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Hüseyin Aysan1, Radu Dobrin1, Sasikumar Punnekkat1, and Iain Bate1,2
1Mälardalen University, Västerås, Sweden
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Abstract

Hard real-time applications typically have to satisfy high
dependability requirements in terms of fault tolerance in
both the value and the time domains. Loosely synchro-
nized real-time systems, which represent many of the sys-
tems that are developed, make any form of voting difficult
as each replica may provide different outputs independent of
whether there has been an error or not. This can also lead
to false positives and false negatives which makes achiev-
ing fault tolerance, and hence dependability, difficult. We
have earlier proposed a majority voting technique, ”Vot-
ing on Time and Value” (VTV) that explicitly considers
combinations of value and timing errors, targeting loosely-
synchronised systems. In this paper, we extend VTV to en-
able voter parameter tuning to obtain the desired user spec-
ified trade-offs between the false positive and false nega-
tive rates in the voter outputs. We evaluate the performance
of VTV against Compare Majority Voting (CMV), which is
a known voting approach applicable in similar contexts,
through extensive simulation studies. The results clearly
demonstrate that VTV outperforms CMV in all scenarios
with lower false negative rates.

1 Introduction

Safety critical real-time systems typically have to guar-
antee highly dependable performance due to their interac-
tions with, and possible impacts on, the environment. Sat-
isfying dependability requirements of such systems typi-
cally involves fault prevention, fault tolerance as well as
fault forecasting approaches in their design. In this paper
we focus on fault tolerant design by the use of redundancy,
which is a widely used approach in safety critical systems,
mainly in the form of the well known N-modular redun-
dancy (NMR) paradigm. Due to, e.g., space and cost con-
straints, in practice this paradigm is typically used in its
basic configuration, i.e., triple-modular redundancy (TMR)
where three nodes are used for replication [18] and one er-

ror at a time can be masked in any node. The key attraction
of this approach lies in its low overhead and fault mask-
ing abilities, without the need for backward recovery [14].
Some of the disadvantages include the cost of redundancy
and that the voter is a possible single point of failure. Tradi-
tionally, voters are constructed as simple electronic circuits
so that a very high reliability can be achieved. Distributed
voters have also been employed to take care of the single-
point failure mode in case of highly critical systems [8, 17].
With the additional cost of increased computation time,
more enhanced voting strategies, such as plurality, median
and average voters, can be performed in software. Plurality
voters (or m-out-of-n voters) require m corresponding out-
puts out of n, where m is less than the majority, to reach
a consensus [16, 10]. Median voters output the middle and
average voters output the average value of the replica output
values. Surveys and taxonomies for voting strategies have
been presented [3, 9, 15].

An issue related to value voting is that the nodes’ output
values can vary slightly due to e.g., hardware imprecision,
resulting in a range (or a set) of values which should be
considered as correct in order to avoid problems indicated
in [5, 6]. In order to accomplish this, inexact voting strate-
gies have been proposed [13, 20, 23]. This phenomenon
is also observed in the time domain due to several factors,
such as clock drifts, node failures, processing and schedul-
ing variations at node level, as well as communication de-
lays. Most of the existing voting strategies, however, fo-
cus solely on tolerating anomalies in the value domain by
assuming that they are running on tightly synchronized sys-
tems, as presented in [11]. On the other hand, using loosely
synchronized systems is an attractive, often used, alterna-
tive due to the lower overheads, reduced complexity, and
the lower reliance on the synchronization mechanism itself
[12]. The key problem with loosely synchronized systems
is that voting is made more complicated as differences be-
tween the replicas’ values will exist independent of whether
errors have occurred as each of the replicas will be receiv-
ing different inputs to its calculations. This can also lead to
false positives and false negatives which makes achieving



fault tolerance, and hence dependability, difficult.
A simple approach towards tolerating both value and

timing errors using the NMR approach could be adding time
stamps to the replica outputs. Then, voting on the time
stamps could detect possible timing errors in the replica out-
puts. However, this approach is unable to mask late timing
errors since the voter has to wait for all the values to be
delivered by the replicas. Majority voting techniques that
are able to implicitly handle the errors in the time domain,
have been proposed by Ravindran et al., [21, 22], and Shin
et al., [24]. In these approaches, voting is performed among
a quorum or a majority of responses received, rather than
waiting for all the responses, in order to be able to mask late
timing errors. Both Quorum Majority Voting (QMV) and
Compare Majority Voting (CMV) provide outputs within
a bounded time interval. These approaches make an as-
sumption that the number of timing errors within a certain
period does not exceed an allowed threshold. As long as
the assumption holds, the ability to detect value errors is
equivalent to existing approaches. QMV and CMV can-
not detect whether this assumption violation has occurred.
Hence, these approaches may produce optimistic results in
the sense that, e.g., an incorrect value may be produced at
a correct (or incorrect) time, and thus may not be fully suit-
able for hard real-time systems.

Traditionally, research efforts are less focused on scenar-
ios and solutions beyond the stated assumptions, whereas in
practice, the robustness of dependable systems can be en-
hanced by the provision of signalling assumption violations.
For example, in the event of a violation of the underlying as-
sumptions, a voter needs to be cautious in the provision of
outputs to the environment, e.g., a “no output” together with
an error signal may be a better alternative than a potentially
erroneous output.

In [2] we have outlined a conceptual design for a real-
time voting strategy Voting on Time and Value (VTV),
which performs voting in both the time and the value do-
mains. In particular, VTV aims to enhance the fault toler-
ance abilities of NMR by ensuring the output from the voter
to be both correct in value, and delivered within a speci-
fied admissible time interval, under specified assumptions.
VTV is designed to detect when the assumption violation
made by QMV and CMV is broken. VTV still has an upper
bound on the number of errors that can be handled, however
the limit is improved. This gives an enhanced capability
for ensuring fail-safe or fail-stop behavior within systems.
VTV is also designed to perform no worse than existing
strategies for systems that are tightly synchronised where
the effect of the assumption violations do not exist. How-
ever, the earlier results in [2] were not supported by any
empirical evaluation regarding the performance of VTV in
relation to other similar approaches. Another important as-
pect left unexplored in the previous work, is the sensitivity

of the voter outputs on the detection thresholds. An inap-
propriate selection of the thresholds could either make the
results overly-cautious or could result in erroneous outputs
being accepted by the voter violating the system require-
ments.

The contributions of the paper are as follows:
1. extension of the technique in [2] so that the detection

threshold is made tunable and the exploration of the
effect of the tuning

2. an evaluation that shows how different error sizes and
error scenarios affect the detection capabilities. The
results demonstrate the robustness of VTV, confirming
that VTV outperforms CMV in terms of its potential
for notifying assumption violations

The rest of the paper is organized as follows: In Section
2 we introduce the system and the error model followed by
an overview of the voting strategies designed for loosely
synchronized real-time systems in Section 3. In Section 4
we present the evaluation results and we conclude the paper
in Section 5.

2 System and Error Model

In this paper, we assume a distributed real-time system,
where each critical node is replicated for fault tolerance,
and replica outputs are voted on to ensure correctness in
both value and time. Upon receiving identical requests or
inputs, replicas of a node start their executions on dedi-
cated processors whose clocks are allowed to drift from
each other at most by a maximum deviation. This bound can
be achieved by relatively inexpensive clock synchronization
algorithms implemented in software (compared to expen-
sive tight clock synchronization implementations). After
the replicas complete their executions, the outputs are sent
to a stand-alone voting mechanism. Deviation in message
transfer times from the replicas to the voter is also bounded
by using reliable communication techniques. Upon receiv-
ing deliveries from replicas, the voter starts executing the
voting algorithm and outputs a correct value at an admissi-
ble time or signals the non-existence of a correct output to
the subsequent component in the system in a timely manner.

We use the following notations for the system properties:
δ maximum deviation in time domain between any two

replica outputs, in an error-free scenario, as perceived
by the voter, which includes the maximum skew be-
tween any two non-faulty replica clocks δclock and the
maximum skew between any two message transmis-
sions from replicas to the voter δcomm

Cvoter worst-case computation time of the voting algo-
rithm

∆ maximum admissible deviation between any two voter
outputs in the time domain relative to the correct time
point, t∗, (seen by a perfect observer), as per the real-



time and dependability specifications
α detector coefficient used as part of error detection. In

[2] this was based purely on the values of δ and ∆,
however in this paper it is made a tunable value

σ maximum admissible deviation in the value domain
between any two replica outputs

The reader should note that the maximum admissible de-
viation between any two voter outputs in the time domain,
∆, relative to the correct time point, t∗, is determined ac-
cording to the system specifications, i.e., what the rest of
the system can tolerate as per the real-time and depend-
ability specifications. On the other hand, δ determines the
maximum deviation between any two replica outputs in an
error free scenario assured by the implemented clock syn-
chronization procedures. The reader should also note that
the maximum admissible deviation of a voter output from a
correct time point, t∗, is ∆/2 and the maximum deviation
of a replica output from t∗ in an error-free scenario is δ/2.

Error detectors use δ multiplied by the detector coeffi-
cient α to identify any potential variations in the time do-
main that may affect the system timeliness. If α is less than
one, the error detector may identify even error-free outputs
as erroneous increasing the false positives, however this
may increase the detection of the variations in the time do-
main due to errors reducing the false negatives. A value less
than one can also be used if ∆/2 is less than δ/2+Cvoter to
detect any scenarios that may result due to inadequate syn-
chronization and threaten system’s timeliness requirements.
On the other hand if ∆/2 is greater than δ/2 +Cvoter, then
the system can tolerate even some of the variations due to
errors, hence the difference between ∆/2 and δ/2 +Cvoter

can be used to reduce false positives by using an α value
greater than one. Figure 1 shows the relation between ∆, δ
and Cvoter.

value
2


σ incorrect
valuesvalues

late 
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early
outputs

δ 

t* Cvoter time

Figure 1. Output correctness in the time and
the value domains and the relation between
∆, δ, and Cvoter

We follow the dependability concepts originally intro-
duced in [1, 4, 19]. For the sake of readability, we denote

the ith replica of a given node by Ri. The output delivered
by Ri, is specified by two domain parameters, viz., value
and time:

Specified output for Ri = < v∗i , t
∗
i >

where v∗i is the correct value, t∗i is the correct output
delivery time (seen by a perfect observer).

An output delivered by Ri is denoted as:

Delivered output from Ri = < vi, ti >

where vi is the value and ti is the time point at which the
value was delivered. Based on the voter parameters σ, δ and
α, we define the output generated by replica Ri as incorrect
in value domain if:

vi < v∗i −
σ

2
or vi > v∗i +

σ

2

and incorrect in time domain if:

ti < t∗i − α
δ

2
(early timing error)

or if

ti > t∗i + α
δ

2
(late timing error).

The notations used for the error behavior of the replicas
(seen by a perfect observer) are:
• Ev: the number of replicas that have only value errors
• Et: the number of replicas that have only timing errors,

consisting of two subcategories:
– Ee

t : the number of replicas that produce early
outputs with correct values

– El
t: the number of replicas that produce late out-

puts with correct values
• Evt: the number of replicas that have both value and

timing errors, consisting of two subcategories:
– Ee

vt: the number of replicas that produce early
outputs with incorrect values

– El
vt: the number of replicas that produce late out-

puts with incorrect values
where the total number of erroneous replica outputs E is:

E = Et + Ev + Evt

Finally, the notations used for describing the voting
mechanisms are:
• N : number of replicas
• Mt: minimum number of replicas required to form a

consensus in time domain, as per system specification
• Mv: minimum number of replicas required to form a

consensus in value domain, as per system specification



Basic assumptions: The voting approaches presented in
this paper rely on the following set of basic assumptions (to
a large extent based on [7]):
A1: non-faulty nodes produce values within a specified ad-

missible range after each computation block
A2: non-faulty nodes produce values within a specified ad-

missible time interval after each computation block
A3: replica outputs with incorrect values do not form (or

contribute in forming) a consensus in value domain
A4: incorrectly timed replica outputs do not form (or con-

tribute in forming) a consensus in time domain
A5: there exist adequate mechanisms, e.g., infrequent syn-

chronization, which are significantly less costly than
tight synchronization, to ensure a maximum permissi-
ble replica deviation from the global time

A6: the voting mechanism does not fail, as it has been de-
signed and implemented as a highly reliable unit

3 Voting Strategies for Loosely Synchronized
Systems

Table 1 presents an overview of various voting strategies,
applicable to loosely synchronized real-time systems which
are described in the following sections.

3.1 Compare/Quorum Majority Voting
(CMV/QMV)

Shin et al. presented two voting techniques [24], viz.,
Quorum Majority Voting (QMV) and Compare Majority
Voting (CMV) that relax the tight synchronization require-
ments. QMV performs majority voting among the received
values as soon as 2n+1 out of 3n+1 replicas deliver their
outputs to the voter, thus, guaranteeing detection of major-
ity of non-faulty values even in the case n replicas produce
erroneous outputs. CMV masks n erroneous outputs out of
2n+1 replica outputs as in basic majority voting. The main
difference is that in CMV, the voter output is delivered as
soon as a majority consisting of identical values has been
received, without waiting for the rest of the replicas. Both
QMV and CMV provide outputs within a bounded time in-
terval, as long as the assumptions regarding the maximum
number of errors hold. However, QMV and CMV are un-
able to detect any assumption violations in the time domain.

3.2 Voting on Time and Value (VTV)

Previously in [2], we presented a voting strategy that ex-
plicitly considers errors in both value and time domains.
The correctness of the approach relies on a number of con-
ditions regarding the permissible number of replicas that
produce erroneous outputs:

C1: The number of replicas that produce erroneous outputs
can not exceed the difference between the total num-
ber of replicas and the minimum number of error-free
replicas required to achieve consensus in the value do-
main.

Ev + Et + Evt ≤ N −Mv

C2: The number of replicas that produce erroneous outputs
in time domain is bounded by the difference between
the total number of replicas and the minimum number
of error-free replicas required to achieve consensus in
the time domain.

Et + Evt ≤ N −Mt

The goal of this approach is two fold:

1. always deliver the correct value within [t∗−∆
2 , t

∗+ ∆
2 ],

if the conditions C1 and C2 hold

2. provide information about the violation of the condi-
tions, otherwise.

In VTV, agreement in the time domain is reached when
Mt out of N replicas deliver their outputs within the time
interval [t∗ − αδ/2, t∗ + αδ/2] (referred to as feasible win-
dow henceforth).

The maximum number of sets, consisting of Mt con-
secutive replica outputs each (out of the N replicas), is
N − Mt + 1. Since the consensus in time domain can
be reached in any of these sets, a separate feasible win-
dow needs to be initiated upon receiving each of the first
N−Mt+1 replica outputs. In order to keep track of the fea-
sible windows, simple countdown timers are utilized. Once
an agreement in time domain is obtained, then values are
voted. If an agreement in the value domain is not obtained
within a particular feasible window, the process continues
with subsequent feasible windows, until agreement in both
the time and the value domains can be achieved, or viola-
tions of C1 or C2 are detected.

Depending on the real-time application characteristics, a
value produced by a node may be considered valid or in-
valid for the purpose of voting, in the case it is produced
early. Hence, we have two cases:

Case 1 Only timely outputs are considered valid. If a plu-
rality exist among the timely received values, the plu-
rality value is delivered as the correct output.

Case 2 Early and timely outputs are considered valid. If a
plurality exist among all the received values, the plu-
rality value is delivered as the correct output. The ad-
vantage of this case is that the number of the nodes
required to mask a given number of errors (in the time
and the value domains) can be significantly reduced,



Voting Strategy Description Voting domain(s)
1. Wait for a quorum (2n+1 out of 3n+1 replica outputs) value

QMV 2. Perform majority voting among the quorum
CMV Wait for a majority (n+1 out of 2n+1 replica outputs) with identical values value

1. Wait for a majority (or plurality) delivered within a predefined time window
VTV 2. Perform voting in the value domain among timely replica outputs value and time

(Case 1) 3. In case there is no agreement in the value domain, return to step one
(or signal disagreement in case it was the last possible plurality in time)
1. Wait for a majority (or plurality) delivered within a predefined time window

VTV 2. Perform voting in the value domain among available replica outputs value and time
(Case 2) 3. In case there is no agreement in the value domain, return to step one

(or signal disagreement in case it was the last possible plurality in time)

Table 1. Overview of voting strategies suitable for real-time systems

compared to Case 1, since replica outputs erroneous in
one domain may still be used to reach consensus in the
other domain. However, if the early timing errors have
the potential to cause system failures, then using VTV
in this configuration may be unadvisable. In this case,
Condition C1 becomes:

C1(Case2) : The number of replicas that produce er-
roneous outputs, except the outputs with early
timing errors, can not exceed the difference be-
tween the total number of replicas and the num-
ber of error-free replicas required to achieve con-
sensus in value domain.

Ev + (Et − Ee
t ) + (Evt − Ee

vt) ≤ N −Mv

4 Evaluation

In this section, we present a simulation study performed
in order to investigate the performance of VTV compared to
CMV. As shown in Figure 2, we simulated five nodes where
various kinds of transient errors were injected with certain
probabilities along with a reference node that never fails.
The outputs of the five nodes were voted using three differ-
ent voters: (i) one implementing the VTV strategy where
early generated replica outputs are considered invalid for
the value voting (Case 1), (ii) one implementing the VTV
strategy where early outputs are considered valid for the
value voting (Case 2) and (iii) one implementing the CMV
strategy. All node outputs were sent to a perfect observer
module together with the voter outputs and the assumption
violation signals from the voters, in order to determine the
false positive rate (FPR) and the false negative rate (FNR)
of the different voting strategies. This section is structured
as follows. First, the experiment setup is given, then the
voters are compared with α = 1 , and finally the effect of
different detection thresholds, α, is considered.

R1

R2 CMV
Output

Error

R3

R
VTV
C 1

Output

ErrorR4

R5

Case 1 Error

OutputR5 VTV
Case 2

Output

Error

Rref
Perfect 
observer

FPR & FNR

Figure 2. Simulation setup

4.1 Experimental design

The simulations were implemented using Mat-
lab/Simulink. In order to evaluate the dependency on
the signals input to the replicas, two different signals, viz.,
a sine wave and a square wave, at various frequencies
were used. By using the sine wave, we simulated signals
that change smoothly over time, with a value limit for
the maximum change during a given time. The sine wave
also allows an assessment of how specific frequencies are
affected. An example for such a signal is the reading of a
temperature sensor in a closed room, where the change rate
is limited based on a number of factors such as the heater
capacity, the volume of the room, etc.. A square wave also
allows a range of frequencies to be assessed. By using
the square wave, we simulated signals such as those that



can be generated by sensors that output boolean values.
An example for such a sensor is a smoke detector which
outputs either false to indicate that there is no smoke, or
true otherwise. The amplitudes of the signals were set to 5
units. We simulated the sensor noise by adding a normally
distributed random value with a variance of 0.2 units to the
input signals.

4.1.1 Injected errors

Three types of errors were considered in the simulations.

1. Value errors: The node outputs the sampled value
with a uniformly distributed random value offset
within a given value offset range.

2. Timing errors: The node outputs the sampled value
with a uniformly distributed random time offset within
a given time offset range.

3. Omission errors: When an omission error (which is a
special type of timing errors) is injected, the node skips
outputting the sampled signal value. Hence the output
of the node remains unchanged from the last output
value.

In order to evaluate the sensitivity of the voting ap-
proaches, i.e. the detection capabilities of the voters de-
pending on the errors’ magnitude, the time and value off-
sets were randomly generated within two different ranges.
The narrow time offset range was defined as [−1ms, 1ms].
Please note that replica outputs are assumed to be timely
as long as the time difference between the output delivery
times and the delivery time of an ideal replica (with no tim-
ing errors and no time drift from the real-time) is less than
or equal to αδclock/2 where δclock = 0.5ms and α is se-
lected within an interval of [0.6, 1.4], hence the timing er-
rors generated within this range are harder to detect than
the timing errors generated using the wide time offset range
[−4.5ms, 4.5ms], which, together with the drift from the
real-time, may result in replica output deliveries any time
during a period. The narrow value offset range was defined
as [−1, 1] units and the wide value offset range is defined as
[−5, 5] units. Figure 3 shows a sampled input signal and a
node output with injected errors.

We evaluated voters’ abilities to work in a wide range
of conditions by injecting the errors with different combi-
nations (no errors, only value errors, only timing errors (in-
cluding omission errors), and both value and timing of er-
rors) as well as by injecting errors with different probabil-
ities. We conducted two sets of experiments, based on the
error occurrence probability during a period for each type
of error (one with a probability of 2% and one with a prob-
ability of 10%).
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Figure 3. A noisy input signal and the corre-
sponding node output with injected errors

4.1.2 Task and system model

Each node ran an identical replica of a single task with a
period P = 10ms and an execution requirement C = 5ms.
This is because both the CMV and the VTV strategies ex-
pect parallel execution of the replica nodes. Except the tim-
ing errors, the only factor that may result in different output
delivery times is the drift in the local clock from the global
clock. The drift was simulated by allowing local periods
slightly longer or shorter than 10ms. The execution require-
ment was also scaled up or down based on the local period.
Whenever the accumulated drift from the global clock, i.e.
the accumulated sum of the difference between the local pe-
riod and the real period, reaches the maximum admissible
deviation from the real time (δclock/2 = 0.5ms), the local
clock is synchronized with the global clock. This is real-
ized by running a synchronization period shorter or longer
than the real period with a value equal to the accumulated
difference. Figure 4 shows an example of a scenario with
clock synchronization. The vertical arrows in the diagram
indicate the beginning and the end of the periods (release
times and the deadlines of the tasks). In this example, Node
3’s clock runs in line with the real-time. However, Node
1’s clock runs slower and Node 2’s clock runs faster than
the real-time. At t = 39.5ms, the drift of Node 2’s clock
reaches δclock/2 = 0.5ms and it executes a synchroniza-
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Figure 4. Clock synchronization in loosely synchronized systems

tion period T synch
2 = 10.5ms. Similarly, at t = 40.5ms,

the drift of Node 1’s clock reaches δclock/2 = 0.5ms and
it executes a synchronization period T synch

1 = 9.5ms. At
t = 50ms, all clocks are synchronized.

The nodes sample the input signals at the beginning of
their periods and output the sampled values after the com-
putation time scaled by the local period in case of error-free
operation.

The time step used in the simulations was 100 simulation
nanoseconds long, and each simulation was run for 100 sim-
ulation seconds. Increasing the simulation duration did not
affect the statistical trend in the results, hence with the cho-
sen error rates, a duration of 100 seconds for each run was
shown to be adequate for the purpose of these experiments.
The four error combinations (no error, only timing errors in-
cluding omission errors, only value errors and both types of
errors), the two error range combinations for both the time
and the value errors, the two different error probabilities,
the two different signals and the three different frequencies
for each signal sum up to a total of 156 simulation runs. In
addition, to show the effect of α on the performance of the
evaluated voters, we separately ran the experiments for 5
different α values.

4.1.3 Voters

Both the voters that use the VTV strategy and the voter that
uses the CMV strategy look for a majority in the value do-
main (Mv = 3). In addition, the voters that use the VTV

strategy look for a majority in the time domain (Mt = 3).
Furthermore, the voter that uses the VTV strategy and con-
figured for Case 1 requires that the majority of replica out-
puts that match in the value domain are also timely at the
same time. Two outputs are assumed to be matching in the
value domain if the difference between them is less than or
equal to the maximum admissible deviation in the value do-
main between any two replica outputs σ = 0.2 units, and
they are assumed to be matching in the time domain if the
difference in output delivery times is less than or equal to
the maximum admissible deviation in time between any two
nodes (δclock = 1ms).

4.1.4 Perfect observer

The perfect observer module was used to calculate the false
positives (FPR) and the false negatives (FNR) of each vot-
ing strategy. It compares the most recently received outputs
from the voters with the output from the reference node.
The outputs of the voters are assumed to be correct if the
difference between them and the reference node is less than
or equal to the maximum admissible deviation in the value
domain from the ideal output σ/2 = 0.1 units. This task
also uses the error signals from the voters, i.e. the sig-
nals that indicate the assumption violations, to determine
the FPR and FNR.



CMV VTV(Case 1) VTV(Case 2)
f(Hz) SIGNAL FNR FPR FNR FPR FNR FPR

TYPE (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%)

1 Sine w. 0.09 0.39 1.17 3.92 0.01 0.03 4.84 25.51 0.06 0.11 2.72 16.41
Square w. 0.05 0.57 1.04 3.64 0.02 0.09 5.06 25.87 0.04 0.21 2.80 16.23

4 Sine w. 0.56 5.36 1.08 3.07 0.02 0.31 4.53 21.56 0.31 1.19 2.92 14.74
Square w. 0.17 2.22 1.38 3.72 0.03 0.19 5.01 25.38 0.08 0.65 3.11 16.96

16 Sine w. 1.74 11.27 0.8 2.49 0.09 0.9 3.10 14.89 0.93 3.81 2.38 11.83
Square w. 0.73 6.47 1.24 3.18 0.05 0.34 4.55 20.98 0.44 1.87 3 14.35

Table 2. FPR and FNR for CMV and VTV with respect to the signal types and the signal frequencies

4.2 Results for α = 1

Table 2 shows the FPR and the FNR of the evaluated vot-
ers for the given signals and the error probabilities assuming
α = 1. Regardless from the signal types, the signal frequen-
cies and the error probabilities, the FPR of CMV is lower
than that of VTV configured for Case 2, and the FPR of
VTV configured for Case 2 is lower than that of VTV con-
figured for Case 1. This is because the voters that use the
VTV strategy identify more erroneous scenarios since, un-
like the voter using the CMV strategy they can detect the as-
sumption violations in the time domain, and some of those
timing errors are not propagated into value errors. Among
the voters using the VTV strategy, the FPR is higher for
the one configured for Case 1 since, similarly, it signals a
greater number of assumption violations, some of which are
not propagated into value errors. On the other hand, it can
be seen that the FNR of CMV is the highest among all the
evaluated voting strategies and FNR of VTV configured for
Case 1 is the lowest, which is much more critical than the
difference in the FPR, as the FNR is the rate that indicates
the errors that are neither masked nor signalled.

Table 3 shows the FPR and the FNR of the evaluated
voters for the given error combinations and α = 1. As
expected, the FPR and FNR for all the voters are zero in
the absence of errors. When only value errors are injected,
the FPR and the FNR are identical for all voting strategies.
This is because all strategies use the same criteria for detect-
ing the value anomalies. However, when the injected errors
are only in the form of timing errors (including the omis-
sion errors), the performance of the voters using the VTV
strategy outperforms the voter using the CMV strategy by a
great margin. This increase in the performance is still visi-
ble when the all types of errors are injected together.

Table 4 shows the FPR and the FNR of the evaluated vot-
ers for the given error magnitudes. Even when the injected
errors become harder to detect due to their smaller magni-
tude, the VTV strategy outperforms the CMV strategy with
respect to the FNR. However, we can see that the trend in
the ratio of FNR’s becomes slightly less distinct.

All of the above FPR and FNR values are derived by the
perfect observer by comparing the voter outputs with the
reference node output. As stated earlier, the voter output is
identified as erroneous in the value domain if the difference
is greater than σ/2 = 0.1 units. Figure 5 shows the ratio
of CMV’s FNR to VTV’s FNR (configured for both Case 1
and Case 2) for the value errors that are greater than the val-
ues identified on the X-axis. This experiments show that the
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Figure 5. ratio of CMV’s FNR to VTV’s FNR
(configured for Case 1 and Case 2) with in-
creasing error magnitude

masking and signalling capability of CMV decreases rela-
tive to that of VTV as the error magnitude increases. Hence
it provides a decreased level of fault-tolerance for the errors
that are more critical. VTV performs better than CMV since
the timeliness requirement of the signals limits the amount
of deviation from the correct signal.



CMV VTV(Case 1) VTV(Case 2)
FNR FPR FNR FPR FNR FPR

ERROR COMBINATION (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%)
No errors 0 0 0 0 0 0 0 0 0 0 0 0

Only value errors 0.01 0.03 1.53 6.31 0.01 0.03 1.57 6.31 0.01 0.03 1.53 6.31
Only timing errors 0.29 1.48 0.17 0.29 0.02 0.13 3.12 15.29 0.16 0.53 1.49 7.9

Both value and timing errors 0.38 2.58 1.5 4.24 0.02 0.15 6.01 29.83 0.24 0.75 3.81 19.36

Table 3. FPR and FNR for CMV and VTV with respect to the error combinations

ERROR MAGNITUDE CMV VTV(Case 1) VTV(Case 2)
VALUE TIMING FNR FPR FNR FPR FNR FPR

ERRORS ERRORS (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%) (2%) (10%)
LARGE LARGE 0.32 2.48 1.23 4.65 0.02 0.13 5.8 28.73 0.22 0.77 3.52 19.06
LARGE SMALL 0.2 2.02 1.44 4.81 0.01 0.11 4.1 20.84 0.12 0.64 3.08 15.73
SMALL LARGE 0.23 2.12 0.51 1.07 0.01 0.2 4.17 21.27 0.16 0.66 2.2 12.4
SMALL SMALL 0.28 1.76 0.55 1.26 0.02 0.14 3.13 13.8 0.19 0.57 2.12 10.16

Table 4. FPR and FNR for CMV and VTV with respect to the error magnitude

4.3 Results for α ∈ [0.6, 1.4]

Table 5 shows the FPR and the FNR of the evaluated
voters for the given α values selected from the interval
[0.6, 1.4]. Changing the value of α does not have any effect
on the performance of CMV since no specific error detec-
tion is performed in the time domain. Nevertheless, the or-
der among the FPR and FNR values for all the three types of
voters are preserved for all the chosen values of α. For both
configurations of VTV, as α increases, the FPR decreases
and the FNR increases. This is because, for small values of
α, a greater number of voter outputs are detected as poten-
tially erroneous in the time domain. Among these detected
outputs, there are scenarios both where these anomalies oc-
cur due to errors and due to clock drifts. If the anomalies
are caused by errors, then their detection contributes to the
reduction of FNR. If they are caused by clock drifts, then
their detection causes an increase in the FPR.

5 Conclusions

In this paper, we have extended the VTV approach by
enabling voter parameter tuning to achieve desired trade-
offs between the false positive and false negative rates. We
have presented an evaluation of VTV, in comparison with
the well-known voting strategy, CMV, both of which add
the time dimension to the majority voting paradigm. The
performed evaluation confirms that VTV outperforms CMV
in all scenarios, showing a lower percentage of errors that
are neither masked nor signalled. The experiments demon-
strate the overcautious nature of VTV by showing a higher

percentage of false positives due to the fact that it does not
account the untimely values for arriving at a majority. The
experiments also show that the ratio of the error masking
and signalling capability of VTV to that of CMV increases
as the magnitude of the value errors increase. Hence, VTV
provides better error detection than CMV for value errors of
greater magnitude which are originated by timing anoma-
lies. This enhances the achieved dependability.

The goal of using redundancy schemes is to boost the
reliability of the system to a level that the system specifica-
tions meet the dependability requirements. Our evaluations
show that for a given redundancy scheme, it is possible to
tune its performance by choosing (i) an appropriate δ (by
adjusting the level of clock synchronization) and (ii) an ap-
propriate α that in combination would enable reaching a
desired level of FNR. On the other hand, the FPR needs to
be bounded at a certain level so that the recovery actions
taken due to the false positives would not jeopardize the
real-time requirements. As a future work, we plan to de-
velop a framework that would assist system designers to
choose the degree of redundancy, together with the δ and
α values that would both satisfy the dependability and real-
time requirements at the same time. This will consist of a
test environment for performing fault injection experiments
and a sensitivity analysis tool to handle the false positives.
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