
Towards a model-based approach for allocating tasks to multicore processors

Juraj Feljan, Jan Carlson
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

juraj.feljan@mdh.se, jan.carlson@mdh.se

Tiberiu Seceleanu
ABB Corporate Research

Västerås, Sweden
tiberiu.seceleanu@se.abb.com

Abstract—Multicore technology provides a way to improve
the performance of embedded systems in response to the
demand in many domains for more and more complex func-
tionality. However, increasing the number of processing units
also introduces the problem of deciding which task to execute
on which core in order to best utilize the platform. In this paper
we present a model-based approach for automatic allocation
of software tasks to the cores of a soft real-time embedded
system, based on design-time performance predictions. We
describe a general iterative method for finding an allocation
that maximizes key performance aspects while satisfying given
allocation constraints, and present an instance of this method,
focusing on the particular performance aspects of timeliness
and balanced computational load over time and over the cores.

Keywords-embedded systems; multicore; soft real-time; task
allocation; performance analysis; architecture optimization;
model-based development;

I. INTRODUCTION

Computers have become prevalent in our daily lives, as
they are used in industry, business, education, research, traf-
fic, entertainment etc. Most computer systems are embedded
systems, i.e., microprocessor based systems with dedicated
functions, embedded in and interacting with a larger device.
Embedded systems are getting more and more performance
intensive as they include more functionality than ever, while
at the same time having to be reliable, flexible, maintain-
able and robust. Similarly to general purpose computer
systems, there is a trend to tackle the increasing performance
demands of embedded systems by increasing the number
of processing units. An example is the use of multicore
processors, i.e., a single chip with two or more processing
units (cores) coupled tightly together to increase processing
power while keeping power consumption reasonable. While
providing a higher performance capacity, this also introduces
the problem of how to best divide the software functionality
between the cores. One way of determining whether a
particular allocation of functionality to the cores yields satis-
factory performance is implementing, deploying and running
the system in order to obtain performance measurements.
However, this method is time consuming and thus costly,
and a preferred approach would be to predict performance

at a reasonable accuracy early in the development process,
prior to the implementation.

Performance is a broad concept and there are many char-
acteristics that influence whether an allocation is qualified as
good or bad, including for example response time of some
critical functionality, energy consumption, and control qual-
ity, but also concerns such as safety, security, availability,
scalability and robustness. The primary domain addressed in
this work is soft real-time embedded systems, i.e., systems
where timing is crucial to the correctness of a system
but occasional deadline misses can be tolerated. Thus, one
performance aspect particularly relevant for this domain is
average timeliness, as compared to worst-case timeliness
which is typically in focus for hard real-time systems where
absence of deadline violations must be guaranteed.

In this paper we present a model-based approach for
allocating software tasks onto the cores of a soft real-
time embedded system, based on local search guided by
performance simulations. We outline the envisioned general
approach and exemplify it by focusing on two particular
performance metrics, namely the number of deadline misses
and the distribution of computational load over time and over
the cores. The motivation for preferring allocations where
computation is evenly distributed over time and over the
cores is to minimize the impact of future modifications on
the temporal behavior of the system. Since the performance
metrics of interest depend heavily on the dynamic interplay
between tasks, and since we are focusing on average perfor-
mance rather than a worst-case scenario, they are not easily
derived analytically from task parameters. Instead, we base
the search for appropriate allocations on simulations of the
allocation candidates.

The paper is organized as follows. Section II presents an
overview of the proposed method. Then, in Section III we
detail the four activities of the method in separate subsec-
tions, illustrated by a running example. We also describe
how the activities together contribute to an iterative cycle
of searching for a good allocation of tasks to cores. In
Section IV we apply the method to a more complex example.
Section V surveys related work before Section VI presents
future work and concludes the paper.

jfn03
Textbox
38th Euromicro Conference on Software Engineering and Advanced Applications
September 5-8, 2012
copyright IEEE



Model transformation

Performance analysis

Simulation

Functional design

Architectural 
model

Affinity 
specification

Simulation 
model

Simulation 
results

Allocation

Allocation 
optimization

Figure 1. The allocation optimization process

II. METHOD OUTLINE

In this section we outline the proposed model-based
method for obtaining an allocation of software tasks onto
the cores of a soft real-time multicore system.

We propose an iterative approach based on local search,
where each iteration makes a small modification to the
best allocation found so far, and determines by means of
simulation if the modification resulted in an improvement
or not. Figure 1 shows the activities (depicted by rounded
rectangles) and artefacts (depicted by rectangles) that con-
stitute the method.

The main input to the allocation optimization is an ar-
chitectural model, built by the system designer as part of
the manual functional design activity. This model provides
an architectural specification of the system as a collection
of software tasks and the connections between them. Addi-
tionally, an architectural model contains information about
the hardware platform. An affinity specification defines the
affinity of each task, i.e. the parameter which tells to which
of the cores the task will be allocated. An initial affinity
specification candidate can be provided by the system de-
signer.

In the model transformation activity, a simulation model
is generated from the architectural model by means of
an automatic model-to-model transformation. A simulation
model captures the dynamic interaction between the tasks on
the same or different cores, as specified by the affinities, in-
cluding task scheduling and the delays in transfer of data and
control. In the next step, simulation is performed. Finally,
the performance analysis processes the data collected during

simulation and derives from it a few concrete performance
metrics by which the current allocation candidate can be
compared against others.

The result of the performance analysis is a new affinity
specification candidate — constructed by making a small
modification to the best allocation found so far — that is
fed back to the model transformation activity. This forms
an allocation optimization cycle that repeats the model
transformation, simulation and performance analysis activ-
ities in search for an affinity specification that yields good
performance. When the iteration stops, the method outputs
the best affinity specification it was able to find, to be used
in subsequent activities of implementation.

Support for architectural modeling, model transforma-
tion and simulation has been implemented in Mathworks
MATLAB and Simulink [1], two integrated products that
are a de-facto modeling standard in industry. The overall
optimization, including the performance analysis, has been
implemented as a Java program invoked from within the
Mathworks environment.

III. OPTIMIZING ALLOCATION OF TASKS TO CORES

In this section we detail the activities of the proposed ap-
proach. For each of them, we first give a general description
of the activity and the corresponding artefacts, and then the
activity is illustrated using a running example focusing on
two particular performance aspects, namely deadline misses
and the distribution of computational load over time and
over the cores. After detailing the individual activities, we
describe how they are combined together to form an iterative
cycle of searching for a good allocation of tasks to cores.

A. Functional design

Functional design represents the complex manual activity
of defining the structure of the system being developed. As
input to our process, we use one of the artefacts created
in the functional design activity, an architectural model.
It specifies the system as a collection of tasks and the
connections between them, in the form of a Simulink model.
The model blocks representing the tasks are reused from
our custom Simulink library. We support both periodic and
event-driven tasks. Each task has the following parameters
specified as part of the functional design by the system
designer: best-case execution time, worst-case execution
time, the size of data produced during each execution of the
task. Additionally, periodic tasks have a parameter defining
their period.

Apart from the software specification of the system in the
form of tasks, an architectural model holds some informa-
tion related to the hardware platform, such as the number
of cores, communication delay parameters and scheduling
options (for more details, see Section III-B).

The initial specification of the affinities is optional (indi-
cated by the dashed line in Figure 1). It can be provided



T5

affinity: 2
BCET: 3
WCET: 4
send: 0

dataIn dataOut

T4

affinity: 2
period: 50
BCET: 4
WCET: 6
send: 5

dataIn dataOut

T3

affinity: 2
BCET: 8

WCET: 10
send: 0

dataIn dataOut

T2

affinity: 1
BCET: 3
WCET: 5
send: 2

dataIn dataOut

T1

affinity: 1
period: 25
BCET: 5
WCET: 8
send: 3

dataIn dataOut

Figure 2. An example of an architectural model

by the system designer in the form of affinity values,
affinity constraints or a combination of the two. An affinity
value simply specifies to which of the cores a task will be
allocated initially. An affinity constraint specifies a more
complex affinity rule that must be satisfied for all allocation
candidates considered during the iteration. For instance, the
system designer can define that a particular task can be
allocated only to a subset of the available cores, or that
two tasks must be allocated to the same core, or to different
cores. Should the system designer choose not to provide the
initial specification of affinities, a random specification is
generated. The subsequent affinity specifications result from
the performance analysis activity.

Example: In order to illustrate the optimization process,
we introduce a running example. We start by presenting
an example of an architectural model (Figure 2). It is a
Simulink model consisting of 5 tasks, named T1 to T5.
T1 and T4 are periodic tasks, while the other three are
event-driven tasks triggered by data being available, as seen
from the connections between the tasks in the figure. The
tasks have the aforementioned parameters specified: the best-
and worst-case execution time (BCET and WCET), the
size of produced data, and the period for periodic tasks.
Additionally, the initial affinity specification is given in
the form of affinity values stored as task parameters, since
the current implementation does not explicitly separate an
affinity specification from an architectural model.

The hardware related information in the example is de-
fined as follows. The system has two cores, core1 has a
preemptive scheduler and core2 a nonpreemptive scheduler.
Local memory delay is set to 1 time unit and global memory
delay to 2. This information is stored as model parameters
and it is therefore not visible from the figure.

B. Model transformation

The first step in each iteration of the allocation optimiza-
tion cycle is the model transformation activity, which gen-
erates a simulation model from the architectural model and
the current affinity specification, by means of an automatic
transformation. The purpose of a simulation model is to
capture all aspects of performance that influence the quality

of a particular allocation, such that simulation can be per-
formed, and that the simulation results become available for
analysis. This means on one hand enriching the architectural
model with behavior that influences performance, and on the
other hand abstracting away the details from the architectural
model that do not affect the particular performance aspect
we are considering.

A simulation model is a hierarchical model, as the task
blocks are placed within core blocks, according to the
affinity specification. As mentioned in Section I, we are
interested in the distribution of computational efforts over
the cores and over time. Therefore, we need a simulation
model to capture both the interference from the tasks on the
same core that are ready to execute at the same time, and
the differences in delays caused by data being transferred
between tasks on the same and different cores, respectively.

Task interference is addressed by a scheduler block in
each core, governing the execution order of the tasks allo-
cated to that core. The behavior of the task- and scheduler
blocks is implemented by MATLAB programming language
code automatically generated as part of the model transfor-
mation. A task can be in one of the following three states:
waiting, ready, or executing. A task is in the waiting state
while it waits for a trigger, either a periodic signal for
periodic tasks or an event for event-triggered tasks. Upon
being triggered, the task transitions to the ready state and
raises its request signal to the scheduler. When the task
is granted access to the processor, represented by a grant
signal from the scheduler, it reduces its remaining execution
by one time unit. When the remaining execution reaches
zero, the task returns to the waiting state. This structure
allows for both preemptive and nonpreemptive schedulers
to be defined, since a scheduler decides which task to grant
execution rights at each simulation step. If a task has not
finished executing when the next triggering occurs, it is
considered to have missed its deadline. Deadline misses are
reported to the scheduler and stored in the simulation results.

The delays caused by data communication depend on the
architecture of the cores. If there is only global memory
shared between the cores, the communication cost is the
same regardless of whether the data is communicated locally
or remotely. If, however, the cores have local memory, then a
higher cost is paid for remote communication than for local
communication. In both cases, the communication cost is
proportional to the amount of data being communicated.

As mentioned in Section III-A, information about the
number of available cores, the scheduler used by the dif-
ferent cores, whether the cores have local memory, and
the relation between the times necessary to access local-
and global memory, is specified by the system designer
and stored as parameters of the architectural model. This
information is forwarded to the simulation model during the
model transformation.



core2

T3_dataIn

load

execution

misses

core1

T2_dataOut

load

execution

misses

Mux sim_results

(a)

misses
3

execution
2

load
1

scheduler

request

miss

grant

deadlineMisses

fcn

add

T5

affinity: 2
BCET: 3
WCET: 4
send: 0

grant

dataIn

load

request

dataOut

miss

T4

affinity: 2
period: 50
BCET: 4
WCET: 6
send: 5

grant

dataIn

load

request

dataOut

miss

T3

affinity: 2
BCET: 8

WCET: 10
send: 0

grant

dataIn

load

request

dataOut

miss
Mux

Demux

Mux

Mux

T2_dataIn
1

(b)

Figure 3. An example of a simulation model

Example: Figure 3 depicts the simulation model generated
from the architectural model in Figure 2. Figure 3a shows
the top level of the simulation model, with the two core
blocks and additional utility blocks that enable storing
and viewing simulation results. In Figure 3b we dive one
level deeper into the hierarchy and show the internals of
core2 (core1 is structured in a similar way). According to
the initial affinity specification, tasks T3, T4 and T5 are
allocated to this core. Apart from the ports present in the
architectural model, all task blocks in the simulation model
have additional ports. The ports named request and grant
enable the scheduler block to control task execution, while
the load port communicates the remaining task execution
(more details are given in Section III-C). The miss port

is used to communicate when a task misses its deadline.
The multiplexer/demultiplexer blocks shown in Figure 3b
are used to make a vector from the individual signals, and
vice versa, to simplify the scheduler implementation.

C. Simulation

In this step, the simulation model is executed in order
to collect relevant performance data characterizing the al-
location. The simulations are not deterministic, since the
execution time of each task instance is randomly selected
in the interval defined by the best- and worst-case execution
time parameters. In order to ensure that average performance
aspects are properly represented, the simulation time should
not be shorter than the duration of several hyperperiods of



0 20 40 60 80 100
0
3
6
9

12
15
18

Simulation time

 

 

E
x
e
c
u
t
io
n
t
im

e

T3
T4
T5

(a)

0 20 40 60 80 100
0

3

6

9

12

15

18

Simulation time

L
o
a
d

(b)

Figure 4. Simulation results for core2

all tasks in the system.
As discussed previously, in addition to timeliness (repre-

sented by the number of missed deadlines), we are interested
in how the computational load is distributed over time on
the different cores. The computational load over time of
a core is represented by a line graph of the load values
at the beginning of each simulation step (a simulation
step corresponds to a clock cycle). In the beginning of a
particular clock cycle, the load value is equal to the sum of
the remaining execution times of the tasks that are ready
to execute. In a particular clock cycle, the load can be
influenced in the following ways. First, if no task ready
for execution exists in the beginning of a particular clock
cycle, the load stays at zero in this particular clock cycle.
Second, if a task that became ready for execution in a
previous clock cycle has remaining execution time at the
beginning of a particular clock cycle, the load decreases by
one in this particular clock cycle. The decrease of the load
by one corresponds to one task having processor access in
one clock cycle. Third, if a task, or several tasks get ready
for execution in the beginning of a particular clock cycle,
the load increases in the beginning of this particular clock
cycle by the sum of the execution times of all tasks that got
ready for execution. A combination of the two latter cases
can happen in the same clock cycle. Informally, load at a
particular time is the amount of the remaining scheduled
execution.

To account for the delay due to data communication, we
model the cost of data transfer (the communication cost)
by adding it to the execution time of the receiving task.
Whenever a task becomes ready, a new execution time
is generated as a random value between the task’s best-
and worst-case execution times. The communication cost is
added to this generated value, producing the total execution

time of this task instance. As mentioned in Section III-B, the
communication cost depends on the size of data and whether
the data comes from a local or remote task.

The information collected from the simulation are the
load values and the deadline misses, for each core at each
simulation step. It is also possible to view a trace of the
execution of the tasks.

Example: Figure 4 shows the results of simulating the
model depicted in Figure 3. In Figure 4a the task execution
trace is shown, while Figure 4b shows the computational
load trace, both for core2. We can observe the following
from the figure.

When a task becomes ready, it contributes its execution
time to the load of its core. When a task is executed, it
reduces the core load, one unit per clock cycle. For instance,
at simulation time 50, task T4 becomes ready with an
execution time of 5. This is added to the core load, while
one load unit is subtracted by T3 that is executing at that
point.

As described above, tasks receiving data pay the cost of
the data transfer. For instance, task T3 receives 2 data units
from T2 located on core1. The execution time of T3 (a
random value between its BCET and WCET) is increased
by 4 units of data transfer cost (2 data units multiplied by the
delay of reading global memory), making its total execution
time. For T5, receiving data from T4 which is located on
the same core, the communication cost is 5 (5 data units
multiplied by the delay of reading local memory).

The scheduler on core2 is nonpreemptive, meaning that
once a task is granted access to the processor if will execute
until it is finished, regardless of other tasks that are ready
simultaneously. This can, for instance, be observed between
time steps 50 and 55, where T3 and T4 are both ready, and
T4 has to wait for T3 to finish its execution.



D. Performance analysis

In the performance analysis activity the simulation data is
filtered into a format that allows a straightforward compari-
son of allocations, in order to compare the current allocation
to the best allocation found in the previous iterations. The
performance analysis activity also generates a new affinity
specification candidate, based on the currently best alterna-
tive, to be used in the next iteration.

In our current instance of the optimization method, allo-
cations are compared with respect to two criteria, feasibility
and maximum peak load. An allocation is feasible if the
deadline misses remain below a certain limit (e.g., at most
2% of the task executions miss their respective deadline).
The maximum peak load of an allocation is the maximum
load reached on any core during the simulation.

Concretely, allocations A1 and A2 are compared in the
following way. If A1 is infeasible, A2 is better if it has
fewer deadline misses than A1. If allocation A1 is feasible,
allocation A2 is better if A2 is feasible and if the maximum
peak load of A2 is lower that the maximum peak load of
A1.

Alternatively, it is possible to define a fitness function that
takes deadline misses and maximum peak load as input and
outputs a single value specifying the quality of a particular
allocation, making it easy to compare two allocations.

The generation of a new allocation candidate from the
currently best one can be done in a purely random way, but
it is also possible to use information from the analysis to
guide the modification. In our case, the modification of an
infeasible allocation is done by just randomly reallocating
one task to a new core. For feasible allocations, however, we
try to decrease the peak load by relocating a random task
from the core with the highest peak load to a random other
core.

Example: The peak load value on core1 is 8 and the peak
load on core2 is 18 (it occurs at time 64 in Figure 4b). This
makes the maximum peak load of the allocation 18. No
deadline misses are recorded during the simulation, so the
allocation is feasible. For simplicity, we use 0% deadline
misses as the feasibility limit in the example. Because this
is the first allocation we evaluate, and thus the best so
far, it will be the basis for the next allocation. Since it is
feasible, one of the tasks currently allocated to core2 will
be randomly selected and instead allocated to core1 in the
affinity specification to be used in the second iteration.

E. The optimization cycle

The analysis activity in one iteration of the process com-
pares two allocations, stores the better one, and proposes a
new allocation that will be tested in the next iteration. When
generating a new allocation, it must be checked against the
affinity constraints to make sure that they are satisfied by
the new allocation. The new affinity specification is fed as
input to the new iteration of the process, or more specifically,

to the model transformation activity. This forms the alloca-
tion optimization cycle based on local search that in each
iteration makes a modification to the affinities, evaluates
the result and continues with the affinity specification that
was identified as best so far. In other words, the allocation
optimization repeats the model transformation, simulation
and performance analysis activities in search for an affinity
specification that yields the best possible performance.

The iteration continues until a particular number of con-
secutive iterations has not resulted in a better allocation. In
order to avoid getting stuck in a local optimum, the whole
procedure is repeated several times, starting from a different
initial affinity specification each time.

Example: Continuing the example, a new affinity spec-
ification A2 was created by relocating task T5 (randomly
selected from the tasks on the core with the highest peak
load) to core1 (a random other core). Repeating the trans-
formation, simulation and performance analysis for the new
affinity specification resulted in a maximum peak load of 20
(on core1), with no deadline misses. Since this allocation is
worse than A1, A1 is kept as the best allocation, and the
process continues with a new allocation, A3, based on A1.

IV. EXAMPLE

In this section we present an experiment where our alloca-
tion optimization approach is applied to a more realistically
sized system in order to test the scalability of the method.
We use a relatively complex architectural model consisting
of 17 tasks (6 periodic and 11 event-triggered). As shown in
Figure 5, the tasks are organized in three main task chains
where a periodic task triggers a number of event-driven
tasks. Additionally, there are three independent periodic
tasks that do not trigger other tasks.

The hardware platform consists of three cores, and all
three cores are assigned a nonpreemptive scheduler. The
local memory delay is defined as 1 time unit and the global
memory delay as 3 time units.

For three cores and seventeen tasks, the number of
possible allocations is 317 = 129 140 163. The allocation
optimization was run with parameters 50 and 20, repre-
senting that the search is restarted 50 times with random
initial affinity specifications, and that each search should
continue until there are 20 consecutive iterations without
improvement. The simulation length was set to 300 time
units (the hyperperiod of the tasks is 50).

With this setup, the allocation optimization took just
under 100 minutes on a PC with an Intel i5 dual-core CPU
clocked at 2.7GHz. In total, 1989 iterations were performed,
which means that a search on average required 40 iterations
before reaching the termination criterion of 20 consecutive
iterations without improvement, and each iteration took
around 3 seconds.

The result of the optimization is a feasible allocation with
a maximum peak load of 14 time units. Of the 50 restarted



T17

affinity: 1
period: 25

BCET: 1
WCET: 2
send: 0

dataIn dataOut

T16

affinity: 3
period: 25

BCET: 2
WCET: 4
send: 0

dataIn dataOut

T15

affinity: 2
period: 25

BCET: 2
WCET: 4
send: 0

dataIn dataOut

T14

affinity: 1
BCET: 1
WCET: 2
send: 0

dataIn dataOut

T13

affinity: 3
BCET: 1
WCET: 2
send: 1

dataIn dataOut

T12

affinity: 1
period: 25

BCET: 2
WCET: 3
send: 2

dataIn dataOut

T11

affinity: 1
BCET: 3
WCET: 5
send: 0

dataIn dataOut

T10

affinity: 3
BCET: 3
WCET: 5
send: 1

dataIn dataOut

T09

affinity: 1
BCET: 3
WCET: 5
send: 1

dataIn dataOut

T08

affinity: 1
period: 25

BCET: 5
WCET: 10
send: 3

dataIn dataOut

T07

affinity: 1
BCET: 3
WCET: 5
send: 0

dataIn dataOut

T06

affinity: 2
BCET: 3
WCET: 4
send: 2

dataIn dataOut

T05

affinity: 3
BCET: 1
WCET: 3
send: 2

dataIn dataOut

T04

affinity: 2
BCET: 1
WCET: 3
send: 2

dataIn dataOut

T03

affinity: 1
BCET: 2
WCET: 4
send: 0

dataIn dataOut

T02

affinity: 3
BCET: 2
WCET: 3
send: 2

dataIn dataOut

T01

affinity: 3
period: 50

BCET: 5
WCET: 7
send: 2

dataIn dataOut

Figure 5. The architectural model used in the example

searches, 17 found a feasible allocation, and 10 of these have
a peak load lower than 20.

V. RELATED WORK

There has been substantial research on scheduling for
multicore real-time systems, which includes as a subproblem
the allocation of tasks to cores. The approaches can be
grouped into partitioning (where tasks are statically allo-
cated to the cores, and each core has its own scheduler),
global scheduling (where tasks can move between the cores
according to a global scheduler) and hybrid scheduling (a
combination of the two). Our approach belongs to the former
group, task partitioning, which is analogous to a bin packing
problem, proven to be NP hard, meaning that finding an
optimal allocation in polynomial time is not realistic in the
general case [2]. Therefore the approaches for task allocation
typically use heuristics in search for near-optimal solutions.
Here we give a couple of examples. Dhall and Liu [3]
describe two scheduling mechanisms, rate monotonic next
fit scheduling and rate monotonic first fit scheduling, that try
to assign the tasks to the cores using the next fit and first fit
heuristic, respectively, while keeping each core schedulable
according to rate monotonic scheduling. Nemati, Nolte and
Behnam [4] present a partitioning algorithm that allocates a
task set on a multicore platform such that the total amount
of task blocking time is reduced.

Most approaches for scheduling multicore real-time sys-
tems target hard real-time systems, but Devi specifically
focuses on soft real-time multicore systems [5]. However,
her approach uses global scheduling, and, similarly to the
hard real-time approaches, is based on schedulability analy-
sis and focuses on the worst case, while our approach relies
on simulation and focuses on the average case.

Model-based approaches for performance predictions,
such as DeepCompas, TrueTime or Palladio, form another

field of related work. DeepCompas [6] is an analysis
framework for predicting performance related properties of
component-based real-time systems. It combines models of
individual software components and hardware blocks to pro-
duce an executable model of the system. By simulating this
model, performance predictions are obtained. DeepCompas
also supports trade-off between several architecture alterna-
tives. TrueTime [7] is a Simulink toolbox for simulation of
distributed real-time control systems. It enables simulation
of the temporal behavior of a multitasking real-time kernel
executing controller tasks, and of medium access and packet
transmission in a local area network. Palladio [8] is an
approach for early performance predictions of component-
based software architectures of business information sys-
tems, but can also be used to model embedded systems.
The key feature of Palladio is the parameterized component
quality-of-service specification called resource demanding
service effect specifications. These specifications abstractly
model the performance related information for components
(for example, how a provided service calls the required
services of a component, resource usage, transition prob-
abilities, loop iteration numbers and parameter dependen-
cies) to allow accurate performance predictions. Additional
approaches are presented in Koziolek’s survey [9]. However,
in contrast to our work, none of these approaches focus on
soft-real time multicore systems.

Architecture optimization is another area of related work.
Grunske et al. [10] present a survey of methods for op-
timizing dependability, cost and performance attributes of
real-time embedded systems. A more recent approach is
ArcheOpterix [11], a framework for optimizing software
architectures modeled in AADL (Architecture Analysis and
Description Language). The quality attributes supported by
the approach include reliability, performance and energy.
ArcheOpterix can be extended to any other quality attribute



for which quantitative prediction for AADL is available.
PerOpteryx [12] is a framework for optimizing component-
based software architectures, based on model-based quality
prediction techniques. Its distinctive feature is the extensible
degrees of freedom model. A degree of freedom is a modi-
fiable aspect of a software architecture that the optimization
process is allowed to change in search for good architecture
candidates. Conceptually, PerOpteryx is independent of the
considered quality attributes, software architecture meta-
modeling language, and degrees of freedom, while the
current implementation is based on Palladio. Again, none
of these methods are tailored specifically for soft-real time
multicore systems.

SimTrOS and MacSim are examples of related work on
simulating real-time multicore systems. SimTrOS [13] is a
real-time multicore simulator for evaluating resource locking
protocols. MacSim [14] is a simulator for embedded real-
time systems with a large number of cores. Both approaches
focus on hard-real time.

VI. CONCLUSION AND FUTURE WORK

We have presented our approach for tackling the problem
of allocating software tasks to the cores of a multicore sys-
tem. The approach targets soft real-time embedded multicore
systems, and is based on an iterative model-driven optimiza-
tion cycle which performs a simulation guided local search
for an allocation that yields good average-case performance.
We have illustrated the general approach by focusing on
two particular performance aspects relevant for soft real-
time systems, namely timeliness and the distribution of
computational load over time and over the cores.

As the next step we intend to validate the approach
in a case study, including a validation of the simulation
model by comparing the resulting performance predictions
against measured performance of a real system. Based on
the results of the validation, we plan to refine the initial
simulation model in order to have a more fine-grained view
of the task interaction during simulation, in particular with
respect to the modeling of communication between and
within cores. Moreover, the architectural modeling should be
extended with support for new constructs such as separation
of data and triggering, tasks receiving data from multiple
sources, and task synchronization over shared resources. Af-
ter the validation, we will investigate additional performance
aspects, such as end-to-end response times and dynamic
memory usage.

The current model-to-model transformation is imple-
mented with the MATLAB programming language. As
the complexity of the architectural and simulation mod-
els increase, there will be a need for a more structured
and maintainable approach, for example representing the
Simulink models in the Eclipse Modeling Framework (EMF)
format and implementing the transformation with a model
transformation language such as QVT or ATL.

ACKNOWLEDGMENT

This work was supported by the Swedish Foundation for
Strategic Research via the Ralf 3 project, and by the Swedish
Research Council project CONTESSE (2010-4276).

REFERENCES

[1] Mathworks MATLAB and Simulink, http://www.mathworks.
com/, [Accessed: 2012-03-08].

[2] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1973.

[3] S. K. Dhall and C. L. Liu, “On a real-time scheduling
problem,” Operations Research, vol. 26, no. 1, 1978.

[4] F. Nemati, T. Nolte, and M. Behnam, “Partitioning Real-
Time Systems on Multiprocessors with Shared Resources,” in
Proceedings of 14th International Conference On Principles
Of Distributed Systems, 2010.

[5] U. C. Devi, “Soft Real-Time Scheduling on Multiprocessors,”
Ph.D. dissertation, University of North Carolina at Chapel
Hill, 2006.

[6] E. Bondarev, “Design-time performance analysis of
component-based real-time systems,” Ph.D. dissertation,
Eindhoven Universty of Technology, 2009.

[7] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E.
Årzén, “How does control timing affect performance? Anal-
ysis and simulation of timing using Jitterbug and TrueTime,”
Control Systems, IEEE, vol. 23, no. 3, 2003.

[8] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance prediction,”
Journal of Systems and Software, vol. 82, no. 1, 2009.

[9] H. Koziolek, “Performance evaluation of component-based
software systems: A survey,” Performance Evaluation,
vol. 67, no. 8, 2010, special Issue on Software and Perfor-
mance.

[10] L. Grunske, P. Lindsay, E. Bondarev, Y. Papadopoulos, and
D. Parker, “An Outline of an Architecture-Based Method for
Optimizing Dependability Attributes of Software-Intensive
Systems,” in Architecting Dependable Systems IV, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg,
2007, vol. 4615.

[11] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya,
“ArcheOpterix: An extendable tool for architecture optimiza-
tion of AADL models,” in ICSE Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, 2009.

[12] A. Koziolek, “Automated improvement of software architec-
ture models for performance and other quality attributes,”
Ph.D. dissertation, Karlsruhe Institute of Technology, 2011.

[13] J. Schneider, M. Bohn, and C. Eltges, “SimTrOS: A Heteroge-
nous Abstraction Level Simulator for Multicore Synchroniza-
tion in Real-Time Systems,” in WATERS in conjunction with
ECRTS, 2011.

[14] S. Metzlaff, J. Mische, and T. Ungerer, “A Real-Time Capable
Many-Core Model,” in The 32nd IEEE Real-Time Systems
Symposium, Work-in-Progress Session, 2011.

http://www.mathworks.com/
http://www.mathworks.com/



