorithm that is proposed in the same paper

mostly outperforms any existing suspend-based synchronization protocol and

in many cases, e.g., for lower preemption overhead, it even outperforms spin-

based protocols as well. More details about MSOS (both MSOS-FIFO and

MSOS-Priority) are presented in Chapter 4.

2.5 Assumptions of the Thesis

With respect to the above presented background material, the work presented

in this thesis has been developed under the following limitations:

Real-Time Systems:

We assume hard real-time systems.
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Multi-core Architecture:

We assume identical multi-core architectures. However, as a future work

we believe that this assumption can be relaxed.

Scheduling Protocol:

The different contributions of the thesis focus on different scheduling

classes, i.e., partitioned global as well as clustered scheduling approaches.

Synchronization Protocol:

In the partitioning algorithm we have focused on MPCP as the synchro-

nization protocol under which our heuristic attempts to decrease block-

ing overhead. The major focus of the thesis is the synchronization pro-

tocols that we have developed and improved. However, for the exper-

imental evaluations we have considered other existing synchronization

protocols, i.e., MPCP, MSRP, FMLP, OMLP, and PIP.

System Model and Related Work:

In the included papers there may be some differences in the terminolo-

gies and notions, e.g., in some papers we use real-time applications while

in some other papers we have used real-time components. Thus, we have

provided different task and platform models throughout the thesis. We

have also presented the related work separately, i.e., the work related

to each approach is presented previous to the approach in its respective

chapter.





Chapter 3

Blocking-aware Algorithms

for Partitioning Task Sets on

Multiprocessors

In this chapter we present our proposed partitioning algorithm in which a task

set is attempted to be efficiently allocated onto a shared memory multi-core

platform with identical processors.

3.1 Related Work

A scheduling framework for multi-core processors was presented by Rajagopal-

an et al. [35]. The framework tries to balance between the abstraction level of

the system and the performance of the underlying hardware. The framework

groups dependant tasks, which, for example, share data, to improve the perfor-

mance. The paper presents Related Thread ID (RTID) as a mechanism to help

the programmers to identify groups of tasks.

The grey-box modeling approach for designing real-time embedded sys-

tems was presented in [36]. In the grey-box task model the focus is on task-

level abstraction and it targets performance of the processors as well as timing

constraints of the system.

In Paper A [16] we have proposed a heuristic blocking-aware algorithm to

allocate a task set on a multi-core platform to reduce the blocking overhead of

21
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tasks.

Partitioning (allocation tasks on processors) of a task set on a multiproces-

sor platform is a bin-packing problem which is known to be a NP-hard problem

in the strong sense; therefore finding an optimal solution in polynomial time is

not realistic in the general case [37]. Heuristic algorithms have been developed

to find near-optimal solutions.

A study of bin-packing algorithms for designing distributed real-time sys-

tems was presented in [38]. The presented method partitions a software into

modules to be allocated on hardware nodes. In their approach they use two

graphs; one graph which models software modules and another graph that rep-

resents the hardware architecture. The authors extend the bin-packing algo-

rithm with heuristics to minimize the number of required bins (processors) and

the required bandwidth for the communication between nodes.

Liu et al. [39] presented a heuristic algorithm for allocating tasks in multi-

core-based massively parallel systems. Their algorithm has two rounds; in the

first round processes (groups of threads - partitions in this thesis) are assigned

to processing nodes, and the second round allocates tasks in a process to the

cores of a processor. However, the algorithm does not consider synchronization

between tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm, the

first-fit decreasing (FFD) algorithm [40] for a set of independent sporadic tasks

on multiprocessors. The tasks are indexed in non-decreasing order based on

their relative deadlines, and the algorithm assigns the tasks to the processors

in first-fit order. The tasks on each processor are scheduled under uniprocessor

EDF.

Lakshmanan et al. [15] investigated and analyzed two alternatives of exe-

cution control policies (suspend-based and spin-based remote blocking) under

MPCP. They have developed a blocking-aware task allocation algorithm, an

extension to the best-fit decreasing (BFD) algorithm, and evaluated it under

both execution control policies. Their blocking-aware algorithm is of great rel-

evance to our proposed algorithm, hence we have presented their algorithm in

more details in Section 3.3. Together with our algorithm we have also imple-

mented and evaluated their blocking-aware algorithm and compared the per-

formances of both algorithms.
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3.2 Task and Platform Model

Our target system is a task set that consists of n sporadic tasks, τi(Ti, Ci, ρi,
{Csi,q,p}) where Ti is the minimum inter-arrival time between two successive

jobs of task τi with worst-case execution time Ci and ρi as its priority. The

tasks share a set of resources, R, which are protected using semaphores. The

set of critical sections, in which task τi requests resources in R, is denoted

by {Csi,q,p}, where Csi,q,p indicates the worst case execution time of the pth

critical section of task τi, in which the task accesses resource Rq ∈ R. The

tasks have implicit deadlines, i.e., the relative deadline of any job of τi is equal

to Ti. A job of task τi, is specified by Ji. The utilization factor of task τi is

denoted by ui where ui = Ci/Ti.

We have also assumed that the multi-core platform is composed of identical

unit-capacity processors with shared memory. The task set is partitioned into

partitions {P1, . . . , Pm}, where m represent the number of required processors

and each partition is allocated onto one processor.

3.3 Partitioning Algorithms with Resource Shar-

ing

In this section we present our blocking-aware heuristic algorithm to allocate

tasks onto the processors of a multi-core platform. The algorithm extends a

bin-packing algorithm with synchronization factors. The results of our exper-

imental evaluation [16] shows a significant performance increment compared

to the existing similar algorithm [15] and a reference blocking-agnostic bin-

packing algorithm. The blocking-agnostic algorithm, in the context of this

thesis, refers to a bin-packing algorithm that does not consider blocking pa-

rameters to increase the performance of partitioning, although blocking times

are included in the schedulability test.

In our algorithm task constraints are identified, e.g., dependencies between

tasks, timing attributes, and resource sharing preferences, and we extend the

best-fit decreasing (BFD) bin-packing algorithm with blocking time param-

eters. The objective of the heuristic is to decrease the blocking overheads,

by assigning tasks to appropriate partitions with respect to the constraints and

preferences.

In a blocking-agnostic BFD algorithm, the processors are ordered in non-

increasing order of their utilization and tasks are ordered in non-increasing or-

der of their size (utilization). Beginning from the top of the ordered processor
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list, the algorithm attempts to allocate the task from the top of the ordered task

set onto the first processor that fits it, i.e., the first processor on which the task

can be allocated without making any processor unschedulable. If none of the

processors can fit the task, a new processor is added to the processor list and

the task is allocated to this processor. At each step the schedulability of all pro-

cessors must be tested, because allocating a task to a processor can increase the

remote blocking time of tasks previously allocated to other processors and may

make the other processors unschedulable. This means, it is possible that some

of the previous processors become unschedulable even if a task is allocated to

a new processor.

The algorithm proposed in [15] was called Synchronization-Aware Par-

titioning Algorithm, and we call our algorithm Blocking-Aware Partitioning

Algorithm. Both algorithms have the same objective, i.e., consideration of

resource sharing factors during partitioning to decrease the overall blocking

overheads. However, to ease refereing them, we refer them as SPA and BPA

respectively. Both our algorithm (BPA) and the existing one (SPA) assume

that MPCP is used for lock-based synchronization. Thus, we derive heuristics

based on the blocking parameters in MPCP. However, our algorithm can be

easily extended to other synchronization protocols as well, e.g., MSRP, FMLP

and OMLP.

3.3.1 Blocking-Aware Algorithm (BPA)

The algorithm attempts to allocate a task set onto processors in two rounds. The

output of the round with better partitioning results will be chosen as the output

of the algorithm. In each round the tasks are allocated to the processors in a

different way. When a bin-packing algorithm allocates an object (task) to a bin

(processor), it usually attempts to put the object in a bin that fits it better, and it

does not consider the unallocated objects. The rationale behind the two rounds

is that the heuristic tries to consider both the past and the future by looking

at tasks allocated in the past and those that are not yet allocated. In the first

round the algorithm considers the tasks that are not allocated to any processor

yet, and attempts to take as many as possible of the best related tasks with the

current task by considering remote blocking parameters. In the second round it

considers the already allocated tasks and tries to allocate the current task onto

the processor that contains best related tasks to the current task. In the second

round, the algorithm performs more like the usual bin packing algorithms, i.e.,

it attempts to find the best bin for the current object. Briefly, the algorithm in

the first round looks at the future and in the second round it considers the past.
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Before starting the two rounds the algorithm performs some basic steps:

• A heuristic weight is assigned to each task which is a function of task’s

utilization as well as the blocking parameters that lead to potential re-

mote blocking time introduced by other tasks. The heuristic weight for

a task τi, denoted by wi, is calculated as follows:

wi = ui +

⌈(

∑

ρi<ρk

NCi,kβi,k

⌈

Ti

Tk

⌉

+NCi max
ρi≥ρk

(βi,k)

)

/Ti

⌉

(3.1)

where, NCi,k is the number of critical sections of τk in which it shares a

resource with τi and βi,k is the longest critical section among them, and

NCi is the total number of critical sections of τi.

Considering the remote blocking terms of MPCP [6], the rationale be-

hind the definition of the weight is that the tasks that have the potential

to be punished more by remote blocking become heavier. Thus, they

can be allocated earlier and attract as many as possible of the tasks with

which they share resources.

• Next, the macrotasks are generated. A macrotask is a group of tasks

that directly or indirectly share resources, e.g., if tasks τi and τj share

resource Rp and tasks τj and τk share resource Rq , all three tasks belong

to the same macrotask. A macrotask has two alternatives; it can either be

broken or unbroken. A macrotask is set as broken if it cannot fit in one

processor, i.e., it cannot be scheduled by a single processor even if no

other task is allocated onto the processor, otherwise it is set as unbroken.

If a macrotask is unbroken, the partitioning algorithm always allocate all

tasks in the macrotask to the same processor. Thus, all resources shared

by tasks within the macrotask will be local. However, tasks within a

broken macrotask have to be distributed into more than one partition.

Similar to tasks, a weight is assigned to each macrotask, which is the

summation of the weights of its tasks.

• After generating the macrotasks, the unbroken macrotasks along with

the tasks not belonging to any unbroken macrotasks (i.e., the tasks that

either do not share any resource or they belong to a broken macrotask)

are ordered in a single list in non-increasing order of their weights. We

call this list as the mixed list.

In the both rounds the strategy of task allocation depends on attraction be-

tween tasks. Co-allocation of tasks on the same processor is based on a cost
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function which is called attraction function. The attraction of task τk to a task

τi is defined based on the potential remote blocking overhead that task τk can

introduce to task τi if they are allocated onto different processors. We represent

the attraction of task τk to task τi as vi,k which is calculated as follows:

vi,k =

{

NCi,kβi,k

⌈

Ti

Tk

⌉

ρi < ρk;

NCiβi,k ρi ≥ ρk
(3.2)

The rationale behind the attraction function is to allocate the tasks which

may remotely block a task τi to the same processor as τi’s in the order of remote

blocking overhead, as far as possible.

The weight function (Equation 3.1) and attraction function (Equation 3.2)

are heuristics to guide the algorithm under MPCP. These functions may dif-

fer under other synchronization protocols, e.g., MSRP, which have different

remote blocking terms.

After the basic steps the algorithm continues with the rounds:

First Round The following steps are repeated within the first round until all

tasks are allocated to processors:

• All processors are ordered in non-increasing order of their size (utiliza-

tion).

• The object (a task or an unbroken macrotask) at the top of the mixed list

is picked to be allocated.

(i) If the object is a task and it does not belong to any broken macrotask

it will be allocated onto the first processor that fits it, beginning from the

top of the ordered processor list. If none of the processors can fit the task

a new processor is added to the list and the task is allocated onto it.

(ii) If the object is an unbroken macrotask, all its tasks will be allocated

onto the first processor that fits them, i.e., all processors can successfully

be scheduled. If none of the processors can fit the tasks (i.e., at least one

processor becomes unschedulable), they will be allocated onto a new

processor.

(iii) If the object is a task that belongs to a broken macrotask, the algo-

rithm orders the not allocated tasks in the macrotask in non-increasing

order of attraction to the task based on Equation 3.2. We denote this list

as attraction list of the task. The task itself will be on the top of its at-

traction list. Although creation of an attraction list begins from a task,
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in continuation tasks are added to the list that are most attracted to all of

the tasks in the list, i.e., the sum of its attraction to the tasks in the list is

maximized. The best processor for allocation which is the processor that

fits the most tasks from the attraction list is selected, beginning from the

top of the list. If none of the existing processors can fit any of the tasks, a

new processor is added and as many tasks as possible from the attraction

list are allocated to the processor. However, if the new processor cannot

fit any task from the attraction list, i.e., at least one of the processors be-

come unschedulable, the first round fails and the algorithm moves to the

second round.

Second Round The following steps are repeated until all tasks are allocated

to the processors:

• The object at the top of the mixed list is picked.

(i) If the object is a task and it does not belong to any broken macrotask,

this step is performed the same way as in the first round.

(ii) If the object is an unbroken macrotask, in this step the algorithm

performs the same way as in the first round.

(iii) If the object is a task that belongs to a broken macrotask, the ordered

list of processors is a concatenation of two ordered lists of processors.

The top list contains the processors that include some tasks from the

macrotask of the picked task; this list is ordered in non-increasing order

of processors’ attraction to the task based on Equation 3.2, i.e., the pro-

cessor which has the greatest sum of attractions of its tasks to the picked

task is the most attracted processor to the task. The second list of pro-

cessors is the list of the processors that do not contain any task from the

macrotask of the picked task and are ordered in non-increasing order of

their utilization. The picked task will be allocated onto the first proces-

sor from the processor list that will fit it. The task will be allocated to a

new processor if none of the existing ones can fit it. The second round

of the algorithm fails if allocating the task to the new processor makes at

least one of the processors unschedulabe.

If both rounds fail to schedule a task set the algorithm fails. If one of the

rounds fails the result will be the output of the other round. Finally, if both

rounds succeed to schedule the task set, the one with less processors will be

the output of the algorithm.
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3.3.2 Synchronization-Aware Algorithm (SPA)

In this section we present the partitioning algorithm originally proposed by

Lakshmanan et al. [15].

• Similar to BPA, the macrotasks are generated (in [15], macrotasks are

denoted as bundles). A sufficient number of processors that fit the total

utilization of the task set, i.e., ⌈
∑

ui⌉, are added.

• The utilization of macrotasks and tasks are considered as their size and

all the macrotasks together with all other tasks are ordered in a list in

non-increasing order of their utilization. The algorithm attempts to al-

locate each macrotask onto a processor. Without adding any new pro-

cessor, all macrotasks and tasks that fit are allocated onto the processors

and the macrotasks that cannot fit are put aside. After each allocation,

the processors are ordered in their non-increasing order of utilization.

• The remaining macrotasks are ordered in the order of the cost of breaking

them. The cost of breaking a macrotask is defined based on the estimated

cost (blocking time) introduced into the tasks by transforming a local

resource into a global resource, i.e., the tasks sharing the resource are

allocated to different processors. The estimated cost of transforming a

local resource Rq into a global resource is defined as follows.

Cost(Rq) = Global Overhead − Local Discount (3.3)

The Global Overhead is calculated as follows.

Global Overhead = Csq/min
∀τi

(Ti) (3.4)

where Csq is the length of the longest critical section accessing Rq .

And the Local Discount is defined as follows.

Local Discount = max
∀τi accessing Rq

(Csi,q/Ti) (3.5)

where Csi,q is the length of the longest critical section of τi accessing

Rq .

The cost of breaking any macrotask, mTaskk, is calculated as the maxi-

mum of blocking overhead caused by transforming its accessed resources

into global resources.
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Cost(mTaskk) =
∑

∀Rq accessed by mTaskk

Cost(Rq) (3.6)

• The macrotask with minimum breaking cost is picked and is broken in

two pieces such that the size of one piece is as close to the largest uti-

lization available among processors as possible. This means, the tasks

within the selected macrotask are ordered in decreasing order of their

size (utilization) and the tasks from the ordered list are added to the pro-

cessor with the largest available utilization as far as possible. In this way,

the macrotask has been broken in two pieces; (1) the one including the

tasks allocated to the processor and (2) the tasks that could not fit in the

processor. If the fitting is not possible a new processor is added and the

whole algorithm is repeated again.

The SPA algorithm does not consider any blocking parameters while it al-

locates the current task to a processor, but only its utilization, i.e., the tasks

are ordered in order of their utilization only. The BPA, on the other hand, as-

signs a heuristic weight (Equation 3.1) which besides the utilization includes

the blocking parameters as well. Another issue is that in SPA no relationship

based on blocking parameters among individual tasks within a macrotask is

considered which as in the BPA could help to allocate tasks from a broken

bundle to appropriate processors to decreases the blocking times. The attrac-

tion function in Equation 3.2 facilitates the BPA to allocate the most attracted

tasks from the current task’s broken macrotask on the same processor. As our

experimental results in Paper A show, considering these issues can improve the

partitioning significantly.





Chapter 4

Resource Sharing among

Real-Time Applications on

Multiprocessors

In this chapter we present our work on resource sharing among multiple real-

time applications (independently-developed systems) when they co-execute on

a shared multi-core platform.

Co-executing of real-time applications on a multi-core platform may have

one (or a combination) of the following alternatives: (i) One application is stat-

ically allocated on one dedicated processor, (ii) Multiple applications are stati-

cally allocated on one dedicated processor, (iii) Each application is distributed

over multiple dedicated processors (one cluster).

There are more alternatives which are different from those that we men-

tioned here. The framework presented by Lipari and Bini [41] and the frame-

work proposed by Shin et al. [28] are examples of those alternatives. In these

works a component (application) is allocated on a virtual multiprocessor (vir-

tual cluster) which consists of a set of virtual processors. The virtual processors

are allocated on the physical processors (dynamically or statically) and com-

ponents may share physical processors. However, in this thesis we have only

focused on the cases where the components are allocated on dedicated proces-

sors/clusters and the components do not share processors.

In Paper B [12] we developed the synchronization protocol MSOS with

focus on the first alternative, i.e., one application per processor. The original
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MSOS, which we call MSOS-FIFO, assumed no priority among applications

on accessing resources. In Paper C [34] we developed a new version of MSOS,

called MSOS-Priority which is applicable for prioritized applications. For the

second alternative, the well studied techniques for integrating real-time appli-

cations on uniprocessors can be reused, e.g., the methods presented in [42]

and [17]. These techniques usually abstract the timing requirements of the in-

ternal tasks of each application and by using this, each application is abstracted

as one (artificial) task, hence from outside of the containing processor there will

be one application on the processor. Thus by reusing uniprocessor techniques

in this area the second alternative becomes similar to the first alternative. We

extended our work to the third alternative, where one application is allocated

on one dedicated cluster, in Paper D [43].

Regarding co-executing real-time applications in a shared open environ-

ment on a uniprocessor platform, a considerable amount of work has been

done. A non-exhaustive list of research in this domain includes [44, 45, 46,

47, 48, 42, 49]. Hierarchical scheduling has been studied and developed as

a solution for temporal isolation among real-time applications (components)

when they execute on the processor. Most of work in this domain has not con-

sidered shared resources among the applications. A non-exhaustive list of work

presenting the techniques for resource sharing among real-time applications on

uniprocessors includes [17, 18, 19].

Hierarchical scheduling techniques have also been developed for multipro-

cessors (multi-cores) [27, 28]. However, the systems (called clusters in the

mentioned papers) are assumed to be independent and do not allow for sharing

of mutually exclusive resources.

Recently, Faggioli et al. proposed a server-based resource reservation pro-

tocol for resource sharing called Multiprocessor BandWidth Inheritance pro-

tocol (M-BWI) [50] which can be used for open systems on multiprocessors

where hard, soft and non real-time systems may co-execute. M-BWI uses a

mixture of spin-based and suspend-based approaches for tasks waiting for re-

sources. The underlying scheduling policy is not required to be known. How-

ever, M-BWI assumes that the number of processors are known. The imple-

mentation of M-BWI seems to be complex as various states for servers have

to be preserved during run-time. Furthermore, under M-BWI tasks have to be

aware of each other, e.g., to establish the chain of blocks, which may make it

difficult to use M-BWI with black box or legacy components.
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4.1 The Synchronization Protocol for Real-Time

Applications under Partitioned Scheduling

As mentioned above we developed the synchronization protocol MSOS (Multi-

processors Synchronization protocol for real-time Open Systems) for handling

resource sharing among independently-developed real-time applications on a

shared multi-core platform; MSOS-FIFO and MSOS-Priority for synchroniza-

tion on mutually exclusive resources shared among non-prioritized and priori-

tized real-time applications respectively.

4.1.1 Assumptions and Definitions

We assume that one core of the underlying multi-core contains at most one

real-time application Ak. Application Ak is represented by an interface Ik
which abstracts the information regarding shared resources. Each application

may use a different scheduling policy, however in this thesis we concentrate on

fixed priority scheduling within applications.

An application Ak consists of a task set denoted by τAk
which consists

of n sporadic tasks, τi(Ti, Ci, ρi, {Csi,q,p}) where Ti denotes the minimum

inter-arrival time (period) between two successive jobs of task τi with worst-

case execution time Ci and ρi as its unique priority. The tasks have implicit

deadlines, i.e., the relative deadline of any job of τi is equal to Ti. A task, τh,

has a higher priority than another task, τl, if ρh > ρl. The tasks in application

Ak share a set of mutually exclusive resources RAk
that are protected using

semaphores. The set of shared resources RAk
consists of two subsets of dif-

ferent types of resources; local and global resources. A local resource is only

used by tasks of one application while a global resource is shared by tasks from

multiple applications. The sets of local and global resources accessed by tasks

in application Ak are denoted by RL
Ak

and RG
Ak

respectively. The set of critical

sections, in which task τi requests resources in RAk
is denoted by {Csi,q,p},

where Csi,q,p is the worst-case execution time of the pth critical section of task

τi in which the task locks resource Rq . We denote Csi,q as the worst-case ex-

ecution time of the longest critical section in which τi requests Rq . We further

assume non-nested critical sections.

The above assumptions are valid for both MSOS-FIFO and MSOS-Priority.

However, in MSOS-FIFO an application Ak is represented by Ak(Ik) while in

MSOS-Priority the application is represented by Ak(ρAk, Ik) where ρAk is

the priority of application Ak.
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Resource Hold Time (RHT) The RHT of a global resource Rq by task τi
in application Ak denoted by RHTq,k,i, is the maximum duration of time the

global resource Rq can be locked by τi, i.e., RHTq,k,i is the maximum time

interval starting from the time instant when τi locks Rq and ending at the time

instant when τi releases Rq . Thus, the resource hold time of a global resource,

Rq , by application Ak denoted by RHTq,k, is as follows:

RHTq,k = max
τi ∈ τq,k

{RHTq,k,i} (4.1)

where τq,k is the set of tasks in application Ak sharing Rq.

The concept of resource hold times for composing multiple independently-

developed real-time applications on uniprocessors has been studied [20, 21].

On a multi-core (multiprocessor) platform we compute resource hold times for

global resources in a different way.

Maximum Resource Wait Time For a global resourceRq in applicationAk ,

denoted by RWTq,k, the maximum resource wait time is the worst-case time

that any task τi within Ak may wait for other applications on Rq whenever τi
requests Rq.

4.1.2 MSOS-FIFO

Application Interface In MSOS-FIFO an application Ak is represented by

an interface Ik(Qk, Zk) where Qk represents a set of requirements. When an

application Ak is co-executing with other applications on a multi-core plat-

form, it is said to be schedulable if all the requirements in Qk are satisfied.

A requirement in Qk is a linear inequality which only depends on the maxi-

mum resource wait times of one or more global resources, e.g., 2RWT1,k +
3RWT3,k ≤ 18. The requirements of each application are extracted from

its schedulability analysis in isolation. Zk in the interface represents a set;

Zk = {. . . , Zq,k, . . .}, where Zq,k, called Maximum Application Locking

Time (MALT), represents the maximum duration of time that any task τx in

any other application Al (l 6= k) may be blocked by tasks in Ak whenever τx
requests Rq.
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General Description

Access to the local resources is handled by a uniprocessor synchronization pro-

tocol, e.g., PCP or SRP. Under MSOS-FIFO each global resource is associated

with a global FIFO queue in which applications requesting the resource are en-

queued. Within an application the tasks requesting the global resource are en-

queued in a local queue; either priority-based or FIFO-based queues. When the

resource becomes available to the application at the head of the global FIFO,

the eligible task, e.g., at the top of the local FIFO queue, within the application

is granted access to the resource.

To decrease interference of applications, they have to release the locked

global resources as soon as possible. In other words, the lengths of resource

hold times of global resources have to be as short as possible. This means

that a task τi that is granted access to a global resource Rq should not be

delayed by any other task τj , unless τj holds another global resource. To

achieve this, the priority of any task τi within an application Ak request-

ing a global resource Rq is increased immediately to ρi + ρmax(Ak), where

ρmax(Ak) = max {ρi|τi ∈ τAk
}. Boosting the priority of τi when it is granted

access to a global resource will guarantee that τi can only be delayed or pre-

empted by higher priority tasks executing within a gcs. Thus, the RHT of a

global resource Rq by a task τi is computed as follows:

RHTq,k,i = Csi,q +Hi,q,k (4.2)

where Hi,q,k =
∑

∀τj∈τAk
, ρi<ρj

∧ Rl∈RG
Ak

, l 6= q

Csj,l.

An application Al can block another application Ak on a global resource

Rq up to Zq,l time units whenever any task within Ak requests Rq . The worst-

case waiting time RWTq,k of Ak to wait for Rq whenever any of its tasks

requests Rq is calculated as follows:

RWTq,k =
∑

Al 6=Ak

Zq,l (4.3)

In Paper B we have derived the calculation of Zq,k of a global resource Rq

for an application Ak, as follows:

- For FIFO-based local queues:

Zq,k =
∑

τi ∈ τq,k

RHTq,k,i (4.4)
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- For Priority-based local queues:

Zq,k = |τq,k| max
τi ∈ τq,k

{RHTq,k,i} (4.5)

where |τq,k| is the number of tasks in application Ak sharing Rq .

4.1.3 MSOS-Priority

General Description

The general idea in MSOS-Priority is to manage access to mutually exclusive

global resources among prioritized applications. To handle accessing the re-

sources the global queues have to be priority-based. When a global resource

becomes available, the highest priority application in the associated global

queue is eligible to use the resource. Within an application the tasks requesting

a global queue are enqueued in either a priority-based or a FIFO-based local

queue. When the highest priority application is granted access to a global re-

source, the eligible task within the application is granted access to the resource.

If multiple requested global resources become available for an application they

are accessed in the priority order of their requesting tasks within the applica-

tion.

It has been shown [51] that cache-related preemption overhead, depending

on the working set size (WSS) of jobs, can be significant. WSS of a job is the

amount of memory that the job needs during its execution. Thus, performing

busy wait in spin-based protocols in some cases may benefit the schedulability

as they decrease preemptions comparing to suspend-based protocols. As the

results of our experimental evaluations in Paper C show, the larger preemption

overheads generally decrease the performance of suspend-based protocols sig-

nificantly. However, the experiments show that MSOS-Priority almost always

outperforms all other suspend-based protocols. Furthermore, in many cases

MSOS-Priority performs better than spin-based protocols even if the preemp-

tion overhead is relatively high. In this thesis we did not consider the system

overhead, e.g., the overhead regarding queue manipulating, which will favor

spin-based protocols significantly, and for relatively large amount of system

overhead it will be very hard for suspend-based protocols to outperform spin-

based protocols. For MSOS-Priority to reach its highest performance with re-

gard to schedulability, an efficient priority assignment algorithm has to be used.

Our proposed optimal priority assignment algorithm (Section 4.2) contributes

to the efficiency of MSOS-Priority significantly.
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Under MSOS-FIFO, a gcs of a lower priority task τl can be preempted by

a gcs of a higher priority task τh if they are accessing different resources. This

increases the number of preemptions which adds up the preemption overhead

to gcs’s and thus making RHT’s longer. To avoid this, we modify this rule in

MSOS-Priority to reduce preemptions. To achieve this, tasks have to execute

non-preemptively while accessing a global resource, i.e., within gcs’s. The

RHT of a global resource Rq by a task τi is computed similar to MSOS-FIFO

except that, under MSOS-Priority, at most one gcs from lower priority tasks

may further increase the length of RHT:

RHTq,k,i = Csi,q +Hi,q,k + max
∀τl∈τAk

, ρi>ρl

∧ Rs∈RG
Ak

, s 6= q

{Csl,s} (4.6)

Maximum Application Locking Time (MALT), denoted by Zq,k(t) repre-

sents the maximum delay any task τx in any other lower priority application

Al may incur from tasks in Ak during time interval t, each time τx requests

resource Rq .

The maximum execution (workload) of all critical sections of a task τj
locking Rq during time interval t, denoted by Wj(t, Rq), is computed as fol-

lows (more details in Paper C):

Wj(t, Rq) = (⌈ t
Tj
⌉+ 1) nG

j,q RHTq,k,j (4.7)

where nG
j,q is the maximum number of requests of any job of τj to Rq .

Using the workload function for one task in Equation 4.7, we can calculate

the total maximum workload of all critical sections of all tasks in application

Ak in which they use a global resource Rq during time interval t, i.e., Zq,k(t).
This is the maximum delay introduced by tasks in Ak to any task requesting

Rq in any lower priority application during any time interval t. Zq,k(t) is

calculated as follows:

Zq,k(t) =
∑

τj ∈ τq,k

Wj(t, Rq) (4.8)

The maximum Resource Wait Time (RWT) for a global resource Rq in-

curred by task τi in application Ak, denoted by RWTq,k,i(t), is the maximum

duration of time that τi may wait for the remote applications on resource Rq

during any time interval t.
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A RWT under MSOS-Priority, considering delays from lower priority ap-

plications and higher priority applications can be calculated as follows:

RWTq,k,i(t) =
∑

ρAk<ρAl

Zq,l(t) + nG
i,q max

ρAk>ρAl

{RHTq,l} (4.9)

Under MSOS-FIFO, a RWT for a global resource is a constant value which

is the same for any task sharing the resource. However, a RWT under MSOS-

Priority is a function of time interval t and may differ for different tasks. The

RWT for a global resourceRq of a task τi in applicationAk during the period of

τi equals to RWTq,k,i(Ti) which covers all delay introduced from both higher

priority and lower priority applications sharing Rq:

RWTq,k,i =
∑

ρAk<ρAl

Zq,l(Ti) + nG
i,q max

ρAk>ρAl

{RHTq,l} (4.10)

where RWTq,k,i(Ti) is denoted by RWTq,k,i.

Application Interface In MSOS-Priority the interface of an application Ak

has to contain the requirements that have to be satisfied for Ak to be schedu-

lable. Furthermore, the interface has to provide information required by other

applications sharing resources with Ak.

Looking at Equation 4.10, the calculation of the RWT of a task τi in ap-

plication Ak for a global resource Rq requires MALT’s, e.g., Zq,h(t), from the

higher priority applications as well as RHT’s, e.g., RHTq,l, from the lower

priority applications. This means that to be able to calculate the RWT’s, the in-

terfaces of the applications have to provide both RHT’s and MALT’s for global

resources they share. Thus the interface of an application Ak is represented by

Ik(Qk, Zk, RHT ) where Qk represents a set of requirements, Zk is a set of

MALT’s and a MALT is a function of time interval t. MALT’s in the interface

of application Ak are needed for calculating the total delay introduced by Ak

to the lower priority applications sharing resources with Ak. RHT in the inter-

face is a set of RHT’s of global resources shared by application Ak. RHT’s are

needed for calculating the total delay introduced by Ak to the higher priority

applications.
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4.2 An Optimal Algorithm for Assigning Priori-

ties to Applications

In this section we present our optimal algorithm which assigns unique priorities

to the applications. The algorithm only needs information in the interfaces. The

algorithm is optimal in the sense that if it fails to assign unique priorities to

applications such that all applications become schedulable, any hypothetically

optimal algorithm will also fail.

Audsley’s Optimal Priority Assignment (OPA) [52] for priority assignment

in uniprocessors is the most similar work to our priority assignment algorithm.

Davis and Burns [53] showed that OPA can be extended to fixed priority mul-

tiprocessor global scheduling if the schedulability of a task does not dependent

on priority ordering among higher priority or among lower priority tasks. Our

proposed algorithm is a generalization of OPA which can be applicable for as-

signing priorities to applications based on their requirements. However, our

algorithm can perform more efficiently than OPA because the schedulability

test that is used by our algorithm is much simpler than that used in [53]. Fur-

thermore, as we will show later in this section, although in the worst case the

maximum number of schedulability tests performed by our algorithm is the

same as OPA, in some cases our algorithm performs less schedulability tests

than OPA.

The pseudo code of the algorithm is shown in Figure 4.1. The algorithm

starts by initially assigning the lowest priority (i.e., 0) to all applications. Then

the algorithm in different stages tries to increase the priority of applications.

In each stage it leaves the priorities of the applications that are schedulable

(Line 10) and it increases the priority of the applications that are not schedu-

lable (the for-loop in Line 18). The priority of all unschedulable applications

is increased by the number of the schedulable applications in the current stage

(Line 19). If the number of applications that become schedulable in the current

stage is more than one, their priorities are increased in such a way that each

application gets a unique priority; the first application’s priority is increased by

0, the second’s is increased by 1, the third’s is increased by 2, etc (the for-loop

in Line 22). When testing the schedulability of an application Ak, the algo-

rithm assumes that all the applications that have the same priority as Ak are

higher priority applications. This assumption helps to test whether Ak can tol-

erate all the remaining applications if they get priority higher than that of Ak .

Thus, when calculating RWT’s based on Equation 4.10 the algorithm changes

condition ρAk < ρAl in the first term to ρAk ≤ ρAl.
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Figure 4.1: The Priority Assignment Algorithm

Figure 4.2 illustrates an example of the algorithm. In this example, there

are four applications sharing resources. The algorithm succeeds to assign pri-

orities to them in three stages. First the algorithm gives the lowest priority to

them, i.e., ρAi = 0 for each application. In this stage the algorithm realizes

that applications A1 and A3 are schedulable but A2 and A4 are not schedula-

ble, thus the priority of A2 and A4 are increased by 2 which is the number of

schedulable applications, i.e., A1 and A3. Both A1 and A3 are schedulable,

hence to assign unique priorities, the algorithm increases the priority of A1

and A3 by 0 and 1 respectively. Please notice that increasing the priority of

the schedulable applications can be done in any order since their schedulability

has been tested assuming that all the other ones have higher priority. Thus the

order in which the priorities of these applications are increased will not make

any of them unschedulable. In the second stage, only applications A2 and A4
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Figure 4.2: Illustrative Example for the Priority Assignment Algorithm

are left. At this stage the algorithm finds that A4 is not schedulable, hence its

priority has to be increased. In the last stage, A4 also becomes schedulable

and since all applications are now schedulable the algorithm succeeds. If at

any stage the algorithm cannot find any schedulable application, meaning that

none of the remaining applications can tolerate the other ones to have higher

priorities, the algorithm fails.

In Audsley’s priority assignment algorithm [52] to find a solution (if any)

at most m(m + 1)/2 schedulability tests will be performed where m is the

number of tasks to be prioritized. Similarly, in our algorithm to find a solution

(if any), in the worst case at each stage only one application is schedulable and

is assigned a priority. In the next stage the schedulability of all the remaining

applications has to be tested again. In this case, after the algorithm is finished,

the schedulability test for the applications with priority m,m− 1, . . . , 2, 1 has

been performed m,m − 1, . . . , 2, 1 times respectively, and hence the maxi-

mum number of schedulability tests is m(m+ 1)/2 where m is the number of

applications to be prioritized.

However, it may happen that at a stage, x number of applications are

schedulable where x > 1. In this case the priority of all remaining applications

(i.e. applications that are unschedulable at the current stage) will be increased

by x (Figure ??, Line 19 of the algorithm). This means that, the maximum

number of schedulability tests for each of the remaining applications would be

decreased by x, i.e., the number of stages the algorithm runs is decreased by x.

The more similar stages exist the lower the maximum number of schedulabil-

ity tests will be. As a result the maximum number of stages and consequently
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the number schedulability tests are decreased. This is not the case in Aud-

sley’s OPA; depending on the order of selecting tasks (or applications), it is

still possible that m(m + 1)/2 schedulability tests would be performed, e.g.,

OPA finds a solution in exactly m stages. E.g., in the illustrative example in

Figure ??, OPA will assign priorities in 4 stages, and if it selects the applica-

tions in order A4, A2, A3, A1, it will perform 4, 3, 1, 1 schedulability tests for

A4, A2, A3 and A1 respectively, and in total 9 tests will be performed. On the

other hand, our algorithm assigns priorities in 3 stages and it performs 3, 2, 1,

1 schedulability tests for A4, A2, A3 and A1 respectively, and in total 7 tests

are performed.

4.3 Synchronization Protocol for Real-Time Ap-

plications under Clustered Scheduling

As mentioned in the beginning of this chapter, the third alternative where ap-

plications co-execute on a shared multi-core platform is that one application is

allocated on a dedicated cluster (multiple cores). We have generalized MSOS

to be applicable to this alternative. In this section we present the extended

MSOS which we call Clustered MSOS (C-MSOS).

4.3.1 Assumptions and Definitions

We consider a set of real-time components, i.e., real-time applications, aimed

to be allocated on the multiprocessor platform. A real-time component con-

sists of a set of real-time tasks. A component may also include components,

i.e., hierarchical components, however in this thesis we focus on components

composed of tasks only. Each component is allocated on a dedicated subset

of processors, called cluster. Each component has its local scheduler which

can be any multiprocessor global scheduling algorithm, e.g., G-EDF. The jobs

generated by tasks of a component can migrate among its processors, however

migration of jobs among clusters is not allowed.

A component Ck consists of a task set denoted by τCk
which includes

nk sporadic tasks τi(Ti, Ei, Di, ρi, {Csi,q,p}) where Ti denotes the minimum

inter-arrival time between two successive jobs of task τi with worst-case exe-

cution time Ei, relative deadline Di and ρi as its unique base priority. A task

τi has a higher priority than another task τj if ρi > ρj . The set of mutually

exclusive resources shared by tasks in component Ck is denoted by RCk
. The

set of shared resources RCk
consists of two sets of different types of resources;
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local and global resources. The sets of local and global resources accessed by

tasks in component Ck are denoted by RL
Ck

and RG
Ck

respectively. Similar to

MSOS-FIFO and MSOS-Priority, the set of critical sections, in which task τi
requests resources in RCk

is denoted by {Csi,q,p}, where Csi,q,p is the worst

case execution time of the pth critical section of task τi in which the task uses

resource Rq. We define Csi,q to be the worst case execution time of the longest

critical section in which τi uses Rq . We also denote CsTi,q as the maximum

total amount of time that τi uses Rq , i.e., CsTi,q =
∑

Csi,q,p. The set of tasks

in component Ck sharing Rq is denoted by τq,k, and ni,q is the total number of

critical sections of task τi in which it accesses resource Rq . We assume non-

nested critical sections. Unlike MSOS-FIFO and MSOS-Priority, we assume

constrained-deadline tasks, i.e., Di ≤ Ti for any τi.

Component Ck will be allocated on a cluster comprised of mk processors;

m
(min)
k ≤ mk ≤ m

(max)
k where m

(min)
k and m

(max)
k are the minimum and

maximum number of processors required by Ck respectively. In Paper D we

have shown how to efficiently determine the number of processors which Ck

will be allocated on in the integration phase. In the paper, we have shown

that using the information in the interfaces of components the integration of all

the real-time components on a multiprocessor platform can be formulated as a

Nonlinear Integer Programming (NIP) problem [54]. By formulating the inte-

gration phase as a NIP problem, by means of the techniques in this domain [54]

it is possible to minimize the total number of required processors on which all

components will be schedulable, i.e., their requirements are satisfied.

Resource Hold Time (RHT) of a global resource Rq by task τi in com-

ponent Ck, assuming that Ck is allocated on mk processors, is denoted by

RHTq,k,i(mk) and is the maximum duration of time that the global resource

Rq can be locked by τi. Consequently, the resource hold time of a global

resource Rq by component Ck, denoted by RHTq,k(mk), is calculated as fol-

lows:

RHTq,k(mk) = max
τi ∈ τq,k

{RHTq,k,i(mk)} (4.11)

Maximum Resource Wait Time (RWT) for a global resource Rq in compo-

nent Ck, denoted as RWTq,k, is the worst-case duration of time that whenever

any task τi within Ck requests Rq it can be delayed by other components, i.e.,

Rq is held by tasks from other components.
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Component Interface A component Ck is abstracted and represented by an

interface denoted by Ik(Qk(mk) , Zk(mk) , m
(min)
k , m

(max)
k ). The index of

a component, i.e., k, in the specification of the interface is used to clarify the

relationships in the analysis and does not indicate any order among the com-

ponents, neither does it show that the number of the components is known.

Global resource requirements of Ck are encapsulated in the interface by

Qk(mk) which is a set of resource requirements that have to be satisfied for

Ck to be schedulable on mk processors. The parameter mk in Qk(mk) in-

dicates that the requirements are dependent on mk, and hence for different

values of mk the requirements may be different. For Ck to be schedulable on

any mk processors (m
(min)
k ≤ mk ≤ m

(max)
k ), all requirements in Qk(mk)

have to be satisfied. Each requirement rl(mk) in Qk(mk) which depends on

mk, is represented as a linear inequality which indicates that an expression of

the maximum resource wait times of one or more global resources should not

exceed a value gl(mk), e.g., r1(mk)
def
= 4RWT2,k + 3RWT3,k ≤ g1(mk).

Each requirement is extracted from one task requesting at least one global re-

source. Thus, the number of requirements equals to the number of tasks in

component Ck that may request global resources. A formal definition of the

requirements is as follows:

Qk(mk) = {rl(mk)} (4.12)

where

rl(mk)
def
=

∑

∀Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ gl(mk)
(4.13)

where αi,q is a constant, i.e., it only depends on internal parameters of Ck

(more details can be found in Paper D).

The global resource requirements in Qk(mk) of a component Ck are ex-

tracted from the schedulability analysis of the component in isolation, i.e., to

extract the requirements of a component, no information from other possible

existing components on the same multi-core platform is required.

Zk(mk) in the interface, represents a set Zk(mk) = {Zq,k(mk)} where

Zq,k(mk) is the Maximum Component Locking Time (MCLT ). Zq,k(mk)
represents the maximum duration of time that Ck can delay the execution of

any task τx in any component Cl (l 6= k) whenever τx requests Rq , i.e., any

time any task in Cl requests Rq its execution can be delayed by Ck for at most

Zq,k(mk) time units.
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4.3.2 C-MSOS

Under C-MSOS, sharing local resources is handled by multiprocessor PIP.

Each global resource is associated with a global queue in which components

requesting the resource are enqueued. We assume non-prioritized components,

hence the global queues can be implemented in either FIFO or Round-Robin

manner. Since the resource queues are also shared among tasks and compo-

nents it may cause contention. We assume that access to queues is performed

in an atomic manner, e.g., the index of a FIFO queue has to be an atomic

variable. However, we do not consider the overhead regarding contention on

resource queues.

Within a component the jobs requesting a global resource are enqueued in a

local queue. To reduce interference among components and shorten the RHT’s,

the blocking time on global resources should only depend on the duration of

global critical sections. This bounds blocking times on global resources as a

function of length and number of global critical sections only. Thus the priority

of jobs accessing global resources have to be boosted to be higher than any

base priority within the component. The boosted priority of any job of task τi
requesting any global resource equals to ρmax(Ck) + 1, where ρmax(Ck) =
max {ρi|τi ∈ Ck}. Boosting the priority of a job when it executes within a gcs
ensures that it can only be delayed by jobs within gcs’s. However, boosting

the priorities such that they are higher than any priority in the component may

cause problem, i.e., make the component unschedulable. We have motivated

this problem and proposed a solution for it in Paper E [32] which we have

discussed in Section 4.3.3.

4.3.3 Efficient Resource Hold Times

The usual way of decreasing interference among tasks/applications regarding

global resources in the existing synchronization protocols under partitioned

scheduling has been boosting the priority of a task accessing a global resource

to be higher than any base priority of any task that may preempt the task hold-

ing the resource. However, although boosting the priorities of tasks holding

global resources in this way makes RHT’s shorter, it may make a component

unschedulable. Thus, to shorten the RHT’s the priorities of tasks holding global

resources have to be boosted only as far as the application remains schedula-

ble, i.e., boosting the priorities must never compromise the schedulability of

an application. On uniprocessor platforms, it has been shown [20, 21] that it is

possible to achieve one single optimal solution, when trying to decrease RHT’s
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within an application. However, in Paper E we have shown that this is not the

case when the application is scheduled on multiple processors and there can

exist multiple Pareto-optimal solutions.

Considering that the effective priority of a task holding a global resource

may not necessarily be high enough to prevent it from being preempted by any

task in an application, the RHT’s have to be calculated differently. We assume

that the priorities of jobs within an application Ak that are granted access to a

global resource Rq are boosted to a boost level without compromising schedu-

lability of the application. We denote the boost level of Rq in Ak by boostq,k,

i.e., the priority of any job Ji in Ak that is granted access to Rq is immedi-

ately raised to boostq,k. With this assumption, we have derived calculation of

RHT’s:

When a job Ji holds the lock of a global resource Rq and its effective

priority is immediately raised to boostq, its execution can be delayed by any

other job generated by any other task that belongs to at least one of following

three categories:

• The set of tasks with base priority higher than or equal to boostq . We

denote Rhq,i as an upper bound for the maximum cumulative execution

of the jobs generated by these tasks, while Ji holds the lock of Rq .

• The set of tasks with priorities lower than boostq, whose generated jobs

may hold any local resource Rp that satisfy condition ⌈Rp⌉ ≥ boostq ,

where ⌈Rp⌉ is the highest priority of any task that may request Rq . In

this case these generated jobs may delay the execution of Ji while Ji
holds Rq since their effective priority is at least as high as Ji’s boosted

priority. The upper bound for the maximum cumulative execution (work-

load) of these jobs when they hold Rp during the interval that Ji holds

Rq is denoted by Rlq,i.

• The third category represents the set of tasks with priorities lower than

boostq , whose generated jobs hold the lock of any global resource Rl

other than Rq with a boost level higher than or equal to Rq’s boost level,

i.e., boostl ≥ boostq . These jobs holding Rl may delay the execution

of Ji while Ji holds Rq because they have a boosted priority at least as

high as Ji’s boosted priority. The maximum delay from jobs of these

tasks is denoted by Rbq,i.

When Ji itself uses resource Rq it will hold the resource up to Csi,q time

units, hence the RHT of Rq for τi in Application Ak, i.e., RHTq,k,i is calcu-

lated as follows:
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RHTq,k,i = Csi,q +Rhq,i +Rlq,i +Rbq,i (4.14)

4.3.4 Decreasing Resource Hold Times

Considering the task categories shown in Section 4.3.3 that contribute to the

calculation of RHT of a global resource Rq, the RHT of Rq in application

Ak (i.e., RHTq,k) can be decreased by increasing the boost level of Rq (i.e.,

boostq) as far as Ak remains schedulable.

The goal is to reduce all RHT’s of all global resources in an application

Ak as far as possible. For uniprocessors, it has been shown that a single op-

timal solution can be achieved [20, 21]. However, under global scheduling

and depending on the order of selecting the resources to increase their boost

level, the final solution may differ. In Paper E we have shown that for multi-

processors, e.g., for fixed-priority global scheduling algorithm and PIP as the

synchronization protocol, there can exist a set of Pareto-optimal allocations of

boosting levels to global resources. In a Pareto-optimal allocation of booting

levels, none of the boosting levels can further be increased without decreasing

boosting level of any other global resources.

4.3.5 Summary

In this chapter we presented our work on resource sharing among real-time ap-

plications (components) on a shared multi-core platform. We have presented

our proposed synchronization protocol called MSOS for resource handling

among real-time applications where each application is allocated on one pro-

cessor (core). We originally proposed MSOS for applications with no assigned

priorities (called MSOS-FIFO). Later we developed a new version of MSOS

called MSOS-Priority which extends MSOS for prioritized applications. We

have also proposed an optimal priority assignment algorithm to assign unique

priorities to the applications on accessing resources.

We have further extended MSOS to clustered scheduling where each real-

time component is allocated on multiple dedicated processors and the tasks

within each component are scheduled using a global scheduling. The new

protocol which is called C-MSOS has been developed with different queue

handling techniques. Finally, we have shown that boosting the priorities of

the tasks holding global resources may make their component unschedulable.

Thus the priority boosting should not compromise the schedulability of the
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component. However, we have shown that there may exist a set of Pareto-

optimal solutions when trying to minimize the resource hold times.

The details regarding our proposed protocols and algorithm, their analysis

and their experimental evaluations can be found in the respective papers.



Chapter 5

Conclusions

5.1 Summary

In this thesis we have pointed out the increasing interest in multiprocessor

methods and techniques as the multi-core architectures are becoming the de-

facto processors. We have explained some of the challenges regarding re-

source management on these platforms. We have briefly discussed the exist-

ing scheduling approaches, e.g., partitioned and global scheduling as well as

an overview of the existing synchronization protocols for lock-based resource

sharing on multiprocessor platforms with real-time properties.

We have proposed a heuristic blocking-aware partitioning algorithm which

extends a bin-packing algorithm with synchronization factors. The algorithm

allocates a task set onto the processors of an identical unit-capacity multi-core

platform. The objective of the algorithm is to decrease the overall blocking

times of tasks by means of allocating the tasks that directly or indirectly share

resources onto the same processors as far as possible. This generally increases

schedulability of a task set and can lead to fewer required processors compared

to a blocking-agnostic bin-packing algorithm.

In the thesis, we have also discussed that in industry it is not uncommon

to divide large and complex systems into several components (applications)

where each of them can be developed independently and in isolation. When

these applications are integrated and co-execute on a multi-core platform, a

challenge to overcome is how to manage the mutually exclusive resources that

these applications may share. We have proposed a synchronization protocol,

called MSOS, for resource management among real-time applications when
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they co-execute on a multi-core platform with the assumption that each ap-

plication is allocated on a dedicated core. We have provided the methods

to perform the schedulability analysis of each application in isolation where

the resource requirements of each application are summarized in an interface.

Interface-based global scheduling of MSOS facilitates resource management

in open systems where applications can enter and exist during run-time.

The first proposed synchronization protocol MSOS, called MSOS-FIFO,

and only supported un-prioritized applications in which applications waiting

for locked resources are enqueued in FIFO queues. However, to increase the

schedulability of applications we proposed a new version of MSOS, called

MSOS-Priority, to support prioritized applications. Under MSOS-Priority, ap-

plications are granted access to shared resources based on their priorities. We

have proposed an optimal priority assignment algorithm which assigns unique

priorities to applications. Our experimental evaluations showed that MSOS-

Priority together with the priority assignment algorithm mostly outperform the

existing alternatives.

We have further extended MSOS to be applicable for the cases where each

application is allocated on a sub-set of cores (cluster). Under the extended

MSOS which is called C-MSOS, each application is assigned on multiple cores

and hence within an application tasks are scheduled using a global scheduling

policy. Finally, we presented how to efficiently extract and calculate the re-

source hold times of shared resources. To decrease the interference of applica-

tions on a shared multi-core platform, resource hold times have to be as short as

possible. However, shortening the resource hold times should not compromise

the schedulability of an application. We have shown that a set of Pareto-optimal

solutions may exist when an application is allocated on multiple cores.

5.2 Future Work

In the future we plan to work further on the resource management issues on

multi-core platforms and we will investigate the possibility of improvement of

the existing protocols as well as development of new approaches.

One future work will be to extend our partitioning algorithm to other syn-

chronization protocols, e.g., MSRP, FMLP and OMLP, under partitioned sched-

uling.

In this thesis we have focused on resource management on shared memory

multi-cores where resources are protected by semaphores. In a fault-tolerant

system, applications have to be protected from other applications that may mal-
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function. If the applications are allowed to access shared memory, a malfunc-

tioning application may corrupt parts of the memory that is also shared by other

applications. To avoid this, the applications are isolated such that each of them

can only access its dedicated portion of memory. However, in this case using

resource sharing protocols that rely on shared memory (semaphores) is not fea-

sible. In the future we aim to work on resource management among real-time

applications on multi-cores by means of message passing.





Chapter 6

Overview of Papers

6.1 Paper A

Farhang Nemati, Thomas Nolte and Moris Behnam. Partitioning Real-Time

Systems on Multiprocessors with Shared Resources. In 14th International Con-

ference On Principles Of Distributed Systems (OPODIS’10), pages 253-269,

December, 2010.

Summary In this paper we propose a blocking-aware partitioning algorithm

which allocates a task set on a multiprocessor (multi-core) platform in a way

that the overall amount of blocking times of tasks are decreased. The algorithm

reduces the total utilization which, in turn, has the potential to decrease the total

number of required processors (cores). In this paper we evaluate our algorithm

and compare it with an existing similar algorithm. The comparison criteria

includes both number of schedulable systems as well as processor reduction

performance.

My contribution I was the main driver in writing the paper and I was re-

sponsible for further evaluation of the algorithm. I was also responsible for

implementing an algorithm similar to the algorithm proposed in Paper B, and

comparing the two algorithms.
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6.2 Paper B

Farhang Nemati, Moris Behnam and Thomas Nolte. Independently-developed

Real-Time Systems on Multi-cores with Shared Resources. In 23rd Euromicro

Conference on Real-Time Systems (ECRTS’11), pages 251-261, July, 2011.

Summary In this paper we propose a synchronization protocol for resource

sharing among independently-developed real-time systems on multi-core plat-

forms. The systems may use different scheduling policies and they may have

their own local priority settings. Each system is allocated on a dedicated pro-

cessor (core).

In the proposed synchronization protocol, each system is abstracted by

an interface which abstracts the information needed for supporting global re-

sources. The protocol facilitates the composability of various real-time systems

with different scheduling and priority settings on a multi-core platform.

We have performed experimental evaluations and compared the perfor-

mance of our proposed protocol (MSOS) against the two existing synchroniza-

tion protocols MPCP and FMLP. The results show that the new synchronization

protocol enables composability without any significant loss of performance. In

fact, in most cases the new protocol performs better than at least one of the

other two synchronization protocols. Hence, we believe that the proposed pro-

tocol is a viable solution for synchronization among independently-developed

real-time systems executing on a multi-core platform.

My contribution I was the main driver in writing the paper and I was re-

sponsible for further evaluation of the proposed protocol.

6.3 Paper C

Farhang Nemati and Thomas Nolte. Resource Sharing among Prioritized Real-

Time Applications on Multi-cores. MRTC report ISSN 1404-3041 ISRN MDH-

MRTC-265/2012-1-SE, Mälardalen Real-Time Research Centre, Mälardalen

University, April, 2012 (submitted to conference).

Summary MSOS (Multiprocessors Synchronization protocol for real-time

Open Systems) is a synchronization protocol for handling resource sharing



6.4 Paper D 55

among independently-developedreal-time applications (components) on multi-

core platforms. MSOS does not consider any priority setting among applica-

tions. To handle resource sharing based on the priority of applications, in this

paper we extend MSOS such that it allows for resource sharing among priori-

tized real-time applications on a multi-core platform. We propose an optimal

priority assignment algorithm which assigns unique priorities to the applica-

tions based on information in their interfaces. We have performed experimen-

tal evaluations to compare the extended MSOS (called MSOS-Priority) to the

existing MSOS as well as to the current state of the art locking protocols under

multiprocessor partitioned scheduling, i.e., MPCP, MSRP, FMLP and OMLP.

The evaluations show that MSOS-Priority mostly performs significantly better

than alternative approaches.

My contribution I was the main driver in writing the paper and I was re-

sponsible for evaluation of the protocol.

6.4 Paper D

Farhang Nemati and Thomas Nolte. Resource Sharing among Real-Time Com-

ponents under Multiprocessor Clustered Scheduling. Journal of Real-Time

Systems (under revision).

Summary In this paper we generalize our previously proposed synchroniza-

tion protocol (MSOS) for resource sharing among independently-developed

real-time applications (components) on multi-core platforms. Each component

is statically allocated on a dedicated subset of processors (cluster) whose tasks

are scheduled by its own scheduler. In this paper we focus on multiprocessor

global fixed priority preemptive scheduling algorithms to be used to schedule

the tasks of each component on its cluster. Sharing the local resources is han-

dled by the Priority Inheritance Protocol (PIP). For sharing the global resources

(shared across components) we have studied the usage of FIFO and Round-

Robin queues for access across the components and the usage of FIFO and

prioritized queues within components for handling sharing of these resources.

We have derived schedulability analysis for the different alternatives and com-

pared their performance by means of experimental evaluations. Finally, we

have formulated the integration phase in the form of a nonlinear integer pro-

gramming problem whose techniques can be used to minimize the total number

of processors required to guarantee the schedulability of all components.
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My contribution I was the main driver in writing the paper and I was also

responsible for experimental evaluation of the protocol.

6.5 Paper E

Farhang Nemati and Thomas Nolte. Resource Hold Times under Multipro-

cessor Static-Priority Global Scheduling. In 17th IEEE International Con-

ference on Embedded and Real-Time Computing Systems and Applications

(RTCSA’11), pages 197-206, August, 2011.

Summary Co-executing independently-developed real-time applications on

a shared multiprocessor system, where each application executes on a dedi-

cated subset of processors, requires to overcome the problem of handling mu-

tually exclusive shared resources among those applications. To handle resource

sharing, it is important to determine the Resource Hold Time (RHT), i.e., the

maximum duration of time that an application locks a shared resource.

In this paper, we study resource hold times under multiprocessor static-

priority global scheduling. We present how to compute RHT’s for each re-

source in an application. We also show how to decrease the RHT’s without

compromising the schedulability of the application. We show that decreasing

all RHT’s for all shared resources is a multiobjective optimization problem and

there can exist multiple Pareto-optimal solutions.

My contribution I was the main driver in writing the paper.
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Abstract

In this paper we propose a blocking-aware partitioning algorithm which allo-

cates a task set on a multiprocessor (multi-core) platform in a way that the

overall amount of blocking times of tasks are decreased. The algorithm re-

duces the total utilization which, in turn, has the potential to decrease the total

number of required processors (cores). In this paper we evaluate our algorithm

and compare it with an existing similar algorithm. The comparison criteria

includes both number of schedulable systems as well as processor reduction

performance.
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7.1 Introduction

Two main approaches for scheduling real-time systems on multiprocessors ex-

ist; global and partitioned scheduling [1, 2, 3, 4]. Under global scheduling, e.g.,

Global Earliest Deadline First (G-EDF), tasks are scheduled by a single sched-

uler and each task can be executed on any processor. A single global queue

is used for storing jobs. A job can be preempted on a processor and resumed

on another processor, i.e., migration of tasks among processors is permitted.

Under a partitioned scheduling, tasks are statically assigned to processors and

tasks within each processor are scheduled by a uniprocessor scheduling proto-

col, e.g., Rate Monotonic (RM) and EDF. Each processor is associated with a

separate ready queue for scheduling task jobs.

Partitioned scheduling protocols have been used more often and are sup-

ported (with fixed priority scheduling) widely by commercial real-time op-

erating systems [5], inherent in their simplicity, efficiency and predictability.

Besides, the well studied uniprocessor scheduling and synchronization meth-

ods can be reused for multiprocessors with fewer changes (or no changes).

However, partitioning (allocating tasks to processors) is known to be a bin-

packing problem which is a NP-hard problem in the strong sense; hence find-

ing an optimal solution in polynomial time is not realistic in the general case.

Thus, to take advantage of the performance offered by multi-cores, schedul-

ing protocols should be coordinated with appropriate partitioning algorithms.

Heuristic approaches and sufficient feasibility tests for bin-packing algorithms

have been developed to find a near-optimal partitioning [1, 3]. However, the

scheduling protocols and existing partitioning algorithms for multiprocessors

(multi-cores) mostly assume independent tasks while in real applications, tasks

often share resources.

We have developed a heuristic partitioning algorithm [6], under which our

system assumptions include presence of mutually exclusive shared resources.

The heuristic partitions a system (task set) on an identical shared memory

single-chip multiprocessor platform. The objective of the algorithm is to de-

crease blocking overheads by assigning tasks to appropriate processors (parti-

tions). This consequently increases the schedulability of the system and may

reduce the number of processors. Our heuristic identifies task constraints, e.g.,

dependencies between tasks, timing attributes, and resource sharing, and ex-

tends the best-fit decreasing (BFD) bin-packing algorithm with blocking time

parameters. In practice, industrial systems mostly use Fixed Priority Schedul-

ing (FPS) protocols. The Multiprocessor Priority Ceiling Protocol (MPCP)

which was proposed by Rajkumar in [7], for many years, has been a stan-
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dard multiprocessor synchronization protocol under fixed priority partitioned

scheduling. Thus, both our algorithm and an existing similar algorithm pro-

posed in [5] assume that MPCP is used for lock-based synchronization. We

have investigated MPCP in more details in [6]. Our algorith, however, can be

easily extended to other synchronization protocols under partitioned schedul-

ing policies. The algorithm proposed in [5] is named the Synchronization-

Aware Partitioning Algorithm (SPA), and our algorithm is named the Blocking-

Aware Partitioning Algorithm (BPA). From now on we refer them as SPA and

BPA respectively.

7.1.1 Contributions

The contributions of this paper are threefold:

(1) We propose a blocking-aware heuristic algorithm to allocate tasks onto the

processors of a single chip multiprocessor (multi-core) platform. The algo-

rithm extends a bin-packing algorithm with synchronization parameters.

(2) We implement our algorithm together with the best known existing sim-

ilar heuristic [5]. The implementation is modular in which any new parti-

tioned scheduling and synchronization protocol as well as any new partitioning

heuristic can easily be inserted.

(3) We evaluate our algorithm together with the existing heuristic and compare

the two approaches to each other as well as to an blocking-agnostic bin-packing

partitioning algorithm, used as reference. The blocking-agnostic algorithm, in

the context of this paper, refers to a bin-packing algorithm that does not con-

sider blocking parameters to increase the performance of partitioning, although

blocking times are included in the schedulability test.

The rest of the paper is as follows: we present the task and platform model

in Section 7.2. We explain the existing algorithm (SPA) and present our parti-

tioning algorithms (BPA) in Section 7.3. In Section 7.4 the experimental results

of both algorithms are presented and the results are compared to each other as

well as to the blocking-agnostic algorithm.

7.1.2 Related Work

A significant amount of work has been done in the domain of task allocation

on multiprocessors and distributed systems. The emerging of multi-core archi-

tectures has increased the interest in the multiprocessor methods. However, in

this paper we present the most related works to our approach.
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Tindell et al. [8] describe a method called simulated annealing for parti-

tioning a task set on a distributed system. The simulated annealing technique

is not a heuristic solution but a global optimization method which is used to

find a near-optimal solution. The important factor in simulated annealing is

that it includes jumps to new solutions to be able to get a better one. The sim-

ulated annealing techniques do not include heuristics and it is usually difficult

to find a good or even any feasible partitioning [9].

The Slack Method presented in [9] is a partitioning heuristic in which the

first step is to divide the tasks into sets of communicating tasks (precedence

constraint). The size of each set then is reduced based on the concept of task

slack which is the delay a task can tolerate without missing its deadline. The

second step is to map the sets of tasks onto the processors in a way to reduce

the communication among processors.

A study of bin-packing algorithms for designing distributed real-time sys-

tems is presented in [10]. The method partitions software into modules to be

allocated on hardware nodes. In their approach they use two graphs; a graph

which models software modules and a graph that represents the hardware ar-

chitecture. The authors extend the bin-packing algorithm with heuristics to

minimize the number of bins (processors) needed and the bandwidth required

for the communication between nodes. However, their partitioning method

assumes independent tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm

(first-fit decreasing (FFD) algorithm) in [11] for a set of sporadic tasks on mul-

tiprocessors. The tasks are indexed in non-decreasing order based on their

relative deadlines and the algorithm assigns the tasks to the processors in first-

fit order. The algorithm, however, assumes independent tasks. On the other

hand their algorithm has been developed under the EDF scheduling protocol

while most existing real-time systems use fixed priority scheduling policies.

The focus of our proposed heuristic, in this paper, is fixed priority scheduling

protocols, although it can easily be extended to other policies.

Of great relevance to our work presented in this paper is the work presented

by Lakshmanan et al. in [5]. In the paper they investigate and analyze two al-

ternatives of execution control policies (suspend-based and spin-based remote

blocking) under MPCP. They have developed a blocking-aware task allocation

algorithm (an extension to BFD) and evaluated it under both execution control

policies.

In their partitioning algorithm, the tasks that directly or indirectly share re-

sources are put into what they call bundles (in this paper we call them macro-

tasks) and each bundle is tried to be allocated onto a processor. The bundles
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that cannot fit into any existing processors are ordered by their cost, which

is the blocking overhead that they introduce into the system. Then the bun-

dle with minimum cost is broken and the algorithm is run from the beginning.

However, their algorithm does not consider blocking parameters when it allo-

cates the current task to a processor, but only its size (utilization). Further-

more, no relationship (e.g., as a cost based on blocking parameters) among in-

dividual tasks within a bundle is considered which could help to allocate tasks

from a broken bundle to appropriate processors to decrease the blocking times.

However, their experimental results show that a blocking-aware bin-packing

algorithm for suspend-based execution control policy does not have signifi-

cant benefits compared to a blocking-agnostic bin-packing algorithm. Firstly,

for the comparison, they have only focused on the processor reduction issue;

they suppose that the algorithm is better if it reduces the number of proces-

sors. They have not considered the worst case as it could be the case that an

algorithm fails to schedule a task set. In our experimental evaluation, besides

processor reduction, we have considered this issue as well. If an algorithm can

schedule some task sets while others fail, we consider it as a benefit. Secondly,

in their experiments they have not investigated the effect of some parameters

such as the different number of resources, variation in the number and length

of critical sections of tasks. By considering these parameters, our experimental

results show that in most cases our blocking-aware algorithm has significantly

better results than blocking-agnostic algorithms. However, according to our

experimental results, their heuristic performs slightly better than the blocking-

agnostic algorithm, and our algorithm performs significantly better than both.

In the context of multiprocessor synchronization, Rajkumar et al. for the

first time proposed a synchronization protocol in [12] which later [7] was

called Distributed Priority Ceiling Protocol (DPCP). DPCP extends PCP to

distributed systems and it can be used with shared memory multiprocessors.

However, a major motivation of increasing interest in the multiprocessor meth-

ods is the emerging of multi-core platforms for which DPCP is not an appropri-

ate synchronization protocol. Rajkumar in [7] presented MPCP, which extends

PCP to multiprocessors hence allowing for synchronization of tasks sharing

mutually exclusive resources using partitioned FPS. Considering that MPCP

has been a standard multiprocessor synchronization protocol, our partitioning

algorithm attempts to decrease blocking times under MPCP and consequently

decrease worst case response times which in turn may reduce the number of

needed processors. Gai et al. [13, 14] present MSRP (Multiprocessor SRP),

which is a P-EDF (Partitioned EDF) based synchronization protocol for multi-

processors. The shared resources are classified as either (i) local resources that
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are shared among tasks assigned to the same processor, or (ii) global resources

that are shared by tasks assigned to different processors. In MSRP, tasks syn-

chronize local resources using SRP [2], and access to global resources is guar-

anteed a bounded blocking time. Lopez et al. [15] present an implementation

of SRP under P-EDF. Devi et al. [16] present a synchronization technique un-

der G-EDF. The work is restricted to synchronization of non-nested accesses

to short and simple objects, e.g., stacks, linked lists, and queues. In addition,

the main focus of the method is soft real-time systems.

Block et al. [17] present Flexible Multiprocessor Locking Protocol (FMLP),

which is the first synchronization protocol for multiprocessors that can be ap-

plied to both partitioned and global scheduling algorithms, i.e., P-EDF and

G-EDF. An implementation of FMLP has been described in [18]. However,

although in a longer version of [17] 1, the blocking times have been calculated,

but to our knowledge there is no concrete schedulability test for FMLP un-

der global scheduling protocols. However, Brandenburg and Anderson in [19]

have extended partitioned FMLP to fixed priority scheduling policy and de-

rived a schedulability test for it. In a later work [20], the same authors have

compared DPCP, MPCP and FMLP. However, as the partitioned scheduling

approaches suffer from bin-packing problem, we believe to achieve a better

and fair comparison of the approaches, they should be coordinated with task

allocation algorithms.

Recently, Easwaran and Andersson have proposed a synchronization pro-

tocol [21] under global fixed priority scheduling protocol. In this paper, for

the first time, the authors have derived schedulability analysis of the priority

inheritance protocol under global scheduling algorithms.

7.2 Task and Platform Model

In this paper we assume a task set that consists of n sporadic tasks,

τi(Ti, Ci, ρi, {ci,p,q}) where Ti denotes the minimum inter-arrival time be-

tween two successive jobs of task τi with worst-case execution time Ci and

ρi as its priority. The tasks share a set of resources, R, which are protected us-

ing semaphores. The set of critical sections, in which task τi requests resources

in R is denoted by {ci,p,q}, where ci,p,q indicates the maximum execution time

of the pth critical section of task τi in which the task locks resource Rq ∈ R.

Critical sections of tasks should be sequential or properly nested. The deadline

1available at http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf
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of each job is equal to Ti. A job of task τi, is specified by Ji. The utilization

factor of task τi is denoted by ui where ui = Ci/Ti.

We also assume that the multiprocessor (multi-core) platform is composed

of identical, unit-capacity processors (cores) with shared memory. The task

set is partitioned into partitions {P1, . . . , Pm}, and each partition is allocated

onto one processor (core), thusm represent the minimum number of processors

needed.

7.3 The Blocking Aware Partitioning Algorithms

7.3.1 Blocking-Aware Partitioning Algorithm (BPA)

In this section we propose a partitioning algorithm that groups tasks into par-

titions so that each partition can be allocated and scheduled on one processor.

The objective of the algorithm is to decrease the overall blocking times of tasks.

This generally increases the schedulability of a task set which may reduce the

number of required partitions (processors).

Considering the blocking factors of tasks under MPCP, tasks with more and

longer global critical sections lead to more blocking times. This is also shown

by experiments presented in [14]. Our goal is to (i) decrease the number of

global critical sections by assigning the tasks sharing resources to the same

partition as far as possible, (ii) decrease the ratio and time of holding global

resources by assigning the tasks that request the resources more often and hold

them longer to the same partition as long as possible.

In our previous work [22] we have presented a partitioning framework in

which tasks are grouped together based on task preferences and constraints.

The framework partitions tasks based on a cost function which is derived from

task preferences and constraints. The framework attempts to allocate the tasks

that directly or indirectly share resources onto the same processor. Tasks that

directly or indirectly share resources are called macrotasks, e.g., if tasks τi and

τj share resource Rp and tasks τj and τk share resource Rq , all three tasks be-

long to the same macrotask. However, there are cases that a macrotask cannot

fit in one processor (i.e., assuming that the tasks in the macrotask are the only

tasks allocated on a processor, still it can not be scheduled by the processor).

In this case tasks belonging to the same macrotask can be allocated to different

partitions (processors).

The goal of the framework presented in [22] is to put the tasks into ap-

propriate partitions so that the costs are minimized. The framework may have



7.3 The Blocking Aware Partitioning Algorithms 73

different partitioning strategies, e.g., increasing cache hits, decreasing block-

ing times, etc. The strategy of partitioning may differ, depending on the nature

of a system, and result in different partitions. The framework is a general parti-

tioning approach without deeply focusing on any specific strategy and thus we

have not presented any evaluation except one example. Obviously, for different

partitioning strategies (e.g., increasing cache hits) the guiding heuristics as well

as the implementation of the algorithm will be completely different. In current

work, however, we specifically focus on a partitioning strategy for decreasing

remote blocking overheads of tasks which leads to increasing the schedulabil-

ity of a task set and possibly will reduce the number of processors required for

scheduling the task set. We derive heuristics to specifically guide the partition-

ing algorithm to reduce the remote blocking times. We have also performed

detailed experimental evaluation according to different resource sharing pa-

rameters.

We have developed a blocking-aware algorithm that is an extension to the

BFD algorithm. In a blocking-agnostic BFD algorithm, bins (processors) are

ordered in non-increasing order of their utilization and tasks are ordered in non-

increasing order of their size (utilization). The algorithm attempts to allocate

the task from the top of the ordered task set onto the first processor that fits it

(i.e., the first processor on which the task can be allocated while all processors

are schedulable), beginning from the top of the ordered processor list. If none

of the processors can fit the task, a new processor is added to the processor

list. At each step the schedulability of all processors should be tested, because

allocating a task to a processor can increase the remote blocking time of tasks

previously allocated to other processors and may make the other processors

unschedulable. This means, it is possible that some of the previous processors

become unschedulable even if a task is allocated to a new processor, which

makes the algorithm fail.

The Algorithm: The algorithm performs partitioning of a task set in two

rounds and the result will be the output of the round with better partitioning

results. However, the algorithm performs a few common steps before starting

to perform the rounds. Each round allocates tasks to the processors (partitions)

in a different strategy. When a BFD algorithm allocates an object (task) to a

bin (processor), it usually puts the object in a bin that fits it better, and it does

not consider the unallocated objects that will be allocated after the current ob-

ject. The rationale behind the two rounds is that the heuristic tries to consider

both past and future by looking at tasks allocated in the past and those that

are not allocated yet. In the first round the algorithm considers the tasks that

are not allocated to any processor yet; and tries to take as many as possible of
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the best related tasks (based on remote blocking parameters) with the current

task. On the other hand, in the second round it considers the already allocated

tasks and tries to allocate the current task onto the processor that contains best

related tasks to the current task. In the second round, the algorithm performs

more like the usual bin packing algorithms (i.e., tries to find the best bin for the

current object), although it considers the remote blocking parameters while al-

locating a task to a processor. Any time the algorithm performs schedulability

test, for more precise schedulability analysis, it always performs response time

analysis [23].

The common steps of the algorithm before the two rounds are performed are

as follow:

1. Each task is assigned a weight. The weight of each task, besides its utiliza-

tion, should depend on parameters that lead to potential remote blocking time

caused by other tasks:

wi = ui + ⌈(
∑

ρi<ρk

NCi,kβi,k⌈
Ti

Tk

⌉+NCi max
ρi≥ρk

βi,k)/Ti⌉ (7.1)

where, NCi,k is the number of critical sections of task τk in which it shares a

resource with τi, among these critical sections βi,k is the longest one, and NCi

is the total number of critical sections of τi.
Considering the remote blocking terms of MPCP [6], the rationale behind

the definition of weight is that the tasks that can be punished more by remote

blocking become heavier. Thus, they can be allocated earlier and attract as

many as possible of the tasks with which they share resources.

2. Macrotasks are generated, i.e., the tasks that directly or indirectly share re-

sources are put into the same macrotask. A macrotask has two alternatives; it

can either be broken or unbroken. If a macrotask cannot fit in one processor,

(i.e., it is not possible to schedule the macrotask on a single processor even if

there is no any other tasks), it is set as broken, otherwise it is denoted as unbro-

ken. Please observe that the test of fitting a macrotask in a single processor (to

set it as broken or unbroken) is only done at the beginning. Later on at any time

the algorithm tests fitting an unbroken macrotask in a processor, the macrotask

may co-exist with other tasks and/or macrotasks on the same processor.

If a macrotask is unbroken, the partitioning algorithm always allocates all

tasks in the macrotask to the same partition (processor). This means that all

tasks in the macrotask will share resources locally relieving tasks from remote

blocking. However, tasks within a broken macrotask will be distributed into

more than one partition. Similar to tasks, a weight is assigned to each unbro-
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ken macrotask, which equals to the sum of the utilizations (not weights) of its

tasks. This is because all the tasks within an unbroken macrotask will always

be allocated on the same processor and the tasks will not suffer from any re-

mote blocking, hence there is no need to consider blocking parameters in the

weight of an unbroken macrotask.

3. The unbroken macrotasks together with the tasks that do not belong to any

unbroken macrotasks are ordered in a single list in non-increasing order of their

weights. We denote this list the mixed list.

The strategy of allocation of tasks in both rounds depends on attraction

between tasks. The attraction function of task τk to a task τi is defined based

on the potential remote blocking overhead that task τk can introduce to task τi
if they are allocated onto different processors. We represent the attraction of

task τk to task τi as vi,k which is defined as follows:

vi,k =

{

NCi,kβi,k⌈
Ti

Tk
⌉ ρi < ρk;

NCiβi,k ρi ≥ ρk
(7.2)

The rationale of the attraction function is to allocate the tasks that may re-

motely block a task, τi, to the same processor as of τi (in order of the amount

of remote blocking overhead) as far as possible. Please notice, the definition

of weight (Equation 7.1) and attraction function (Equation 7.2) are heuristics

that guide the algorithm under MPCP. However, these functions may differ un-

der other synchronization protocols, e.g., MSRP and partitioned FMLP, which

have different remote blocking terms.

There can be the case in which all tasks sharing resources end up in one

macrotask. In this case if the macrotask can fit in one processor, there is no

need to use MPCP or any other multiprocessor synchronization protocol, be-

cause there will not be any global resources in the system. On the other hand,

if the macrotask does not fit in one processor (i.e., should be broken) the al-

gorithm attempts, by using weight (Equation 7.1) and attraction (Equation 7.2)

functions to put attracted tasks on the same processor as far as possible which

leads to reducing the remote blocking overhead.

Now we present the continuation of the algorithm in two rounds:

First Round: After the common steps the following steps are repeated within

the first round until all tasks are allocated to processors (partitions):

1. All processors are ordered in their non-increasing order of utilization.

2. The object at the top of the mixed list is picked. (i) If the object is a task, τi,
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and it does not belong to a broken macrotask (τi does not share any resource) τi
will be allocated onto the first processor that fits it (all tasks on the processor are

still schedulable), beginning from the top of the ordered processor list (similar

to blocking-agnostic BFD). If none of the processors can fit τi a new processor

is added to the list and τi is allocated onto it. (ii) If the object is an unbroken

macrotask, all its tasks will be allocated onto the first processor that fits all of

them. If none of the processors can fit the macrotask, it (all its tasks) will be

allocated onto a new processor.(iii) If the object is a task, τi, that belongs to a

broken macrotask, the algorithm orders the tasks (those that are not allocated

yet) within the macrotask in non-increasing order of attraction to τi based on

equation 7.2. We call this list the attraction list of τi. Task τi itself will be on

the top of its attraction list. The best processor for allocation is selected, which

is the processor that fits the most tasks from the attraction list, beginning from

the top of the list. As many as possible of the tasks from the attraction list

are then allocated to the processor. If none of the existing processors can fit

any of the tasks, a new processor is added and as many tasks as possible from

the attraction list are allocated to the processor. However, if the new processor

cannot fit any task from the attraction list, i.e., at least one of the processors

become unschedulable, the first round fails and the algorithm moves to the

second round and restarts.

Second Round: The following steps are repeated until all tasks are allocated

to processors:

1. The object at the top of the mixed list is picked. (i) If the object is a task

and it does not belong to a broken macrotask, this step is performed the same

way as in the first round. (ii) If the object is an unbroken macrotask, in this

the algorithm performs the same way as in the first round. (iii) If the object

is a task, τi, that belongs to a broken macrotask, the processors are put in a

ordered list, denoted as Plist. However the processors are put in Plist in two

steps. First, the processors that include some tasks from τi’s macrotask are

added to Plist in non-increasing order of processors’ attraction to τi (according

to equation 7.2), i.e., the processor which has the greatest sum of attractions

of its tasks to the picked task (τi) is the most attracted processor to τi and is

added to Plist first. Second, the processors that do not contain any task from

τi’s macrotask are added to Plist in non-increasing order of their utilization.

After the two steps, the processors which contain at least one task from τi’s
macrotask will be located at the top of the ordered list, Plist, followed by the

processors not containing any task from τi’s macro task. The rationale behind

this is that the algorithm first attempts to allocate τi on a processor containing

some tasks from τi’s macro task and if not succeeded then it tries other pro-
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cessors. The picked task (τi) will be allocated onto the first processor from the

processor list (Plist) that will fit τi. Task τi will be allocated to a new processor

if none of the existing ones can fit it. And the second round of the algorithm

fails if allocating the task to the new processor makes some of the processors

unschedulable.

If both rounds fail to schedule a task set the algorithm fails. If one of the

rounds fails the result will be the output of the other one. If both rounds succeed

to schedule the task set, the one with fewer partitions (processors) will be the

output of the algorithm.

7.3.2 Synchronization-Aware Partitioning Algorithm (SPA)

We have implemented the best known existing partitioning algorithm proposed

in [5] in our experimental evaluation framework. The implementation of the

algorithm required details of the algorithm which were not presented in [5],

hence, in this section we present the algorithm in more details.

1. First, the macrotasks are generated. In [5], macrotasks are denoted as bun-

dles. A number of processors (enough processors that fit the total utilization of

the task set) are added.

2. The macrotasks together with other tasks are ordered in a list in non-

increasing order of their utilization. The algorithm attempts to allocate each

macrotask (i.e., allocate all tasks within the macrotask) onto a processor. With-

out adding any new processor, all macrotasks and tasks that fit are allocated

onto the processors. The macrotasks that can not fit are put aside. After any al-

location, the processors are ordered in their non-increasing order of utilization.

3. The remaining macrotasks are ordered in the order of the cost of breaking

them. The cost of breaking a macrotask is defined based on the estimated cost

(blocking overhead) introduced into the tasks by transforming a local resource

into a global resource (i.e., the tasks sharing the resource are allocated to dif-

ferent processors). The estimated cost of transforming a local resource Rq into

a global resource is calculated as follows:

Cost(Rq) = Global Overhead − Local Discount (7.3)

The Global Overhead is calculated as follows:

Global Overhead = max(|Csq |)/min
∀τi

{ρi} (7.4)
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where max(|Csq|) is the length of longest critical section accessing Rq.

The Local Discount is defined as follows:

Local Discount = max
∀τi accessing Rq

(max(|Csi,q|)/ρi) (7.5)

where max(|Csi,q|) is the length of longest critical section of τi accessing Rq .

The cost of breaking any macrotask, mTaskk, is calculated as the summa-

tion of blocking overhead caused by transforming its accessed resources into

global resources.

Cost(mTaskk) =
∑

∀Rq accessed by mTaskk

Cost(Rq) (7.6)

4. The macrotask with minimum breaking cost is picked and is broken in

two pieces such that the size of one piece is as close as the largest utilization

available among processors. This means, tasks within the selected macrotask

are ordered in decreasing order of their size (utilization) and the tasks from

the ordered list are added to the processor with the largest available utilization

as far as possible. In this way, the macrotask has been broken in two pieces;

(i) the one including the tasks allocated to the processor and (ii) the tasks that

could not fit in the processor. If the fitting is not possible a new processor is

added and the whole algorithm is repeated again.

Firstly, as one can see, the SPA algorithm does not consider blocking pa-

rameters when it allocates the current task to a processor, but only its utiliza-

tion, i.e. the tasks are ordered in order of their utilization only. However,

our algorithm assigns a weight (Equation 7.1) which besides the utilization

includes the blocking terms as well. Secondly, no relationship (e.g., as a cost

based on blocking parameters) among individual tasks within a bundle (macro-

task) is considered which could help to allocate tasks from a broken bundle to

appropriate processors to decreases the blocking times. In our heuristic, we

have defined an attraction function (Equation 7.2), which attempts to allocate

the most attracted tasks from the current task’s broken macrotask, on a pro-

cessor. As the experimental evaluation in Section 7.4 shows, considering these

issues can improve the partitioning significantly.
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7.4 Experimental Evaluation and Comparison of

Algorithms

In this section we present our experimental results of our blocking-aware bin-

packing algorithm (BPA) together with the blocking-aware algorithm recently

proposed in [5] (SPA), as well as the reference blocking-agnostic algorithm.

For a number of systems (task sets), we have compared the performance of the

algorithms in two different aspects; (1) Given a number of systems, the total

number of systems that each of the algorithms can schedule, (2) The processor

reduction aspect of algorithms.
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Figure 7.1: Total number of task sets each algorithm schedules.
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7.4.1 Experiment Setup

We generated systems (task sets) for different workloads; we denote workload

as a defined number of fully utilized processors, e.g., the workload equal to

3 fully utilized processors means the summation of utilizations of all tasks in

the system equals to 3. Please notice that the definition of the workload as a

number of processors is only to show the total utilization of the task set and it

is not the same as the number of required processors (which may be more than

the workload) to schedule the task set. Given a workload, the full capacity of

each processor (utilization of 1) is randomly divided among a defined number

of tasks. Usually for generating systems, utilization and periods are randomly

assigned to tasks, and worst case execution times of tasks are calculated based

on them. However, in our system generation, the worst case execution times

(WCET) of tasks are randomly assigned and the period of each task is calcu-

lated based on its utilization and WCET. The reason is that we had to restrict

that the WCET of a task not to be less than the total length of its critical sec-

tions. Since we have limited the maximum number of critical sections to 6 and

the maximum length of any critical section to 6 time units, hence the WCET

of each task is greater than 36 (6× 6) time units. The WCET of each task was

randomly chosen between 36 and 150 time units. The system generation was

based on different settings; the input parameters for settings are as follows:

1. Workload (3, 4, 6, or 8 fully utilized processors).

2. The number of tasks per processor (3, 6 or 9 tasks per processor), e.g., 3

tasks per processor means that the utilization of one processor (utilization = 1)

is randomly distributed among 3 tasks.

3. The number of resources (2, 4, 6, or 8). For each alternative, the resource

accessed by each critical section is randomly chosen among the resources, e.g,

given the alternative with 2 resources (R1 and R2), the resource accessed by

any critical section is randomly chosen from {R1, R2}.

4. The range of the number of critical sections per task (1 to 2, 3 to 4 or 5 to

6 critical sections per task). For an alternative (e.g., 1 to 2 critical sections per

task), the number of critical sections of any task τi is randomly chosen from

{1, 2}.

5. The range of length of critical sections (1 to 2, 3 to 4, or 5 to 6). The length

of each critical section is chosen the same way as the number of critical sec-

tions per task.

For each setting, we generated 100.000 systems, and combining the param-
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eters of settings, i.e., (workloads)×(tasks per processor)×(resources)×(critical

sections per task)×(critical section lengths)= 4 × 3 × 4 × 3 × 3 = 432 dif-

ferent settings, total number of systems generated for the experiment were

43.200.000.

With the generated systems we were able to evaluate the partitioning al-

gorithms with respect to different factors, i.e., various workloads (number of

fully utilized processors), number of tasks per processor, number of shared

resources, number of critical sections per task, and length of critical sections.

7.4.2 Results

In this section we present the evaluation results of our proposed blocking-

aware algorithm (BPA), an existing blocking-aware algorithm [5] (SPA) and

the blocking-agnostic algorithm.

The first aspect of comparison of the results from the algorithms is, given

a number of systems, the total number of systems each algorithm successfully

schedules (Figure 7.1). Figures 7.1(a), 7.1(b) and 7.1(c) represent the results

for 3, 6 and 9 tasks per processor respectively. The vertical axis shows the to-

tal number of systems that the algorithms could schedule successfully. The

horizontal axis shows three factors in three different lines; the bottom line

shows the number of shared resources within systems (Res. Num.), the sec-

ond line shows the number of critical sections per task (Cs. Num.), and the top

line represents the length of critical sections within each task (Cs. Len.), e.g.,

Res. Num.=4, Cs. Num.=1-2, and Cs. Len.=1-2 represents the systems that

share 4 resources, the number of critical sections per each task are between 1

and 2, and the length of these critical sections are between 1 and 2 time units.

For some settings the number of schedulable systems were too few to be shown

on the graphs, thus we omitted these settings from the graphs, e.g., The results

for the combination of the number of critical sections = 3-4 and the length of

critical sections = 5-6 are not shown in Figure 7.1.

As depicted in Figure 7.1, considering the total number of systems that each

algorithm succeeds to schedule, our blocking-aware algorithm (BPA) performs

better (can schedule more systems) compared to the SPA and the blocking-

agnostic algorithm. However the SPA performs better than the blocking-agnost-

ic algorithm. As shown in the figure, by increasing the number of resources,

the number of successfully scheduled systems in all algorithms is increased.

The reason for this behavior is that with fewer resources, more tasks share

the same resource introducing more blocking overheads which leads to fewer

schedulable systems. However, it is illustrated that the blocking-aware algo-
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rithms perform better as the number of resources is increased. It is also shown

that increasing the number and/or the length of critical sections generally re-

duces the number of schedulable systems significantly. The reason is that more

and longer critical sections introduce greater blocking overhead into the tasks

making fewer systems schedulable.

As the number of tasks per processor is increased from 3 (Figures 7.1(a))

to 6 (Figures 7.1(b)) and to 9 (Figures 7.1(c)), the BPA performs significantly

better (i.e., schedules significantly more systems) than the SPA and blocking-

agnostic bin-packing. However, as one can see, the SPA does not perform sig-

nificantly better than the blocking-agnostic algorithm as the number of tasks

per processor are increased. Increasing the number of tasks per processor lead

to smaller tasks (tasks with smaller ui). The BPA allocates tasks from a broken

macrotask based on Equations 7.1 and 7.2, which are functions of the blocking

parameters (the number and length of critical sections) as well as the size of

the tasks. On the other hand, with the smaller size of tasks, the blocking pa-

rameters have a bigger role in these functions, hence more dependent tasks are

allocated to the same processor. This leads to less blocking overhead and in-

creased schedulability, hence more systems are scheduled by BPA as the tasks

per processor are increased. On the other hand, in SPA, allocation of tasks

from a broken macrotask is only based on their utilization, and this does not

necessarily allocates highly dependent tasks to the same processor.

As the workload (the number of fully utilized processors) is increased, al-

though the BPA still performs better than the SPA and the blocking-agnostic

algorithm, generally the number of schedulable systems by all algorithms is

significantly reduced (Figure 7.1(d)). The reason for this behavior is that the

number of tasks within systems are relatively many (36 tasks per each system

in Figure 7.1(d)) and the workload is high (6 fully utilized processors), and

all the tasks within systems share resources. On the other hand, the MPCP is

pessimistic. This introduces a lot of interdependencies among tasks and conse-

quently a huge amount of blocking overheads, making fewer systems schedu-

lable. In practice in big systems with many tasks, not all of the tasks share

resources, which leads to fewer interdependencies among tasks and less block-

ing times. However, we continued the experiment with higher workload in the

same way as the other experiments (that all tasks share resources) to be able to

compare the results with the previous results. We believe that realistic systems,

even with high workload and many tasks can benefit from our partitioning al-

gorithm to increase the performance.

The second aspect for comparison of performance of the algorithms is the

processor reduction aspect. To show this, for each algorithm, we ordered the
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Figure 7.2: Percentage of systems each algorithm schedules, ordered by re-

quired number of processors.
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total schedulable systems in order of the number of required processors. Fig-

ure 7.2 illustrates the results for the workload of 3 fully packed processors and

different number of tasks (3, 6 and 9) per processor. For each algorithm, the

schedulable systems by each number of processors are shown as percentage of

the total scheduled systems by that algorithm. As the results show, for 3 tasks

per processor all three algorithms perform almost the same (Figure 7.2(a)), i.e.,

each algorithm schedules around 80% of its schedulable systems by 4 proces-

sors, 15% to 18% by 5 processors and less than 3% by 6 processors, etc. The

reason is that the tasks are large (the utilization of a processor is distributed

among 3 task), thus the blocking-aware algorithms do not have much possibil-

ity to increase the performance. However as the number of tasks per processor

is increased (Figures 7.2(b) and 7.2(c) for 6 and 9 tasks per processor respec-

tively), the blocking-aware algorithms, generally, perform better in processor

reduction aspect. Especially the BPA, performs significantly better than the

the SPA and the blocking-agnostic algorithm. This means that BPA reduces

the required number of processors compared to SPA and the blocking-agnostic

algorithm, e.g., as shown in Figure 7.2(c), 68% and 28% of the systems sched-

uled by BPA require 4 and 5 processors respectively, while 54% and 37% of

systems scheduled by SPA can be scheduled by 4 and 5 processors respectively.

This means a bigger part (68%) of systems scheduled by BPA require only 4
processors while with SPA this number is smaller (54%).

7.5 Conclusion

In this paper we have proposed a heuristic blocking-aware algorithm, for iden-

tical unit-capacity multiprocessor systems, which extends a bin-packing algo-

rithm with synchronization parameters. The algorithm allocates a task set onto

the processors of a single-chip multiprocessor (multi-core) with shared mem-

ory. The objective of the algorithm is to decrease blocking times of tasks by

means of allocating the tasks that directly or indirectly share resources onto

appropriate processors. This generally increases schedulability of a task set

and may lead to fewer required processors compared to blocking-agnostic bin-

packing algorithms. We have also presented and implemented an existing sim-

ilar blocking-aware algorithm originally proposed in [5].

Since in practice most systems use fixed priority scheduling protocols, we

have developed our algorithm under MPCP, a standard synchronization proto-

col for multiprocessors (multi-cores) which works under fixed priority schedul-

ing. Another reason to implement our algorithm under MPCP was to be able to
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compare our approach to the existing similar approach [5] which has also been

developed under MPCP. However, our approach is not limited to MPCP and it

can easily be extended to other synchronization protocols such as MSRP and

partitioned FMLP.

Our experimental results confirm that our algorithm mostly performs sig-

nificantly better than the blocking-agnostic as well as the existing heuristic with

respect to the number of schedulable systems and the number of required pro-

cessors. However, given a NP-hard problem, a bin-packing algorithm may not

achieve the optimal solution, i.e, there can exist systems that only one of the

algorithms can schedule. Thus using a combination of heuristics improves the

results with respect to the total number of schedulable systems and processor

reduction.

A future work will be extending our partitioning algorithm to other syn-

chronization protocols, e.g., MSRP and FMLP for partitioned scheduling. A

very interesting future work is to apply our approach to different synchroniza-

tion protocols and investigate the effect of bin-packing on those protocols and

compare the improvement in their performance. Another interesting future

work is to apply our approach to real systems and study the performance gained

by the algorithm on these systems. In the domain of multiprocessor schedul-

ing and synchronization our future work also includes investigating global and

hierarchical scheduling protocols and appropriate synchronization protocols.
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Abstract

In this paper we propose a synchronization protocol for resource sharing among

independently-developed real-time systems on multi-core platforms. The sys-

tems may use different scheduling policies and they may have their own local

priority settings. Each system is allocated on a dedicated processor (core).

In the proposed synchronization protocol, each system is abstracted by

an interface which abstracts the information needed for supporting global re-

sources. The protocol facilitates the composability of various real-time systems

with different scheduling and priority settings on a multi-core platform.

We have performed experimental evaluations and compared the perfor-

mance of our proposed protocol (MSOS) against the two existing synchroniza-

tion protocols MPCP and FMLP. The results show that the new synchronization

protocol enables composability without any significant loss of performance. In

fact, in most cases the new protocol performs better than at least one of the

other two synchronization protocols. Hence, we believe that the proposed pro-

tocol is a viable solution for synchronization among independently-developed

real-time systems executing on a multi-core platform.



8.1 Introduction 93

8.1 Introduction

The availability of multi-core platforms has attracted a lot of attention in mul-

tiprocessor embedded software analysis and runtime policies, protocols and

techniques. As the multi-core platforms are to be the defacto processors, the

industry must cope with a potential migration towards multi-core platforms.

An important issue for industry when it comes to migration to multi-cores is

the existing systems. When migrating to multi-cores it should be possible that

several of these systems co-execute on a shared multi-core platform. The (of-

ten independently-developed) systems may have been developed with different

techniques, e.g., several real-time systems that will co-execute on a multi-core

may have different scheduling policies. However, when the systems co-execute

on the same multi-core platform they may share resources that require mutual

exclusive access. Two challenges to overcome when migrating existing sys-

tems to multi-cores are how to migrate the independently-developed systems

with minor changes, and how to abstract systems sufficiently, such that the de-

veloper of one system does not need to be aware of particular techniques used

in other systems.

On the other hand, looking at industrial systems, to speed up their develop-

ment, it is not uncommon that large and complex systems are divided into sev-

eral semi-independent subsystems each of which is developed independently.

The subsystems which may share resources will eventually be integrated and

coexist on the same platform. This issue has got attention and has been studied

in the uniprocessor domain [1, 2, 3]. However, new techniques are sought for

scheduling semi-independent subsystems on multi-cores.

Looking at current state-of-the-art, two main approaches for scheduling

real-time systems on multiprocessors (multi-cores) exist; global and partitioned

scheduling [4, 5, 6]. Under global scheduling, e.g., Global Earliest Deadline

First (G-EDF), tasks are scheduled by a single scheduler and each task can be

executed on any processor, i.e., migration of tasks among processors is permit-

ted. Under partitioned scheduling, tasks are statically assigned to processors

and tasks within each processor are scheduled by a uniprocessor scheduling

protocol, e.g., Rate Monotonic (RM) or Earliest Deadline First (EDF). Parti-

tioned scheduling policies have been used more often in industry and are they

supported widely by commercial real-time operating systems [7], inherent in

their simplicity, efficiency and predictability.

The work presented in this paper is inspired by our initial ideas presented

in [8], where we focus on the partitioned scheduling policy and synchronization

protocols. Allocation (partitioning) of independently-developed systems on a
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multi-core architecture may have the following alternatives: (i) one processor

includes only one system, (ii) one processor may contain several systems, (iii)

a system may be distributed over more than one processor.

In this paper, we focus on the first alternative in which each a system is

allocated on a dedicated processor (core). For the second alternative, the well

studied techniques for integrating independently-developed systems on unipro-

cessors can be used, e.g., the methods presented in [9] and [1]. These tech-

niques usually abstract the timing requirements of the internal tasks of each

system and using this each system is abstracted as one (artificial) task, hence

from outside of the containing processor there will be one system (task set) on

the processor. Thus by reusing uniprocessor techniques in this area the second

alternative becomes similar to the first alternative. However, extension to the

third alternative remains as a future work.

8.1.1 Contributions

The contributions of this paper are as follows:

• We propose a synchronization protocol for resource sharing among

independently-developed real-time systems (open real-time systems) on

a multi-core platform, each of which is allocated on a dedicated core.

We have named the protocol as Multiprocessors Synchronization proto-

col for real-time Open Systems (MSOS).

• We derive an interface-based schedulability condition for MSOS. The

interface abstracts the global resource sharing of a system in one proces-

sor through a set of requirements that should be satisfied to guarantee

the schedulability of the system in the processor. A global resource is

a resource that is shared across processors. A requirement is a function

of resource maximum wait times of global resources (i.e., the worst-

case time that a processor may wait for a global resource to be avail-

able) which should not exceed a certain value. Thus, the requirements

in the interface only depend on the maximum wait times of global re-

sources. Hence we do not need any information from other processors,

e.g., scheduling protocol or priority setting policy on other processors,

in calculating the interface of a processor.

• We have evaluated the performance of MSOS by means of experimen-

tal evaluation. In the experiments we compared MSOS against MPCP

and FMLP. The obtained results show that the composability offered by
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MSOS does not introduce any significant loss of performance and in

most cases it even performs better than at least one of the two other pro-

tocols. Thus we believe MSOS can be an appropriate synchronization

protocol for handling resource sharing among independently-developed

systems on a multi-core platform.

8.1.2 Related Work

In the context of independently-developed real-time systems in a shared open

environment on uniprocessors, a considerable amount of work has been done.

A non-exhaustive list of works in this domain includes [10, 11, 12, 13, 14, 9,

15]. Hierarchical scheduling has been studied and developed as a solution for

these systems.

Hierarchical scheduling techniques have also been developed for multipro-

cessors (multi-cores) [16, 17]. However, the systems (called clusters in the

mentioned papers) are assumed to be independent and do not allow for sharing

of mutually exclusive resources.

In the context of the synchronization protocols, PCP (Priority Ceiling Pro-

tocol) [18] and SRP (Stack-based Resource allocation Protocol) [19] are two

of the best known methods for synchronization in uniprocessor systems.

For multiprocessor synchronization, Rajkumar et al. proposed a synchro-

nization protocol [20] which later was called Distributed Priority Ceiling Pro-

tocol (DPCP) [21]. DPCP extends PCP to distributed systems and it can be

used with shared memory multiprocessors. Rajkumar presented MPCP [21],

which extends PCP to multiprocessors hence allowing for synchronization of

tasks sharing mutually exclusive resources using partitioned FPS. Lakshmanan

et al. [7] investigated and analyzed two alternatives of execution control poli-

cies (suspend-based and spin-based remote blocking) under MPCP. However,

MPCP can be used for one single system whose tasks are distributed on dif-

ferent processors. Furthermore for schedulability analysis of each processor,

detailed information of tasks allocated on other processors (e.g., priority, the

number of global critical section, etc) may be required. Under MSOS the

schedulability test of a system on a processor is represented as requirements

in its interface which can be obtained without any information from other sys-

tems (even before these systems are developed) which will be allocated on

other processor.

Gai et al. [22, 23] presented MSRP (Multiprocessor SRP), which is a P-

EDF (Partitioned EDF) based synchronization protocol for multiprocessors

and is an extension of SRP to multiprocessors. Lopez et al. [24] presented
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an implementation of SRP under P-EDF. Devi et al. [25] presented a synchro-

nization technique under G-EDF. The work is restricted to synchronization of

non-nested accesses to short and simple objects, e.g., stacks, linked lists, and

queues. In addition, the main focus of the method is on soft real-time systems.

Block et al. [26] presented Flexible Multiprocessor Locking Protocol

(FMLP) which is the first synchronization protocol for multiprocessors that

can be applied to both partitioned and global scheduling algorithms, i.e., P-

EDF and G-EDF. An implementation of FMLP has been described in [27].

Brandenburg and Anderson in [28] have extended partitioned FMLP to the

fixed priority scheduling policy and derived a schedulability test for it. In a

later work [29], the same authors compared DPCP, MPCP and FMLP.

Easwaran and Andersson proposed a synchronization protocol [30] under

the global fixed priority scheduling protocol. In this paper, the authors have

derived schedulability analysis of the Priority Inheritance Protocol (PIP) under

global scheduling algorithms.

Recently, Brandenburg and Anderson [31] presented a new suspension-

based locking protocol, called O(m) Locking Protocol (OMLP), which has

variations for both global and partitioned scheduling. The OMLP (both vari-

ations) is asymptotically optimal, which means that the total blocking for any

task set is a constant factor of blocking that cannot be avoided for some task

sets (in the worst case). An asymptotically optimal locking protocol however

does not mean it can perform better than non-asymptotically optimal proto-

cols. On the other hand, OMLP is an suspension-oblivious protocol. Un-

der a suspension-oblivious locking protocol, the suspended jobs are assumed

to occupy processors and thus blocking is counted as demand. To test the

schedulability, the worst-case execution times of tasks are inflated with block-

ing times. This means that blocking time of any task is introduced to all lower

priority tasks. In this paper we focus on suspension-aware locking synchro-

nization in which suspended jobs are not assumed to occupy processors. In

addition Brandenburg and Anderson have also proposed an asymptotically op-

timal suspension-aware protocol in [31], called Simple Partitioned FIFO Lock-

ing Protocol (SPFP) (under partitioned scheduling), however it uses one single

global FIFO queue in which all requests to all global resources are enqueued.

However, the drawback of using one single FIFO queue is that it prevents par-

allelization in accessing resources.

In all the aforementioned existing synchronization protocols (under parti-

tioned scheduling) on multi-cores it is assumed that the tasks of a system are

distributed among processors and all processors use the same scheduling pol-

icy, e.g., EDF or RM. Furthermore, in the schedulability analysis of the existing
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protocols (e.g., MPCP and FMLP) a processor needs timing attributes of tasks

allocated on other processors that share resources with its tasks. MSOS, how-

ever, allows each system in a processor to use its own scheduling policy and it

abstracts the timing requirements regarding global resources shared by the sys-

tem in its interface, hence, it is not required to reveal its task attributes to other

processors which it shares resources with. Recently, in industry, co-existing of

several separated systems on a multi-core platform (called virtualization) has

been considered to reduce the hardware costs [32]. MSOS seems to be a natural

fit for synchronization under virtualization of real-time systems on multi-cores.

8.2 Task and Platform Model

In this paper, we assume that the multiprocessor (multi-core) platform is com-

posed of identical, unit-capacity processors (cores) with shared memory. Each

processor contains a different task set (system). The scheduling techniques

used on each processor may differ from other processors, e.g., one processor

can be scheduled by fixed priority scheduling (e.g., RM) while another proces-

sor is scheduled by dynamic priority scheduling (e.g., EDF), which means the

priority of tasks are local to each processor. However, for the sake of presen-

tation clarity, in this paper we focus on schedulability analysis of processors

with fixed priority scheduling. A task set allocated on a processor, Pk, is de-

noted by τPk
and consists of n sporadic tasks, τi(Ti, Ci, ρi, {Csi,q,p}) where

Ti denotes the minimum inter-arrival time between two successive jobs of task

τi with worst-case execution time Ci and ρi as its priority. The tasks have im-

plicit deadlines, i.e., the relative deadline of any job of τi is equal to Ti. A

task, τh, has a higher priority than another task, τl, if ρh > ρl. For the sake of

simplifying presentation we assume that each task has a unique priority. The

tasks on processor Pk share a set of resources, RPk
, which are protected us-

ing semaphores. The set of shared resources (RPk
) consists of two subsets of

different types of resources; local and global resources. A local resource is

only shared by tasks on the same processor while a global resource is shared

by tasks on more than one processor. The sets of local and global resources ac-

cessed by tasks on processor Pk are denoted by RL
Pk

and RG
Pk

respectively. The

set of critical sections, in which task τi requests resources in RPk
is denoted

by {Csi,p,q}, where Csi,q,p is the worst-case execution time of the pth critical

section of task τi in which the task locks resource Rq ∈ RPk
. We denote Ci,q

as the worst-case execution time of the longest critical section in which τi re-

quests Rq. In this paper, we focus on non-nested critical sections (the common

case). A job of task τi, is specified by Ji.
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8.3 The Multiprocessors Synchronization Proto-

col for Real-time Open Systems (MSOS)

8.3.1 Assumptions and terminology

We assume that systems are already allocated on processors and that each pro-

cessor may use a different scheduling policy. The tasks within a system allo-

cated on a processor do not need any information about the tasks within other

systems allocated on other processors, neither do they need to be aware of the

scheduling policies on other processors, when performing schedulability anal-

ysis of the system.

Definition 1: Resource Hold Time of a global resource Rq by task τi on pro-

cessor Pk is denoted by RHTq,k,i and is the maximum duration of time the

global resource Rq can be locked by τi. In other words, RHTq,k,i is the the

maximum time interval starting from the time instant τi locks Rq and ending

at the time instant τi releases Rq , which includes the longest critical section in

which τi accesses Rq as well as the possible interference form other tasks ac-

cessing global resources other than Rq. Consequently, the resource hold time

of a global resource, Rq , by processor Pk (i.e., the maximum duration of time

Rq is locked by any task on Pk) denoted by RHTq,k , is as follows:

RHTq,k = max
τi ∈ τq,k

{RHTq,k,i} (8.1)

where τq,k is the set of tasks on processor Pk sharing Rq .

The concept of resource hold times for composing multiple independently-

developed real-time applications on uniprocessors has been studied previ-

ously [33, 34], however, on a multi-core (multiprocessor) platform we compute

resource hold times for global resources in a different way (Section 8.4.1).

Definition 2: Maximum Resource Wait Time for a global resource Rq on pro-

cessor Pk, denoted as RWTq,k, is the worst-case time that any task, τi, within

Pk may wait for Rq (Rq is held by other processors) each time τi requests

Rq . Processors waiting for a global resources are enqueued in a corresponding

FIFO queue (Section 8.3.2), hence the worst case occurs when all tasks within

other processors have requested Rq before τi.
Definition 3: A processor, Pk , is abstracted and represented by an interface

Ik(Qk, Zk). In the interface, Qk represents a set of l requirements where l
is the number of tasks on Pk that request at least one global resource, i.e.,

each requirement is extracted from a task requesting one or more global re-
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sources (Section 8.5). For a processor, Pk, to be schedulable all require-

ments in Qk should be satisfied. A requirement, rs ∈ Qk, is an expression

of the maximum resource wait times of one or more global resources, e.g.,

r1 ≡ RWT1,k + RWT3,k ≤ 10 indicates that the maximum waiting time for

both global resources R1 and R3 should not exceed 10 time units. The require-

ments (Qk) of each processor is extracted from the schedulability analysis of

the processor independently. Zk in the interface is a set; Zk = {. . . , Zq,k, . . .},

where Zq,k is the Maximum Processor Locking Time (MPLT ) which repre-

sents the maximum duration of time that any task τx on any other processor

Pl (l 6= k) may be blocked by (tasks from) Pk each time τx requests Rq . I.e.,

whenever a task, τx, on a processor, Pl issues a request to a global resource,

Rq , the maximum (collective) time that τx can be blocked on resource Rq by

tasks on Pk, (k 6= l) is indicated by Zq,k.

8.3.2 General Description of MSOS

The MSOS manages intra-processor and inter-processor global resource re-

quests. Each global resource is associated with a global queue in which pro-

cessors requesting the resource are enqueued. The processors are granted the

resource in FIFO manner. For the global queue, FIFO fits well because prior-

itizing the systems on processors may not be the case, since during the devel-

opment of a system, the priority of other systems may not be known. Within

a processor the tasks requesting the global resource are enqueued in a local

queue. We have studied and developed both priority-based and FIFO-based

queues for handling intra-processor global resource requests.

Figure 8.1 shows an overview of the protocol. When the resource becomes

available to the processor at the head of the global queue the eligible task (e.g.,

at the top of queue if FIFO is used) from the local queue within the processor

can hold the resource.

Considering that a processor, Pl, can block another processor, Pk, on a

global resource, Rq , up to Zq,l time units each time (any task within) Pk re-

quests the resource, the worst-case waiting time (RWTq,k) for Pk to wait until

Rq becomes available is bounded by the sum of all MPLT ’s of other proces-

sors on Rq:

RWTq,k =
∑

Pl 6=Pk

Zq,l (8.2)
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Figure 8.1: An overview of MSOS. The processor at the head of a global queue

receives the corresponding global resource and within the processor the eligible

task in the local queue is granted to access the resource.

8.3.3 MSOS Rules

The MSOS rules are as follows:

Rule 1: Access to local resources is controlled by a uniprocessor synchroniza-

tion protocol, e.g. PCP or SRP.

Rule 2: When a task, τi, within a processor,Pk , requests a global resource, Rq ,

the priority of τi is increased immediately to ρi+ρmax(Pk), where ρmax(Pk) =
max {ρi|τi ∈ Pk}. This means a task, τi, which is granted to access a global

resource can only be delayed or preempted by higher priority tasks executing

within a global critical section (gcs), in which they accesses a global resource,

e.g., when a higher priority task, τx, which is blocked on a global resource

Rl ( 6= Rq) is granted to access Rl, it resumes and preempts τi while τi is ac-

cessing Rq . This bounds blocking times on a global resource as a function

of only global critical sections. The concept that the blocking time on global

resources should only depend on the duration of global critical sections is one

of the principles in the existing multiprocessor synchronization protocols, e.g.,

MPCP, MSRP [21, 23].

Rule 3: When a task, τi, within a processor,Pk , requests a global resource, Rq ,

if Rq is not locked (i.e., both local and global queues are empty), τi accesses

Rq . If Rq is locked, a placeholder for Pk is located in the global FIFO queue

of Rq and τi is located in the local queue of Rq and then τi suspends itself.

Rule 4: When global resource Rq becomes available to processor Pk the el-

igible task within the local queue of Rq is resumed and granted the access to
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Rq . Depending on the type of local queue, the eligible task would be the one at

the top of the local queue if FIFO is used and if the local queue is a prioritized

queue the eligible task would be the highest priority task blocked on Rq. Note

that using FIFO local queues, a task τi will always access a global resource Rq

when the corresponding placeholder in the global queue (which is added by τi)
is at the top of Rq’s global queue. However, for a prioritized queue, it may

not be the case because when a higher priority task is released, it will locate a

placeholder in the global FIFO, but it may use the earlier placeholders added

by lower priority tasks. This means, the lower priority task may use a later

placeholder added by the higher priority tasks from Pk (Figure 8.2 shows an

example of such case).

Rule 5: When a task, τi, on processor Pk releases a global resource, Rq , the

placeholder of Pk from the top of the global FIFO queue will be removed and

the resource becomes available to the processor whose placeholder is at the top

of Rq’s global queue.

8.4 Schedulability Analysis

8.4.1 Computing Resource Hold Times

We now describe how to compute the global resource hold time by a task and

consequently by a processor.

Lemma 1. On a processor, Pk, any task, τi, that is granted to access a global

resource, Rq , can be interfered (either delayed at the beginning or preempted)

by at most one gcs per each higher priority task, τj (on Pk) in which τj ac-

cesses a global resource other than Rq .

Proof. For τi, that is granted the access to a global resource, to be interfered

by two gcs’s (and more) of a higher priority task, τj (from the same processor),

τj needs to enter a non-critical section before entering the second gcs. On the

other hand τi, which has been granted the access to a global resource, has a

priority higher than any task that is not accessing a global resource (Rule 3).

Considering that τi (granted to access a global resource) can only be preempted

by other tasks within gcs’s, τj will be preempted after exiting the first gcs and

will not have any chance to enter the second gcs as long as τi has not exited its

gcs.

Based on Lemma 1, the maximum interference to any gcs of task τi in

which it accesses a global resource Rq , from the higher priority tasks located
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on the same processor, Pk , executing within their gcs’s is denoted as Hi,q,k

and is computed as follows:

Hi,q,k =
∑

ρi<ρj

∧ Rl∈RG
Pk

, l 6=q

Csj,l

Consequently the resource hold time of global resource Rq by task τi is

computed as follows:

RHTq,k,i = Csi,q +Hi,q,k (8.3)

8.4.2 Blocking Times under MSOS

In this section we describe the possible situations that a task τi can be blocked

by other tasks on the same processor as well as by other processors. Each

processor may contain a different system and may have a different scheduling

policy. Thus the worst case blocking overhead from other processors on a

global resource, Rq, introduced to any task, τi (each time τi requests Rq),

within a processor, Pk, is abstracted by RWTq,k (Definition 1). As shown in

Equation 8.2, RWTq,k depends on the MPLT ’s of other processors on Rq .

The value of MPLT of a processor on each global resource is included in the

interface. However, depending on the type of the local queues i.e., FIFO or

prioritized, the MPLT on a global resource is calculated differently:

FIFO-based local queues In this case queueing on global resources are han-

dled by FIFO queues. The maximum blocking time on a global resource, Rq ,

that tasks from Pk can introduce to any task, τx, located in a different proces-

sor each time τx requests Rq will happen when all tasks within Pk, sharing

Rq , request Rq earlier than τx. Note that at any time instant there will be at

most one placeholder per requesting task for Pk in the Rq’s global FIFO queue

because each task can add at most one placeholder and it cannot add another

placeholder before releasing the previous one (i.e., a task cannot be in two crit-

ical sections at the same time). On the other hand the longest time that Rq can

be locked by any task, τi, is RHTq,k,i time units. Thus the MPLT of Pk on

Rq is calculated as follows:

Zq,k =
∑

τi ∈ τq,k

RHTq,k,i (8.4)
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Priority-based local queues In this case queueing on global resources within

processors is handled by prioritized queues; when a global resource, Rq , be-

comes available to a processor, Pk, the highest priority task, τh, is eligible

to access Rq . Since FIFO is used for the global queue, similarly to the FIFO-

based local queuing, the maximum blocking time that tasks fromPk on a global

resource, Rq , can introduce to any task, τx, from a different processor each

time τx requests Rq , will happen when all tasks within Pk, sharing Rq, request

Rq earlier than τx. This means that the number of Pk’s placeholders in Rq’s

global FIFO is equal to the number of the tasks within Pk sharing Rq . How-

ever, a higher priority task that requests Rq may use all these placeholders (as

explained in Rule 4) Thus the the upper bound for MPLT of Pk on Rq is

calculated as follows:

Zq,k = |τq,k| max
τi ∈ τq,k

{RHTq,k,i} (8.5)

where |τq,k| is the number of tasks in processor Pk sharing Rq.

Combining Equations 8.5 and 8.1, the result becomes as follows:

Zq,k = |τq,k|RHTq,k (8.6)

The possible blocking terms that a task τi on a processorPk may experience

are as follows:

Local blocking due to local resources

Suppose nG
i is the number of gcs’s of τi. Each time τi is blocked on a global

resource and suspended, a lower priority task τj may arrive and lock a local

resource and may block τi when it resumes and after it releases the global

resource. This scenario can happen up to nG
i times. In addition, according

to PCP (and SRP), task τi can be blocked on a local resource by at most one

critical section of a lower priority task which has arrived before τi. On the

other hand, τj can release at most ⌈Ti/Tj⌉ jobs before the current job of τi
finishes and each job can block τi’s current job at most nL

j (τi) times where

nL
j (τi) is the number of the critical sections in which τj requests local resources

with ceiling higher than the priority of τi. This means τi can be blocked at

most min {nG
i + 1,

∑

ρj≤ρi
⌈Ti/Tj⌉n

L
j (τi)} times by τj , on local resources.

Thus, the upper bound blocking time on local resources (denoted by Bi,1) is

calculated as follows:
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Bi,1 = min {nG
i + 1,

∑

ρj<ρi

⌈Ti/Tj⌉n
L
j (τi)} max

ρj<ρi

∧ Rl∈RL
Pk

∧ ρi≤ceil(Rl)

{Csj,l} (8.7)

where ceil(Rl) = max {ρi| τi ∈ τl,k}.

Local blocking due to global resources

Before τi arrives or each time it suspends on a global resource, a lower prior-

ity task τj may access a global resource (enters a gcs) and preempt τi in its

non-gcs sections after it arrives or resumes. Since τi can suspend on global

resources up to nG
i times, this type of preemption can occur at most nG

i + 1
times (the additional preemption can happen by τj arriving and entering a gcs
before τi arrives). On the other hand and similar to the case of local resources

described above, τj can release at most ⌈Ti/Tj⌉ jobs before the current job of

τi finishes and each job can preempt τi’s current job at most nG
j times. Hence

preemption from τj can happen at most min {nG
i + 1, ⌈Ti/Tj⌉n

G
j } times and

thus the upper bound blocking time of this type, denoted by Bi,2 introduced by

lower priority tasks is calculated as follows:

Bi,2 =
∑

ρj<ρi

∧ {τi,τj} ⊆ τPk

(

min {nG
i + 1, ⌈Ti/Tj⌉n

G
j } max

Rq∈RG
Pk

{Csj,q}
)

(8.8)

Equation 8.8 contains all the possible interference introduced to task τi
from all gcs’s of lower priority tasks including gcs’s of tasks in which they

share a global resource with τi.
Note that in both Equations 8.7 and 8.8, for simplicity we assume that the

maximum blocking time (max function) will be introduced to τi each time it is

blocked by a lower priority task. This may make the results of these equations

pessimistic. More complex analysis can give tighter upper bounds.

Remote Blocking

This type of blocking occurs when task τi within processor Pk requests a

global resource, Rq. Depending on the type of the local queues (FIFO-based

or priority-based), the remote blocking is calculated differently:
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Remote blocking with FIFO-based local queues In this case, when τi is

blocked on a global resource, Rq , it is added to the local FIFO of Rq . In the

worst case, all tasks within Pk sharing Rq have requested Rq before τi and

are already in the local FIFO. However, if the tasks that requested Rq before

τi have priority lower than that of τi then their effect has been included in

Equation 8.8. Otherwise if the tasks requesting Rq before τi have priority

higher than that of τi the interference from these tasks to τi is considered as the

normal preemption.

On the other hand, to compute the maximum remote blocking from other

processors we assume that each time τi requests Rq , all tasks on other pro-

cessors sharing Rq have requested Rq before τi. Since we use FIFO global

queue, each task from a different processor can lock Rq at most once before τi
accesses Rq , this means τi can be blocked up to RWTq,k time units.

This scenario can happen each time τi requests Rq, i.e. up to nG
i,q times,

where nG
i,q is the number of τi’s global critical sections in which it requests Rq .

Thus the remote blocking with FIFO local queues is calculated as follows:

Bi,3 =
∑

Rq∈RG
Pk

∧ τi ∈ τq,k

nG
i,q RWTq,k (8.9)

In order to uniform the equation used to calculate the blocking indepen-

dently on the type of local queue (Section 8.5), we rewrite Equation 8.9 as

follows:

Bi,3 =
∑

Rq∈RG
Pk

∧ τi ∈ τq,k

αi,q RWTq,k (8.10)

where αi,q = nG
i,q .

Remote blocking with Priority-based local queues In the case of using

priority-based local queues, when processor Pk gets the resource Rq the high-

est priority task within processor Pk accesses Rq .

To calculate the remote blocking, first we derive an upper bound for the

amount of remote blocking each local higher priority task, τx, can introduce

to task τi (a task is called as a local task to τi if it is allocated on the same

processor as τi). Figure 8.2 illustrates (in three stages) how τx may introduce

remote blocking into τi. In the first stage, τi requests Rq and a placeholder
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for processor Pk is added to the end of global FIFO queue of Rq . τi would

wait up to RWTq,k time units to be eligible to access Rq if there was not any

other task within Pk requesting Rq . However, as shown in the second stage,

just before Pk gets Rq , task τx also requests Rq and another placeholder for

Pk is added to the global queue. As shown in the third stage, when it becomes

Pk’s turn to get Rq , τx will access it (because it has a higher priority than τi)
and τi’s request is postponed to the second placeholder. This makes τi to wait

additional RWTq,k time units.yz {| {} ~�{���� �������� �� ��� ���� � ������������� ��� ��� �� ������ ���� ������ � ~����|{| {} ~��� �������� �� ��� ���� � ������������� ��� ��� �� ������ ���� ������ � ¡¢{| {| ~��� �������� ��� ¡¢{| � ~����|
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Figure 8.2: Priority-based local queue.

Thus, each gcs of τx in which τx requests Rq adds up to RWTq,k time

units blocking to τi. On the other hand, the higher priority task τx may request

Rq up to ⌈Ti/Tx⌉n
G
x,q times before τi finishes. Each time τx may hold Rq up

to RHTq,k,x time units, however, as all tasks contributing to RHTq,k,x have

higher priority than τi, the time during which τx holds Rq is considered as

normal preemption and not blocking. Hence, the remote blocking of τi on Rq

introduced by higher priority task τx, denoted by RBi(Rq, τx) is calculated as

follows:

RBi(Rq, τx) = ⌈Ti/Tx⌉n
G
x,q RWTq,k (8.11)

where τi ∈ τq,k.

The total blocking time of τi on Rq introduced by all higher priority tasks

sharing Rq (denoted by RBi(Rq)) is calculated as follows:
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RBi(Rq) =
∑

ρi<ρx

∧ {τx,τi}⊆ τq,k

RBi(Rq, τx) (8.12)

In addition to the remote blocking on Rq that τi incurs because of higher

priority tasks, each gcs of τi may wait up to RWTq,k time units to be granted

to access Rq , i.e., τi may incur this blocking even if no higher priority task (on

τi’s processor) requests Rq while τi is waiting for Rq . The upper bound for

this blocking time is nG
i,q RWTq,k time units. Finally, the total remote blocking

time of τi is as follows:

Bi,3 =
∑

Rq∈RG
Pk

∧ τi ∈ τq,k

(RBi(Rq) + nG
i,q RWTq,k) (8.13)

and by replacing Equations 8.11 and 8.12:

Bi,3 =
∑

Rq∈RG
Pk

∧ τi ∈ τq,k

αi,qRWTq,k

(8.14)

where αi,q =
∑

ρi<ρx

∧ {τx,τi}⊆ τq,k

(⌈Ti/Tx⌉n
G
x,q) + nG

i,q

Looking at the remote blocking for FIFO-based and priority-based local

queues (Equations 8.9 and 8.13 respectively), it is shown that for the priority-

based queues Bi,3 is always greater than that for FIFO-based queues. This

means, using local FIFO queues (combined with global FIFO queues) always

gives lower upper bounds for remote blocking time compared to using priority-

based local queues. If the remote blocking is low (i.e., maximum resource wait

times are small), it may seem that using local FIFO queues, whenever a higher

priority task, τh, requests a global resource, Rq , τh can be delayed by all lower

priority tasks that have requested the resource before τh which is not the case

when using priority-based local queues. However, since the priority of these

lower priority tasks requesting Rq is boosted (is higher than the base priority

of τh) they will delay the execution of τh when τh is in its non-critical sections

anyway, thus from the analysis point of view using priority-based local queues

does not benefit higher priority tasks even though the remote blocking is very

low.
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8.4.3 Total Blocking Time

The total blocking time of τi is the summation of the three blocking terms:

Bi = Bi,1 +Bi,2 +Bi,3 (8.15)

Equations 8.10 and 8.14 show that Bi,3 is a function of maximum resource

wait times (e.g., RWTq,k) of the global resources. Consequently Bi will also

be a function of maximum resource wait times of global resources. Consider-

ing that Bi,1 and Bi,2 are constant numbers (i.e., they only depend on internal

parameters), we can rewrite Equation 8.15 as follows:

Bi = γi +
∑

Rq∈RG
Pk

∧ τi ∈ τq,k

αi,qRWTq,k (8.16)

where γi = Bi,1 +Bi,2.

8.5 Extracting the Requirements in the Interface

In this section we describe how to extract the requirements Qk in the interface

of a processor Pk from the schedulability analysis.

Each requirement in Qk specifies a criteria on maximum resource wait

times (Definition 2) of one or more global resources. We will show how to

evaluate the requirement of each task τi accessing global shared resources.

Starting from the schedulability condition of τi, the maximum value of

blocking time mtbti that τi can tolerate without missing its deadline can be

evaluated as follows.

τi is schedulable, using the fixed priority scheduling policy and executed in

a single processor, if

0 < ∃t ≤ Ti rbfFP(i, t) ≤ t, (8.17)

where rbfFP(i, t) denotes request bound function of τi which computes the

maximum cumulative execution requests that could be generated from the time

that τi is released up to time t, and is computed as follows:

rbfFP(i, t) = Ci +Bi +
∑

ρi<ρj

(⌈t/Tj⌉Cj) (8.18)
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By substituting Bi by mtbti in Equations 8.17 and 8.18, we can compute

mtbti as follows:

mtbti = max
0<t≤Ti

(t− (Ci +
∑

ρi<ρj

(⌈t/Tj⌉Cj))) (8.19)

Note that it is not required to test all possible values of t in Equation 8.19,

and only a bounded number of values of t that change rbfFP(i, t) should be

considered (see [35] for more details).

Equation 8.16 shows that the total blocking time of task τi is a function of

maximum resource wait times of the global resources accessed by tasks on Pk .

With the achieved mtbti and Equation 8.16 we extract a requirement:

γi +
∑

Rq∈RG
Pk

∧ τi ∈ τq,k

αi,qRWTq,k ≤ mtbti
(8.20)

and

ri ≡
∑

Rq∈RG
Pk

∧ τi ∈ τq,k

αi,qRWTq,k ≤ mtbti − γi
(8.21)

Note that, Equation 8.15 can be used to evaluate Bi for both the tasks that

share global resources and the tasks that do not share any global resource.

For a task that does not share global resources, Bi,3 = 0 and Equations 8.7

and 8.8 can be used to evaluate Bi,1 and Bi,2 assigning nG
i = 0. Since the

remote blocking does not affect the schedulability of the tasks that do not share

global resources, the schedulability test for these tasks can be done during the

requirement extraction phase.

The schedulability of each processor is tested by its requirements. A pro-

cessor Pk is schedulable if all the requirements in Qk are satisfied and as-

suming that all tasks in Pk that do not share global resources are schedulable.

To test the requirements in Qk we need maximum resource wait times (e.g.,

RWTq,k) of global resources accessed by tasks within Pk which are calcu-

lated using Equation 8.2.

8.6 Experimental Evaluation

In this section we present our experimental results of the synchronization pro-

tocol (MSOS) together with MPCP and a variant of partitioned FMLP (called



110 Paper B

long FMLP). In fact, under FMLP global resources are divided into two groups;

long resources and short resources, where tasks blocked on long resources sus-

pend while tasks blocked on short resources spin (busy-wait). Dividing of

global resources into long and short resources is user-defied and there is no

method to efficiently decide which resources should be long or short. In a

comparison of FMLP to other synchronization protocols (e.g., MPCP) in [29],

FMLP is divided into two variants, i.e., long FMLP (all global resources are

long) and short FMLP (all global resources are short). In this paper we con-

sider only long FMLP. Note that MSOS can easily be extended to support spin

blocking on global resources as well. However, since under spin blocking, a

task blocked on a global resource executes non-preemptively, the worst case

blocking times practically would be the same as short FMLP as well as the

spin-based variant of MPCP [7].

As shown in Section 8.4 priority-based local queues will always introduce

more blocking overheads than FIFO-based local queues and hence FIFO-based

local queues will always perform better. Therefore, we have only evaluated the

MSOS with FIFO-based local queues.

We have developed MSOS as a synchronization protocol for independently-

developed systems on multi-cores and thus we have abstracted overhead intro-

duced to a processor from other resources due to resource sharing. However, to

evaluate our protocol and investigate the performance loss due to the abstrac-

tions, we have performed experimental evaluations and compared the perfor-

mance of MSOS to MPCP and FMLP.

It turned out that MSOS, that compared to MPCP and FMLP additionally

supports independently-developed systems, does not come with any significant

reduction in performance due to composability. In fact MSOS, depending on

the settings of the systems under analysis, may even perform better than ei-

ther one or both of the alternative synchronization protocols. Hence, besides

offering the possibility of composability of independently-developed systems,

MSOS can be used as a regular synchronization protocol for one single sys-

tem distributed over processors as it offers relatively a simple schedulability

analysis method compared to FMLP and MPCP. The schedulability analysis

is simple in the sense that the local schedulability analysis for each processor

is performed only once and in the case of changing a system allocated on a

processor or introducing a new system (on a new processor), the schedulability

analysis of other processors does not to be redone. The only test to be per-

formed is to check that the requirements of all processors are still valid which

is much simpler than performing the whole schedulability analysis for every

processor.
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8.6.1 Experiment Setup

To determine the performance of MSOS compared to other synchronization

protocols, we tested the schedulability for each protocol using randomly gen-

erated systems. For schedulability analysis of MPCP and FMLP we used the

methods described in [21] and [28] respectively to perform the analysis. The

tasks within each system allocated on each processor were generated based on

parameters as follows. The utilization of each task was randomly chosen be-

tween 0.01 and 0.1, and its period was randomly chosen between 10ms and

100ms. The execution time of each task was calculated based on its utilization

and period. For each system (processor), tasks were generated until the utiliza-

tion of the system reached a cap or a maximum number of 40 tasks generated.

The utilization cap ranged from {0.1, 0.2, 0, 3, 0.4, 0.5, 0.6}. In both MPCP

and FMLP, calculation of blocking times of each task (allocated on a proces-

sor) that shares global resources, depends on the timing attributes of remote

tasks (allocated on other processor), e.g., task priorities. For each set of param-

eters, to achieve a global priority setting, all tasks from all systems were put

in a single list and priorities were assigned to them based on Rate Monotonic

(RM).

The resource sharing parameters were chosen as follows. The number

of resources shared among all tasks (within all systems) was chosen from

{5, 10, 15, 20}. The number of requests each task issued (i.e., the number

of critical sections) was randomly chosen from [0,CsNum] where CsNum
ranged from 1 to 6. The length of each critical section was randomly cho-

sen from [minL,maxL] which ranged from {[5µs, 10µs], [10µs, 20µs], [20µs
, 40µs], [40µs, 80µs], [80µs, 160µs], [160µs, 320µs]}.

For each setting point we generated 1000 samples. For some settings we

repeated the experiments 10 times which always yielded the same results, con-

firming that 1000 samples per each setting can be representative.

Preemption overhead: Preemption overhead which includes cache state loss

as well as context switches, is a platform dependant and may differ in differ-

ent platforms significantly. However, to determine the performance of differ-

ent synchronization protocols and considering preemption overhead, besides

running our experiments under no preemption overhead we ran them consider-

ing various preemption overheads (i.e., 10µs, 20µs, 40µs and 80µs) as well.

In all three protocols, tasks within their non-critical sections suffer from the

same preemptions (i.e., from higher priority tasks and from lower priority tasks

within gcs’s), hence, we assume those overheads are counted for in the worst-

case execution times of tasks. The difference is preemptions within gcs’s,
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from which FMLP does not suffer as tasks within their gcs’s execute non-

preemptively. Both MSOS and MPCP suffer from preemptions within gcs’s.

Preemption overhead makes a gcs longer which consequently punishes (blocks

more) tasks (from other processors) requesting the same global resource as

is accessed in the gcs. Under MPCP, a task within a gcs can be preempted

by gcs’s from both lower priority and higher priority tasks (for more details

see [21]). Under MSOS, on the other hand, a task within a gcs can only be

preempted by higher priority tasks within their gcs’s.

8.6.2 Results

In this section we present the evaluation results. Overall results show that in

most cases MSOS performs better than at least one of the other protocols. We

have performed experiments according to all different parameters (combining

all the parameters, we achieve 2880 different settings), however it is not fea-

sible to present all results in this paper. Thus, we present our observations

according to three important factors that affected the protocols differently; the

length of critical sections, the number of critical sections, and the preemption

overhead.

Regarding the length of critical sections, under no preemption overhead,

as shown in Figure 8.3(a), for shorter critical sections all three protocols per-

form the same. However, as the length of critical sections is increased, MSOS

mostly performs better than FMLP while MPCP exhibit the best performance.

The reason is inherent in the different ways of handling queues for blocked

tasks on global resources in each protocol. Under MPCP, tasks (from all pro-

cessors) blocked on a global resource are enqueued in a priority-based queue

while FMLP and MSOS use FIFO-based queues for blocked tasks on global re-

sources. When the critical sections are relatively long, using FIFO queues may

lead to starvation of higher priority tasks. This is why MPCP performs better

than MSOS and FMLP for longer critical sections. FMLP, uses FIFO’s more

than MSOS; tasks waiting for a global resource are enqueued in a FIFO, and

within a processor the tasks blocked on different global resources are also en-

queued in FIFO manner. On the other hand in MSOS, within a processor tasks

requesting different global resources are enqueued in a priority-based manner,

i.e., a task that becomes eligible to access a global resource can preempt a

lower priority task holding another global resource. This leads to less starva-

tion of higher priority tasks requesting global resources specially for longer

critical sections. Thus MSOS is affected by FIFO’s less than FMLP but more

than MPCP (MPCP does not use FIFO’s at all).
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(c) Preemption overhead=40µs

Figure 8.3: Performance of synchronization protocols as the length of critical

sections increases. Number of processors=8, utilization cap=0.3, number of

resources=10, maximum number of critical sections per task=6.

However, when considering preemption overhead as illustrated in Fig-

ures 8.3(b) and 8.3(c), the performance of MSOS and MPCP drops; with 40µs
per preemption overhead (Figure 8.3(c)), FMLP mostly exhibits the best per-

formance and MSOS performs better than MPCP. The rationale behind this is

that the global critical sections under MPCP and MSOS suffer from preemp-
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Figure 8.4: Performance of synchronization protocols as the number of critical

sections increases. Number of processors=8, utilization cap=0.5, number of

resources=10, length of critical sections =10-20 µs.

tion by other global critical sections which introduces preemption overhead

into gcs’s. This makes gcs’s longer which leads to more blocking overhead for

remote tasks. As confirmed by experiments, MPCP introduces more preemp-

tion overhead and thus leads to a lower schedulability of tasks.

Increasing the number of critical sections when neglecting preemption over-

head had similar effect as the length of critical sections on the performance of

the protocols, i.e., for lower number of critical sections all three protocols per-

form almost the same and as the number of critical sections are incremented the

performance of FMLP and MSOS drops faster than of MPCP, although MSOS

performs better than FMLP. This is also the negative effect of using FIFO’s

when the number of critical sections becomes higher. However, with presence

of preemption overhead (Figure 8.4), when the number of critical sections is

increased the performance of MPCP and MSOS drops significantly fast. The

reason is that the higher number of critical sections leads to higher number of

preemptions within gcs’s, hence more preemption overhead within the gcs’s.
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(b) utilization cap=0.5

Figure 8.5: Performance of synchronization protocols as the per preemption

overhead increases. Number of processors=8, , number of resources=10, max-

imum number of critical sections=4, length of critical sections =40-80 µs.

This increases the length of gcs’s and consequently causes longer blocking

times on global resources. MSOS performs better than MPCP since MSOS

suffers from less preemptions than MPCP.

Interestingly, in almost all cases MSOS performs better than at least one of

the other two protocols. This is because MSOS uses a combination of FIFO-

based and priority-based global resource accessing (i.e., FIFO’s for global and

local queues of global resources, and priority-based accessing different global

resources) while FMLP and MPCP use either of them. Consequently, MSOS

performs better than FMLP when the preemption overhead is low, and it per-

forms better than MPCP when the preemption overhead is higher. Figure 8.5

shows the performance of the three protocols regarding different values of per

preemption overhead.

In our experiments, we also explored the performance of the protocols re-

garding other parameters, e.g., various number of processors and various uti-

lization cap per each processor. Similar to the aforementioned results, under
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no preemption overhead, MSOS performs better than FMLP, and MPCP per-

forms better than both as the number of processors and/or the utilization cap

is increased. However, by increasing preemption overhead, although MSOS

performs better than MPCP, the performance of both MSOS and MPCP drops

significantly fast.

8.7 Conclusion

In this paper, we have proposed a synchronization protocol which manages re-

source sharing among independently-developed systems on a multi-core plat-

form where each system is allocated on a dedicated core.

In our protocol, each system is presented by an interface which abstracts

the sharing of global resources in the system. Furthermore, we have derived

schedulability analysis under our synchronization protocol. The systems within

each processor may use a different scheduling policy and priority setting, how-

ever this does not affect the schedulability analysis of a system as these design

decisions are abstracted by the interfaces. This offers the possibility of dif-

ferent systems to be developed independently and their schedulability analysis

to be performed and abstracted in their interfaces. Hence, the protocol also

simplifies migration of legacy real-time systems to multi-core architectures.

In this paper we focused on the common case of non-nested critical sec-

tions. However, MSOS can support properly-nested global critical sections

by means of grouping global resources whose requests are nested (similar to

FMLP). In this case a joint global FIFO queue will be used for all the resources

of each group. However, this may introduce very large amount of blocking

overhead.

We have performed experimental evaluations of our proposed synchroniza-

tion protocol, MSOS, by means of comparing its performance against two

existing synchronization protocols, i.e., MPCP and FMLP. The results show

that in most cases MSOS performs better than at least one of other two proto-

cols. Therefore, we believe that MSOS is a viable protocol for independently-

developed systems on a multi-core platform.

In the future we plan to implement MSOS under real-time operating sys-

tems (RTOS) and investigate its performance. Another interesting future work

is to study the multiprocessor hierarchical scheduling protocols for independen-

t/semi-independent systems with presence of shared resources.
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Abstract

MSOS (Multiprocessors Synchronization protocol for real-time Open Systems)

is a synchronization protocol for handling resource sharing among indepen-

dently developed real-time applications (components) on multi-core platforms.

MSOS does not consider any priority setting among applications. To handle re-

source sharing based on the priority of applications, in this paper we propose

a new protocol that allows for resource sharing among prioritized real-time

applications on a multi-core platform. We propose an optimal priority assign-

ment algorithm which assigns unique priorities to the applications based on in-

formation in their interfaces. We have performed experimental evaluations to

compare the proposed protocol (called MSOS-Priority) to the existing MSOS

as well as to the current state of the art locking protocols under multiprocessor

partitioned scheduling, i.e., MPCP, MSRP, FMLP and OMLP. The evaluations

show that MSOS-Priority mostly performs significantly better than alternative

approaches.
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9.1 Introduction

The emergence of multi-core platforms and the fact that they are to be the

defacto processors has attracted a lot of interest in the research community

regarding multiprocessor software analysis and runtime policies, protocols and

techniques.

The industry can benefit from multi-core platforms as these platforms fa-

cilitate hardware consolidation by co-executing multiple real-time applications

on a shared multi-core platform. The applications may have been developed as-

suming the existence of various techniques, e.g., relying on a particular schedul-

ing policy. The applications may share mutually exclusive resources. On the

other hand, in industry, large and complex systems are commonly divided into

several subsystems (components) which are developed in parallel and in isola-

tion. The subsystems will eventually be integrated and co-execute on a multi-

core platform.

Two main approaches for scheduling real-time systems on multi-cores ex-

ist; global and partitioned scheduling [1, 2]. Under global scheduling, e.g.,

Global Earliest Deadline First (G-EDF), tasks are scheduled by a single sched-

uler and each task can be executed on any processor, i.e., migration of tasks

among processors is permitted. Under partitioned scheduling, tasks are stat-

ically assigned to processors and tasks within each processor are scheduled

by a uniprocessor scheduling protocol, e.g., Rate Monotonic (RM) or Earliest

Deadline First (EDF). In this paper we focus on partitioned scheduling where

tasks of each application are allocated on a dedicated processor.

In our previous work [3] we proposed a synchronization protocol for han-

dling resource sharing among independently-developed real-time applications

on multi-core platforms called Multiprocessor Synchronization protocol for

real-time Open Systems (MSOS). In an open system, applications can enter

and exit during run-time. The schedulability analysis of each application is

performed in isolation and its demand for global resources is summarized in

a set of requirements which can be used for the global scheduling when co-

executing with other applications. Validating these requirements is much easier

than performing the whole schedulability analysis. Thus, a run-time admission

control program would perform much better when introducing a new applica-

tion or changing an existing one. The protocol assumes that each real-time

application is allocated on a dedicated core. Furthermore, MSOS assumes that

the applications have no assigned priority and thus access to shared resources

is granted in FIFO manner. However, to increase schedulability of real-time

systems priority assignment is a common solution. One of the objectives of
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this paper is to extend MSOS to be applicable to prioritized applications when

accessing mutually exclusive resources.

9.1.1 Contributions

The main contributions of this paper are as follows:

(1) We extend MSOS such that it supports resource sharing among prioritized

real-time applications allocated on a shared multi-core platform. For a given

real-time application we derive an interface which includes parametric require-

ments. To distinguish between the two, i,e., the existing MSOS and the new

MSOS, we refer them as MSOS-FIFO and MSOS-Priority respectively.

(2) We propose an optimal priority assignment algorithm which assigns unique

priorities to the applications based on the information specified in their inter-

faces regarding shared resources.

(3) We have performed several experiments to evaluate the performance of

MSOS-Priority against MSOS-FIFO as well as the state of the art locking pro-

tocol for partitioned scheduling, i.e., MPCP, MSRP, FMLP, and OMLP. To

further explore the correlation of performance of the protocols to different pa-

rameters, e.g., number of processors, number of critical sections, length of

critical sections, we have used a statistical method called Principal Compo-

nent Analysis (PCA)[4] which is used to explore patterns in data with multiple

dimensions (variables).

9.1.2 Related Work

In this section we present a non-exhaustive set of most related synchronization

protocols for managing access to mutually exclusive resources on multiproces-

sors. We specially focus on protocols under partitioned scheduling algorithms.

The existing synchronization protocols can be categorized as suspend-based

and spin-based protocols. In suspend-based protocols a task requesting a re-

source that is shared across processors suspends if the resource is locked by

another task. In spin-based protocols a task requesting a locked resource keeps

the processor and performs spin-lock (busy wait).

MPCP: Rajkumar presented MPCP (Multiprocessor Priority Ceiling Proto-

col) [5] for shared memory multiprocessors hence allowing for synchronization

of tasks sharing mutually exclusive resources using partitioned FPS (Fixed Pri-

ority Scheduling). MPCP is a suspend-based protocol where tasks waiting for

a global resource suspend. A global resource is a resource shared among tasks
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across processors. Lakshmanan et al. [6] extended a spin-based alternative of

MPCP.

MSRP: Gai et al. [7] presented MSRP (Multiprocessor Stack-based Resource

allocation Protocol), which is a spin-based synchronization protocol. Under

MSRP, tasks blocked on a global resource perform busy wait. A task inside a

global critical section (gcs) executes non-preemptively.

FMLP: Block et al. [8] presented FMLP (Flexible Multiprocessor Locking

Protocol) which is a synchronization protocol for multiprocessors that can be

applied to both partitioned and global scheduling algorithms, i.e., P-EDF and

G-EDF. Brandenburg and Anderson in [9] extended partitioned FMLP to the

fixed priority scheduling policy. Under partitioned FMLP global resources are

categorized into long and short resources. Tasks blocked on long resources

suspend while tasks blocked on short resources perform busy wait. In an eval-

uation of partitioned FMLP [10], the authors differentiate between long FMLP

and short FMLP where all global resources are only long and only short respec-

tively. Thus, long FMLP and short FMLP are suspend-based and spin-based

synchronization protocols respectively. In both alternatives the tasks accessing

a global resource execute non-preemptively.

OMLP: Brandenburg and Anderson [11] proposed a new suspend-based lock-

ing protocol, called OMLP (O(m) Locking Protocol). OMLP is an suspension-

oblivious protocol. Under a suspension-oblivious locking protocol, the sus-

pended tasks are assumed to occupy processors and thus blocking is counted

as demand. In difference with OMLP, other suspend-based protocols, are

suspend-aware where suspended tasks are not assumed to occupy their pro-

cessors. OMLP is asymptotically optimal, which means that the total blocking

for any task set is a constant factor of blocking that cannot be avoided for

some task sets in the worst case. An asymptotically optimal locking protocol

however does not mean it can perform better than non-asymptotically optimal

protocols. Our experimental evaluations confirm this fact (Section 9.8). Under

OMLP, a task accessing a global resource cannot be preempted by any task

until it releases the resource.

MSOS: Recently we presented MSOS [3] which is a suspend-based synchro-

nization protocol for handling resource sharing among real-time applications in

an open system on multi-core platforms. MSOS-FIFO assumes that the appli-

cations are not assigned any priority and thus applications waiting for a global

resource are enqueued in an associated global FIFO-based queue. In this paper

we present an alternative of MSOS, called MSOS-Priority to be applicable to

prioritized applications when accessing mutually exclusive resources.

In the context of priority assignment, Audsley’s Optimal Priority Assign-
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ment (OPA) [12] for priority assignment in uniprocessors is the most related

and similar to our priority assignment algorithm. Davis and Burns [13] have

shown that OPA can be extended to fixed priority multiprocessor global schedul-

ing if the schedulability of a task does not dependent on priority ordering

among higher priority or among lower priority tasks. Our proposed algorithm

is a generalization of OPA which can be applicable to assigning priorities to

applications based on their requirements. Our algorithm can perform more ef-

ficiently than OPA since the schedulability test used by our algorithm is much

simpler than that used in [13]. On the other hand, as we will show later in this

paper (Section 9.6), although our algorithm has the same complexity as OPA,

in some cases our algorithm will perform less schedulability tests than OPA.

9.2 Task and Platform Model

We assume that the multi-core platform is composed of identical, unit-capacity

processors with shared memory. Each core contains a different real-time appli-

cation Ak(ρAk, Ik) where ρAk is the priority of application Ak. Application

Ak is represented by an interface Ik which abstracts the information regarding

shared resources. Applications may use different scheduling policies. In this

paper we focus on schedulability analysis of fixed priority scheduling. From

scheduling point of view our approach can be classified as partitioned schedul-

ing where each application can be seen as a partition (a set of tasks) allocated

on one processor.

An application consists of a task set denoted by τAk
which consists of n

sporadic tasks, τi(Ti, Ci, ρi, {Csi,q,p}) where Ti denotes the minimum inter-

arrival time (period) between two successive jobs of task τi with worst-case

execution time Ci and ρi as its priority. For the sake of simplicity we assume

the tasks have implicit deadlines, i.e., the relative deadline of any job of τi is

equal to Ti. However, with minor changes in the analysis the assumption of

explicit deadlines can also be valid. A task, τh, has a higher priority than an-

other task, τl, if ρh > ρl. For the sake of simplicity we also assume that each

task as well as each application has a unique priority. The tasks in application

Ak share a set of resources, RAk
, which are protected using semaphores. The

set of shared resources RAk
consists of two subsets of different types of re-

sources; local and global resources. A local resource is only shared by tasks

in the same application while a global resource is shared by tasks from more

than one application. The sets of local and global resources accessed by tasks

in application Ak are denoted by RL
Ak

and RG
Ak

respectively. The set of critical
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sections, in which task τi requests resources in RAk
is denoted by {Csi,q,p},

where Csi,q,p is the worst-case execution time of the pth critical section of

task τi in which the task locks resource Rq . We denote Csi,q as the worst-case

execution time of the longest critical section in which τi requests Rq . In the

context of requesting resources, when it is said that a task τi is granted access

to a resource Rq it means that Rq is available to τi, however it does not nec-

essarily mean that τi has started using Rq unless we concretely state that τi is

accessing Rq which means that τi has entered its critical section. Furthermore,

when we state that access to Rq is granted to τi it implies that Rq is locked by

τi. In this paper, we focus on non-nested critical sections. A job of task τi, is

specified by Ji.

9.3 The MSOS-FIFO for Non-prioritized Real-Time

Applications

In this section we briefly present an overview of our synchronization protocol

MSOS-FIFO [3] which originally was developed for non-prioritized real-time

applications.

9.3.1 Definitions

Resource Hold Time (RHT)

The RHT of a global resource Rq by task τi in application Ak denoted by

RHTq,k,i, is the maximum duration of time the global resource Rq can be

locked by τi, i.e., RHTq,k,i is the maximum time interval starting from the

time instant τi locks Rq and ending at the time instant τi releases Rq . Thus,

the resource hold time of a global resource, Rq , by application Ak denoted by

RHTq,k, is as follows:

RHTq,k = max
τi ∈ τq,k

{RHTq,k,i} (9.1)

where τq,k is the set of tasks in application Ak sharing Rq.

Maximum Resource Wait Time

For a global resource Rq in application Ak, denoted by RWTq,k , is the worst-

case time that any task τi within Ak may wait for other applications on Rq

whenever τi requests Rq . Under MSOS-FIFO, the applications waiting for a
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global resource are enqueued in an associated FIFO queue. Hence the worst

case occurs when all tasks within other applications have requested Rq before

τi. As we will see (Section 9.4), this assumption is not valid for the case that

the applications are prioritized.

Application Interface

An application, Ak, is represented by an interface Ik(Qk, Zk) where Qk repre-

sents a set of requirements. An application Ak is schedulable if all the require-

ments in Qk are satisfied. A requirement in Qk is a linear inequality which only

depends on the maximum resource wait times of one or more global resources,

e.g., 2RWT1,k + 3RWT3,k ≤ 18. The requirements of each application are

extracted from its schedulability analysis in isolation. Zk in the interface rep-

resents a set; Zk = {. . . , Zq,k, . . .}, where Zq,k, called Maximum Application

Locking Time (MALT), represents the maximum duration of time that any task

τx in any other applicationAl (l 6= k) may be delayed by tasks in Ak whenever

τx requests Rq.

9.3.2 General Description of MSOS-FIFO

Access to the local resources is handled by a uniprocessor synchronization pro-

tocol, e.g., PCP or SRP. Under MSOS-FIFO each global resource is associated

with a global FIFO queue in which applications requesting the resource are

enqueued. Within an application the tasks requesting the global resource are

enqueued in a local queue; either priority-based or FIFO-based queues. Per

each request to a global resource in the application a placeholder for the appli-

cation is added to the global queue of the resource. When the resource becomes

available to the application, i.e., a placeholder of the application is at the head

of the global FIFO, the eligible task, e.g., at the top of local FIFO queue, within

the application is granted access to the resource.

To decrease interference of applications, they have to release the locked

global resources as soon as possible. In other words, the length of resource

hold times of global resources have to be as short as possible. This means

that a task τi that is granted access to a global resource Rq , should not be

delayed by any other task τj , unless τj holds another global resource. To

achieve this, the priority of any task τi within an application Ak request-

ing a global resource Rq is increased immediately to ρi + ρmax(Ak), where

ρmax(Ak) = max {ρi|τi ∈ τAk
}. Boosting the priority of τi when it is granted

access to a global resource will guarantee that τi can only be delayed or pre-
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empted by higher priority tasks executing within a gcs. Thus, the RHT of a

global resource Rq by a task τi is computed as follows:

RHTq,k,i = Csi,q +Hi,q,k (9.2)

where Hi,q,k =
∑

∀τj∈τAk
, ρi<ρj

∧ Rl∈RG
Ak

, l 6= q

Csj,l.

An application Al can delay another application Ak on a global resource

Rq up to Zq,l time units whenever any task within Ak requests Rq . The worst-

case waiting time RWTq,k of Ak to wait for Rq whenever any of its tasks

requests Rq is calculated as follows:

RWTq,k =
∑

Al 6=Ak

Zq,l (9.3)

In [3] we derived the calculation of Zq,k of a global resource Rq for an appli-

cation Ak, as follows:

for FIFO-based local queues:

Zq,k =
∑

τi ∈ τq,k

RHTq,k,i (9.4)

for Priority-based local queues:

Zq,k = |τq,k| max
τi ∈ τq,k

{RHTq,k,i} (9.5)

where |τq,k| is the number of tasks in Ak sharing Rq.

9.4 The MSOS-Priority (MSOS for Prioritized Real-

Time Applications)

In this section we present MSOS-Priority for real-time applications with differ-

ent levels of priorities. The general idea is to prioritize the applications on ac-

cessing mutually exclusive global resources. To handle accessing the resources

the global queues have to be priority-based. When a global resource becomes

available, the highest priority application in the associated global queue is el-

igible to use the resource. Within an application the tasks requesting a global

queue are enqueued in either a priority-based or a FIFO-based local queue.
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When the highest priority application is granted access to a global resource,

the eligible task within the application is granted access to the resource. If

multiple requested global resources become available for an application they

are accessed in the priority order of their requesting tasks within the applica-

tion.

A disadvantage argued about spin-based protocols is that the tasks wait-

ing on global resources perform busy wait and hence waste processor time.

However, it has been shown [14] that cache-related preemption overhead, de-

pending on the working set size (WSS) of jobs (WSS of job is the amount

of memory that the job needs during its execution) can be significantly large.

Thus, performing busy wait in spin-based protocols in some cases benefits the

schedulability as they decrease preemptions comparing to suspend-based pro-

tocols. As our experimental evaluations show, the larger preemption overheads

generally decrease the performance of suspend-based protocols significantly.

However, as shown by results of our experiments, MSOS-Priority almost al-

ways outperforms all other suspend-based protocols. Furthermore, in many

cases MSOS-Priority performs better than spin-based protocols even if the pre-

emption overhead is relatively high.

Under MSOS-FIFO, a lower priority task τl executing within a gcs can be

preempted by another higher priority task τh within a gcs if they are accessing

different resources. This increases the number of preemptions which adds up

the preemption overhead to gcs es and thus making RHT’s longer. To avoid

this, we modify this rule in MSOS-Priority to reduce preemptions. To achieve

this the priority of a task τi accessing a global resource Rq has to be boosted

enough that no other task, even those that are granted access to other global

resources can preempt τi.

9.4.1 Request Rules

Rule 1: Whenever a task τi in an application Ak is granted access to a global

resource Rq the priority of τi is boosted to ρi + ρmax(Ak). This ensures that

if multiple global resources become available to Ak, they are accessed in the

order of priorities of tasks requesting them. However, as soon as τi accesses

Rq , i.e., starts using Rq , its priority is further boosted to 2 ρmax(Ak) to avoid

preemption by other higher priority tasks that are granted access to other global

resources. This guarantees continued access to a global resource.

Rule 2: If Rq is not locked when τi requests it, τi is granted access to Rq . If

Rq is locked, Ak is added to the global priority-based queue of Rq if Ak is not

already in the queueτi is also added to the local queue of Rq and suspends.
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Rule 3: At the time Rq becomes available to Ak the eligible task within the

local queue of Rq is granted access to Rq .

Rule 4: When τi releases Rq , if there is no more tasks in Ak requesting Rq ,

i.e., the local queue of Rq in Ak is empty, Ak will be removed from the global

queue, otherwise Ak will remain in the queue. The resource becomes available

to the highest priority application in Rq’s global queue.

9.5 Schedulability Analysis under MSOS-Priority

In this section we derive the schedulability analysis of MSOS-Priority for pri-

oritized applications. Furthermore we describe extraction of interfaces of such

applications.

9.5.1 Computing Resource Hold Times

Similar to Lemma 1 in [3], it can be shown that whenever a task τi is granted

access to a global resource Rq , it can be delayed by at most one gcs per each

higher priority task τj where τj uses a global resource other than Rq . How-

ever, once τi starts using Rq, no task can preempt it (Rule 1). This avoids

preemptions of a task while executing within a gcs.

On the other hand, once a lower priority task τl starts using a global re-

source Rs before τi is granted access to Rq, τl will delay τi as long as τl is

using Rs because τl cannot be preempted (Rule 1). It is easy to see that τi will

not anymore be delayed by lower priority tasks that are granted access to global

resources other than Rq; whenever τi is granted access to a global resource Rq ,

in the worst-case it can be delayed for duration of the largest gcs among all

lower priority tasks in which they share global resources other than Rq .

Thus RHTq,k,i is computed as follows:

RHTq,k,i = Csi,q +Hi,q,k + max
∀τl∈τAk

, ρi>ρl

∧ Rs∈RG
Ak

, s 6= q

{Csl,s} (9.6)

9.5.2 Blocking Times under MSOS-Priority

Under MSOS-Priority, by blocking time we mean delays that any task τi may

incur from local lower priority tasks and as well as from other applications due

to mutually exclusive resources in the system. Local tasks of τi are the tasks

that are belong to the same application as τi.
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Similar to MSOS-FIFO, there are three possible blocking terms that a task

τi may incur. The first and second terms are blocking incurred from the local

tasks and are calculated the same way as for MSOS-FIFO [3]. Hence, be-

cause of space limitation we skip repeating explanation about how to derive

the calculations of the two first blocking terms shown in Equations 9.7 and 9.8

respectively. The third blocking term is the delay incurred from other applica-

tions and is calculated in a totally different way from that in MSOS-FIFO. The

blocking terms are as follows:

Local blocking due to local resources, denoted by Bi,1

Is the upper bound for the total blocking time that τi incurs from lower priority

tasks using local resources and is calculated as follows:

Bi,1 =

min {nG
i + 1,

∑

ρj<ρi

⌈Ti/Tj⌉n
L
j (τi)} max

ρj<ρi

∧ Rl∈RL
Ak

∧ ρi≤ceil(Rl)

{Csj,l} (9.7)

where ceil(Rl) = max {ρi| τi ∈ τl,k}, nG
i is the number of gcs es of τi, and

nL
j (τi) is the number of the critical sections in which τj requests local resources

with ceiling higher than the priority of τi.

Local blocking due to global resources, denoted by Bi,2

Is the upper bound for the maximum blocking time that τi incurs from lower

priority tasks using global resources and can be calculated as follows:

Bi,2 =
∑

ρj<ρi

∧ {τi,τj} ⊆ τAk

min {nG
i + 1, ⌈Ti/Tj⌉n

G
j } max

Rq∈RG
Ak

{Csj,q} (9.8)

Equation 9.8 contains all the possible delay introduced to the execution of

task τi from all gcs es of lower priority tasks including gcs es in which they

share a global resource with τi. Task τi incurs this type of blocking because

of priority boosting of lower priority tasks which are granted access to global

resources.
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Remote blocking, denoted by Bi,3

An application Ak may introduce different values of remote blocking times to

tasks in other applications. We clarify this issue by means of an example:

Example 1: Suppose that a task τx in an application Al requests a global

resource Rq which is already locked by a task within application Ak. In this

case Al will be added to the global queue of Rq if the queue does not already

contain Ak (Rule 2). If Ak has a lower priority than Al, after Ak releases Rq

it cannot lock Rq anymore as long as Al is in the global queue, i.e., as long as

there are more tasks in Al requesting Rq . On the other hand if Ak has a higher

priority than Al, before Al is granted access to Rq, it will be blocked by Ak on

Rq as long as Ak is in the global queue, i.e., as long as there are tasks in Ak

requesting Rq . In this case the maximum delay that τx incurs from Ak during

τx’s period is a function of the maximum number of requests from Ak to Rq

during Ti.

Thus the amount of remote blocking introduced by Ak to any task τx in any

other application Al depends on: (i) if Ak has a lower or higher priority than

Al, (ii) the period of τx.

Lemma 1. Under MSOS-Priority, whenever any task τi in an application Ak

requests a global resource Rq, only one lower priority application can block

τi; this delay is at most maxρAk>ρAl
{RHTq,l} time units.

Proof. At the time τi in Ak requests Rq , if a lower priority application Al has

already locked Rq, it will delayAk for at most RHTq,l time units. Since access

to global resources is granted to applications based on their priorities, after Rq

is released by Al no more lower priority applications will have a chance to

access Rq before Ak.

Whenever any task τi in Ak requests a global resource Rq, it may be de-

layed by multiple jobs of each task within a higher priority application that

request Rq . All these jobs requesting Rq will be granted access to Rq before

τi. The maximum delay that τi incurs from these jobs in any time interval t is

a function of the maximum number of them executing during t.

Definition 1. Maximum Application Locking Time (MALT), denoted by Zq,k(t)
represents the maximum delay any task τx in any lower priority application

Al may incur from tasks in Ak during time interval t, each time τx requests

resource Rq .

In order to calculate the total execution of all critical sections of all tasks

in application Ak in which they use global resource Rq during time interval t,
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we first need to calculate the total execution (workload) of all critical sections

of each individual task in Ak in which it requests Rq during t. The maximum

number of jobs generated by task τj during time interval t equals ⌈ t
Tj
⌉ + 1.

On the other hand, whenever a job Jj of τj locks Rq it holds Rq for at most

RHTq,k,j time units. Jj may lock Rq at most nG
j,q times where nG

j,q is the

maximum number of requests to Rq issued by any job of τj . Thus, the to-

tal workload of all critical sections of τj locking Rq during time interval t is

denoted by Wj(t, Rq) and is computed as follows:

Wj(t, Rq) = (⌈ t
Tj
⌉+ 1) nG

j,q RHTq,k,j (9.9)

Now we can compute the maximum application locking time Zq,k(t) that is

introduced by tasks in Ak to any task sharing global resource Rq in any lower

priority application:

Zq,k(t) =
∑

τj ∈ τq,k

Wj(t, Rq) (9.10)

Equation 9.10 can be computed in isolation and without requiring any in-

formation from other applications because the only variable is t and other pa-

rameters, e.g., RHTq,k,j , are constants which means they are calculated using

only local information. Thus, Zq,k(t) remains as a function of only t.

Definition 2. Maximum Resource Wait Time (RWT) for a global resource Rq

incurred by task τi in applicationAk , denoted by RWTq,k,i(t), is the maximum

duration of time that τi may wait for remote applications on resourceRq during

any time interval t.

A RWT under MSOS-Priority, considering delays from lower priority ap-

plications (Lemma 1) and higher priority applications (Equation 9.10), can be

calculated as follows:

RWTq,k,i(t) =
∑

ρAk<ρAl

Zq,l(t) + nG
i,q max

ρAk>ρAl

{RHTq,l} (9.11)

Under MSOS-FIFO, a RWT for a global resource is a constant value which is

the same for any task sharing the resource. However, a RWT under MSOS-

Priority is a function of time interval t and may differ for different tasks. The

RWT for a global resourceRq of a task τi in applicationAk during the period of

τi equals to RWTq,k,i(Ti) which covers all delay introduced from both higher

priority and lower priority applications sharing Rq:

RWTq,k,i =
∑

ρAk<ρAl

Zq,l(Ti) + nG
i,q max

ρAk>ρAl

{RHTq,l} (9.12)
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where RWTq,k,i(Ti) is denoted by RWTq,k,i.

Computing Remote Blocking: Equation 9.12 can be used to compute remote

blocking Bi,3 for task τi. Based on Lemma 1 the maximum delay introduced

by lower priority applications on a global resource Rq to any task request-

ing Rq is the same for all the tasks. Thus, regardless of the type of the local

queues (FIFO-based or priority-based) the second term in the computation of

RWTq,k,i, shown in Equation 9.12, is the same for all tasks requesting Rq .

The first term is also independent of the type of local queues as the total inter-

ference from higher priority applications during the period of each task is the

same for both types of local queues. Hence, despite of the type of local queues,

Bi,3 can be calculated as follows:

Bi,3 =
∑

∀Rq∈RG
Ak

∧ τi ∈ τq,k

RWTq,k,i (9.13)

9.5.3 Interface

The interface of an application Ak has to contain information regarding global

resources which is required for schedulability analysis when the applications

co-execute on a multi-core platform. It has to contain the requirements that

have to be satisfied for Ak to be schedulable. Furthermore, the interface has to

provide information required by other applications sharing resources with Ak.

Looking at Equation 9.12, the calculation of the RWT of a task τi, in ap-

plication Ak, for a global resource Rq , requires MALT’s, e.g., Zq,h(t), from

higher priority applications as well as RHT’s, e.g., RHTq,l, from lower priority

applications. This means that to be able to calculate the RWT’s, the interfaces

of the applications have to provide both RHT’s and MALT’s for global re-

sources they share. Thus the interface of an application Ak is represented by

Ik(Qk, Zk, RHT ) where Qk represents a set of requirements, Zk is a set of

MALT’s and a MALT is a function of time interval t. MALT’s in the interface

of application Ak are needed for calculating the total delay introduced by Ak to

lower priority applications sharing resources with Ak. RHT in the interface is

a set of RHT’s of global resources shared by applicationAk. RHT’s are needed

for calculating the total delay introduced by Ak to higher priority applications.

Extracting the Requirements

The requirements in the interface of an application under MSOS-Priority are

extracted similar to MSOS-FIFO [3]. The difference is that RWT’s under
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MSOS-Priority may have different value for each task.

Starting from the schedulability condition of τi, the maximum value of

blocking time Bmax
i that τi can tolerate without missing its deadline can be

calculated as follows:

τi is schedulable using the fixed priority scheduling policy if the following

statement holds:

0 < ∃t ≤ Ti rbfFP(i, t) ≤ t, (9.14)

where rbfFP(i, t) denotes request bound function of τi which computes the

maximum cumulative execution requests that could be generated from the time

that τi is released up to time t, and is computed as follows:

rbfFP(i, t) = Ci +Bi +
∑

ρi<ρj

(⌈t/Tj⌉Cj) (9.15)

By substituting Bi by Bmax
i in Equations 9.14 and 9.15, Bmax

i can be calcu-

lated as follows:

Bmax
i = max

0<t≤Ti

(t− (Ci +
∑

ρi<ρj

(⌈t/Tj⌉Cj))) (9.16)

The total blocking of task τi is the summation of three blocking terms calcu-

lated in Section 9.5.2:

Bi = Bi,1 +Bi,2 +Bi,3 (9.17)

Since Bi,1 and Bi,2 totally depend on internal factors, i.e., the parameters from

the application that τi belongs to, they are considered as constant values, i.e.,

they depend on only internal factors of τi’s application. Thus, Equation 9.17

can be rewritten as follows:

Bi = γi +
∑

∀Rq∈RG
Ak

∧ τi ∈ τq,k

RWTq,k,i (9.18)

where γi = Bi,1 +Bi,2.

Equation 9.18 shows that the total blocking time of task τi is a function

of maximum resource wait times of τi for the global resources accessed by τi.
With the achieved Bmax

i and Equation 9.18 a requirement can be extracted:

γi +
∑

∀Rq∈RG
Ak

∧ τi ∈ τq,k

RWTq,k,i ≤ Bmax
i

(9.19)
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or:
∑

∀Rq∈RG
Ak

∧ τi ∈ τq,k

RWTq,k,i ≤ Bmax
i − γi

(9.20)

Global Schedulability Test

The schedulability of each application is tested by validating its requirements.

Any application Ak is schedulable if all its requirements in Qk are satisfied.

Validating the requirements in Qk requires maximum resource wait times, e.g.,

RWTq,k,i of global resources accessed by tasks withinAk which are calculated

using Equation 9.12.

One can see that most of the calculations in the scheduling analysis of ap-

plications can be performed off-line and in isolation. The global schedulability

analysis remains as testing a set of requirements which are in form of linear

inequalities. This makes MSOS an appropriate synchronization protocol for

open systems on multi-cores where applications can enter during run-time. An

admission control program can easily test the schedulability of the system by

revalidating the requirements in the interfaces.

As shown in Section 9.5.3, in an application each task sharing global re-

sources produces one requirement, i.e., the number of requirements in the ap-

plication’s interface equals to the number of its tasks sharing global resources.

In the worst-case all tasks in all applications share global resources. The global

schedulability test requires that all requirements in all applications are vali-

dated, thus the complexity of interface-based scheduling is O(m n) where m is

the number of applications and n is the number of tasks per application.

9.6 The Optimal Algorithm for Assigning Priori-

ties to Applications

MSOS-Priority has the potential to increase the schedulability if appropriate

priorities are assigned to the applications. In this section to assigns unique pri-

orities to the applications we propose an optimal algorithm similar to the algo-

rithm presented by Davis and Burns [13]. The algorithm is based on interface-

based scheduling test which only requires information in the interfaces. The

algorithm is optimal in the sense that if it fails to assign priorities to applica-

tions, any hypothetically optimal algorithm will also fail.
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Figure 9.1: The Priority Assignment Algorithm

The pseudo code of the algorithm is shown in Figure 9.1. Initially all ap-

plications are assigned lowest priority, i.e., 0 (Line 3). The algorithm tries

to, in an iterative way, increase the priority of applications. In each stage it

leaves the applications that are schedulable (Line 10) and increases the prior-

ity of not schedulable applications (the for-loop in Line 18). The priority of

all unschedulable applications is increased by the number of the schedulable

applications in the current stage (Line 19). If there are more than one schedu-

lable applications in the current stage, their priorities are increased in a way

that each application gets a unique priority; the first application’s priority is

increased by 0, the second’s is increased by 1, the third’s is increased by 2,
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etc (the for-loop in Line 22). When testing the schedulability of an application

Ak, the algorithm assumes that all the applications that have the same prior-

ity as Ak are higher priority applications. This assumption helps to test if Ak

can tolerate all the remaining applications if they get a higher priority than Ak .

Thus, when calculating RWT’s based on Equation 9.12 the algorithm changes

condition ρAk < ρAl in the first term to ρAk ≤ ρAl.

Figure 9.2 illustrates an example of the algorithm.
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Figure 9.2: Illustrative Example for the Priority Assignment Algorithm

In the example shown in Figure 9.2, there are four applications sharing re-

sources. The algorithm succeeds to assign priorities to them in three stages.

First the algorithm gives the lowest priority to them, i.e., ρAi = 0 for each

application. In this stage the algorithm realizes that applications A1 and A3

are schedulable but A2 and A4 are not schedulable, thus the priority of A2 and

A4 are increased by 2 which is the number of schedulable applications, i.e., A1

and A3. Both A1 and A3 are schedulable, hence to assign unique priorities, the

algorithm increases the priority of A1 and A3 by 0 and 1 respectively. Please

notice that increasing the priority of the schedulable applications can be done

in any order since their schedulability has been tested assuming that all the

other ones have higher priority. Thus the order in which the priorities of these

applications are increased will not make any of them unschedulable. In the

second stage, only applications A2 and A4 are remained. At this stage the al-

gorithm finds that A4 is not schedulable, hence its priority has to be increased.

In the last stage, A4 also becomes schedulable and since all applications are

now schedulable the algorithm succeeds. If at any stage the algorithm cannot

find any schedulable application, meaning that none of the remaining applica-

tions can tolerate the other ones to have higher priorities, the algorithm fails.
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In Audsley’s priority assignment algorithm [12] to find a solution (if any) at

most m(m+ 1)/2 schedulability tests will be performed where m is the num-

ber of tasks to be prioritized. Similarly, in our algorithm to find a solution (if

any), in the worst case at each stage only one application is schedulable and is

assigned a priority. In the next stage the schedulability of all the remaining ap-

plications has to be performed again. In this case after the algorithm is finished,

the schedulability test for the applications with priority m,m− 1, . . . , 2, 1 has

been performed m,m − 1, . . . , 2, 1 times respectively, and hence the maxi-

mum number of schedulability tests is m(m+ 1)/2 where m is the number of

applications to be prioritized.

However, it may happen that at a stage, x number of applications are

schedulable where x > 1. In this case the priority of all remaining applications

(i.e. applications that are unschedulable at the current stage) will be increased

by x (Figure 9.1, Line 19 of the algorithm). This means that, the maximum

number of schedulability tests for each of the remaining applications would be

decreased by x, i.e., the number of stages the algorithm runs is decreased by x.

The more similar stages exist the lower the maximum number of schedulabil-

ity tests will be. As a result the maximum number of stages and consequently

the number schedulability tests are decreased. This is not the case in Aud-

sley’s OPA; depending on the order of selecting tasks (or applications), it is

still possible that m(m + 1)/2 schedulability tests would be performed, e.g.,

OPA finds a solution in exactly m stages. E.g., in the illustrative example in

Figure 9.2, OPA will assign priorities in 4 stages, and if it selects the applica-

tions in order A4, A2, A3, A1, it will perform 4, 3, 1, 1 schedulability tests for

A4, A2, A3 and A1 respectively, and in total 9 tests will be performed. On the

other hand, our algorithm assigns priorities in 3 stages and it performs 3, 2, 1,

1 schedulability tests for A4, A2, A3 and A1 respectively, and in total 7 tests

are performed.

Lemma 2. The priority assignment algorithm is optimal, i.e., if the algorithm

fails to assign unique priorities any hypothetically optimal algorithm will also

fail.

Proof. We assume that the priority assignment algorithm at some stage fails,

lets assume that it fails at stage f (1 ≤ f ≤ m where m is the number of appli-

cations), i.e., at stage f the algorithm does not find any schedulable application

and thus fails. This means that there is no application in the system that can

be schedulable with priority f − 1. We assume that a hypothetically optimal

algorithm succeeds to assign unique priorities to applications. This means that

any application Ak is assigned a unique priority where 0 ≤ ρAk ≤ m − 1.
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Thus there is a schedulable application that has priority equal to f − 1. This is

in contradiction with the assumption with which the priority assignment algo-

rithm fails.

9.7 Schedulability Tests Extended with Preemp-

tion Overhead

If the tasks allocated on a processor do not share resources, since any job can

preempt at most one job during its execution, it suffices to inflate the worst-

case execution time of each task by one preemption overhead [15]. This type of

preemption which originates from different priority levels of tasks is common

under all synchronization protocols discussed in this paper, hence, we assume

that this overhead is already inflated in the worst-case execution times. When

tasks share local resources under the control of a uniprocessor synchroniza-

tion protocol, e.g., SRP, an additional preemption overhead has to be added

to the worst-case execution times. We assume that the worst-case execution

times are also inflated with this preemption overhead as the synchronization

protocols under partitioned scheduling algorithms generally assume reusing a

uniprocessor synchronization protocol for handling local resources.

However, when tasks share global resources, depending on the synchro-

nization protocol used, the preemption overhead may not be the same for dif-

ferent protocols.

9.7.1 Local Preemption Overhead

Under a suspend-based protocol, e.g., MSOS-Priority, MPCP, OMLP, when-

ever a task τi requests a global resource if the resource is locked by a task in a

remote processor (application), τi suspends. While τi is suspending, lower pri-

ority tasks can execute and request global resources as well. Later on when τi
is resumed and finishes using the global resource, it can be preempted by those

lower priority tasks when they are granted access to their requested global re-

sources. Each lower priority task τl can preempt τi up to ⌈Ti/Tl⌉n
G
l times.

On the other hand τl cannot preempt τi more than nG
i + 1 times. Thus, τi can

be preempted by any lower priority task τl at most min{nG
i + 1, ⌈Ti/Tl⌉n

G
l }

times.

Task τi may also experience extra preemptions from higher priority tasks

requesting global resources. Whenever a higher priority task τh requests a

global resource which is locked by remote tasks, it suspends and thus τi has
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the chance to execute. When τh is granted access to the resource it will preempt

τi. This may happen up to ⌈Ti/Th⌉n
G
h times.

Thus, the total number of extra preemptions that a task τi may experience

from local tasks, because of suspension on global resources, is denoted by

Lpreemi and is calculated as follows:

Lpreemi =
∑

ρl<ρi

min{nG
i + 1, ⌈Ti/Tl⌉n

G
l }

+
∑

ρh>ρi

⌈Ti/Th⌉n
G
h

(9.21)

The preemption overhead in Equation 9.21 is due to suspension of tasks

while they are waiting for global resources. Spin-based protocols do not suffer

from this preemption overhead at all as they do not let a task suspend while

waiting for a global resource.

9.7.2 Remote Preemption Overhead

Besides the preemption overhead a task τi, may incur from local tasks, it may

incur preemption overhead propagated from tasks on remote processors/applic-

ations. Under a synchronization protocol, when a task τr is allowed to be

preempted while it is using a global resource Rq , i.e., τr is within a gcs,

the preemption overhead will make the critical section longer which in turn

makes remote tasks wait longer for Rq . The more preemptions τr can expe-

rience within a gcs the more remote preemption overhead it will introduce to

the remote tasks. FMLP, OMLP and MSOS-Priority do not let a task using

a global resource be preempted, i.e., tasks execute non-preemptively within a

gcs, therefore they are free from remote preemption overhead. However, under

MPCP and MSOS-FIFO a task within a gcs can be preempted by other tasks

within gcs es and thus remote preemption overhead has to be included in their

schedulability tests. Under MPCP, a task within a gcs can be preempted by

gcs es from both lower priority and higher priority tasks [5]. Under MSOS-

FIFO a task within a gcs can only be preempted by higher priority tasks within

their gcs es. Under both MPCP and MSOS-FIFO a gcs of a task τi in which it

accesses a global resource Rq can be preempted by at most one gcs per each

task τj in which it accesses a global resource other than Rq. This is because

the preempting task τj will not have chance to execute and enter another gcs
before τi releases Rq. The reason is that the priority of a task within a gcs is

boosted to be higher than any priority of the local tasks.
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Under MPCP the priority of a gcs of a task τi in which it requests a global

resourceRq is boosted to its remote ceiling which is the summation of the high-

est priority of any remote task that may request Rq and the highest priority in

the local processor plus one. Thus under MPCP, a gcs can be preempted by any

gcs with a higher remote ceiling. Consequently, under MPCP the maximum

number of preemptions a gcs of τi may incur, equals to the maximum number

of tasks containing a gcs with a higher remote ceiling. On the other hand, un-

der MSOS-FIFO a gcs of τi in which it requests a global resource Rq can only

be preempted by gcs es of higher priority tasks in which they access a resource

other than Rq. Thus, under MSOS-FIFO the maximum number of preemptions

a gcs of τi, in which it access Rq , may incur equals to the maximum number of

higher priority tasks with a gcs in which they access any global resource other

than Rq.

The length of gcs es has to be inflated by the preemption overhead they

may incur. This means gcs es become longer and under MSOS-FIFO it leads

to longer RHT’s.

9.8 Experimental Evaluation

In this section we present our experimental evaluations for comparison of MS-

OS-Priority to other synchronization protocols under the fixed priority parti-

tioned scheduling algorithm. We compared the performance of protocols with

regard to the schedulability of protocols using response time analysis. We have

evaluated suspend-based as well as spin-based protocols. All spin-based syn-

chronization protocols perform the same with regarding to global resources,

because in all of them, a task waiting for a global resource performs busy wait.

Thus the blocking times in those protocols are the same. We present the re-

sults of the spin-based protocols in one group and represent the protocols by

SPIN. In this category we put MSRP, FMLP (short resources), as well as a

version of MSOS-FIFO in which tasks waiting for global resources perform

busy wait. However, the suspend-based protocols, i.e., MSOS-Priority, MPCP,

FMLP (long resources), OMLP and MSOS-FIFO perform differently in differ-

ent situations and thus we present their performance individually.

9.8.1 Experiment Setup

We determined the performance of the protocols based on the schedulability of

randomly generated task sets under each protocol. The tasks within each task
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set allocated on each processor were generated based on parameters as follows.

The utilization of each task was randomly chosen between 0.01 and 0.1, and

its period was randomly chosen between 10ms and 100ms. The execution

time of each task was calculated based on its utilization and period. For each

processor, tasks were generated until the utilization of the tasks reached a cap

or a maximum number of 30 tasks were generated. The utilization cap was

randomly chosen from {0, 3, 0.4, 0.5}.

The number of global resources shared among all tasks was 10. The num-

ber of critical sections per each task was randomly chosen between 1 and 6.

The length of each critical section was randomly chosen between 5µs and

225µs with steps of 20µs, i.e., 5, 25, 45, etc.

Preemption overhead: The preemption overhead that we chose was inspired

by measurements done by Bastoni et al. in [14] where they measured the cache-

related preemption overhead as a function of WSS of tasks. To cover a broad

range of overhead, i.e., from very low (or no) per-preemption overhead to very

high per-preemption overhead, for each task set the per-preemption overhead

was randomly chosen (in µs) from {0, 20, 60, 140, 300, 620, 1260, 2540}.

This covers preemption overhead for tasks with very small WSS, e.g., 4 kilo-

bytes, as well as tasks with very large WSS, e.g., around 4 megabytes.

We generated 1 million task sets. In the generated task sets the number

of task sets were between 115 and 215 for each setting, where the number of

settings was 6336. We repeated the experiments three times and we did not

observe any significant difference in the obtained results. This means that 1
million randomly generated samples can be representative for our settings.

9.8.2 Results

The results of our experiments show that different synchronization protocols

can be more sensitive to some factors than others, meaning that depending on

different settings some of protocols may perform better.

When ignoring preemption overhead, MSOS-Priority, MPCP and SPIN

mostly perform significantly better than other protocols. MSOS-Priority per-

forms better than both MPCP and SPIN as the number of processors and (or)

the length of critical sections (Figures 9.3(a) and 9.3(b))1 is increased. How-

ever, increasing the utilization cap and (or) the number of critical sections per

task punishes MSOS-Priority more than MPCP and SPIN. Figures 9.3(c) and

9.3(d) show the schedulability performance of the protocols against the length

1Please notice that in all the figures showing the results of the experiments the lines connecting

points are used to illustrate the trends and they do not represent any regression.
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of critical sections and number of processors respectively, when the preemp-

tion overhead is ignored. As shown in Figures 9.3(d), OMLP is less sensitive to

increasing the number of critical sections as it drops more smoothly compared

to the rest of the protocols. For 6 critical sections per task, OMLP performs

better than all protocols except MSOS-Priority and SPIN.
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(a) Performance of synchronization protocols

against the length of critical sections. Number

of processors=12, utilization cap=0.3, number

of critical sections per task=3.
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(b) Performance of synchronization protocols

against the number of processors. Utilization

cap=0.3, number of critical sections per task=3,
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(c) Performance of synchronization protocols

against the utilization cap. Number of proces-

sors=8, number of critical sections per task=3,

length of critical sections=45 µs.
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(d) Performance of synchronization protocols

against the number of critical sections per task.

Number of processors=12, utilization cap=0.3,

length of critical sections=45 µs.

Figure 9.3: Performance of synchronization protocols when the preemption

overhead is ignored

As one can expect, the performance of the suspend-based protocols de-

creases as the preemption overhead is increased (Figure 9.4). Despite of the

value of per-preemption overhead, MSOS-Priority almost always outperforms

all other suspend-based protocols. Only in some cases where the preemption

overhead is ignored, MSOS-Priority performs similar to MPCP.

For lower per-preemption overhead, e.g., less than 140µs, in most cases

where the number of processors and (or) the length of critical sections is rel-

atively large MSOS-Priority outperforms spin-based protocols as well (Fig-

ure 9.5). However, in this paper we have not considered system dependant

overhead, e.g., overhead of queue management. We believe that, similar to
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Figure 9.4: Performance of synchronization protocols as the preemption over-

head increases. Number of processors=12, utilization cap=0.3, number of crit-

ical sections per task=3, length of critical sections=25 µs.

the preemption overhead, the system overhead will favor spin-based protocols

significantly, and for relatively large amount of system overhead the suspend-

based protocols may hardly (if not at all) outperform spin-based protocols,

specially when the lengths of critical sections are relatively short.

Among suspend-based protocols MPCP drops sharply against preemption

overhead already from very low per-preemption overhead followed by MSOS-

FIFO. The reason that MPCP and MSOS-FIFO are more sensitive to preemp-

tion overhead is that they are the only protocols that allow preemption of a task

while it is using a global resource, i.e., the task is within a gcs. Hence, only

under these two protocols tasks may experience remote preemption overhead

which according to the results seems to be expensive.

The local preemption overhead regarding suspension is common for all

suspend-based protocols. As shown in Figure 9.4, when the preemption over-

head is very low, e.g., 20 µs per-preemption, the suspend-based protocols

are affected less. MPCP does not survive as the per-preemption overhead

reaches 60µs and MSOS-FIFO does not survive either as the preemption over-

head reaches 140µs. For per-preemption overhead around 300µs only MSOS-

Priority survives and when the per-preemption overhead reaches 620µs none

of the suspend-based protocols survive.

So far we have seen that MSOS-Priority generally outperforms suspend-

based protocols and in many cases it even performs better than spin-based pro-

tocols. However, it has not been clear how effective the priority assignment

algorithm (Section 9.6) is and how much it helps MSOS-Priority protocol to

perform better. To investigate the effectiveness of the priority assignment al-
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Figure 9.5: MSOS-Priority outperforms spin-based protocols in many cases

for lower per-preemption overhead, e.g., as the length of critical sections is

increased. Number of processors=16, utilization cap=0.3, number of critical

sections per task=2, per-preemption overhead=140µs.

gorithm we performed experiments in which we compared the performance

of MSOS-Priority where the priorities of applications are assigned by the pri-

ority assignment algorithm to the performance of MSOS-Priority where the

priorities were assigned randomly. The results showed that the priority assign-

ment algorithm increases the schedulability of MSOS-Priority significantly. As

shown in Figure 9.6, the priority assignment algorithm boosts the performance

of MSOS-Priority significantly specially when the number of applications (pro-

cessors) is increased. The reason is that larger number of applications gives the

priority assignment algorithm more flexibility when it assigns priorities to the

applications.

To further illustrate an overview of relationship between the performance of

protocols and different parameters, we have used a bilinear modeling method

called Principal Component Analysis (PCA) [4]. PCA can be used to visualize

and interpret relationships and insights when investigating an output against

multiple variables. We have used PCA to observe which parameters and how

strong they contribute to the differences among the synchronization protocols.

Figure 9.7 illustrates the effect of different parameters on the synchronization

protocols using PCA. P , UC, CN , CL, and O denote the number of pro-

cessors, utilization cap per processor, the number of critical sections per task,

length of each critical section and per-preemption overhead respectively. The

closer the angle between a parameter and a protocol to 0 or 180 the more cor-

related the protocol is to the parameter positively or negatively respectively.

Besides, the longer the vector of a parameter is the stronger the correlation is.



148 Paper C

ææçèæçéæçêæçëæçìæçíæçîæçïæçðè
ë ï èé èíñòóôòõö÷øòùúûôüòýþÿ÷��ÿ�

ö�
������	
 ���
�����	�� ���	����	���

���	���� ���������� �
�	������è� ����	����	������ �é��è��é�
Figure 9.6: Performance of MSOS-Priority where priorities of the applica-

tions are assigned by the priority assignment algorithm against its performance

where the priorities are assigned randomly. Utilization cap=0.3, number of

critical sections per task=3, length of critical sections=85 µs.

An interesting interpretation illustrated in Figure 9.7, is that the suspend-

based protocols are most negatively correlated to the preemption overhead,

i.e., among other parameters the preemption overhead affects negatively the

suspend-based protocols the most. Among suspend-based protocols, MPCP

is affected the most followed by MSOS-FIFO. On the other hand the spin-

based protocols are mostly affected by the length of the critical sections and

the number of processors followed by the number of critical sections and the

utilization cap. Briefly speaking, the preemption overhead favors spin-based

protocols while the length of critical sections and the number of processors

favor the suspend-based protocols.

9.9 Conclusion

In this paper, we have presented a new alternative of our previously presented

synchronization protocol MSOS for independently-developed real-time appli-

cations on multi-cores [3]. MSOS was originally developed for applications

that are not prioritized on accessing shared resources. In this paper we extend

MSOS to support prioritized applications. In the new MSOS, called MSOS-

Priority, we have extended the notion of maximum resource wait time (RWT)

as well as maximum application locking time (MALT) which have to be func-

tions of arbitrary time intervals. Moreover we have proposed an optimal pri-

ority assignment algorithm to assign priorities to applications under MSOS-

Priority.
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Figure 9.7: Investigate the sensitivity of the synchronization protocols against

all factors using PCA.

We have performed experimental evaluation where the results showed that

MSOS-Priority when combined with the priority assignment algorithm mostly

performs significantly better than the existing suspend-based synchronization

protocols under partitioned scheduling. In many cases it also outperforms spin-

based protocols as well. Beside the good performance of MSOS-Priority, it of-

fers the possibility of using it in open systems on a multi-core platform where

an application is allocated on a dedicated core. An admission control program

can perform better by using the interface-based global scheduling offered by

MSOS-Priority since most of the complex calculations in the scheduling anal-

ysis of applications is performed off-line. Finally, MSOS generally offers real-

time applications to be developed and analyzed in isolation and in parallel.

The schedulability analysis of MSOS-Priority can be improved by tight-

ening of the calculations of the local blocking terms as well as MALT’s can

further , e.g., by using actual critical section lengths rather than using multi-

ple of the longest critical sections. As a future can be the work on tightening

the blocking terms. All the existing locking protocols mentioned in this pa-

per require shared memory platforms. An interesting future work is to develop
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synchronization protocols for real-time applications on multi-cores by means

of message passing instead of shared memory synchronization.
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Abstract

In this paper we generalize our previously proposed synchronization protocol

(MSOS) for resource sharing among independently-developed real-time appli-

cations (components) on multi-core platforms. Each component is statically al-

located on a dedicated subset of processors (cluster) whose tasks are scheduled

by its own scheduler. In this paper we focus on multiprocessor global fixed-

priority preemptive scheduling algorithms to be used to schedule the tasks of

each component on its cluster. Sharing the local resources is handled by the Pri-

ority Inheritance Protocol (PIP). For sharing the global resources (shared across

components) we have studied the usage of FIFO and Round-Robin queues for

access across the components and the usage of FIFO and prioritized queues

within components for handling sharing of these resources. We have derived

schedulability analysis for the different alternatives and compared their per-

formance by means of experimental evaluations. Finally, we have formulated

the integration phase in the form of a nonlinear integer programming prob-

lem whose techniques can be used to minimize the total number of processors

required to guarantee the schedulability of all components.
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10.1 Introduction

The availability of multi-core platforms has attracted a lot of attention in mul-

tiprocessor embedded software analysis and runtime policies, protocols and

techniques. As the multi-core platforms are to be the defacto processors, the

industry must cope with a potential migration towards multi-core platforms.

However, the emergence of multi-core architectures introduce challenges in

allowing for an efficient and predictable execution of industrial software sys-

tems.

For industry, when migrating to multi-core platforms it is important to be

possible that several of the existing real-time components (applications) co-

execute on a shared multi-core platform. The components may have been

developed with different techniques, e.g., with different scheduling policies.

However, when the components co-execute on the same multi-core platform

they may share resources that require mutually exclusive access.

Looking at industrial systems, to speed up their development, it is not un-

common that large and complex systems are divided into several semi-indepen-

dent subsystems (components) which are developed in parallel. In order to

guarantee temporal correctness of these systems, scheduling techniques are

used to enforce predictable execution of subsystems.

Two main approaches for scheduling real-time systems on multiproces-

sors (multi-cores) exist; global and partitioned scheduling [1, 2]. Under global

scheduling, e.g., Global Earliest Deadline First (G-EDF), tasks are scheduled

by a single scheduler and each task can be executed on any processor. Un-

der partitioned scheduling, tasks are statically assigned to processors and tasks

within each processor are scheduled by a uniprocessor scheduling protocol,

e.g., Rate Monotonic (RM) or Earliest Deadline First (EDF). The generaliza-

tion of global and partitioned scheduling algorithms is called clustered schedul-

ing [3, 4], in which tasks are statically assigned to a subset (cluster) of proces-

sors, and within each cluster tasks are scheduled using a global scheduling

algorithm.

When the components co-execute on a shared multi-core platform they may

share resources that require mutually exclusive access.

Allocation of real-time components on a multi-core architecture may have

the following alternatives: (i) one processor includes only one component,

(ii) one processor may contain several components, (iii) a component may

be allocated on multiple processors. In our previous work [5] we have stud-

ied and developed a synchronization protocol for the first alternative which is

called Multiprocessors Synchronization protocol for real-time Open Systems
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(MSOS). For the second alternative, the techniques developed for uniproces-

sors can be used, e.g., the methods presented in [6] and [7], by which the second

alternative becomes similar to the first alternative. There are actually other al-

ternatives different from those that we mentioned here. The work presented by

Lipari and Bini [8] and the framework presented by Shin et al. [9] are examples

of alternatives different from what we have mentioned here. In these works a

component is allocated on a virtual multiprocessor (cluster) which consists of

a set of virtual processors. The virtual processors are allocated on the physical

processors (dynamicaly or statically) and components may share physical pro-

cessors. However, in this paper we have only focused on the cases where the

components are allocated on dedicated clusters where they do not share proces-

sors. Generalization of MSOS to the alternative (iii), where each component is

allocated on a cluster, is the objective of this paper.

10.1.1 Contributions

The contributions of this paper are as follows:

• We develop a synchronization protocol for resource sharing among real-

time components on a multi-core platform, where each component is

allocated on multiple dedicated processors. We have named the new

protocol as Clustered MSOS (C-MSOS).

• Given a real-time component, we derive an interface-based schedulabil-

ity condition for C-MSOS. The interface abstracts the information re-

garding resource sharing of a component. We show that for schedula-

bility analysis of a component there is no need for detailed information

from other components, e.g., scheduling protocol or priority setting pol-

icy of other components.

• We formulate the integration of components as a nonlinear integer pro-

gramming problem for which the algorithms in this domain can be used

to minimize the total number of required processors for all components.

10.1.2 Related Work

Clustered scheduling techniques have been developed for multiprocessors (mul-

ti-cores) [3, 9]. However, in these works tasks are assumed to be independent

and sharing of mutually exclusive resources is not considered.



10.1 Introduction 157

A non-exhaustive set of existing approaches for handling resource shar-

ing on multiprocessor platforms includes; Distributed Priority Ceiling Pro-

tocol (DPCP) [10], Multiprocessor PCP (MPCP) [10], Multiprocessor SRP

(MSRP) [11], Flexible Multiprocessor Locking Protocol (FMLP) [12]

Brandenburg and Anderson [13] presented a new locking protocol, called

O(m) Locking Protocol (OMLP) and recently [14] the same authors have ex-

tended OMLP to clustered scheduling. However, in difference with C-MSOS,

OMLP is a suspension-oblivious protocol. Under a suspension-oblivious lock-

ing protocol, the suspended jobs in the scheduling analysis are assumed to oc-

cupy processors and thus blocking is counted as demand. To test the schedula-

bility, the worst-case execution times of tasks are inflated with blocking times.

This means that blocking time of any task is introduced to all lower priority

tasks. In this paper we focus on suspension-aware locking synchronization in

which suspended jobs are not assumed to occupy processors, i.e., C-MSOS is

a suspension-aware synchronization protocol.

Easwaran and Andersson proposed a synchronization protocol [15] under

global fixed-priority scheduling protocol. In the paper, the authors have derived

schedulability analysis of the Priority Inheritance Protocol (PIP) under global

scheduling algorithms and proposed a new protocol called P-PCP which is

a generalization of PIP. For suspension-aware resource sharing under global

scheduling policies, this is the only work that provides a schedulability test,

hence in our paper we use their schedulability test and assume that within a

component local resources are accessed using PIP.

Faggioli et al. proposed a server-based resource reservation protocol for

resource sharing called Multiprocessor BandWidth Inheritance protocol (M-

BWI) [16] which can be used for open systems on multiprocessors where hard,

soft and non real-time systems may co-execute. M-BWI uses a mixture of

spin-based and suspend-based approachs for tasks waiting for resources. The

underlying scheduling policy is not required to be known. However, M-BWI

assumes that the number of processors are known. The implementation of M-

BWI seems to be complex as various states for servers have to be preserved

during run-time. Furthermore, under M-BWI tasks have to be aware of each

other, e.g., to establish the chain of blocks, which may make it difficult to use

M-BWI with black box or legacy components.

In all the aforementioned existing synchronization protocols on multipro-

cessors, except the work of Faggioli et al. [16], it is assumed that the tasks of

one single real-time system are scheduled on a multiprocessor platform. C-

MSOS, however, allows a component to use its own scheduling policy and

it abstracts the timing requirements regarding global resources shared by the
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component in its interface, hence, it is not required to reveal its task attributes

to other components which it shares resources with. Besides, C-MSOS offers

various queue handling methods for managing resource sharing. However, re-

sults observed from our experimental evaluations reveal poor performance for

some of the queue handling methods while confirms higher performance for

some others methods. Recently, in industry, co-executing of several separated

components (systems) on a multi-core platform (called virtualization) has been

considered to reduce hardware costs [17]. We believe that C-MSOS is a natural

fit for synchronization under virtualization of real-time components on multi-

cores where each component is allocated on multiple processors.

Furthermore, C-MSOS is an appropriate locking protocol for open systems.

In an open system components can enter the system during run-time, i.e., new

components can start executing while some components are already executing.

Although the existing resource sharing protocols under partitioned and global

scheduling can also be adjusted to work for open systems, however, most of

the scheduling analysis of components under C-MSOS is performed offline

and the schedulability test of the components is summarized in a set of linear

inequalities in their interfaces. Thus, when introducing components during

run-time, an admission control program will perform better under C-MSOS, as

it only needs to revalidate the requirements rather than performing the whole

scheduling analysis.

Usually in the synchronization protocols for multiprocessors the number of

processors is assumed to be a known parameter. However, in the scheduling

analysis of C-MSOS, we consider the number of processors for a component as

a variable which facilitates minimization of the total number of processors in

the integration phase. This is done by means of extracting parametric and flex-

ible requirements for each component where they are functions of the number

of processors on which the component will be allocated.

10.2 System and Platform Model

We assume that the multiprocessor (multi-core) platform is composed of iden-

tical, unit-capacity processors with shared memory. We consider a set of real-

time components, i.e., real-time (sub)systems, aimed to be allocated on the

multiprocessor platform. A real-time component consists of a set of real-time

tasks. A component may also include constituent components, i.e., hierarchi-

cal components, however, we focus on components composed of tasks only.

Each component is allocated on a dedicated subset of processors, called cluster.
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Each component has its local scheduler which can be any multiprocessor global

scheduling algorithm, e.g., G-EDF. The jobs generated by tasks of a compo-

nent can migrate among the processors within its cluster, however migration of

jobs among clusters is not allowed. In this paper we focus on schedulability

analysis for the global fixed-priority preemptive scheduling algorithm.

A component Ck consists of a task set denoted by τCk
which includes nk

sporadic tasks τi(Ti, Ei, Di, ρi, {(Csi,q, ni,q)}) where Ti denotes the mini-

mum inter-arrival time between two successive jobs of task τi with worst-case

execution time Ei, relative deadline Di and ρi as its unique base priority. A

task τi has a higher priority than another task τj if ρi > ρj . The priority of a

job of a task may temporarily be raised by a synchronization protocol which is

denoted as the effective priority. The tasks in component Ck may share a set of

mutually exclusive resources RCk
which are protected using semaphores. The

set of shared resources RCk
consists of two sets of different types of resources;

local and global resources. A local resource is only shared by tasks within

the same component (i.e., intra-component resource sharing) while a global re-

source is shared by tasks from more than one component (i.e., inter-component

resource sharing). The sets of local and global resources accessed by tasks in

component Ck are denoted by RL
Ck

and RG
Ck

respectively. {(Csi,q, ni,q)} is a

set of tuples, where Csi,q in tuple (Csi,q , ni,q) denotes the worst case execu-

tion time of the longest critical section of task τi in which τi uses resource Rq

and ni,q is the maximum number of critical sections of any job of τi in which it

uses resourceRq . We also denote CsTi,q as the maximum total amount of time

that any job of τi uses Rq during its execution.The set of tasks in component

Ck sharing Rq is denoted by τq,k. In this paper, we focus on non-nested critical

sections. We also assume constrained-deadline tasks, i.e., Di ≤ Ti for any τi.
A job of task τi is specified by Ji and the utilization factor of τi is denoted by

ui where ui =
Ei

Ti
.

Component Ck will be allocated to a cluster of mk processors and mk

can be any number in [m
(min)
k ,m

(max)
k ] where m

(min)
k and m

(max)
k are the

minimum and maximum number of processors required by Ck respectively.

However, the requirements of Ck are more restricted for lower numbers of mk.

On the other hand, the more the value of mk is increased towards m
(max)
k ,

the more its requirements are relaxed and consequently it can tolerate more

blocking incurred from other components. Choosing an efficient value for mk,

in the integration phase, depends on the requirements of other components with

which Ck shares resources.
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10.3 Resource Sharing

To adhere the component-based development, the global resource requirements

of each component have to be represented in an interface (Definition 3) and

the internal details of the component have to be abstracted in the interface.

Furthermore, the interface should also provide information about the maximum

time duration that each global resource can be held by the component. The

tasks within a component should not need any detailed information about the

tasks, e.g., deadlines, periods, etc., from other components, neither do they

need to be aware of the scheduling algorithms or synchronization protocols in

other components.

Definition 1: Resource Hold Time (RHT) of a global resource Rq by task τi is

the maximum duration of time that Rq can be locked by τi. The time interval

in which τi is said to holds Rq is between the time τi locks Rq and the time τi
releases Rq which except the length of critical section in which τi uses Rq , it

also contains the delay that τi may incur from other tasks. The RHT of Rq by

τi from component Ck, where Ck is allocated on mk processors, is denoted by

RHTq,k,i(mk). Consequently, the resource hold time of a global resource Rq

by component Ck, i.e., the maximum duration of time that Rq can be locked

by any task in Ck, denoted by RHTq,k(mk), is as follows:

RHTq,k(mk) = max
τi ∈ τq,k

{RHTq,k,i(mk)} (10.1)

The parameter mk in RHTq,k(mk) indicates that the resource hold times

are dependent on mk, and hence for different values of mk the duration of time

a task may lock a global resource may change.

The concept of resource hold times for compositional real-time applica-

tions on uniprocessors was first studied in [18]. In our previous work [5]

we extended this concept to multi-core (multiprocessor) platforms to calcu-

late resource hold times of global resources under multiprocessor partitioned

scheduling. In this paper we further extend RHT’s to multiprocessor clustered

scheduling.

Definition 2: Maximum Resource Wait Time (RWT) for a global resource Rq

in component Ck, denoted as RWTq,k, is the worst-case duration of time that

whenever any task τi within Ck requests Rq it can be delayed by other compo-

nents, i.e., Rq is held by tasks from other components.

Definition 3: Component Interface: A component Ck is abstracted and repre-

sented by an interface denoted by Ik(Qk(mk) , Zk(mk) , m
(min)
k , m

(max)
k ).

Please notice that the index of a component, i.e., k, in the specification of the
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interface is used to clarify the relationships in the analysis and it does not in-

dicate any order among the components. Furthermore, presence of the index

does not mean that the number of the components are known.

Global resource requirements of Ck are encapsulated in the interface by

Qk(mk) which is a set of resource requirements that have to be satisfied for

Ck to be schedulable. Similar to RHT the parameter mk in Qk(mk) also, indi-

cates that the requirements are dependent on mk and by changing the value of

mk the requirements may become different. For Ck to be schedulable on any

mk processors (m
(min)
k ≤ mk ≤ m

(max)
k ), all requirements in Qk(mk) have

to be satisfied. Each requirement rl(mk) in Qk(mk) which depends on mk,

is represented as a linear inequality which indicates that an expression of the

maximum resource wait times of one or more global resources should not ex-

ceed a value gl(mk) calculated in the interface extraction phase (Section 10.6),

e.g., r1(mk)
def
= 4RWT2,k + 3RWT3,k ≤ g1(mk). Each requirement is ex-

tracted from one task requesting at least one global resource (Section 10.6).

Thus, the number of requirements equals to the number of tasks in component

Ck that may request global resources. A formal definition of the requirements

is as follows:

Qk(mk) = {rl(mk)} (10.2)

where

rl(mk)
def
=

∑

∀Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ gl(mk)
(10.3)

where αi,q is a constant, i.e., it only depends on internal parameters of Ck (Sec-

tion 10.6).

The global resource requirements in Qk(mk) of a component Ck are ex-

tracted from the schedulability analysis of the component in isolation, i.e., to

extract the requirements of a component, no information from other possible

existing components on the same multi-core platform is required.

Zk(mk) in the interface, represents a set Zk(mk) = {Zq,k(mk)} where

Zq,k(mk) is the Maximum Component Locking Time (MCLT ). Zq,k(mk)
represents the maximum duration of time that Ck can delay the execution of

any task τx in any component Cl (l 6= k) whenever τx requests Rq , i.e., any

time any task in Cl requests Rq its execution can be delayed by Ck for at most

Zq,k(mk) time units.
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10.4 Locking Protocol for Real-Time Components

under Clustered Scheduling

Under our proposed protocol which we call C-MSOS (Clustered MSOS), a

component can be allocated on one cluster, thus the tasks within each compo-

nent have to be scheduled using a global scheduling policy and local resources

are to be handled using a locking protocol under global scheduling policies.

We assume that the Priority Inheritance Protocol (PIP) for multiprocessors

is used for sharing local resources among tasks of a component. We extend the

schedulability analysis presented by Easwaran and Andersson [15] such that it

can be compatible with C-MSOS. First we review the characteristics of PIP for

multiprocessors.

10.4.1 PIP on Multiprocessors

Assume that a task set is scheduled on a multiprocessor composed of m pro-

cessors, and that shared resources are handled by PIP. Whenever a job Ji is

blocked on a resource which is locked by another job Jj with a lower base

priority than Ji, the effective priority of Jj is raised to the base priority of Ji if

the effective priority of Jj is not already higher than the base priority of Ji. In

this case, Ji is said to be directly blocked by Jj if Ji is among the m highest

priority jobs [15].

Under PIP, besides direct blocking, a job Ji can also incur blocking from

other lower-priority jobs whose effective priorities have been raised above Ji’s
priority. Furthermore, Ji may incur extra interference from higher priority jobs

when they have locked a resource that Ji has requested and Ji is among the m
highest priority jobs.

10.4.2 General Description of C-MSOS

Under C-MSOS, sharing local resources is handled by the multiprocessor PIP.

Each global resource is associated with a global queue in which components re-

questing the resource are enqueued. Since prioritizing the components may not

be possible, the global queues can be implemented in either FIFO or Round-

Robin manner. In [5] we only studied FIFO-based global queues. In this paper

we study both types. Since the resource queues are also shared among tasks

and components it may cause contention. We assume that access to queues

is performed in an atomic manner, e.g., the index of a FIFO queue has to be
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an atomic variable. In this paper we do not consider the overhead regarding

contention on resource queues.

Within a component the jobs requesting a global resource are enqueued in

a local queue. The local queues can be either FIFO-based or priority-based

queues. The blocking time on global resources should only depend on the

duration of global critical sections (gcs) in which jobs access global resources.

This bounds blocking times on global resources as a function of (length and

number of) global critical sections only. Thus the priority of jobs accessing

global resources should be boosted to be higher than any base priority within

the component. The boosted priority of any job of task τi requesting any global

resource equals to ρmax(Ck) + 1, where ρmax(Ck) = max {ρi|τi ∈ Ck}. If

the priorities of multiple jobs are boosted they will be served in a FIFO-based

queue. Boosting the priority of a job when it executes within a gcs ensures that

it can only be delayed by jobs within gcs es.

10.4.3 C-MSOS Rules

The C-MSOS request rules are as follows:

Rule 1: Access to the local resources is handled by PIP.

Rule 2: When a job Ji within a component Ck requests a global resource

Rq the priority of Ji is increased immediately to its boosted priority, i.e.,

ρmax(Ck) + 1.

Rule 3: If global resource Rq is free, access to Rq is granted to Ji. If Rq is

locked (by a local job or another component);

(i) if the global queues are FIFO-based a placeholder for Ck is added to the

global queue of Rq , and

(ii) if the global queues are Round-Robin-based, Ck’s placeholder is added to

the global queue.

A placeholder of a component in a global queue indicates that the compo-

nent has requested the resource. For Round-Robin global queues there will be

at most one placeholder per each component in any global queue while a FIFO

global queue may contain more than one placeholder for any component shar-

ing the corresponding resource. This means that under Round-Robin global

queues, when a component requests a global resource its placeholder is added

to the associated queue only if the queue does not already contain the place-

holder. However, under FIFO-based global queues, each request from a com-

ponent to a global resource adds a placeholder to the associated global queue,

i.e., for each request from tasks in the component to a resource a placeholder

of the component is added to the queue.
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Locally, for both types of global queues, Ji is located in the local queue of

Rq and suspends.

Rule 4: When a global resource Rq becomes available to component Ck the

eligible job is granted access to Rq.

Rule 5: When Ji is granted access to Rq all processors of the component may

be busy with other jobs executing global resources other than Rq . If at any time

the number of jobs that are granted access to global resources is larger than the

number of available processors they will be served in a FIFO-based queue;

the jobs that are granted access to global resources and waiting for processors

are enqueued in a FIFO queue denoted by allResourcesQ. Obviously jobs in

allResourcesQ are granted access to different global resources and the queue

cannot contain more than one job per each global resource at any time. At the

time Ji is granted access to Rq , if all processors are occupied by other jobs

accessing other global resources, Ji is added to allResourcesQ. As soon as

an executing job releases a global resource (it enters a non-critical section) it

will be preempted by the job (say Jx) at the top of allResourcesQ (if any),

and Jx will hold the global resource it has been granted access to and it will be

removed from allResourcesQ.

Rule 6: When Ji releases Rq;

(i) in the case of using FIFO global queues, the placeholder of Ck from the top

of the global FIFO queue of Rq will be removed and Rq becomes available to

the component whose placeholder is now at the top of Rq’s global queue,

(ii) in the case of using Round-Robin global queues, Rq becomes available to

the next component whose placeholder is in the queue. If the local queue is

empty the placeholder of Ck is removed.

10.4.4 Illustrative Example

In this section we show how C-MSOS works by showing an snapshot of an

time interval where tasks and components interference among on global re-

sources. In this example, shown in Figure 10.1, we assume that both global

and local queues for handling the shared global resources are FIFO-based. The

example contains three components, C1, C2 and C3. The behavior of the tasks

within components C2 and C3 are abstracted away, and the behavior of these

two components only their resource requests and usage has been shown. In

the component C1, however, we have shown detailed execution of its tasks to

illustrate how C-MSOS handles the shared resources.

We assume that components C1, C2 and C3 are allocated on 2, 2, and 3

processors respectively. Component C1 uses resources R1, R2, R3 and R4,
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component C2 uses resources R1, R2 and component C3 uses resources R1,

R3 and R4. Component C1 consists of 4 tasks, τ1, τ2, τ3 and τ4 where τ1 and

τ4 have the lowest and highest priorities respectively. τ1 uses resource R2, both

τ2 and τ3 use resources R1 and R3, and finally τ4 uses resources R3 and R4.

At time instant 1, τ2 issues a request to R1 and it starts using R1 since it is

not locked by any other component of local task. At time instant 1.5 component

C2 issues a request to R1. since R1 is already locked by C1, a placeholder of

C2 is added to the global queue of R1. At time instant 2 component C3 also

requests R1 and a placeholder for C3 is added to the global queue of R1. C2

issues another request to R1 at time instant 2.5 and another placeholder for

C2 is added to R1’s global queue. τ2 releases R1 at time instant 2.5. At this

time C2 is granted access to R1 since its placeholder is at the top of the global

queue of R1. After C2 releases R1, C3, C2 (again), and C1 (τ3) will be granted

access to R1, i.e., in the same order that they have been added to the global

FIFO queue of R1.

τ4 (from time 2.5 to 5), τ3 (from time 3 to 5.5), τ2 (from time 3.5 to 6.5)

and τ1 (from time 3.5 to 6) incur remote blocking on R4, R1, R3 and R2

respectively.

τ1 is granted access to R2 at time 6, however, it cannot access R2 yet be-

cause both processors of C1 are occupied by τ3 and τ4 where they are using

global resources, i.e., R1 andR4 respectively. Thus, τ1 is added to allResourc-
esQ and waits until a processor is free. τ2 is also added to allResourcesQ at

time 6.5 since it is granted access to R3 and it cannot access R3. At time instant

7, τ3 releases its global resource. At this time τ1 can start using its global re-

source R2 since it is at the top of allResourcesQ. At time 7.5 τ4 also releases

its global resource and thus τ2 can start using R3. τ3 and τ4 are preempted by

τ1 (at time 7) and τ2 (at time 7.5) respectively since the priorities of τ1 and τ2
have been boosted to be higher than any priority in C1.

Component C3 is blocked on R3 by τ2 in C1, from time 6.5 to time 10.5.

A part of the blocking time is due to the critical section of τ2, i.e., the time

interval between 7.5 and 10.5, the other part of the blocking time is due to

interference from other tasks, i.e., from τ3, τ4 and τ1, executing in their global

critical sections (Equations 10.13 and 10.14). However, since component C1

is allocated on two processors, the total amount of time tasks other than τ2
executing in their critical sections where they delay τ2 between time 6.5 and

7.5 is divided by 2, i.e., accessing τ2 to R3 is delayed for 1 time unit.

At time instant 11.5, τ4 is blocked by τ3 on R3 for 0.5 time unit and the

request of τ2 to R3 is delayed by τ4 from time instant 12 to 13.5.
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Figure 10.1: Illustrative example

10.5 Schedulability Analysis

In this section we extend the response time analysis for multiprocessor PIP [15]

to be applicable to C-MSOS.
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10.5.1 Schedulability Analysis of PIP

Easwaran and Andersson [15] have shown that under multiprocessor PIP the

response time of any task τi denoted by RTi can be calculated as follows:

RTi = Ei + DBi + Ihp
(dsr)
i + Ihp

(osr)
i

+ Ihp
(nsr)
i + Ilpi

(10.4)

where

• DBi is an upper bound for the direct blocking (on local resources) that

τi incurs,

• Ihp
(dsr)
i is an upper bound for the amount of time that tasks with a higher

base priority than τi lock (local) resources shared by τi (direct shared

resources),

• Ihp
(osr)
i is an upper bound for the amount of time that tasks with a higher

base priority than τi may lock (local) resources not shared by τi (other

shared resources),

• Ihp
(nsr)
i is an upper bound for the amount of time that tasks with a

higher base priority than τi execute in their non-critical sections, i.e.,

they do not hold any resource (no shared resource),

• Ilpi is an upper bound for the amount of time that tasks with a lower

base priority than τi execute with a higher effective priority than τi.

All the aforementioned factors that contribute to response time of τi, except

Ihp
(nsr)
i , are delays inherent in local resources. Thus, for the sake of simplicity

we rewrite Equation 10.4 as follows:

RTi = Ei + Ihp
(nsr)
i + I local(τi) (10.5)

where I local(τi) = DBi + Ihp
(dsr)
i + Ihp

(osr)
i + Ilpi.

To upper bound the worst-case interference from any task τj to task τi in

the interval RTi Easwaran and Andersson presented a worst case execution

pattern [15]. In this pattern, during the interval RTi, the carry-in job of τj
executes as late as possible and all following jobs execute as early as possible.

This pattern was first proposed by Bertogna and Cirinei [19] and later extended

by Easwaran and Andersson to maximize the total interference from a certain
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Figure 10.2: Worst-case execution pattern regarding giving importance to a

certain portion of execution time.

portion x (e.g., critical sections) of execution time of any job τj to τi in RTi. In

the extended pattern, x time units of execution of the carry-in job of τj appear

as late as possible and the x time units of execution time of its all the following

jobs appear as early as possible (Fig. 10.2). In this execution pattern Easwaran

and Andersson have shown that in any interval t the total execution of specific

x time units of jobs of any task τj is maximized as follows:

Wj(t, x) = xNj(t, x) + min {x, t− x+Dj − TjNj(t, x)} (10.6)

where Nj(t, x) =
⌊

t−x+Dj

Tj

⌋

.

Based on this worst-case execution patternDBi, Ihp
(dsr)
i , Ihp

(osr)
i , Ihp

(nsr)
i

and Ilpi are calculated as follows (we skip repeating the rationales behind these

calculations [15] and we only present the final calculations to show an overview

of each term and the parameters that the term is dependent on, e.g., which terms

are dependent on the number of processors):

DBi =
∑

Rq ∈RL
Ck

∧ τi ∈ τq,k

ni,q max
ρj<ρi

∧ τj ∈ τq,k

{Csj,q} (10.7)

Ihp
(dsr)
i =

∑

ρj>ρi

Wj

(

RTi,
∑

Rq ∈RL
Ck

∧ {τi,τj}⊂ τq,k

CsTj,q

)

(10.8)



10.5 Schedulability Analysis 169

Ihp
(osr)
i =

∑

ρj>ρi
Wj

(

RTi,
∑

Rq ∈RL
Ck

∧ τj ∈ τq,k
∧ τi 6∈ τq,k

CsTj,q

)

mk

(10.9)

Ihp
(nsr)
i =

∑

ρj>ρi
Wj

(

RTi, Ej −
∑

Rq ∈RL
Ck

∧ τj ∈ τq,k

CsTj,q

)

mk

(10.10)

Ilpi =

∑

ρj<ρi
Wj

(

RTi,
∑

Rq ∈RL
Ck

∧ τj ∈ τq,k
∧ ⌈Rq⌉>ρi

CsTj,q

)

mk

(10.11)

where ⌈Rq⌉ = max {ρi|τi ∈ τq,k}

Improved Response Times for mk Highest Priority Tasks

Easwaran and Andersson [15] further improved the computation of the re-

sponse times for mk highest priority tasks. The improved response times of

mk highest priorities is calculated as follows:

RTi =











Ei +DBi + Ihp
(dsr)
i |τH(τi)| < mk

Ei +DBi + Ihp
(dsr)
i

+ Ihp
(osr)
i + Ihp

(nsr)
i + Ilpi Otherwise

(10.12)

where |τH(τi)| is the number of tasks with priority higher than τi.

10.5.2 Schedulability Analysis of C-MSOS

Computing Resource Hold Times

In this section we determine the calculation of resource hold times of tasks and

components.

Lemma 1. Assuming that componentCk is allocated on mk processors, when-

ever a task τi in Ck is granted access to a global resource Rq , if the number
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of tasks in Ck that share global resources is at most mk, τi is not delayed by

any other task, otherwise τi can be delayed by other tasks by at most Hi,q(mk)
time units where:

Hi,q(mk) =

∑

τj 6=τi

(

max
Rl ∈RG

Ck
, l 6=q

∧ τj ∈ τl,k

{Csj,l}
)

mk

(10.13)

Proof. When task τi in Ck is granted access to a global resource Rq, no any

other task that does not execute in a global critical section, can delay τi because

the priority of τi is boosted to be higher than the base priority of any other task

in Ck (Rule 2). In this case τi can only be delayed by other tasks accessing

global resources other than Rq . However, if the number of tasks sharing global

resources is less than or equal to mk, these tasks cannot delay τi on using Rq

because the other tasks can use their granted resources in parallel with τi since

they are granted access to different resources. However, if the number of these

tasks is larger than mk, at the time Rq becomes available to τi, if all proces-

sors are occupied by tasks accessing other global resources τi will be added

to allResourcesQ and in the worst case all other tasks that share other global

resources have been granted access to their requested global resources before

τi, e.g., they have been ahead of τi in allResourcesQ (Rule 5). However,

since these tasks are granted access to different global resources and they do

not compete each other on resources and hence they can use their resources

in parallel, and hence the maximum length of the execution of these in using

other resources can be divided by mk, i.e., at any time if the number of those

tasks that are ahead of τi is less than mk, they do not interfere with τi. For

example in Figure 10.1 task τ1 is granted access to global resource R2 at time

instant 6 but it cannot use the resource since τ3 and τ4 are using their resources,

however as there are two processors for the component, the delay that τ1 incurs

from them between time 6 and 7 equals to the time τ3 and τ4 execute in critical

sections divided by 2. Thus an upper bound of the delay that any job of τi
incurs by other jobs when it is granted access to Rq , denoted by Hi,q, can be

calculated by Equation 10.13.

τi itself will hold Rq for at most Csi,q time units. Thus the maximum

duration of time that τi can lock Rq can be calculated as follows:

RHTq,k,i(mk) = Csi,q +Hi,q(mk) (10.14)
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As shown in Equation 10.1 the resource hold time of a resource in a com-

ponent is the longest resource hold time among all tasks sharing the resource.

Looking at Equations 10.13 and 10.14, it is clear that all parameters except

mk are constants, i.e., the parameters are internal parameters of Ck. Thus

RHTq,k,i(mk) and consequently RHTq,k(mk) is a function of only mk.

Computing Maximum Resource Wait Times

Each time a component Ck requests a global resource Rq it can be blocked

by each component Cl (where l 6= k) up to Zq,l(ml) time units. Thus the

worst-case waiting time RWTq,k for Ck to wait until Rq becomes available is

bounded by a summation of all MCLT s of other components on Rq:

RWTq,k =
∑

l 6=k

Zq,l(ml) (10.15)

Calculation of MCLT s for components depends on the type of global

queues. In the case of using FIFO global queues, whenever a component Cl

requests a global resource Rq the worst case happens when all tasks from

component Ck sharing Rq have issued requests before Cl, i.e., are already

in the global FIFO. On the other hand each task in Ck may hold Rq up to

RHTq,k,i(mk) time units, hence we can calculate Zq,k(mk) as follows:

Zq,k(mk) =
∑

∀τi, τi ∈ τq,k

∧ Rq ∈RG
Ck

RHTq,k,i(mk) (10.16)

If the global queues are of type Round-Robin, each component can have at

most one placeholder in each global queue, e.g., whenever a global resourceRq

is released by a job in component Ck the resource Rq should become available

to the next component even if there are jobs waiting for Rq in the local queue

of Rq . Thus when Cl is waiting for resource Rq it may wait for component

Ck for at most max{RHTq,k,i} time units which by definition (Equation 10.1)

equals to RHTq,k(mk):

Zq,k(mk) = RHTq,k(mk) (10.17)

Response Times under C-MSOS

Under C-MSOS, the response time of any task τi in component Ck, further

depends on interference with other jobs regarding global resource sharing, i.e.,
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interference with other jobs within the same component as well as the other

components. Besides the factors mentioned in Section 10.5.1, the execution

of any job of τi may further be delayed by the following factors, denoted as

global factors:

• The tasks with base priority lower than τi that may lock global resources

shared by τi. DBG
i (direct global blocking) denotes an upper bound

on the amount of time (workload) that these tasks lock global resources

shared by τi in interval RTi. In Figure 10.1, the time interval between

11.5 and 12 where τ4 is delayed by τ3 is an example of this type of

blocking.

• The tasks with higher (base) priority than τi that access global resources

shared by τi. An upper bound of the amount of time that these tasks

may delay τi during interval RTi is denoted by Ihp
(dsgr)
i (direct shared

global resources). An example for this type of delay, shown in Fig-

ure 10.1, is the time interval between 12 and 13.5 where the request of

τ2 to R3 is delayed by higher priority task τ4. The reason that the delay

incurred from local tasks is separately calculated by DBG
i and Ihp

(dsgr)
i

for lower and higher priority tasks respectively, is that (we will show the

computation of these terms later in this section) they are calculated dif-

ferently.

• The tasks with base priority lower than τi that may access any global

resource. The tasks holding global resources may delay the execution

of any task since their effective priority is boosted to be higher than any

task’s priority. Ilp
(gr)
i (global resources) denotes an upper bound on the

amount of time that jobs of these tasks execute with boosted priority in

interval RTi. E.g., The execution of τ4 (between time 7.5 and 9.5) and

τ3 (between time 7 and 10.5) in their non-critical sections are delayed by

lower priority tasks τ1 and τ2 when they are accessing global resources

(R2 and R3 respectively).

• The components other than Ck whose tasks may lock global resources

shared by τi. RBi (remote blocking) is an upper bound on the amount

of time that tasks in those components lock global resources shared by

τi during interval RTi. E.g., as shown in Figure 10.1, tasks τ4 (between

time 2.5 and 5), τ3 (between time 3 and 5.5), τ2 (between time 3.5 and

6.5) and τ1 (between time 3.5 and 6), incur remote blocking introduced

by components C2 and C3.
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Considering these interferences under C-MSOS, the response time of task

τi is calculated as follows:

RTi = Ei + Ihp
(nsr)
i + I local(τi)

+DBG
i + Ihp

(dsgr)
i + Ilp

(gr)
i + RBi

(10.18)

Computing the global factors: We now compute the global factors that may

delay the execution of any job of task τi in componentCk . We use the dispatch

pattern in Fig. 10.2 and the definition of workload in Equation 10.6 to calculate

these factors.

(i) Computing DBG
i :

• For FIFO-based local queues: Whenever τi requests a global resource

Rq , it may happen (in the worst case) that all the lower-priority jobs

in Ck which share Rq have requested it before τi and thus are located

in the local FIFO queue ahead of τi. Hence, the maximum delay that

each request of τi to Rq may incur from these lower priority tasks is the

summation of the longest gcses of these tasks in which they use Rq . On

the other hand τi may request Rq for at most ni,q times. In the worst

case, τi may incur this type of blocking on each global resource that it

shares with local lower priority tasks. Thus, DBG
i can be calculated as

follows:

DBG
i =

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

(

ni,q

∑

ρj<ρi

∧ τj ∈ τq,k

Csj,q
)

(10.19)

• For priority-based local queues:

Lemma 2. A request of task τi to a global resource Rq can be delayed

by the local lower priority tasks sharing Rq for the duration of at most

one global critical section among all those tasks in which they use Rq .

Proof. Whenever τi requests global resource Rq , it may happen that a

lower priority task τl in Ck has already locked Rq . However, after τl
releases Rq no other lower priority task that has requested Rq can be

granted access to Rq before τi. The reason is that the local tasks request-

ing Rq wait in a prioritized queue. Thus, the delay each request of τi to

Rq may incur from local lower priority tasks sharing Rq can be for the

duration of at most one global critical section among all these tasks.
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Considering Lemma 2 and the fact that τi can request each global re-

source Rq up to ni,q times, DBG
i can be calculated as follows:

DBG
i =

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

ni,q max
ρj<ρi

∧ τj ∈ τq,k

{Csj,q} (10.20)

(ii) Computing Ihp
(dsgr)
i :

• For FIFO-based local queues: The calculation of this term is similar

to the calculation term DBG
i when local FIFO queues are used with the

difference that Ihp
(dsgr)
i is the upper bound for the delay incurred from

higher priority tasks. In addition to lower priority tasks, in the worst case

all higher priority tasks that have requested Rq before τi will be located

ahead of τi in the local FIFO queue each time τi requests Rq . Thus

Ihp
(dsgr)
i is calculated as follows:

Ihp
(dsgr)
i =

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

(

ni,q

∑

ρj>ρi

∧ τj ∈ τq,k

Csj,q
)

(10.21)

• For priority-based local queues: In the case of prioritizing local tasks

on accessing global resources, task τi can repeatedly be delayed by each

higher priority task τj in Ck. Any job of a higher priority task τj , say Jj ,

can delay τi on accessing each global resource Rq that they share, up to

CsTj,q . Thus, the maximum delay that τi incurs from Jj on all global

resources that it shares with τi equals to the following:

∑

Rq ∈RG
Ck

∧ {τi,τj}⊂ τq,k

CsTj,q

The upper bound for the total workload of all global critical sections of

τj , in which it uses global resources with τi, during time interval RTi

equals to the following:

Wj

(

RTi,
∑

Rq ∈RG
Ck

∧ {τi,τj}⊂ τq,k

CsTj,q

)
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Consequently, Ihp
(dsgr)
i which upper bounds the total delay incurred

from all the higher priority tasks to τi on accessing its global resources

during RTi can be calculated as follows:

Ihp
(dsgr)
i =

∑

ρj>ρi

Wj

(

RTi,
∑

Rq ∈RG
Ck

∧ {τi,τj}⊂ τq,k

CsTj,q

)

(10.22)

(iii) Computing Ilp
(gr)
i : The priority of a task τj accessing a global resource

is boosted and is higher than any base priority in the component (Rule 2).

Thus, τj can delay the execution of any higher priority task τi when τi is not

executing in a global critical section. The maximum time that τj may execute

in any of its global critical sections during RTi equals to:

Wj

(

RTi,
∑

Rq ∈RG
Ck

∧ τj ∈ τq,k

CsTj,q

)

Please notice that this type of delay introduced to τi from lower prior-

ity tasks executing in their global critical sections is originated from priority

boosting and it is not because of competing with τi on global resources, i.e.,

they compete with τi on processors. These tasks may include the tasks that

share global resources with τi. However, the delay from the lower priority

tasks when they directly block τi on global resources is already calculated in

blocking term DBG
i .

Since the lower priority tasks that contribute to this type of delay to τi is not

because of competing on any global resource, if there are enough processors

they will not delay the execution of τi and they can execute in parallel. Thus,

the total workload of the global critical sections of these tasks during RTi has

to be divided by mk and Ilp
(gr)
i can be calculated as follows:

Ilp
(gr)
i =

∑

ρj<ρi
Wj

(

RTi,
∑

Rq ∈RG
Ck

∧ τj ∈ τq,k

CsTj,q

)

mk

(10.23)

Please notice that calculation of DBG
i , Ihp

(dsgr)
i and Ilp

(gr)
i does not de-

pend on the type of global queues (i.e., FIFO or Round-Robin), hence those

calculations are valid for both types. However, the execution delay introduced
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to task τi from other components with which τi shares global resources is cal-

culated differently depending on the type of global queues as explained in the

following:

(iv) Computing RBi for FIFO global queues:

• For FIFO-based local queues: Whenever τi requests a global resource

Rq , in the worst case all local tasks in Ck as well as all tasks from other

components sharing Rq , have requested Rq before τi. However, the de-

lays introduced to τi from the local tasks regarding shared global re-

sources are included in DBG
i and Ihp

(dsgr)
i . On the other hand, any

component Cl may block τi for at most Zq,l time units any time τi re-

quests Rq . This is because for FIFO global queues Zq,l covers the block-

ing time from all tasks in Cl sharing Rq and Zq,l is the summation of

resource hold times of all tasks from component Cl that share Rq (Equa-

tion 10.16). Consequently τi will wait up to RWTq,k =
∑

l 6=k

Zq,l time

units for all other components sharing Rq each time it requests Rq . Thus

for FIFO global queues RBi is calculated as follows:

RBi =
∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

ni,qRWTq,k (10.24)

• For priority-based local queues: Whenever task τi issues a request to

a global resource Rq a placeholder for Ck is added to the global queue

of Rq . In the worst case it will take up to RWTq,k time units to become

Ck’s turn to access Rq . However, it may happen that just before Ck is at

the top of the global FIFO, a higher priority task τh in Ck requests Rq .

Now when it becomes Ck’s turn to use Rq , task τh will use Rq because

tasks in Ck are waiting for Rq in a prioritized queue. Thus, the request

of τi is postponed to the next placeholder of Ck for Rq . This means that

each request to Rq from any higher priority task in Ck will add an extra

RWTq,k to the calculation of the delay that the request of τi to Rq incurs

(a similar case is illustrated by an example in [5]).

Considering that each gcs of a higher priority task τj in which it requests

Rq may add an extra RWTq,k to a request of τi to Rq , we need to calcu-

late the total number of gcs es of all jobs of τj during RTi. Each job of

τj may have nj,q requests to Rq and the maximum number of jobs of τj
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that may be generated in time interval RTi equals to ⌈RTi

Tj
⌉+ 1.

Besides that each request from higher priority tasks adds an extraRWTq,k

to the delay incurred by each request of τi to Rq, the request of τi itself

may also wait for Rq up to RWTq,k time units. Thus, for the case that

the local queues for accessing global resources are priority-based and the

global queues are FIFO-based, RBi can be calculated as follows:

RBi =
∑

Rq∈RG
Ck

∧ τi∈τq,k

(

ni,q +
∑

ρj>ρi

∧ τj∈τq,k

nj,q(⌈
RTi

Tj

⌉+ 1)
)

RWTq,k (10.25)

(v) Computing RBi for Round-Robin global queues:

• For FIFO-based local queues: When using global Round-Robin queues,

in the worst case each request from component Ck to a global resource

Rq may wait for one request per each component sharing Rq. On the

other hand every time task τi in Ck requests Rq , in the worst case all

local tasks have requested Rq before τi and are ahead of τi in the lo-

cal FIFO queue associated with Rq . Thus, in the worst case every local

request ahead of τi’s request as well as τi’s own request to Rq have to

wait for all other components up to RWTq,k =
∑

l 6=k Zq,l time units.

The maximum number of requests in the local queue of Rq , denoted by

|τq,k|, is the total number of tasks in Ck sharing Rq. Each of the lo-

cal tasks ahead of τi in the local FIFO queue of Rq will delay τi when

they lock and use Rq . However, the delay that the requests of τi to Rq

incur from local tasks when they use Rq are considered in calculations

of DBG
i and Ihp

(dsgr)
i . Thus, we can calculate RBi for Round-Robin

global queues where local queues are FIFO-based, as follows:

RBi =
∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

ni,q|τq,k|RWTq,k (10.26)

• For priority-based local queues: This case is similar to the case of us-

ing priority-based local queues with FIFO-based global queues. This

means that any request of τi to a global resource Rq may incur RWTq,k

time units per each request to Rq from higher priority tasks. Further-

more, each request of τi to Rq , itself may wait up to RWTq,k time units



178 Paper D

for other components accessing Rq . Thus, RBi for the case of using

Round-Robin-based global queues with priority-based local queues for

accessing global resources can also be calculated by Equation 10.25.

Looking at Equations 10.24 and 10.26 it may seem that the value of remote

blocking (RBi) under Round-Robin global queues is always greater than that

under FIFO global queues because under Round-Robin queues, the maximum

resource wait time for each global resource is multiplied by the number of tasks

sharing the global resource (e.g., |τq,k|). This is not true, because maximum

resource wait times are calculated differently depending on the type of global

queues; comparing Equations 10.16 and 10.17 shows that under Round-Robin

global queues maximum component locking times and consequently maximum

resource wait times (Equation 10.15) are smaller than that under FIFO global

queues. Thus depending on different factors, e.g., the number of tasks sharing

a global resource, it is possible that the remote blocking under either type of

global queues is larger than that under the other one.

10.5.3 Improved Calculation of Response Times under C-

MSOS

Easwaran and Andersson [15] have shown that under PIP, the response time

of any task τi among the mk highest priority tasks only depends on Ei, DBi

and Ihp
(dsr)
i which are the worst-case execution time of τi and the factors with

regarded to the local resources that τi shares. These factors represent sequential

executions and they do not depend on the number of processors available to Ck .

However, as shown by Easwaran and Andersson [15] the other factors (i.e.,

Ihp
(nsr)
i , Ihp

(osr)
i and Ilpi) are affected by the number of processors and they

do not affect response time of τi if τi is among the mk highest priority tasks.

In this section we present how the calculation of response times for some of

the mk highest priority tasks under C-MSOS can be improved.

Under C-MSOS, besides the mentioned sequential factors, the factorsDBG
i ,

Ihp
(dsgr)
i and RBi regarding the global resources accessed by τi are also se-

quential. This means that when τi is waiting for a locked global resource, the

waiting cannot be reduced even if there is a free processor in Ck. Thus the

factors DBG
i , Ihp

(dsgr)
i and RBi contribute to the response time of τi even if

τi is among the mk highest priority tasks in Ck, i.e., |τH(τi)| < mk. However,

τi can execute in parallel with other tasks accessing global resources as long as

τi has not requested these resources and the total number of tasks with higher
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(base or boosted) priority than τi is less than mk. Hence, Ilp
(gr)
i will not affect

RTi if there are enough processors.

Thus, if the summation of the number of tasks with a higher base priority

than τi, and the number of lower priority tasks which share any global re-

sources is less than mk, the execution of τi will never be delayed except the

times it is waiting for a locked resource. Thus we can rewrite the response time

calculation in Equation 10.18 for task τi as follows, where |τGL (τi)| denotes the

number of tasks with a lower priority than τi that share any global resources:

if |τH(τi)|+ |τGL (τi)| < mk:

RTi = Ei +DBi + Ihp
(dsr)
i +DBG

i + Ihp
(dsgr)
i +RBi (10.27)

otherwise

RTi = Ei +DBi + Ihp
(dsr)
i +DBG

i + Ihp
(dsgr)
i +RBi

+Ihp
(osr)
i + Ihp

(nsr)
i + Ilpi + Ilp

(gr)
i

(10.28)

10.6 Extracting Interfaces

A component Ck is abstracted by its interface Ik, which consists of four el-

ements; Qk(mk) , Zk(mk) , m
(min)
k and m

(max)
k (Definition 3). In Section

10.5.2 we have shown how to calculate the elements of Zk(mk) for FIFO and

Round-Robin global queues (Equations 10.16 and 10.17 respectively). In this

section we determine how to extract the requirements in Qk(mk) as well as

m
(min)
k and m

(max)
k by means of a schedulability test of C-MSOS.

10.6.1 Deriving Requirements

As shown in Equation 10.3, a requirement in Qk(mk) specifies that a linear ex-

pression whose variables are the maximum resource wait times of one or more

global resources should not exceed a value which is a function of mk, e.g.,

gl(mk). Each requirement is derived from the schedulability analysis of one

task that shares any global resources, i.e., each task sharing global resources

produces one requirement.

To guarantee schedulability of a component Ck on mk processors, for any

task τi in Ck , condition RTi ≤ Di has to be satisfied. Looking at the calcu-

lation of response times under C-MSOS (Section 10.5.2), the response time of
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tasks that do not share any global resources is only dependent on the local fac-

tors, i.e., for task τi the only factor in RTi that needs information from other

components (other than τi’s component) is the remote blocking factor RBi.

If τi does not share any global resources then RBi = 0, because it will not

be blocked on any global resource by remote components. Thus, the response

time of such task can be calculated without any requirement on external factors.

On the other hand, if τi shares global resources it may incur remote blocking.

However, the amount of remote blocking that τi can tolerate is limited and it

should not exceed a value that makes τi to miss its deadline.

The maximum acceptable response time of τi denoted by RT
(max)
i , is

when it equals to its deadline, i.e., RT
(max)
i = Di. During interval RT

(max)
i

(or Di) the delay introduced by local factors and global factors except remote

blocking RBi is constant which means that they can be calculated without any

requirement on external factors from other components. The remaining slack

(if any) can be taken as the maximum tolerable remote blocking. Thus the max-

imum remote blocking that τi can tolerate, denoted by RB
(max)
i , is calculated

as follows:

RB
(max)
i = RT

(max)
i − internali(mk)

where

internali(mk) = Ei +DBi + Ihp
(dsr)
i +DBG

i + Ihp
(dsgr)
i

+Ihp
(osr)
i + Ihp

(nsr)
i + Ilpi + Ilp

(gr)
i

by replacing RT
(max)
i with Di:

RB
(max)
i = Di − internali(mk) (10.29)

The terms in internali(mk) can intuitively be calculated using their cor-

responding equations in Section 10.5 by replacing RTi with Di where it is

applicable.

Looking at the calculation of RBi in Equations 10.24 and 10.26 for FIFO

and Round-Robin global queues respectively we can rewrite the calculation of

RBi as follows:

RBi =
∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k (10.30)
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where αi,q = ni,q for FIFO and αi,q = ni,q|τq,k| for Round-Robin queues

respectively. In both cases, αi,q is a constant, i.e., it depends only on the local

factors.

ConsideringRBi ≤ RB
(max)
i and by combining Equations 10.29 and 10.30

we can derive the following requirement:

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ Di − internali(mk) (10.31)

The requirement derived in Equation 10.31 adheres the definition of a re-

quirement in Equation 10.3 where gl(mk) = Di − internali(mk).

The discussion in Section 10.5.3 for improvement of response times can

also be applied here to improve (reduce) internali(mk) and consequently im-

prove (relax) the requirement in Equation 10.31 for some of the tasks among

the mk highest priority tasks sharing global resources:

If |τH(τi)|+ |τGL (τi)| < mk:

internali(mk) = Ei +DBi + Ihp
(dsr)
i +DBG

i + Ihp
(dsgr)
i (10.32)

otherwise

internali(mk) = Ei +DBi + Ihp
(dsr)
i +DBG

i + Ihp
(dsgr)
i

+Ihp
(osr)
i + Ihp

(nsr)
i + Ilpi + Ilp

(gr)
i

(10.33)

Lemma 3. In a componentCk, the maximum response time of a task τi sharing

global resources cannot further be decreased by increasing mk if |τH(τi)| +
|τGL (τi)| < mk, i.e., the requirement extracted from τi (Equation 10.31) cannot

be further relaxed.

Proof. As it can be seen in Equation 10.32, if condition |τH(τi)|+ |τGL (τi)| <
mk holds, internali(mk) cannot further be reduced even if mk is increased

since none of its terms are dependant on the number of processors that Ck is

allocated on, i.e., mk. Thus the maximum response time of τi (Equation 10.29)

cannot be decreased any more which leads to that the requirement extracted

from τi (Equation 10.31) cannot further be relaxed by increasing mk.
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10.6.2 Determine Minimum and Maximum Required Pro-

cessors

In this section we describe a method to determine m
(min)
k and m

(max)
k for

component Ck in its interface.

m
(min)
k is the minimum number of processors required by Ck such that it

is schedulable. Obviously ⌈Uk⌉ ≤ m
(min)
k where ⌈Uk⌉ =

∑

τ∈τCk

ui.

Theorem 1. Under C-MSOS, the minimum number of required processors for

component Ck to be schedulable, can be achieved by setting RBi = 0 for any

task τi sharing global resources, and is calculated as follows:

m
(min)
k = min

mx≥⌈Uk⌉

∧ Ck is schedulable on mx

{mx} (10.34)

Proof. Setting RBi = 0 means that τi does not need to tolerate any remote

blocking, i.e., in the best case its component is not co-executing with any com-

ponent that shares its global resources. On the other hand looking at the cal-

culations of the rest of the terms contributing to τi’s worst-case response time

RTi in Section 10.5, all the terms that are dependent on mk, e.g., Ilpi, Ilp
(gr)
i ,

monotonically decrease when mk increases, and consequently RTi monoton-

ically decreases by increasing mk. This means that increasing mk favors re-

sponse times. Thus, starting from ⌈Uk⌉ the first mk on whichCk is schedulable

will be m
(min)
k .

m
(max)
k is the maximum number of processors required forCk to be schedu-

lable, i.e., further increasing the number of processors for Ck does not favor

the schedulability of any component. In a component Ck the tasks that do

not share any global resources do not benefit (from the schedulability point of

view) from increasing the number of processors from m
(min)
k since these tasks

are already schedulable on m
(min)
k processors. However, as shown in Equa-

tion 10.31, for any task τi sharing global resources, the requirement extracted

from τi will be relaxed by increasing mk, i.e., τi can tolerate more remote

blocking (from other components) which benefits other components sharing

global resources with τi. Thus m
(max)
k is the maximum number of processors

where at least one requirement in Qk(mk) is relaxed, i.e., allocating Ck on mh

where mh > m
(max)
k does not further relax any requirement hence no compo-

nent will benefit from Ck being allocated on mh compared to the case where

Ck is allocated on m
(max)
k .
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Theorem 2. Under C-MSOS, m
(max)
k = |τH(τmin)| + 1, where τmin is the

task with minimum priority among all tasks sharing any global resources.

Proof. As shown by Lemma 3, the requirement extracted from a task τi sharing

any global resources, cannot further be relaxed by increasing mk, if |τH(τi)|+
|τGL (τi)| < mk. When increasing mk, as soon as all tasks sharing global re-

sources are among themk highest priority tasks, condition |τH(τi)|+|τGL (τi)| <
mk will hold for all of them. This is because if a task τi (that shares any

global resources) is among the mk highest priority tasks any task in τH(τi)
will also be among them. Furthermore since all tasks sharing global resources

are among the mk highest priority tasks any task in τGL (τi) as well as τi itself

are also among them, thus |τH(τi)| + |τGL (τi)| < mk holds for all these tasks.

Hence, by definition mk = m
(max)
k . On the other hand, as mk is increased,

the last task sharing global resources that becomes one of the mk highest pri-

ority tasks will be τmin. As soon as τmin belongs to mk highest priority tasks,

these mk tasks will only consist of all tasks in τH(τmin) and τmin itself. Thus

m
(max)
k = |τH(τmin)|+ 1.

10.7 Minimizing the Number of Required Proces-

sors for all Components

In this section we will show that using the information in the interfaces of com-

ponents the integration of all the real-time components on a multiprocessor

platform can be formulated as a Nonlinear Integer Programming (NIP) prob-

lem [20]. Formulating the integration phase as a NIP problem facilitates using

the techniques in this domain [20] for minimizing the total number of required

processors by all components.

A typical model of a NIP problem is represented as follows:

For n number of integer variables x1, · · · , xn, there is an objective function

f : Rn −→ R to be minimized (or maximized):

Minimize f(x1, · · · , xn) (10.35)

With a set of (nonlinear) inequality constraints g and a set of (nonlinear)

equality constraints h formed as follows:

gi(x1, · · · , xn) ≤ bi, i = 1, · · · , i = p
hj(x1, · · · , xn) = cj , j = 1, · · · , i = q

(10.36)
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If the objective function f or some of the constraints gi are nonlinear, the

problem is a NIP problem. An optimal solution (x̄1, · · · , x̄n) is a solution for

which all constraints hold and the output of the objective function is minimized.

Our goal is to minimize the number of total required processors by all com-

ponents in the integration phase. Thus, assuming that there are n components

to be integrated on a multiprocessor platform, the objective function will be

formed as follows:

Minimize f(m1, · · · ,mn) = m1 + · · ·+mn (10.37)

where mi is the number of processors that Ci will eventually be allocated on.

We rewrite the model of a requirement ri (Equation 10.31) in the require-

ment set Qk(mk) of a component Ck:

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ Di − internali(mk)

It can be shown that by replacing the terms of internali(mk) with their

calculations from the corresponding equations in Section 10.5, it can be sim-

plified as follows:

internali(mk) = βi +
δi
mk

(10.38)

where βi and δi are constant numbers which means that they only depend on

the internal parameters of Ck .

Thus we can rewrite requirement ri as follows:

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ di −
δi
mk

(10.39)

where di = Di − βi.

As shown in Equation 10.15,RWTq,k is the summation ofZq,s(ms)’s (s 6=
k) andZq,s(ms)’s in turn as shown in Equation 10.16 (we consider FIFO global

queues without loss of generality) depend on RHT’s. Furthermore, similar

to the simplification of internali(mk) in Equation 10.38, the calculation of

RHTq,s,i(ms) can be simplified as follows:

RHTq,s,i(ms) = σi +
γi
ms

(10.40)
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where σi = Csi,q and γi =
∑

τj 6=τi

(

max
Rl ∈RG

Cs
, l 6=q

∧ τj ∈ τl,s

{Csj,l}
)

which are also con-

stants.

Thus by combining Equations 10.15, 10.16, and 10.40, we can rewrite

Equation 10.39 for FIFO queues as follows (a similar equation can be achieved

for Round-Robin queues by combining Equations 10.15, 10.17, and 10.40):

∑

Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,q

∑

l 6=k

∑

∀τi, τi ∈ τq,l

∧ Rq ∈RG
Cl

(σi +
γi
ml

) ≤ di −
δi
mk

(10.41)

Finally, it is easy to see that Equation 10.41 can be rewritten in the follow-

ing form:

∑ cl
ml

≤ bi (10.42)

The requirement in Equation 10.42 is a nonlinear inequality constraint

which adheres to the form of constraint for a NIP problem (Equation 10.36).

Thus every requirement in Qk(mk) of every component Ck will generate a

nonlinear inequality constraint. Furthermore, every component Ck generates

the inequality constraint m
(min)
k ≤ mk ≤ m

(max)
k which can be divided into

two inequalities mk ≥ m
(min)
k and mk ≤ m

(max)
k . Obviously m1, · · · , and

mk are integers, thus the integration of the real-time components on a multi-

processor platform under C-MSOS can be modeled as a NIP problem.

10.8 Evaluation

In this section we present our evaluations. In the first part we have evaluated

C-MSOS and its different alternatives regarding queue handling. In the second

part we have studied the practicality of using NIP methods for minimizing the

number of processors required by the components.

10.8.1 Simulation-based Evaluation of C-MSOS

We have performed simulation-based evaluation to investigate the performance

of C-MSOS for its four different alternatives where global queues of global re-

sources are FIFO-based or Round-Robin-based and the local queues are FIFO-

based or Priority-based.
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Experimental Setup

To determine the performance of all four alternatives we tested the schedula-

bility of a set of randomly generated components on a multiprocessor platform

under each alternative and according to different settings. For each setting,

the number of components was varied from 2 to 22, and each component was

allocated on 3 or 5 processors (processors per component). The number of

components sharing each global resource was chosen between 2 and 12 (com-

ponents per resource), and the number of tasks per each component sharing a

global resource was varied from 2 to 12 (tasks per component per resource).

For each component a task set was randomly generated where the utilization of

each task was randomly chosen between 0.01 and 0.1, and its period was ran-

domly chosen between 10ms and 100ms, and the execution time of the task

was calculated based on its utilization and period. For each component, tasks

were generated until the utilization of the component reached a cap or a max-

imum number of 30 tasks were generated. The utilization cap of a component

was set to be the number of processors of the component multiplied by 0.4. A

task included up to 4 critical sections, and the total number of shared global

resources was 8 or 16. The length of global critical sections ranged from 10µs
to 150µs. For each setting we generated 1000 platforms.

Results

First we performed the experiments for the platforms that consisted of simi-

lar components, e.g., all the components sharing the global resources had the

same number of tasks sharing each global resource (the number of tasks per

component per resource were the same), etc. The performance of C-MSOS for

its different alternatives, with regard to the number of components on the plat-

form, the number of components sharing each resource, the number of tasks per

component sharing each resource, and the length of critical sections per task, is

illustrated in Figs. 10.3, 10.4, 10.5, and 10.6 respectively. In this case (where

the components are similar), the overall results show that C-MSOS mostly per-

forms better if the local queues are FIFO-based. When using FIFO-based local

queues, C-MSOS performs similar for both FIFO-based and Round-Robin-

based global queues. However, using prioritized local queues, C-MSOS mostly

performs better by using Round-Robin-based global queues.

Second, we performed experiments where each generated platform con-

sisted of components with different degree of resource sharing. This is closer

to reality where components may differ in their settings, e.g., the number of

tasks per component sharing a global resource can be different for different
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Figure 10.3: Schedulability of C-MSOS by increasing the number of compo-

nents on the platform. 3 processor per component, 8 global resources each

shared by half of the components from which 4 tasks share the resource, up to

4 critical sections per task each with length of 40 µs.
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Figure 10.4: Schedulability of C-MSOS by increasing the number of com-

ponents sharing each resource. 12 component, 3 processor per component, 8

global resources each shared, 4 tasks per component sharing a global resource,

up to 4 critical sections per task each with length of 40 µs.

components. Looking at the schedulability analysis in Section 10.5.2, an im-

portant factor for which the different alternatives of C-MSOS may perform

differently is the degree of resource sharing in each component, e.g., a com-

ponent may benefit better under an alternative of C-MSOS depending on the
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Figure 10.5: Schedulability of C-MSOS by increasing the number of tasks per

component per resource. 12 component, 3 processor per component, 8 global

resources each shared by 4 components, up to 4 critical sections per task each

with length of 40 µs.
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Figure 10.6: Schedulability of C-MSOS by increasing the length of critical

sections (in µs). 12 component, 3 processor per component, 8 global resources

each shared by 4 components from which 4 tasks share the resource, up to 4

critical sections per task.

number of its tasks that share each global resource. We performed experiments

in which each generated platform consisted of components with different num-

ber of tasks sharing each global resource. We generated 1000 platforms con-

sisting of 12 components. For each platform we divided its 12 components
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Figure 10.7: Schedulability under C-MSOS for components with different

number of tasks per resource. 12 component, 3 processor per component, 8

global resources each shared by 6 components, up to 4 critical sections per

task each with length of 80 µs.

into 6 groups (2 components per group); where beginning from the first group

to the sixth group they included 2, 3, 4, 5, 6, and 7 tasks sharing each re-

source respectively. The results in Fig. 10.7 illustrates the average percentage

of schedulable components of each group under different alternatives of C-

MSOS. As shown in Fig. 10.7, for any type of components the alternative of

C-MSOS where the global queues are FIFO-based and the local queues are

priority-based (FP) is always outperformed by other alternatives. In fact this

alternative (FP) was never better than any other alternatives for any settings.

Furthermore, the components that share global resources, and include only 2
tasks per each shared global resource, perform better under the both alterna-

tives that use Round-Robin-based global queues (RF and RP) compared to the

alternative where both global and local queues are FIFO-based (FF). The al-

ternative RF (Round-Robin global queues and FIFO local queues) performs

better for the components that have less than 5 tasks per each global resource

they share while FF (FIFO global queues and FIFO local queues) alternative

performs better for the component with 5 and more tasks per each global re-

source they share. Alternative FF performs better than RP even for components

with 3 and more tasks per each global resource the components share. Given
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any type of global queues, all types of components benefit more from FIFO-

based local queues rather than priority-based queues, i.e., FF and RF always

outperform FP and RP respectively.

10.8.2 Practicality of Optimization of the Total Number of

Processors Required by Components

Here we study how practical it is to optimize the number of processors needed

for all the co-executing components while their schedulability is guaranteed.

Experimental Setup

In this experiment we used the optimization package in MATLAB and its

solver for NIP problems. To investigate the duration of time that a relatively

large problem takes, we randomly generated 100 platforms where each plat-

form consisted of 20 components. The tasks of each component were ran-

domly generated until either the total utilization of the component reached a

cap equal to 1.2 or the number of tasks generated in the component reached

30. The utilization of each task was randomly chosen between 0.01 and 0.1,

with its period randomly chosen between 1ms and 100ms. A task included up

to 2 critical sections, and the total number of shared global resources was 10.

The number of components that shared each resource was 3 where each of the

resources was used by 3 tasks in the component. The length of global critical

sections was 40µs.

Results

For each of the 100 generated platforms we programmatically formulated the

integration of its components as a NIP problem as described in Section 10.7.

We measured the time taken for the NIP solver in MATLAB on a normal per-

sonal computer to solve each of the formulated NIP problems.

Optimization of the number of required processors for each platform took

less than 4 seconds, i.e., the average time taken to solve the problem for a

platform was 3.2 seconds.

The measured time durations for optimizing the number of required pro-

cessors shows that, for a platform with settings similar to the platforms in this

experiment, it takes only several seconds. Considering that these settings can

cover many complex real-time systems with similar settings, the amount of

time taken to optimize the number of processors is practical.
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As shown in the first part of the evaluations, i.e., evaluation of C-MSOS in

Section 10.8.1, when the number of components of platforms reaches 20, al-

most none of the platforms can be schedulable by any alternative of C-MSOS.

Thus, considering platforms with 20 components and the settings we used in

this section can be categorized among the largest platforms that can be schedu-

lable by C-MSOS. In fact, for platforms relatively larger than that, we doubt

that any synchronization protocol may ever exist that can improve schedulabil-

ity of the platforms significantly. This means that a NIP problem formulated

from a typical platform with these settings can be categorized as a complex

problem, i.e., to investigate the performance of NIP problem solvers with larger

number of components and more complex settings is not necessary.

10.9 Summary and Conclusion

We have developed a new locking protocol (C-MSOS) to handle resource shar-

ing among components where each component is statically allocated on mul-

tiple dedicated processors (one cluster). We have also assumed that the tasks

within each component are scheduled using global fixed-priority preemptive

scheduling policy.

In C-MSOS each component is abstracted and represented by an interface

which abstracts the information about global resources it shares with other

components. Furthermore, the interface includes a set of requirements that

should be satisfied for the component to be schedulable when it co-executes

with other components on a shared multi-core platform. This offers the possi-

bility to develop different real-time components in parallel and independently

and their schedulability analysis can be performed and abstracted in their inter-

faces. Furthermore, as most of scheduling analysis is performed offline and the

resource requirements of components are abstracted as simple linear inequali-

ties, the interface-based scheduling when the components are put together will

be much easier. This offers the possibility of introducing the components dur-

ing run-time in an open system, where an admission control program will per-

form better as it only needs to revalidate the requirements in the interfaces.

Furthermore, we have shown that the integration phase, where the com-

ponents are allocated on a multiprocessor platform, can be formulated as a

Non-Linear Integer Programming problem. Hence, the existing methods and

solvers for NIP problems can be used to obtain the minimum number of pro-

cessors required by the components where their schedulability is guaranteed.

We have investigated four alternatives for queue handling under C-MSOS;
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the global queues associated with global resources may be either FIFO-based

or Round-Robin-based, and the local queues associated with the global re-

sources can be either FIFO-based or priority-based.

We have performed simulation-based evaluations for different alternatives

of C-MSOS. We have also investigated the practicality of using NIP methods

for optimization of the number of processors in the integration phase.

Our evaluation results show that using local FIFO queues to handle global

resources almost always outperforms priority-based queues. The priority-based

local queues perform better together with Round-Robin-based global queues

compared to FIFO-based global queues. Using C-MSOS with priority-based

local queues together with FIFO-based global queues turned out to be the worst

choice among the four alternatives and performs very poor. In the case of using

FIFO-based local queues, FIFO and Round-Robin global queues perform sim-

ilar. However, they may perform differently depending on the number of tasks

in each component using global resources, i.e., FIFO global queues favor the

components with fewer tasks using each global resource while Round-Robin

global queues perform better for the components with higher number of tasks

using global resources.

Using NIP methods the total number of required processors can be min-

imized. However, when allocating the components on a multiprocessor it is

better to allocate each component on the minimum possible number of proces-

sors even if there are enough processors available. Allocating a component on

fewer processors (if it does not compromise the schedulability of any compo-

nent) increases the performance, because inside the component tasks are using

global scheduling and thus fewer processors means that there will be fewer

migrations and consequently less migration overhead.

Regarding the practical size of platforms where C-MSOS protocol can be

applicable, as shown by our experimental results, when the number of compo-

nents in the platforms approaches 20, where each component is allocated on

around 3 processors, i.e., the whole platform is allocated on around 60 cores,

the platform can hardly be schedulable under C-MSOS. In fact, we believe

that no synchronization protocol may survive for problems with this size, con-

firming that sharing mutually exclusive resources can become a bottleneck on

taking advantage of performance offered by multi-cores. Thus, co-executing

too many components, i.e., more than 20 components, on a shared multi-core

platform where the components interfere relatively highly on global resources

may kill any scheduling and synchronization protocol. Considering this limited

size of platforms that C-MSOS can be applicable for, if a NIP solver can solve

the optimization problem of integration phase for a platform with similar size
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in reasonable time, can be considered as acceptable in practice. We measured

the average time duration that a NIP solver in MATLAB may take to find a

solution for a platform with this size. The average duration of time to find the

minimum number of processors required by components of platform consist-

ing of 20 components took a few seconds (less than 4 seconds). This can be

acceptable in practice for finding a solution for a platform which is considered

as large and complex.

In the future we plan to implement C-MSOS under real-time operating sys-

tems (RTOS) and study its performance. We also plan to study legacy real-time

components and attempt to extract interfaces for them according to the inter-

face model of C-MSOS. C-MSOS is based on shared memory synchronization,

hence an interesting future work is to study resource sharing among real-time

components on a multiprocessor platform by means of message passing ap-

proaches.
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Abstract

Recently there has been a lot of interest in coexisting of multiple independently-

developed real-time applications on a shared open platform. On the other hand,

emerging of multi-core platforms and the performance and possibilities they

offer has attracted a lot of attention in multiprocessor real-time analysis, proto-

cols and techniques. Co-executing independently-developed real-time applica-

tions on a shared multiprocessor system, where each application executes on a

dedicated sub set of processors, requires to overcome the problem of handling

mutually exclusive shared resources among those applications. To handle re-

source sharing, it is important to determine the Resource Hold Time (RHT),

i.e., the maximum duration of time that an application locks a shared resource.

In this paper, we study resource hold times under multiprocessor static-

priority global scheduling. We present how to compute RHT’s for each re-

source in an application. We also show how to decrease the RHT’s without

compromising the schedulability of the application. We show that decreasing

all RHT’s for all shared resources is a multiobjective optimization problem and

there can exist multiple Pareto-optimal solutions.
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11.1 Introduction

The availability of multi-core platforms has attracted much attention in multi-

processor embedded software analysis, runtime techniques, policies, and pro-

tocols. As the multi-core architectures are to be the defacto processors within

a near future, the industry must cope with a potential migration of existing

systems towards multi-core platforms.

An important issue when migrating to multi-cores is to provide the possibil-

ity of several of independently-developed real-time applications to co-execute

on a shared multi-core platform. In the context of uniprocessors, there has been

much interest in developing support for independently-developed real-time ap-

plications to be executed in shared open environments. A non-exhaustive list

of works in this domain includes [1, 2, 3, 4, 5, 6], and hierarchical scheduling

has emerged as a common solution for open systems. An open environment

requires the co-existence of multiple independently-developed real-time appli-

cations on a shared platform. The applications may have been developed using

different techniques, e.g., it may be the case that different real-time applications

that will coexist on a multi-core have different scheduling policies. Recently,

in industry, co-existing of multiple applications on a multi-core platform (using

virtualization techniques) has been considered to reduce the overall hardware

costs [7].

On the other hand, looking at industrial systems, to speed up their develop-

ment, it is not uncommon that large and complex systems are divided into mul-

tiple semi-independent subsystems, each of which is developed independently.

The subsystems which may share resources will eventually be integrated and

coexist on the same platform. This issue has got attention and has been studied

over the years in the uniprocessor domain [8, 9, 10].

However, when the applications co-execute on the same multi-core plat-

form they may share resources that require mutual exclusive access. An im-

portant issue to support resource sharing among independently-developed real-

time applications on a shared multiprocessor platform, is to abstract the appli-

cations’ resource requirements sufficiently such that the internal details of each

application are hidden from other applications. To be able to handle resource

sharing among such applications, in the abstraction of each application’s Re-

source Hold Times (RHT’s) should be specified. The RHT of a shared resource

for an application is defined as the longest time interval in which the applica-

tion may lock the resource. Determining resource hold times for each resource

that is shared by an application is the objective of this paper.

Looking at the current state-of-the-art, there exist two major approaches
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for scheduling real-time systems on multiprocessors (multi-cores); global and

partitioned scheduling [11, 12, 13]. Under global scheduling, e.g., Global Ear-

liest Deadline First (G-EDF), tasks are scheduled by a single (global) scheduler

and each task can be scheduled to execute on any processor, i.e., migration of

tasks among processors is permitted. Under partitioned scheduling, tasks are

statically assigned to processors and tasks within each processor are scheduled

by a uniprocessor scheduling protocol, e.g., Rate Monotonic (RM) or Earliest

Deadline First (EDF). The generalization of global and partitioned scheduling

algorithms is called clustered scheduling [14, 15], in which tasks are statically

assigned to a sub set (a cluster) of processors, and within each cluster tasks are

scheduled using a global scheduling algorithm.

In our previous work [16] we have studied resource sharing among

independently-developed real-time applications where each application is al-

located on one dedicated processor (core). However, in this paper we focus on

the clustered scheduling policy where a real-time application will be allocated

to a cluster (multiple processors) of a multi-core platform. Within an applica-

tion tasks are scheduled to execute on any processor within the cluster using

a global scheduling algorithm, i.e., jobs can migrate among the processors of

their application according to the global scheduling policy in use.

11.1.1 Contributions

The concept of Resource Hold Time (RHT) for independently-developed ap-

plications on uniprocessor platforms was first presented by Fisher et al. in [17],

and later by Bertogna et al. in [18]. In our previous work [16] we extended

the notion of RHT to multiprocessors. However, in [16], firstly we assume that

each application is fully allocated on one dedicated processor, and secondly

within an application the priority of tasks holding a global resource (i.e., a

global resource is shared among multiple applications) was always boosted to

be higher than the priority of any task within the application.

In this paper, we further extend the notion of RHT to the independently-

developed real-time applications where each application is allocated on mul-

tiple processors (a cluster), and given this setting we present an algorithm for

computing resource hold times of the application. It is important that RHT’s

are as short as possible because shorter RHT’s of global resources means that

the applications will hold the resources in shorter intervals which leads to de-

creased interference among the applications sharing the resources. Although,

boosting the priority of tasks holding global resources to the highest priority in

the application will make the RHT’s shorter, however, as we show in this paper
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it may make the application unschedulable. Therefore to shorten the RHT’s we

assume that the priorities of tasks holding global resources are boosted only as

long as the application remains schedulable, i.e., boosting the priorities should

never compromise the schedulability of the application. Under uniprocessor

platforms, it has been shown [17, 18] that it is possible to achieve one single

optimal solution, when trying to decrease RHT for an application. However, in

this paper we show that this is not the case when the application is scheduled

on multiple processors (i.e., systems where tasks in the application are sched-

uled by a multiprocessor global scheduling policy) and there can in fact exist

multiple Pareto-optimal solutions.

11.1.2 Related Work

In the context of independently-developed real-time applications on unipro-

cessors, a considerable amount of work has been done. A non-exhaustive

list of works in this domain includes [1, 2, 3, 4, 5, 6], in which hierarchical

scheduling has been studied and developed as a solution. Clustered schedul-

ing techniques have been developed for multiprocessors (multi-cores) [14, 19].

However, the tasks allocated in each cluster are assumed to be independent and

therefore those techniques do not allow for sharing of mutually exclusive re-

sources. In the context of locking protocols under multiprocessors, there are

several approaches [20, 21, 22, 23, 24, 25, 26, 27]. However, in all the existing

synchronization protocols (under partitioned scheduling) on multiprocessors it

is assumed that the tasks of a single real-time application can be distributed

among all the processors, and all processors use the same scheduling policy.

Recently, Brandenburg and Anderson [28] presented a new locking pro-

tocol, called O(m) Locking Protocol (OMLP), which has variations for both

global and partitioned scheduling. However, OMLP is an suspension-oblivious

protocol. Under a suspension-oblivious locking protocol, the suspended jobs

are assumed to occupy processors and thus blocking is counted as demand. To

test the schedulability of the system, the worst-case execution times of tasks are

therefore inflated with blocking times. In this paper we focus on suspension-

aware locking synchronization in which suspended jobs are not assumed to

occupy processors (i.e., no task inflation).

To our knowledge, the approach presented by Easwaran and Andersson [27]

is the only work on handling suspension-aware resource sharing under global

scheduling which provides a schedulability test. In the paper, the authors have

derived a schedulability test for the Priority Inheritance Protocol (PIP) under

static-priority global scheduling policy as well as for a new proposed locking
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protocol (P-PCP). We use their scheduling analysis to compute resource hold

times for global resources. However, in this paper, because of limited space

and besides that the analysis of P-PCP is similar to PIP, we only assume using

PIP for handling local resources (i.e., a local resource is only shared locally by

tasks of one application).

The resource hold times for independently-developed applications on a

shared uniprocessor platform was for the first time presented by Fisher et

al. in [17]. In this work the authors have presented an algorithm to compute

the resource hold time for each resource in an application, assuming that the

local scheduling policy is EDF and that the resource sharing is handled by SRP

(the Stack-based Resource allocation Protocol) [29]. They have further pre-

sented an algorithm to reduce the resource hold times without compromising

the schedulability of the application. They have shown that one optimal so-

lution can be achieved by using their reduction algorithm. Later, Bertogna et

al. [18] extended this work to Static-Priority Scheduling (SPS).

Recently we have proposed a locking protocol [16] for handling resource

sharing among independently-developed real-time applications on multipro-

cessors. In this work each application is represented by an interface which

abstracts the resource requirements of the application. Furthermore, the notion

of RHT was extended to multiprocessors. However, we assumed that each ap-

plication should be allocated to one dedicated processor. Besides, to reduce the

resource hold times of global resources, the priority of tasks holding a global

resource is raised (boosted) to be higher than the highest priority in the appli-

cation. Boosting the priorities of tasks when they are granted access to global

resources has been the case in all existing locking protocols to handle access

to global resources under partitioned scheduling protocols. Raising the prior-

ity of tasks holding global resources to the highest priority in an application

will reduce the RHT but it may make the application unschedulable. In this

paper the RHTs are reduced by means of boosting the priorities of tasks hold-

ing global resources as far as possible, i.e., as long as the application remains

schedulable. This means that the priorities of tasks holding global resources

are boosted without compromising the schedulability of the application.

11.2 System and Platform Model

In this paper we assume that a real-time application, denoted by Ak, is allo-

cated on a dedicated cluster consisting of m identical, unit-capacity processors

(cores). The real-time application consists of a set of real-time tasks. We
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assume that the tasks in application Ak are scheduled using static-priority pre-

emptive global scheduling (G-SPS). The jobs generated by tasks of the appli-

cation can migrate among the processors within its cluster. However, migration

of tasks across the clusters (applications) is not allowed.

Application Ak consists of a task set, τ(Ak), which includes a set of spo-

radic tasks, τi(Ti, Ei, Di, ρi, {Csi,q,p}) where Ti denotes the minimum inter-

arrival time between two successive jobs of task τi with worst-case execution

time Ei, relative deadline Di and ρi as its unique base priority. A task, τi has

a higher priority than another task, τj , if ρi > ρj . In this paper, we assume

constrained-deadline tasks (i.e., Di ≤ Ti for any task τi). The priority of a

job of a task may temporarily be raised by a synchronization protocol which is

denoted as the effective priority. A job of task τi is specified by Ji.

The tasks in application Ak may share a set of mutually exclusive re-

sources, RAk
, which are protected using semaphores. The set of shared re-

sources RAk
consists of two sets of different types of resources; local and

global resources. A local resource is only shared by tasks within the applica-

tion while a global resource is shared by tasks from more than one application.

The sets of local and global resources accessed by tasks in application Ak are

denoted by RL
Ak

and RG
Ak

respectively. The set of critical sections, in which

task τi requests resources in RAk
is denoted by {Csi,p,q}, where Csi,q,p is the

the worst case execution time of pth critical section of task τi in which the task

uses resource Rq ∈ RCk
. We define Csi,q to be the worst case execution time

of the longest critical section in which τi uses Rq. We also denote CsTi,q as

the maximum total amount of time that τi uses Rq , i.e., CsTi,q =
∑

Csi,q,p.

In this paper, we focus on non-nested critical sections.

11.3 Resource Sharing

The schedulability analysis of a real-time application in an open environment

requires the global resource requirements of each application to be abstracted

in its interface. Furthermore, the interface should also provide information

about the maximum duration of time that each global resource can be held by

the application. This time is denoted the resource hold time.

Definition 1: Resource Hold Time of a global resource Rq by task τi in appli-

cation Ak is denoted by RHTq,k,i and is the maximum duration of time that

the global resource Rq can be locked by τi. Consequently, the resource hold

time of a global resource, Rq, by application Ak (i.e., the maximum duration
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of time during which Rq is locked by any task in Ak) is denoted by RHTq,k,

and is derived as follows:

RHTq,k = max
τi ∈ τq,k

{RHTq,k,i} (11.1)

where τq,k is the set of tasks in application Ak sharing Rq.

Among other parameters, computation of the resource hold times depend

on the way an application handles resource sharing. In this paper we study

resource hold times of global resources for a real-time application assuming

that the application uses the global static-priority preemptive scheduling policy

for scheduling its tasks on processors within its dedicated cluster, together with

the Priority Inheritance Protocol (PIP) to access local resources.

Usually in multiprocessor suspension-based locking protocols, under par-

titioned scheduling, the global resources are handled by priority boosting [21,

30, 28, 16]. This means that the priority of tasks on a processor granted to

access a global resource is boosted to be higher than the highest priority of any

other task allocated on the processor. The rationale behind this approach is to

make the locking times of global resources as short as possible. This rule can

be used for independently-developed real-time applications where each appli-

cation is allocated on a cluster of processors. However, boosting priorities to

be higher than any base priority may lead to a situation in which some tasks

will miss their deadlines and the application becomes unschedulable. Thus, we

assume that the priorities of jobs that are granted access to a global resource

Rq are raised (boosted) to a boost level without compromising schedulability

of the application. We denote the boost level of any resource Rq by boostq ,

i.e., the priority of any job Ji that is granted access to Rq is immediately raised

to boostq . In this paper, for each global resource shared by application Ak ,

we determine a range of valid values for Rq’s boost level. First we review the

characteristics of PIP for multiprocessors and its schedulability analysis.

11.4 PIP on Multiprocessors

Assuming that a task set is scheduled on a multiprocessor consisting of m pro-

cessors, and that shared resources are handled by PIP, we here give an overview

of two variants of PIP:
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Basic PIP (B-PIP): While a job Jj accesses a resource, Rq, the job’s effec-

tive priority is raised to the highest priority of any job waiting for Rq if there is

any otherwise Jj executes with its base priority.

Immediate PIP (I-PIP): Whenever a job Jj is granted access to a resource,

Rq , the job’s effective priority is immediately raised (boosted) to the highest

priority of any task that may request Rq .

The highest priority of any task that may request Rq is denoted by ⌈Rq⌉.

Under I-PIP, it can be stated that ∀Rq ∈ RAk
, boostq = ⌈Rq⌉.

Under PIP (in both variants, i.e., B-PIP and I-PIP), whenever a job Ji is

waiting for a resource which is locked by a lower (base) priority job, Jj , and if

Ji is among the m highest priority jobs, Ji is said to be directly blocked [27]

by Jj .

Besides direct blocking, a job Ji can also incur interference from other

lower priority jobs whose effective priorities have been raised at least as high as

Ji’s priority. Furthermore, Ji may incur extra interference from higher priority

jobs when they have locked a resource that Ji has requested and Ji is among

the m highest priority jobs.

11.4.1 Schedulability Analysis of B-PIP

In this section we review the schedulability analysis of PIP (B-PIP) as de-

scribed by Easwaran and Andersson in [27]. Furthermore we extend the anal-

ysis to I-PIP by a simple change in their analysis for B-PIP. They have shown

that under multiprocessor PIP the response time of any task τi denoted by RTi

can be calculated as follows:

RTi = Ei +DBi + Ihp
(dsr)
i + Ihp

(osr)
i + Ihp

(nsr)
i + Ilpi (11.2)

where:

• DBi upper bounds the direct blocking that τi incurs,

• Ihp
(dsr)
i is an upper bound for the amount of time that tasks with a

higher base priority than τi lock resources shared by τi (direct shared

resources),

• Ihp
(osr)
i is an upper bound for the amount of time that tasks with a higher

base priority than τi may lock resources not shared by τi (other shared

resources),
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• Ihp
(nsr)
i is an upper bound for the amount of time that tasks with a

higher base priority than τi execute in their non-critical sections, i.e.,

they do not hold any resource (no shared resource),

• Ilpi upper bounds the amount of time that tasks with a lower base prior-

ity than τi execute with a higher effective priority than τi.

In the same paper [27] the authors have further improved the computation

of the response time for m highest priority tasks:

RTi=











Ei +DBi + Ihp
(dsr)
i |τH(τi)| < m

Ei +DBi + Ihp
(dsr)
i

+Ihp
(osr)
i + Ihp

(nsr)
i + Ilpi Otherwise

(11.3)

where |τH(τi)| is the number of tasks with priority higher than that of τi.

Upper Bound the Workload of a Task

To upper bound the worst-case interference from any task τj to task τi in any

time interval t (e.g., RTi), Easwaran and Andersson have presented a worst

case execution pattern [27]. In this pattern, during the interval t, the carry-in

job of τj executes as late as possible and all following jobs execute as early as

possible. This pattern was first proposed by Bertogna and Cirinei [31] and was

later extended by Easwaran and Andersson to maximize the total interference

from a certain portion x (e.g., critical sections) of execution time of any job τj
to τi inRTi. In the extended pattern, x time units of execution time of the carry-

in job appears as late as possible and the x time units of execution time of all the

following jobs (of τj in interval RTi) appear as early as possible (Figure 11.1).

In this worst-case execution pattern Easwaran and Andersson have shown [27]

that in any interval t the total maximum execution (i.e., workload) of x units of

jobs of any task, τj is maximized as follows:

Wj(t, x) = xNj(t, x) + min {x, t− x+Dj − TjNj(t, x)} (11.4)

where Nj(t, x) =
⌊

t−x+Dj

Tj

⌋
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Job deadline Job release 

©© ª«¬ ­Carry-in job Carry-out job 

Figure 11.1: Worst-case execution pattern regarding giving importance to a

certain portion of execution time

Based on this worst-case execution pattern, Easwaran and Andersson have

calculated DBi, Ihp
(dsr)
i , Ihp

(osr)
i , Ihp

(nsr)
i and Ilpi as follows (for details

about how the equations are achieved please read [27]):

DBi =
∑

Rq ∈RAk
∧ τi ∈ τq,k

ni,q max
ρj<ρi

∧ τj ∈ τq,k

{Csj,q} (11.5)

where τq,k is the set of tasks in application Ak sharing Rq, and ni,q is the num-

ber of critical sections of τi in which it accesses Rq.

Ihp
(dsr)
i =

∑

ρj>ρi

Wj

(

RTi,
∑

Rq ∈RAk

∧ {τi,τj}⊂ τq,k

CsTj,q

)

(11.6)

Ihp
(osr)
i =

∑

ρj>ρi
Wj

(

RTi,
∑

Rq ∈RAk
∧ τj ∈ τq,k
∧ τi 6∈ τq,k

CsTj,q

)

m
(11.7)

Ihp
(nsr)
i =

∑

ρj>ρi
Wj

(

RTi, Ej −
∑

Rq ∈RAk
∧ τj ∈ τq,k

CsTj,q

)

m
(11.8)

Ilpi =

∑

ρj<ρi
Wj

(

RTi,
∑

Rq ∈RAk
∧ τj ∈ τq,k
∧ boostq>ρi

CsTj,q

)

m
(11.9)

where boostq = ⌈Rq⌉ = maxτi∈τq,k {ρi}.
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11.4.2 Extending Schedulability Analysis to I-PIP

Although Easwaran and Andersson in [27] have derived the aforementioned

analysis for B-PIP, however, looking at the schedulability analysis, it is straight

forward to draw the conclusion that from a schedulability analysis point of

view the terms DBi, Ihp
(dsr)
i , Ihp

(osr)
i and Ihp

(nsr)
i in the response time of

task τi are the same for both variants (B-PIP and I-PIP).

The only difference is in the calculation of term Ilpi. The difference is

regarding to the tasks with priorities lower than τi that share any resource, Rq ,

with τi such that boostq = ρi, i.e., τi is the highest priority task that may access

Rq . Under B-PIP, interference from these tasks when they are accessing Rq , is

not considered in Ilpi because their effective priority is only raised to boostq
if they (direct) block τi on Rq . However, under I-PIP the effective priority of

these tasks is immediately raised to boostq whenever they are granted access

to Rq , hence τi may suffer from their interference even if τi executes in non-

critical sections. Assuming that tie-breaker is applied in first-come first-served

manner, these lower priority tasks can only delay τi if they hold Rq before τi
arrives, i.e., only one critical section of such tasks in which they access Rq can

delay the execution of τi. If at some time instant the number of these tasks is

less than m, and there is a free processor they do not delay the execution of τi.
Thus, to extend the response time calculation of τi (Equation 11.2), Ilpi has to

be replaced by Ilp′i where Ilp′i is calculated as follows.

Ilp′i = Ilpi +

∑

Rq ∈RAk
∧ τi ∈ τq,k
∧ boostq=ρi

max ρj<ρi

∧ τj ∈ τq,k

{Csj,q}

m
(11.10)

The improved response times for m highes priority tasks is also different

for I-PIP. Looking at the rationale explained in [27] to derive the improved re-

sponse times for such tasks (i.e., |τH(τi)| < m) it is only valid for B-PIP. Under

I-PIP, the effective priority of a task accessing a resource is immediately raised

to the highest priority of any task that may request the resource. Thus, when at

some time instant a job of a task, τi where |τH(τi)| < m, (say Ji) is arrived,

it may happen that there are more than m jobs executing with their effective

priority higher than τi’s base priority, some of which with base priorities lower

than the priority of τi. In this case, τi may suffer from interference from those

lower priority tasks. This interference for B-PIP is specified by Ilpi, hence to

extend the improved response time analysis to I-PIP the Equation 11.3 has to

be rewritten as follows:
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RTi=











Ei +DBi + Ihp
(dsr)
i + Ilp′i |τH(τi)| < m

Ei +DBi + Ihp
(dsr)
i

+Ihp
(osr)
i + Ihp

(nsr)
i + Ilp′i Otherwise

(11.11)

11.5 Computing Resource Hold Times

In this section, assuming that a real-time application Ak is schedulable under

the static-priority global scheduling policy and PIP, we determine the compu-

tation of resource hold times of each global resource for Ak. In the existing

synchronization protocols under multiprocessors, e.g., MPCP [21], the com-

mon case is that the priority of tasks locking global resources is boosted im-

mediately, in this paper similarly we focus on the immediate priority boosting

(the I-PIP variant). However, computing resource hold times under B-PIP can

be derived similar to that under I-PIP.

Hereafter, we assume that the boost level for any global resource Rq is

set such that application Ak is still schedulable and the following condition is

satisfied:

∀Rq ∈ RG
k , boostq ≥ ⌈Rq⌉ (11.12)

Theorem 1. Assuming that Ak is schedulable under PIP, there is at least one

setting for the boost level of any global resource (shared by Ak) that satisfies

Condition 11.12 without making Ak unschedulable.

Proof. Since it is assumed that Ak is schedulable under PIP, setting the boost

level of any global resource Rq to ⌈Rq⌉ (i.e., boostq = ⌈Rq⌉) does not change

the semantics of the application, which means that all resources (local and

global) are accessed using PIP (I-PIP) and the application will still remain

schedulable.

However, assigning the boost level of a global resource Rq to ⌈Rq⌉ (i.e.,

boostq = ⌈Rq⌉) may cause a job Ji holding Rq to be delayed by other jobs

(not executing in global critical sections) with effective priorities higher than

boostq and thus the resource hold time of Rq will become longer. In this paper,

we will show how to decrease the resource hold time of a global resource by

increasing the boost level of the resource.

As shown in Equation 11.1 the resource hold time of a resource in an appli-

cation is the longest resource hold time among all tasks sharing the resource.
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Thus we describe how to compute the maximum duration of time that any τi
can lock a global resource Rq, i.e., RHTq,k,i.

When a job of task τi (say Ji) holds the lock of a global resource Rq ,

its priority is immediately raised to boostq . The execution of Ji can then be

delayed by any other job generated by any other task that belongs to at least

one of the following three categories:

Category 1: The first category represents the set of tasks with base priority

higher than or equal to boostq . The jobs generated by these tasks can delay

the execution of Ji when it is holding Rq .We denote Rhq,i as an upper bound

for the maximum cumulative execution of those jobs, while Ji holds the lock

of Rq . However, if at some point of time the number of these jobs is less than

m, and there is a free processor, they do not delay the execution of Ji. Thus

to calculate Rhq,i, the workload of the jobs generated by tasks in this category

is divided by m. To upper bound the total worst case workload of any task

τx in this category, during the interval RHTq,k,i, we use the execution pattern

in Figure 11.1 and the definition of the worst case workload in Equation 11.4.

Please note that any job Jx generated by any task in this category can delay the

execution of Ji for the whole duration of its execution time (i.e. Ex). Thus we

can compute Rhq,i as follows:

Rhq,i =

∑

ρx ≥ boostq
∧ x 6=i

Wx

(

RHTq,k,i, Ex

)

m
(11.13)

Category 2: The second category represents the set of tasks with priorities

lower than boostq, whose generated jobs may hold any local resourceRp where

⌈Rp⌉ ≥ boostq. In this case these generated jobs may delay the execution of

Ji while Ji holds Rq since their effective priority is at least as high as Ji’s
boosted priority. The upper bound for the maximum cumulative execution

(workload) of these jobs when they holdRp during the interval that Ji holds Rq

is denoted by Rlq,i. Similar to the previous category, if the number of such jobs

at some time instant is less than m and all processors are not busy, they do not

interfere with Ji. Hence to calculate Rlq,i, the maximum cumulative execution

of the jobs in their local critical sections in which they hold local resource Rp

such that ⌈Rp⌉ ≥ boostq should be divided by m. To upper bound the total

worst case workload of local critical sections of any task τx in which τx holds

any local resource Rp where ⌈Rp⌉ ≥ boostq, during interval RHTq,k,i, we
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use the execution pattern in Figure 11.1 and the definition of the worst case

workload in Equation 11.4 (similar to the first category). Hence Rlq,i can be

computed as follows:

Rlq,i =

∑

ρx <boostq
∧ x 6=i

Wx

(

RHTq,k,i,
∑

Rl ∈RL
Ak

∧ ⌈Rl⌉≥ boostq
∧ τx ∈ τl,k

Csx,l

)

m
(11.14)

Category 3: The third category represents the set of tasks with priorities

lower than boostq , whose generated jobs hold the lock of any global resource

Rl other than Rq with a boost level higher than or equal to Rq’s boost level,

i.e., boostl ≥ boostq. These jobs holding Rl may delay the execution of Ji
while Ji holds Rq because they have a boosted priority at least as high as Ji’s
boosted priority. However, these jobs executing in their global critical sections

(in which they hold global resources with boost level higher than or equal to

boostq) will not delay the execution of Ji if the number of such jobs (at some

time instant) is less than m and not all processors are busy. Thus, the maximum

cumulative execution (workload) of these jobs while holding global resources

with boost level higher than or equal to boostq, should be divided by m. We

denote Rbq,i as an upper bound of the workload of these jobs during the inter-

val that Ji holds the lock for Rq, i.e., RHTq,k,i. We can compute Rbi (similar

to computing Rhq,i and Rlq,i) as follows:

Rbq,i =

∑

ρx < boostq
∧ x 6=i

Wx

(

RHTq,k,i,
∑

Rl ∈RG
Ak

∧ boostl ≥ boostq
∧ τx ∈ τl,k

Csx,l

)

m
(11.15)

11.5.1 Resource Hold Time Calculation

Ji itself will hold Rq for at most Csi,q time units. Thus the maximum duration

of time that any job of τi can lock Rq , i.e., RHTq,k,i, can be computed as

follows:

RHTq,k,i = Csi,q +Rhq,i +Rlq,i +Rbq,i (11.16)
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11.6 Decreasing Resource Hold Times

Since our focus in this paper is on independently-developed real-time appli-

cations on a shared multiprocessor platform, it is important to reduce the in-

terference among the applications while they co-execute on the multiprocessor

platform. Each application will be allocated on a dedicated cluster, thus they

do not share processors, however, they share other resources and they inter-

fere with each other by sharing the (global) resources. Hence, decreasing the

resource hold times will reduce the interference among those applications.

11.6.1 Decreasing Resource Hold Time of a Single Global

Resource

In an applicationAk, for a given global resourceRq , we describe in this section

how to reduce the resource hold time for the resource, i.e., RHTq,k.

We suppose that Rq is held by a task, τi. As shown in Section 11.5, τi
(while holding Rq) can be delayed by three categories of tasks. Looking at the

upper bounds for the portions of the execution of those tasks that may delay τi
(Equations 11.13, 11.14, and 11.15), it can be shown that the delay from these

tasks is decreased as the boosting level of Rq (i.e., boostq) is increased. In the

extreme case if the boosting level of Rq is increased such that

boostq > ρmax, where ρmax = max
τi ∈ τ(Ak)

{ρi} ∧ ∀Rl 6= Rq, boostq > boostl

then

RHTq,k,i = Csi,q

This means that if the boosting level of Rq is higher than any boosting level

of any other (global) resource as well as any priority of any task in application

Ak, then a task holding Rq will not be delayed by any task in Ak.

Thus, to minimize RHTq,k, the boosting level of Rq (i.e., boostq) has to be

as high as possible without making application Ak unschedulable. The pseudo

code of a simple algorithm for increasing the boosting level of a global resource

Rq is shown in Figure 11.2. The algorithm initiates by assigning the boosting

level of Rq to its minimum value boostq = ⌈Rq⌉. This initiation does not

compromise the schedulability of application Ak (Theorem 1).
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Figure 11.2: Increasing the boosting level for Rq in Ak

11.6.2 Decreasing Resource Hold Time of all Global Resources

In this section we describe how to decrease the resource hold times for all

global resources shared by a real-time application allocated on a sub set (clus-

ter) of processors of a multiprocessor platform.

On uniprocessor platforms, Fisher et al. [17] has shown how their algo-

rithm for decreasing the resource hold time of a single resource is used to

reduce the resource hold time for all shared resources. They have shown that

under EDF and SRP the order in which they apply the algorithm to each re-

source has no effect on minimizing the resource hold times, i.e., the minimum

possible resource hold time of a resource by their algorithm is not influenced

by if the algorithm has been called for another resource previously. In a later

work Bertogna et al. [18] have showed that under SPS (static priority schedul-

ing) and SRP, their algorithm for reducing resource hold time for a single task

has an optimal solution when it is used to minimize the resource hold times for

all resources. The optimal solution is achieved if the algorithm is called for the

resources in a specific order, i.e., if the algorithm is called for the resources in

the order of the length of the maximum critical section in which each resource

is accessed.

However, in the context of a multiprocessor system (static-priority global

scheduling and PIP in this paper), there can be more than one optimal solu-

tion. Depending on the order in which the algorithm in Figure 11.2 is called

for the global resources in application Ak, the resulting boosting levels for the

resources may differ. There can be several Pareto-optimal allocations of boost-
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ing levels to global resources. A Pareto-optimal allocation in the context of

maximizing of the boosting levels of global resources refers to an allocation in

which the boosting level of no global resource can be further increased without

decreasing the boosting level for any other global resource. In the illustrative

example in Section 11.7 we show that there can exist several Pareto-optimal

allocations of boosting levels for the global resources.

11.7 An Illustrative Example

In this section we illustrate how to decrease the resource hold time for each

global resource by increasing its boosting level using the algorithm presented in

Section 11.6. We further show that there can be more than one Pareto-optimal

allocation of boosting levels for global resources. We assume that the real-time

application is allocated on a cluster consisting of two processors (m = 2), and

that the application is compromised of the following task set:

Table 11.1: Task set.
τi Ei Di Ti ρi

τ1 2 3 8 4

τ2 6 16 16 3

τ3 10 30 32 2

τ4 3 28 32 1

There are two global resources accessed by the tasks in the application.

Task τ2 accesses global resource R1 for 2 time units, and global resource R2

is accessed by τ3 for 2 time units. Thus ⌈R1⌉ = 3 and ⌈R2⌉ = 2.

11.7.1 Testing the Schedulability

We test the schedulability by investigating three cases: (1) setting the boosting

levels to their minimum values, (2) setting the boosting values to maximum

(i.e., higher than any priority in the application), and (3) setting boosting levels

using the algorithm that we have presented in Section 11.6.1.

Setting the Boosting Levels to Minimum

Here we set the boosting levels to their minimum values, i.e., boost1 = 3 and

boost2 = 2. In this case the analysis is the same as P-PIP (Theorem 1). Using
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the calculations in Section 11.4.1, the resulting response times of the five tasks

are listed in Table 11.2.

Table 11.2: Response times of tasks.

τi RTi

τ1 2

τ2 6

τ3 25

τ4 26

In the table one can see that the response times of all tasks are less than their

corresponding deadlines (Table 11.1) which means that the task set is schedu-

lable under PIP (P-PIP), i.e., when the boosting levels are at their minimum

values.

Setting the Boosting Levels to Maximum

By setting the boost levels of both global resources R1 and R2 to be higher

than any priority in the application (i.e., boost1 = boost2 = 5) gives rise to

a scenario where the application become unschedulable (at least τ1 will miss

its deadline when having such boost levels). Thus using the common tech-

nique for handling global resources in the state-of-art protocols for partitioned

scheduling [21, 23, 26, 30, 32, 16] will result the task set in Table 11.1 being

unschedulable. In all the existing protocols, the priority of any task holding a

global resource is boosted to be higher than any priority on a processor, or they

execute non-preemptively.

Setting the Boosting Levels In-Between

By setting the boosting levels for the global resources to the minimum values

(e.g., boost1 = ⌈R1⌉) will lead to a longer resource hold time which in turn

punishes other applications sharing the resources. The actual resource hold

times of R1 and R2 with their boost levels set to the minimum values (⌈R1⌉
and ⌈R2⌉ respectively) are shown in Table 11.3.

When calling the algorithm presented in Section 11.6.1 for a single re-

source (any of two resources), the boosting level of the resource can be in-

creased to 5 and the application remains schedulable. Consequently the RHT
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Table 11.3: Resource hold times of global resources. boost1 = ⌈R1⌉ = 3 and

boost2 = ⌈R2⌉ = 2.

Rq RHTq,k

R1 3

R2 6

of the resources decreases, i.e., RHT1,k = 2 and RHT2,k = 2 if the algorithm

is called for R1 or R2 respectively.

However, when increasing the boosting levels for both resources there can

be more than one Pareto-optimal solution depending on the order in which the

algorithm is called for the resources. Hence, all possible allocations of boosting

levels for the resources (i.e., for which the application is schedulable) including

the Pareto-optimal allocations are illustrated in Figure 11.3.

øùú
ûü
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�������

Figure 11.3: The possible allocations of boosting levels for resources. The

allocations shown in squares are Pareto-optimal allocations.

Any allocation of boosting levels can be chosen for the resources without

compromising the schedulability of the application. However, the allocations

shown by squares in Figure 11.3 (i.e., {boost1, boost2} = {(5, 3), (3, 5)}) are

the Pareto-optimal allocations which dominate all other allocations.
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In this simple example, there are only two global resources, which makes

finding all Pareto-optimal allocations relatively easy. However, in a more com-

plex application in which there are more global resources it will not be easy to

find all Pareto-optimal allocations of their boost levels. The existing techniques

in the domain of multiobjective optimization [33, 34] can be used to find the

Pareto-optimal allocations of boost levels in such complex applications.

11.8 Conclusions

In this paper we have studied the resource hold times of resources shared by

independently-developed real-time applications on multiprocessor platforms

assuming that each application is allocated on a dedicated sub set (cluster) of

processors.

We have motivated the work as a step towards co-executing independently-

developed real-time applications in an open shared multiprocessor environ-

ment.

For a given application, we have derived the computation of Resource Hold

Time (RHT) of each resource it shares, under static-priority global schedul-

ing and Priority Inheritance Protocol (PIP), where the RHT is defined as the

maximum duration of time a given application may lock a resource. We have

reviewed the schedulability analysis of PIP as a locking protocol under multi-

processor global scheduling [27]. The analysis in [27] is developed assuming

the Basic PIP (B-PIP) in which a job locking a resource inherits the highest

priority among all the jobs blocked on the resource. We have extended the

analysis to be applicable to the Immediate Priority Inheritance Protocol (I-PIP)

in which a job locking a resource immediately inherits the highest priority of

any task that may request the resource.

We have assumed that the real-time applications are scheduled using clus-

tered scheduling, i.e., tasks within applications are scheduled using global

scheduling, while each application is statically allocated on a cluster of pro-

cessors. Considering that clustered scheduling is a combination of partitioned

and global scheduling, the usual technique to handle mutually exclusive global

resources in the state-of-art locking protocols under partitioned scheduling is

to boost the priority of jobs holding the resources to be higher than the priority

of any task in a processor (application). However, as we have shown in this

paper this technique may make an application unschedulable.

Therefore, in this paper, for a given application, we have shown how to al-

locate boosting levels for global resources without compromising the schedu-
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lability of the application. We have further presented an algorithm that for a

given global resource decreases the resource hold time by means of increasing

the boosting level of the resource. To increase the boosting levels of all global

resources, despite of similar algorithms for uniprocessors [17, 18] that find an

optimal allocation of ceilings for the resources, we have shown that under mul-

tiprocessor global scheduling and PIP there can exist multiple Pareto-optimal

allocations of boosting levels.

In the future we will further study techniques and protocols needed to fa-

cilitate co-executing of independently-developed real-time applications in an

open environment on multiprocessor platforms.
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