
ExSched: An External CPU Scheduler Framework
for Real-Time Systems

Mikael Åsberg and Thomas Nolte
Mälardalen Real-Time Research Center

Mälardalen University (Sweden)

Shinpei Kato
Graduate School of Information Science

Nagoya University (Japan)
Ragunathan Rajkumar

Department of Electrical and Computer Engineering
Carnegie Mellon University (USA)

Abstract—Scheduling theory and algorithms have been well
studied in the real-time systems literature. Many useful ap-
proaches and solutions have appeared in different problem
domains. While their theoretical effectiveness has been exten-
sively discussed, the community is now facing implementation
challenges that show the impact of the algorithms in practice.

In this paper, we propose a scheduler framework, called
ExSched, which enables different schedulers to be developed for
different operating system (OS) platforms without any modifica-
tions to the OS itself, using a unified interface. The framework
will easily keep up with changes in the kernel since it is only
dependent on a few kernel primitives. The usefulness of this
framework is that scheduling policies can be implemented as
external plug-ins. They can simply use the ExSched interface
instead of platform-dependent functions, since platform details
are abstracted by ExSched. The advantage for industry is that
they would more easily keep up with new kernel versions since
ExSched does not require patches. The advantage for academia
is that we could focus on the development of schedulers instead
of tedious and time-consuming installations of patched kernels.

Our prototype implementation of ExSched supports Linux and
VxWorks and it comes with example schedulers which include
hierarchical and multi-core schedulers in addition to traditional
fixed-priority scheduling (FPS) and earliest deadline first (EDF)
algorithms.

I. INTRODUCTION

The real-time systems community has addressed various
scheduling problems. Examples include hierarchical schedul-
ing, which composes multiple subtask systems into a single
task system with real-time guarantees. Another notable study
from the community is multi-core scheduling that extends
traditional fixed-priority scheduling (FPS) and earliest deadline
first (EDF) algorithms [1], [2] in a way that avoids well-
known global and partitioned scheduling problems [3]. All
these techniques are important in order to enhance real-time
systems in performance and functionality.

While theory is becoming more and more mature, systems
implementation remains to be a core challenge for the
real-time systems community. We are aware of several
studies of CPU-scheduler implementations from the previous
work, particularly for hierarchical scheduling [4], [5], [6]
and multi-core scheduling [7], [8], [9], [10]. There are also
different types of implementation work [11], [12], [13], [14],
[15], [16], [17], mostly targeted for Linux. However, most

of this work is specific to certain platforms. Their prototype
implementations are provided in one software platform, e.g.,
Linux, and it is not easily translated to other platforms, e.g.,
VxWorks. This prevents many interesting solutions (which
are developed by the community) from being used in a wide
range of systems. This is in particular a critical problem for
real-time systems, as they have many different commodity
operating system (OS) platforms, such as Linux, VxWorks,
FreeRTOS, OSE, µC/OS-II, QNX, TRON, RTLinux etc. Even
within each OS platform, existing solutions are often limited
to some specific version of the underlying OS. The reason for
this is because the solutions require patches (modifications)
to parts of the original OS source code. These modifications
are not necessarily consistent across different kernel versions.
In particular, such version problems are significant for
Linux-based solutions, since Linux continuously adds new
functionality as the kernel version gets upgraded:

“Of course, you could also dive in and modify Linux to
convert it into a real-time operating system, since its source
is openly available. But if you do this, you will be faced
with the severe disadvantage of having a real-time Linux that
can’t keep pace, either features-wise or drivers-wise, with
mainstream Linux. In short, your customized Linux won’t
benefit from the continual Linux evolution that results from
the pooled efforts of thousands of developers worldwide.” [18]

Even minor version upgrades can have significant impact on
the functionality of Linux, e.g., 2.6.23 for Completely Fair
Scheduler, 2.6.25 for Control Groups, and 2.6.33 for GPU
support.

Academia and industry can benefit from using non-intrusive
solutions. Easier installation of frameworks and schedulers
(which usually are patched kernels) on various software plat-
forms (and different platform versions) could lead to more
reusability of already implemented solutions in academia. The
advantage for industry is that it would make it easier to update
to newer kernel versions since loadable kernel-modules require
much less (or no) kernel modifications compared to patches.

The contribution of this paper is a new scheduler framework
that enables different scheduling techniques to be easily im-

plemented on different OS platforms. Specifically, we propose
a scheduler framework, called ExSched, which provides a
unified scheduler interface that can be used to implement
different schedulers as external plug-ins for different OS plat-
forms, without modifying to the underlying OS. One scheduler
plug-in developed for some OS platform can directly be used
on other platforms. Hence, with this framework we strongly
argue for (i) portability across OS platforms/versions, and (ii)
availability for scheduling techniques. Up until the day that
OSs like Linux become so flexible in their structure that kernel
source-code modifications become unnecessary, that is when
ExScheds non-intrusiveness becomes pointless.

The rest of this paper is organized as follows. Section II
presents related work in the area of real-time scheduler imple-
mentations in Linux. Section III provides our system model
and basic assumptions. Section IV presents the design and
implementation of our ExSched framework. Section V pro-
vides the development of plug-in examples with six scheduling
algorithms. Section VI demonstrates the performance and
overhead of the developed plug-ins on Linux and VxWorks.
The paper is concluded in Section VII.

II. RELATED WORK

“Hijack” [19] is a real-time module for Linux which does
not require any modifications to the underlying kernel; hence,
this approach is similar to ours. Hijack uses kernel modules to
intercept kernel services and relays them to user space tasks.
The difference from our work is that we relay scheduling
services to kernel modules. Also, our framework is not de-
pendent on the hardware architecture, whereas Hijack relies on
the assumption that the underlying hardware is x86. Another
modification-free solution called Vsched [20] is capable of
scheduling type-2 virtual machines in a periodic manner. This
is similar to one of our ExSched plug-in schedulers [21].
In addition, we offer the possibility of plug-in scheduler
development. LITMUSRT [10] is a patch-based scheduler
test-bed in Linux for multi-core schedulers. It is similar to
ExSched since it also supports the development of schedulers.
However, it differs in that ExSched does not require patches
and we support the development of arbitrary schedulers (not
just multi-core schedulers) on two different OS platforms
(Linux and VxWorks). SCHED DEADLINE [5] is another
patch-based scheduler that implements EDF scheduling of
servers. One of ExScheds plug-in schedulers support the same
scheduling scheme. AQuoSA (Adaptive Quality of Service
Architecture) [14] is a (patched) feedback-based resource
reservation scheduler for Linux. The authors in [16] present
a modular scheduling framework (similar to ours since it
does not require kernel modifications) in the Red Linux
real-time kernel. The main difference is that we target the
vanilla Linux kernel (among other OSs). RT-Linux [17] is a
hypervisor solution based on Linux. The fundamental idea
is to let Linux execute as a process. RT-Linux targets pure
hard-real time systems; however, it requires modifications to
the Linux kernel. RTAI [11] is similar to RT-Linux. It uses a
hypervisor (Adeos [22]) to get hard-real time capabilities out

of Linux, at the cost of modifying the Linux kernel. Portable
RK (Resource Kernel) [13] is a patch-based solution that
enhances the real-time capabilities of Linux. The techniques
used in [12], [15], [23] are also patched based. [6], [24] present
two-level hierarchical scheduling without kernel modifications.
[4] also implement hierarchical scheduling but it requires
kernel modifications. Table I summarises the related work.
As can be observed, most solutions are patch based and only
ExSched is OS independent.

Solution Type Patch OS independent
ExSched Framework No Yes

Hijack [19] Framework No No
Vsched [20] Scheduler No No

LITMUSRT [10] Framework Yes No
SCHED DEADLINE [5] Scheduler Yes No

AQuoSA [14] Framework Yes No
Alloc. Disp. [16] Framework No No

RT-Linux [17] Hypervisor Yes No
RTAI [11] Hypervisor Yes No
RK [13] Framework Yes No

Linux-SRT [12] Framework Yes No
Firm RT [15] Scheduler Yes No

Kurt [23] Framework Yes No
HSF-VxWorks [24] Scheduler No No
HSF-FreeRTOS [6] Scheduler No No

HLS [4] Framework Yes No

TABLE I
OVERVIEW OF THE RELATED WORK.

III. SYSTEM MODEL AND LIMITATION

We assume that the task system is composed of periodic
and/or sporadic tasks with single or multiple CPU cores. Each
task τi is characterized by a tuple (Ci, Di, Ti, pri), where
Ci is the worst-case computation time, Di is the relative
deadline, Ti is the minimum inter-arrival time (period) and
pri is the priority (lower value indicates a higher priority).
The utilization of τi is also denoted by Ui = Ci/Ti. We
particularly assume constrained-deadline systems that satisfy
Ci ≤ Di ≤ Ti for any τi. When a task τi has Di > Ti then we
transform Di to Di = Ti. Each task τi generates a sequence of
jobs, each of which has a computation time less than or equal
to Ci. A job of τi that is released at time t has its deadline at
time t + Di.

Schedulability tests and admission-control mechanisms are
not within the scope of this paper. Although they are essential
to guarantee that the system will run in a safe manner. We
assume that the submitted task system is schedulable with the
underlying scheduler. Integration of schedulability tests and
admission-control mechanisms into ExSched are left open for
future work.

IV. EXSCHED FRAMEWORK

In this section, we present the ExSched framework that
conceal platform details and provide high-level primitives for
scheduler plug-ins. It also provides application programming
interface (API) functions for user programs. Neither scheduler
plug-ins nor user programs will access OS native functions.
The core component of ExSched is a kernel-space module
that controls the CPU scheduler via scheduler-related functions

Scheduler

Linux Kernel

Kernel Space

User Space

Application
ExSched

Library

ExSched APIs

ioctl()

schedule()

sched_setscheduler()
Timers

etc.

wake_up_process()

set_cpus_allowed_ptr()

ExSched

Module

ExSched

Plugins

Fig. 1. The ExSched framework for Linux.

exported by the underlying OS. For instance, ExSched uses
these functions to switch between tasks, migrate tasks to other
CPU cores, and change the priorities of tasks.

Figure 1 illustrates the ExSched framework for Linux.
The ExSched core is built as a character-device module and
it is accessed through a device file /dev/exsched. User
programs call the ExSched API functions provided by the
ExSched user-space library. These calls are then relayed to
the corresponding functions provided by the ExSched kernel
module, using an ioctl() system call. The ExSched plug-
in schedulers (if any are installed) are invoked by the core
kernel-module through callback functions. The last step is to
call appropriate scheduler-related functions (exported by the
OS) that will schedule tasks in accordance with the given
algorithm. It should be noted that KURT Linux [23] has a
similar mechanism but it requires patches to the OS.

Our Linux version of ExSched uses a real-time scheduling
class, i.e., rt_sched_class, to isolate real-time tasks from
non-real-time tasks. Non-real-time tasks are scheduled by a
fair scheduling class, i.e., fair_sched_class. It is also
possible to use ExSched with the well-known RT-Preempt
patch1 if further isolation and low latency is required.

The VxWorks version of ExSched is similar to the Linux
version except that the ExSched library and module reside
in the kernel space by default. There is no need to provide
ioctl() calls as VxWorks does not support user space
mode. The internal functions exported by the OS are also
different from those in Linux. However, VxWorks has the
corresponding functions for scheduling tasks, migrating tasks
etc. In addition, all tasks in VxWorks are real-time tasks;
hence, we do not need multiple scheduling classes.

A. User API

Table II shows a basic set of API functions that ExSched
provides for user programs. Figure 2 shows a sample C
program, using these API functions. The program enters
the real-time mode, using the rt_enter() call (not ap-
plicable in VxWorks). Next, the worst-case execution time,
the period, the deadline, and the priority is set. Then, this
task gets scheduled by ExSched immediately with no delay
(rt_run(0)). The task submits nr_jobs number of jobs,

1RT-Preempt http://www.kernel.org/pub/linux/kernel/projects/rt/

rt enter() Change a caller to a real-time task.
rt exit() Change a caller to a normal task.

rt run(timeout) Start ExSched mode in @timeout time.
rt wait for period() Wait (sleep) for the next period.

rt set wcet(wcet) Set the worst-case exec. time to @wcet.
rt set period(period) Set the min. inter-arrival time to @period.

rt set deadline(deadline) Set the relative deadline to @deadline.
rt set priority(priority) Set the priority (1-99) to @priority.

TABLE II
BASIC EXSCHED API FUNCTIONS FOR USER PROGRAMS.

each of which executes the user’s code in the for loop. It
returns to the normal mode, using the rt_exit() API call
(not applicable in VxWorks). We believe that our ExSched API
is reasonable, given that many existing Linux-based real-time
schedulers [11], [13], [15], [17] also use a similar API.

1: main(timeval C, timeval T, timeval D, int prio, int nr jobs) {
2: rt enter();
3: rt set wcet(C);
4: rt set period(T);
5: rt set deadline(D);
6: rt set priority(prio);
7: rt run(0);
8: for (i = 0; i < nr jobs; i++) {
9: / ∗ User′s code. ∗ /
10: rt wait for period();
11: }
12: rt exit();
13: }

Fig. 2. Sample code using the ExSched API.

B. Management of Timing Properties

We must attach timing properties to each task, for example
release time, deadline, WCET etc., in order to schedule them
as real-time tasks. However, neither Linux nor VxWorks
have task descriptors that contain members that relate to
these timing properties. Although these members might be
supported in future versions, the current available versions of
the underlying OS will be strictly limited without the timing
properties. Hence, ExSched has its own task descriptor in the
core module. Figure 3 shows the Linux version of the ExSched
task-descriptor. The task field is a pointer to the original task
descriptor provided by Linux.

C. Basic Approach to Real-Time Scheduling

This section presents the ExSched approach in using OS na-
tive functions to schedule real-time tasks. The implementation
of the ExSched core module depends on the OS platform. The
following presents our prototype implementations for Linux
and VxWorks.

1) Linux: Linux provides two POSIX-compliant scheduling
policies for real-time tasks: SCHED_RR and SCHED_FIFO.
ExSched uses SCHED_FIFO that breaks ties for tasks with
the same priority level in a first-in-first-out fashion. On the
other hand, the priorities of tasks are managed by the ExSched

1: struct exsched task struct {
2: struct task struct *task;
3: unsigned long wcet;
4: unsigned long period;
5: unsigned long deadline;
6: unsigned long exec time;
7: unsigned long release time;
8: unsigned char flags;
9: unsigned char server id;
10: } exsched task[NR EXSCHED TASKS];

Fig. 3. ExSched task descriptor.

τ2

τ1

τ3
(1)(1)(1) (1) (1) (1) (1)(2) (2) (2) (2) (2) (1)(1)

Fig. 4. Example of FPS with three tasks.

module according to the given algorithms. ExSched uses the
following functions exported by the Linux kernel (function
names may differ slightly depending on kernel versions).
• schedule() switches the current execution context to

the highest-priority task that is ready on the local CPU.
• sched_setscheduler(task,policy,prio)

sets the scheduling policy and the priority of the task.
• setup_timer(timer,func,arg) associates the

timer object with the given function and its argument.
• mod_timer(timer,timeout) activates (or re-

activates) the timer object so that it gets invoked when
the timeout expires.

• set_cpus_allowed_ptr(task,cpumask) speci-
fies the CPUs that the task is allowed to execute on and
it is also used to force migrations of tasks.

It is important to understand that priority-driven schedulers
require context switches only (i) when jobs with higher priority
(than the current job) are released or (ii) when jobs complete
their execution. Figure 4 depicts an example of FPS with three
periodic tasks: τ1, τ2, and τ3 (tasks with lower indices have
higher priority). It is easy to observe that context switches
only occur when there are job releases and job completions.
This is marked with “(1)” and “(2)” respectively.

The previous discussion suggests that the schedule()
function should be called when jobs are released or have
completed, given that Linux already supports FPS. Figure 5
shows how and when ExSched invokes the schedule()
function. It also shows how and when the plug-in interfaces
are called.

The user task calls the rt_wait_for_period()
API call (see Figure 2) every time a job completes.
ExSched will then invoke the corresponding internal func-

1: job release(struct exsched task struct *p) {
2: p->deadline += p->release time;
3: job release plugin(p);
4: if ((p->flags & SET BIT(PREVENT RELEASE)) == 0)
5: wake up process(p->task);
6: else // User can prevent activation
7: p->flags ˆ= SET BIT(PREVENT RELEASE);
8: }
9: sleep in period(struct exsched task struct *p) {
10: setup timer(timer, job release, p);
11: mod timer(timer, p->release time);
12: p->task->state = TASK UNINTERRUPTIBLE;
13: schedule();
14: del timer(timer);
15: }
16: job complete(struct exsched task struct *p) {
17: p->release time += p->period;
18: job complete plugin(p);
19: if (p->deadline < jiffies)
20: sleep in period(p);
21: }
22: rt run internal(int k, int timeout) {
23: exsched task[k].release time = jiffies + timeout;
24: task run plugin(&exsched task[k]);
25: sleep in period(&exsched task[k]);
26: }
27: rt wait for period internal(int k) {
28: job complete(&exsched task[k]);
29: }

Fig. 5. ExSched functions for job release and completion.

tion rt_wait_for_period_internal(), which in
turn calls job_complete(). This internal function calls
sleep_in_period() which will suspend the task (us-
ing schedule()). The timer is associated with an inter-
nal function handler, job_release(), which is invoked
at the next release time. On invocation, it awakens the
task given by its argument (unless the user set flags in
job_release_plugin), and the new job is released. The
sleep_in_period() function is also called by an internal
function, rt_run_internal(), which corresponds to the
rt_run() API call.

The internal functions rt_run_internal(),
job_release(), and job_complete() contain
the task_run_plugin, job_release_plugin, and
job_complete_plugin interfaces respectively. These
plug-in interfaces are function pointers, which point to
functions implemented by the user of the scheduler plug-ins.
ExSched does not offer any further functions, i.e., plug-ins
(Section V) can instead be used to extend the functionality.

Figure 6 illustrates a time-line flow from a job completion to
a job release, including plug-in interface calls. A user task will
be suspended when it calls the rt_wait_for_period()
function, and it will be resumed at the next release time.
Figure 6 illustrates an example sequence in which the priority
of the task in focus is the highest among all ready tasks when
it is released. Hence, it can preempt the preceding tasks at
the release time. In this way, the FPS of periodic tasks is
made possible without applying patches to the Linux kernel.
Scheduler plug-ins can hook into the plug-in execution parts

Task

ExSched Module

ExSched Plugin

Linux Kernel
timer invocation

rt_wait_for_period()

job_complete_plugin() schedule()

mod_timer()

switch_to()

timer->func()

job_release_plugin()

wake_up_process()

switch_to()

Other tasks

timer->func=job_release

Thread Context

Interrupt Context

Fig. 6. Control flow in ExSched.

and thereby extend the scheduling functionality of ExSched.
Task Migration: The set_cpus_allowed_ptr()

function, also know as set_cpus_allowed in earlier ver-
sions, is used to migrate tasks across CPU cores in Linux.
However, there are two scenarios that we must take into
account when migrating tasks. The simple scenario is when
the task executes in the thread context. In this scenario, we
can directly migrate the task. However, the other scenario is
when the task executes in the interrupt context. We should not
migrate the task directly, as it will trigger the schedule()
function which is not allowed to be called in the interrupt
context (unless Linux is built with the CONFIG_PREEMPT
option). If the CONFIG_PREEMPT option is not set, then we
create a real-time kernel thread with the highest priority that is
awakened upon request to migrate the caller task. Henceforth,
“migrate_task(task,cpu)” represents a procedure to
migrate the given task to the specified CPU, using one of the
two mechanisms described.

2) VxWorks: The base scheduler in VxWorks is fixed-
priority driven, but it does not support periodic tasks.
The ExSched API function rt_wait_for_period() is
mapped to the VxWorks primitive taskSuspend which
removes the calling task from the VxWorks ready-queue. The
periodic releases of tasks is implemented using the VxWorks
watchdog primitive wdStart. It calls an interrupt handler
after a specified time has elapsed. Unlike in Linux, where
the release list of tasks is implemented in the kernel by
mod_timer, the VxWorks version of ExSched uses an inter-
nal bitmap-based queue for the management of task releases.
The primitive Q_PUT is used to insert released ExSched tasks
into the VxWorks ready-queue.

Task Migration: When it comes to CPU migration of tasks,
we use the system call taskCpuAffinitySet. However,
in VxWorks we face the same problem as in Linux that this
primitive may not be called from the interrupt context. Hence,
we apply the same technique here as in Linux. We simply
release a high priority task to perform the task migration.

V. PLUG-IN DEVELOPMENT

In this section, we describe how to develop plug-ins by
showing some example schedulers developed in ExSched.
It covers the implementation of in total six schedulers,
where two are hierarchical schedulers and four of them

are multicore schedulers. We want to emphasize the avail-
ability of ExSched and its simple usage for implementing
different scheduling techniques. We managed to implement
a variety of different scheduler algorithms using only the
task_run_plugin, the job_release_plugin, and the
job_complete_plugin interfaces (as well as timer man-
agement primitives).

A. Hierarchical Scheduling

We first provide the implementation of a 2-level hierarchical
scheduler. This type of scheduler includes two schedulers. The
global scheduler schedules virtual tasks that we refer to as
servers. They are released periodically and they run a fixed
time-length called budget. The variation of this scheduler is
FPS and EDF. The second level scheduler (local scheduler),
which resides within each server, schedules tasks based on
FPS using the ExSched interface. The fundamental idea with
hierarchical scheduling is that tasks should only execute within
the time budget of their server.

1: struct server struct {
2: int id;
3: int period;
4: int budget;
5: int priority;
6: int remain budget;
7: unsigned long release time;
8: unsigned long budget exp time;
9: unsigned long tstamp;
10: struct timer list timer;
11: struct exsched task struct *task list[NR TASKS IN SERVER];
12: } SERVERS[NR OF SERVERS];

Fig. 7. ExSched server descriptor.

Figure 7 shows the descriptor of a server in ExSched. Line
(11) shows a list of ExSched task descriptors of tasks that
belong to this server. Lines (1) and (11) in Figure 8 represent
two ExSched callback functions, i.e., the hierarchical sched-
uler plug-in will get notifications from the ExSched core about
task releases and completions through these two functions.
Line (7) will notify ExSched that it should not activate the task.
Line (8) will notify the server_release_handler()
function that it should activate this task at the corresponding
servers next release. The functions on line (15) and (35) are
interrupt handlers (they execute in the interrupt context). These
two functions are responsible for releasing and suspending
servers. These functions get triggered by server release and
deplete events through timer activations which are initiated on
lines (26-30), (39-42) and (49-52). The server ready-queue is
implemented using bitmaps, i.e., in the same way as the Linux
2.6 native task ready-queue.

The EDF version of the hierarchical scheduler has a similar
implementation as the FPS version. The EDF version stores the
server absolute deadlines (instead of storing server priorities)
in a bitmap queue, as to determine which server to execute.
Hence, in the EDF version, lines (2), (17), (18), (37) and

1: void job release plugin(struct exsched task struct *rt) {
2: high prio server = bitmap get(&SERVER READY QUEUE);
3: if (high prio server == NULL)
4: goto setflags;
5: if (SERVERS[rt->server id].id != high prio server->id) {
6: setflags:
7: rt->flags |= SET BIT(PREVENT RELEASE);
8: rt->flags |= SET BIT(ACTIVATE);
9: }
10: }
11: void job complete plugin(struct exsched task struct *rt) {
12: if ((rt->flags & SET BIT(ACTIVATE))==SET BIT(ACTIVATE))
13: rt->flags ˆ= SET BIT(ACTIVATE);
14:}
15: void server release handler(unsigned long data) {
16: struct server struct *released server = (struct server struct *) data;
17: high prio server = bitmap get(&SERVER READY QUEUE);
18: bitmap insert(&SERVER READY QUEUE, released server);
19: if (high prio server == NULL)
20: goto settimer;
21: if (released server->priority < high prio server->priority) {
22: high prio server->remain budget-=jiffies-high prio server->tstamp;
23: // Deactivate the preempted server (deactivate its tasks etc.)
24: settimer:
25: // Activate the released server (activate its tasks etc.)
26: setup timer on stack(&(released server->timer),
27: server complete handler, (unsigned long)released server);
28: released server->budget exp time=jiffies+released server->budget;
29: mod timer(&(released server->timer),
30: released server->budget exp time);
31: released server->tstamp = jiffies;
32: released server->remain budget = released server->budget;
33: }
34:}
35: void server complete handler(unsigned long data) {
36: struct server struct*completed server=(struct server struct *) data;
37: bitmap retrieve(&SERVER READY QUEUE);
38: completed server->release time += completed server->period;
39: setup timer on stack(&(completed server->timer),
40: server release handler, (unsigned long)completed server);
41: mod timer(&(completed server->timer),
42: completed server->release time);
43: // Deactivate the completed server (deactivate its tasks etc.)
44: high prio server = bitmap get(&SERVER READY QUEUE);
45: if (high prio server != NULL) {
46: // Activate the high priority server (activate its tasks etc.)
47: high prio server->budget exp time = jiffies +
48: high prio server->remain budget;
49: setup timer on stack(&(high prio server->timer),
50: server complete handler,(unsigned long)high prio server);
51: mod timer(&(high prio server->timer),
52: high prio server->budget exp time);
53: high prio server->tstamp = jiffies;
54: }
55:}

Fig. 8. Hierarchical scheduler.

(44) in Figure 8 are replaced with a bitmap queue that stores
absolute deadlines of servers. Our EDF version is similar to
the SCHED DEADLINE [5] and VSCHED [20] schedulers.

B. Multi-core Scheduling

We next provide the implementations of our multi-
core schedulers. We will assume FPS algorithms for
the sake of simplifying this description. Specifically, we
provide four multi-core scheduler plug-ins; G-FP, FP-US,
FP-FF, and FP-PM. G-FP and FP-US are based on

multi-core global scheduling, while FP-FF and FP-PM
are based on partitioned and semi-partitioned scheduling
respectively. More details will be provided in the rest of
this section. For the sake of simplifying our presentation,
we represent the plug-in functions pointed to by the
task_run_plugin(), job_release_plugin(),
and job_complete_plugin, as task_run_X(),
job_release_X(), and job_complete_X()
respectively, where ’X’ denotes the plug-in name.

1) Partitioned Scheduling: For partitioned scheduling,
we developed a plug-in called FP-FF, which adopts a
first-fit heuristic to assign tasks to CPUs. The plug-in
implementation is straightforward. FP-FF uses only the
task_run_plugin() interface to carry out partitioning
before execution. Every time the task_run_FP-FF() func-
tion is called, FP-FF tries to find a CPU that can accommodate
the given task, by using the response-time analysis [25]. The
task is then migrated to the CPU that is verified first, using
the migrate_task() function. A task starts to execute in
the background if it cannot be assigned to any CPU.

2) Semi-Partitioned Scheduling: For semi-partitioned
scheduling, we developed a plug-in called FP-PM, which
adopts to the migration policy of the DM-PM algorithm [26].
It allows tasks to migrate across multiple CPUs if the task
cannot be assigned to any CPU by a first-fit allocation. This
migratory task is statically assigned the highest priority. The
maximum CPU time that the migratory task is allowed to
consume on each CPU is computed based on a response-time
analysis. The task migrates to another CPU (on which it is
assigned CPU time) once it consumes the assigned CPU time
on a CPU. Other tasks are scheduled in the same manner as
FP-FF (for more details see [26]).

The implementation of FP-PM is more complicated
than FP-FF. It uses the task_run_plugin() and the
job_release_plugin() interface. As in FP-PM, the
CPU allocation is done in the task_run_FP-PM() func-
tion. The migration decision is also made in this function.
A task is scheduled in the same way as in FP-FF if it is
successfully assigned to a particular CPU. However, if the task
requires migration in order to be schedulable then FP-PM con-
ducts additional procedures in the job_release_FP-PM()
function. A task is assigned the lowest priority if it is verified
to be unschedulable, even in the case when using migrations.

FP-PM migrates tasks to the CPU that has the lowest index
in the list of assigned CPUs when a job of a migratory task is
released, using the migrate_task() function. FP-PM also
activates a timer that triggers when the assigned processing
time is consumed on a CPU. This will migrate the task to the
next CPU. It activates a timer again for the next migration
event when the migration is completed, and so on. Timer
invocations are continued until the task is migrated to the CPU
that has the largest index among the assigned CPUs. Timing
information that is related to the activation of timers resides
within the plug-in module space.

The task migration to the first CPU (at the time of the
release) can alternatively be done when jobs complete instead,

using the job_complete_plugin interface. This is suit-
able for systems that are sensitive to job-release overhead.

3) Global Scheduling: We have also developed two plug-
ins called G-FP and FP-US for global scheduling. The G-
FP algorithm simply dispatches tasks in a global scheduling
fashion, according to the given priorities. On the other hand,
FP-US classifies tasks as heavy and light tasks, based on the
utilization factors. A task is categorised as a heavy task if
the CPU utilization of the task is greater than or equal to
m/(3m − 2). It is marked as a light task in any other case.
All heavy tasks are statically assigned the highest priorities,
while light tasks keep the original priorities. This idea has
been proposed in [27].

The plug-ins are implemented in such a way
that they still use local schedulers like partitioned
scheduling. However, they imitate global schedul-
ing using the job_release_plugin() and
job_complete_plugin() interfaces. We first focus
on the implementation of G-FP.

G-FP starts to seek a CPU that is currently not executing
any real-time task when a job of a real-time task is released.
It uses the job_release_G-FP() function to accomplish
this. The task will be migrated if such a CPU exists. If none
exist then G-FP checks if there are CPUs that are currently
executing real-time tasks with lower priorities than this task.
The task will be migrated to the CPU that is executing the
lowest-priority tasks if this scenario is true. In any other case,
G-FP will do nothing for this task. The task may later be
migrated to another CPU in the job_complete_G-FP()
function as soon as another job completes.

G-FP migrates the task that has the highest priority (not
including the current tasks), if it exists, when a job of a real-
time task completes. It is migrated to the CPU upon which
the completed job has been running on. This is done using
the function job_complete_G-FP().

We additionally create the task_run_FP-US() function
which can classify heavy and light tasks (in the case of FP-
US). The priority assignment of heavy tasks is also processed
in this function.

We imitate global scheduling since local schedulers always
dispatch the highest-priority task in their own runqueue and
we assume that every runqueue contains one of the m highest-
priority tasks. We only need a global task-list that contains
ready tasks, ordered by priorities. However, the global task-
list must be protected by a lock which introduces overhead.

VI. EXPERIMENTAL EVALUATION

We demonstrate our experiments in this section in order
to show the runtime performance of ExSched. We will show
the performance of our hierarchical schedulers in both Linux
and VxWorks, and also our multi-core schedulers in Linux.
In particular, we have observed the overhead of our hierar-
chical schedulers, showing that our ExSched approach has a
limited performance penalty. We also show that our multi-
core scheduling algorithms, implemented using the ExSched

framework, perform as expected compared to the previous
work on analysis and simulations.

A. Scheduler Overhead in VxWorks

We have conducted experiments with our FPS and EDF
hierarchical schedulers. We measured the overhead of these
schedulers and compared the results against an equivalent
scheduler [24]. The HSF scheduler [24] is the only similar
scheduler that we can find for the VxWorks platform.

1) Experimental Setup: We used the platform VxWorks
6.6 on a single-core Pentium4. The measurements were done
using VxWorks timestamp libraries. Neither the VxWorks
scheduler nor task context-switches were included in these
overhead measurements (this gives a fair comparison). We ran
2-8 servers with 1-10 (synthetic) tasks in each server. Every
experiment ran for 4 minutes. Server periods were in the range
of 5-20 and task periods 50-150 milliseconds.

2) Results: Our results are presented in Figure 9. The
difference in overhead should mostly depend on the queue
management. The HSF schedulers [24] are based on the me-
dian linked-list implementation which has good performance
when the number of queue elements are below 50 [28]. Our
previous studies [29] confirm that median linked-list queues
have good performance when the number of elements are low.
However, our experiments (Figure 9) indicate that the ExSched
bitmap-based schedulers outperform HSF [24], both for FPS
and EDF. The overhead rarely peeks, and it climps steadily as
the number of servers and tasks increase. The reason for this
increase is due to that the scheduler executes more frequently
when there are more entities (tasks/servers) to schedule.

B. Scheduler Overhead in Linux

The second experiment was done in Linux and we
compared our EDF hierarchical scheduler with the
SCHED DEADLINE [5] scheduler. We have chosen to
compare our scheduler against SCHED DEADLINE because
it resembles our EDF scheduler in that it also schedules
servers with the EDF algorithm. We deactivated our local FPS-
scheduler in order to make our EDF scheduler comparable to
the SCHED DEADLINE scheduler.

1) Experimental Setup: The platform used for this ex-
periment was a Linux-kernel (version 2.6.36) patched with
the SCHED DEADLINE scheduler (we used the latest stable
release from the SCHED DEADLINE project at the time of
writing this paper). We used a dual-core Pentium4 hardware-
platform (only 1 core was used in these experiments).

The measurements in ExSched-EDF were accomplished
by timestamping the execution of the two interrupt handlers
server release handler and server complete handler
(Figure 8) which are responsible for server releases and budget
depletions respectively.

We patched the SCHED DEADLINE kernel with times-
tamp functions in locations related to the resource-
reservation mechanism (in order to measure the execu-
tion time). We also instrumented the dl task timer timer-
handler function and part of the update curr dl function

(a) LEFT: FPS with 2 servers. RIGHT: EDF with 2 servers.

(b) LEFT: FPS with 3 servers. RIGHT: EDF with 3 servers.

(c) LEFT: FPS with 4 servers. RIGHT: EDF with 4 servers.

(d) LEFT: FPS with 5 servers. RIGHT: EDF with 5 servers.

(e) LEFT: FPS with 6 servers. RIGHT: EDF with 6 servers.

(f) LEFT: FPS with 7 servers. RIGHT: EDF with 7 servers.

(g) LEFT: FPS with 8 servers. RIGHT: EDF with 8 servers.

Fig. 9. Overhead measuring (in microseconds) of the ExSched and
HSF scheduler in VxWorks 6.6.

in the SCHED DEADLINE scheduling class (sched dl.c).
dl task timer is related to the enforcement of resource reser-
vation (similar to our two interrupt handlers) and the part in
update curr dl relates to the checking of server deadlines
and exceeded budget executions.

Fig. 10. Overhead measurements of the ExSched and SCHED DEADLINE
schedulers in Linux 2.6.36.

We ran 2 to 10 servers (with 1 synthetic task per server)
with system utilization ranging from 30% to 90%. The server
period interval was set to 10-160ms. We ran in total 28
experiments with one server configuration in each experiment.
Each experiment was conducted twice and the presented values
represent the average of the two.

2) Results: Figure 10 shows the overhead-measurement
results of the two schedulers when running 2 to 10 servers with
system utilization 30%, 50%, 70% and 90%. The overhead
of ExSched with respect to SCHED DEADLINE tends to
decrease when the system utilization increases. ExSched has a
maximum of 181% more overhead than SCHED DEADLINE
at 30% utilization. It drops to 164% (at 50% utilization), and
later 152% (at 70% utilization). Finally, at 90% utilization,
the maximum diff is only 140%. Another observation is
that SCHED DEADLINE is more efficient when there are
more servers. The conclusion is that there is a performance
penalty to pay when having a kernel modification-free solution
like ExSched. We have shown that this penalty cost is in
average (of all maximums) 160% of overhead compared to
SCHED DEADLINE.

C. Multi-core Scheduler Performance

In this section we evaluate the performance of our multi-
core scheduler plug-ins. Specifically, we measure the run-
time schedulability of FP-FF, FP-PM, G-FP, FP-US, and
FP. FP is a plain Linux SCHED_FIFO scheduler, which
reflects the performance of the native Linux scheduler. Priority
assignments are based on the Deadline Monotonic (DM)
algorithm [2]. A note to the reader is that these experiments
are not simulations, i.e., the experiments are conducted in a
real Linux kernel running on a multi-core hardware platform.

1) Experimental Setup: Our experiments are conducted in
the Linux kernel 2.6.29.4 running on two 3.16GHz Intel Xeon
CPUs (X5460). Each CPU contains four cores, hence, the
machine includes eight CPU cores in total. In order to assess
the schedulability, we submit many sets of randomly generated
(synthetic) busy-loop periodic tasks to the system. We then
observe the ratio of task sets that are successfully scheduled
without missing their deadlines.

The generated sets of periodic tasks are similar to the ones

employed in the previous work [8], [9], [10]. We submit 1000
sets of periodic tasks. In order to measure the schedulability
for the given workload we let each set produce the same
amount of workload W . Each task set is generated as follows.
The CPU utilization Ui of a newly generated task τi is
determined based on a uniform distribution. The range of
the distribution is parametric. We have three test cases in
our evaluation: [10%, 100%] (both heavy and light tasks),
[10%, 50%] (only light tasks), and [50%, 100%] (only heavy
tasks). New tasks are created until the total CPU utilization
reaches W . The period Ti of τi is also uniformly determined
within the range of [1ms, 100ms]. The execution time of τi

is set to Ci = UiTi.
We measure the count n of busy-loops that consume 1

microsecond. Each task τi then loops n×Ci iterations in each
period. We execute these busy-loop tasks for 10 minutes. A
task-set is said to be successfully scheduled if and only if all
jobs complete within their periods during the measurements.
We then evaluate by the success ratio: the ratio of the number
of successfully scheduled task-sets with respect to the total
number of submitted task-sets.

2) Results: Figure 11 shows the experimental results.
FP-PM has better performance than the others in most
cases. Semi-partitioned scheduling is a superset of partitioned
scheduling, hence, FP-PM should outperform FP-FF and FP.
FP-FF is superior to FP in all cases, which demonstrates
that the CPU allocation by a first-fit heuristic improves the
schedulability compared to the one implemented in the Linux
kernel. G-FP is usually better than FP while it is worse
than FP-FF. This observation leads to the conclusion that
partitioned scheduling may be inferior to global scheduling
and vice versa, depending on the CPU allocation methods.
Meanwhile, FP-US shows the worst performance of all the
tested plug-ins. This is reasoned as follows. FP-US assigns
highest priority to heavy tasks, but clearly, this may incur
priority inversions. Consider such a heavy task τi that has
a long relative deadline (and period). Since it is heavy, the
execution time is also likely to be long. As a result, this heavy
task can block light tasks that have much shorter deadline
than their execution time. This results in deadline misses for
light tasks. Therefore, FP-US can be worse than G-FP in
the average case, even though its worst-case schedulability is
higher than G-FP [27], [30].

The performance of the scheduler plug-ins is dependent on
the range (Umin, Umax) of every individual tasks utilization.
G-FP suffers from Dhall’s effect [3] and tends to perform
poorly as compared to other cases when task sets contain both
light and heavy tasks. FP-US is designed to avoid Dhall’s
effect but it also shows poor performance due to the reason
stated previously. On the other hand, the schedulability of FP-
FF and FP can decline when tasks are likely to be heavy, as in
the case of Figure 11 (i). An extreme example which reasons
about this performance degradation is when we consider m+1
tasks with utilization (50+α)%. It is clear that one of the m+1
tasks can not be successfully assigned to any of the CPUs. In
this case, it is inevitable for FP-FF and FP to cause deadline

misses. FP-PM overcomes this issue by using migrations.
The number of CPUs will also affect the schedulability. In

most cases, the performance of the scheduler plug-ins (except
for FP-PM) decline as the number of CPUs increase. This
result is natural since the theoretical schedulable bound for
partitioned and global scheduling is a function of the number
of CPUs. An increase in the CPU count results in a decrease
in the bound [27], [30], [31], [32], [33]. Thus, the runtime
performance reflects the theory. On the other hand, FP-PM
utilizes the CPUs effectively by using task migrations. In fact,
the more CPUs that are given, the greater is the chance that
FP-PM meets the task deadlines.

VII. CONCLUSION

We have presented ExSched: a platform and scheduling-
policy independent scheduler framework for real-time systems.
It supports the development of different scheduling techniques
on different OS platforms. Our prototype implementation of
ExSched supports hierarchical and multi-core schedulers in
Linux and VxWorks. We have presented the overhead mea-
surements of ExSched with experimental results. The multi-
core scheduling algorithms implemented as ExSched plug-ins
perform as studied in theory. To the best of our knowledge,
this is the first real-time scheduler framework that achieves
both portability across different OS platforms, and availability
for different scheduling techniques. We believe that ExSched
is a useful contribution for the real-time systems community
in terms of transforming well-studied theory into practice.

The future work includes the development of ExSched to
support more OS platforms and scheduling techniques. Fur-
ther, we will also extend ExSched to support shared resources
for both tasks and servers.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment,” Journal of the ACM, vol. 20,
pp. 46–61, 1973.

[2] J. Leung and J. Whitehead, “On the Complexity of Fixed-Priority
Scheduling of Periodic Real-Time Tasks,” Performance Evaluation,
Elsevier Science, vol. 22, pp. 237–250, 1982.

[3] S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem,”
Operations Research, vol. 26, pp. 127–140, 1978.

[4] J. Regehr and J. Stankovic, “HLS: A Framework for Composing Soft
Real-Time Schedulers,” in RTSS’01, 2001.

[5] D. Faggioli, M. Trimarchi, and F. Checconi, “An implementation of the
Earliest Deadline First algorithm in Linux,” 2009.

[6] R. Inam, J. Maki-Turja, M. Sjodin, S. Ashjaei, and S. Afshar, “Support
for Hierarchical Scheduling in FreeRTOS,” in ETFA’11, 2011.

[7] A. Bastoni, B. Brandenburg, and J. Anderson, “Is Semi-Partitioned
Scheduling Practical?” in ECRTS’11, 2011.

[8] B. Brandenburg, J. Calandrino, and J. Anderson, “On the Scalability
of Real-Time Scheduling Algorithms on Multicore Platforms: A Case
Study,” in RTSS’08, 2008.

[9] B. Brandenburg and J. Anderson, “On the Implementation of Global
Real-Time Schedulers,” in RTSS’09, 2009.

[10] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson,
“LITMUSRT: A Testbed for Empirically Comparing Real-Time Mul-
tiprocessor Schedulers,” in RTSS’06, 2006.

[11] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza, and S. Pa-
pacharalambous, “RTAI: Real Time Application Interface,” Linux Jour-
nal, vol. 29, p. 10, 2000.

[12] S. Childs and D. Ingram, “The Linux-SRT Integrated Multimedia
Operating Systems: Bringing QoS to the Desktop,” in RTAS’01, 2001.

 0

 20

 40

 60

 80

 100

 100 120 140 160 180 200

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(a) (Umin,Umax)=(0.1,1.0), cpus=2

 0

 20

 40

 60

 80

 100

 100 120 140 160 180 200

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(b) (Umin,Umax)=(0.1,0.5), cpus=2

 0

 20

 40

 60

 80

 100

 100 120 140 160 180 200

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(c) (Umin,Umax)=(0.5,1.0), cpus=2

 0

 20

 40

 60

 80

 100

 200 240 280 320 360 400

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(d) (Umin,Umax)=(0.1,1.0), cpus=4

 0

 20

 40

 60

 80

 100

 200 240 280 320 360 400

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(e) (Umin,Umax)=(0.1,0.5), cpus=4

 0

 20

 40

 60

 80

 100

 200 240 280 320 360 400

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(f) (Umin,Umax)=(0.5,1.0), cpus=4

 0

 20

 40

 60

 80

 100

 400 480 560 640 720 800

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(g) (Umin,Umax)=(0.1,1.0), cpus=8

 0

 20

 40

 60

 80

 100

 400 480 560 640 720 800

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(h) (Umin,Umax)=(0.1,0.5), cpus=8

 0

 20

 40

 60

 80

 100

 400 480 560 640 720 800

S
uc

ce
ss

 r
at

io
 (

%
)

Workload (%)

FP-FF
FP-PM
G-FP
FP-US
FP

(i) (Umin,Umax)=(0.5,1.0), cpus=8

Fig. 11. Schedulability results for multi-core schedulers.

[13] S. Oikawa and R. Rajkumar, “Portable RK: A Portable Resource Kernel
for Guaranteed and Enforced Timing Behavior,” in RTAS’99, 1999.

[14] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA: Adap-
tive Quality of Service Architecture,” Software Practice and Experience,
vol. 39, pp. 1–31, 2009.

[15] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus, “A Firm
Real-Time System Implementation Using Commercial Off-the-Shelf
Hardware and Free Software,” in RTAS’98, 1998.

[16] Y. Wang and K. Lin, “Implementing a General Real-Time Scheduling
Framework in the RED-Linux Real-Time Kernel,” in RTSS’99, 1999.

[17] V. Yodaiken, “The RTLinux Manifesto,” in Linux Expo, 1999.
[18] R. Lehrbaum, “Using Linux in Embedded and Real-Time Systems,”

Linux Journal, no. 75, 2000.
[19] G. Parmer and R. West, “Hijack: Taking Control of COTS Systems for

Real-Time User-Level Services,” in RTAS’07, 2007.
[20] B. Lin and P. A. Dinda, “VSched: Mixing Batch and Interactive Virtual

Machines Using Periodic Real-time Scheduling,” in SC’05, 2005.
[21] M. Åsberg, N. Forsberg, T. Nolte, and S. Kato, “Towards Real-Time

Scheduling of Virtual Machines Without Kernel Modifications,” in W.I.P.
session in ETFA’11, 2011.

[22] K. Yaghmour, “Adaptive Domain Environment for Operating Systems,”
Opersys inc, 2001.

[23] A. Atlas and A. Bestavros, “Design and Implementation of Statistical
Rate Monotonic Scheduling in KURT Linux,” in RTSS’99, 1999.

[24] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. Bril, “Towards
Hierarchical Scheduling in VxWorks,” in OSPERT’08, 2008.

[25] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Ap-
plying new scheduling theory to static priority preemptive scheduling,”
Software Engineering Journal, vol. 8, pp. 285–292, 1993.

[26] S. Kato and N. Yamasaki, “Semi-Partitioned Fixed-Priority Scheduling
on Multiprocessors,” in RTAS’09, 2009.

[27] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority Scheduling on
Multiprocessors,” in RTSS’01, 2001.

[28] R. Rönngren and R. Ayani, “A Comparative Study of Parallel and
Sequential Priority Queue Algorithms,” ACM Transactions on Modeling
and Computer Simulation, vol. 7, pp. 157–209, 1997.

[29] M. Åsberg, “Comparison of Priority Queue algorithms for Hierarchical
Scheduling Framework,” Malardalen University, Nr. 2598, 2011.

[30] T. Baker, “An Analysis of Fixed-Priority Schedulability on a Multipro-
cessor,” Real-Time Systems, vol. 32, pp. 49–71, 2006.

[31] T. P. Baker, “Comparison of Empirical Success Rates of Global vs.
Partitioned Fixed-Priority and EDF Scheduling for Hard Real Time,”
Dep. of Computer Science, Florida State University, TR-050601, 2005.

[32] J. Lopez, J. Diaz, and D. Garcia, “Minimum and Maximum Utilization
Bounds for Multiprocessor Rate-Monotonic Scheduling,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 15, pp. 642–653, 2004.

[33] J. Lopez, M. Garcia, J. Diaz, and D. Garcia, “Utlization Bounds
for Multiprocessor Rate-Monotonic Scheduling,” Real-Time Systems,
vol. 24, pp. 5–28, 2003.

