Fixed-Priority Preemptive Scheduling Semantics
of AADL in UPPAAL Timed Automata

Andreas Johnsen

School of Innovation, Design and Engineering
Malardalen University
Visteras, Sweden
andreas. johnsen@mdh.se

The scheduling automaton providing the required thread execution semantics
is shown in Figure 1. The labels of the scheduling automaton are defined as
follows:

— (int)ready_queue[x]: is a sorted queue of currently dispatched threads. The
queue is sorted according to a given scheduling policy where the first element
in the queue (x=0) is the (identifier of the) thread being processed and where
the second element is the next thread to be processed, and so forth.

— (clock)sch_clocks[x][2]: is a list of clocks in sets of two, each set referenced
by an identifier x of a currently dispatched thread. Each dispatched thread
has two clocks, the first (sch_clocks[x][0] of thread with identifier x) is used
to keep track of a thread’s execution time, and the second (sch_clocks[x][1]
of thread with identifier x) is used to keep track of a thread’s deadline.

— (int)sch_info[x][3]: is a list of threads’ scheduling properties (integers) in sets
of three, each set referenced by an identifier x of a currently dispatched
thread. Each dispatched thread has three scheduling properties, the first
(sch_info[x][0] of thread with identifier x) is the execution time, the sec-
ond (sch_info[x][1] of thread with identifier x) is the deadline, and the third
(sch_info[x][2] of thread with identifier x) is the priority. Note that the re-
quired properties are related to a given scheduling policy. For example, we
consider priorities of threads since we assume a fixed priority scheduler in
this particular example.

— (int)preempt_stack[x][2]: is a stack of sets of currently preempted threads
(integer identifiers) and the amount time each thread has been preempted.
Given a stack of preempted threads, the first set of elements in the stack
(preempt_stack[0][0] is the thread identifier and preempt_stack[0][1] is the
amount of time) corresponds to the thread that first was preempted.

— (int)nr_preempted: number of currently preempted threads.

— (int)threads: number of currently dispatched threads.

— (int)check_preempt: holds the identity of a thread that is dispatched at the
same time as another thread is running. It is used to check if the dispatched
thread preempts the running thread.

— (chan)dispatched[(int)x],(chan)run[(int )x],
(chan)complete[(int)x],(chan)preempt|(int)x]: are channels used to synchro-
nize every thread transition of every thread in the system. Synchronization



Empty

with a particular thread is done through its identity. For example, run[2] is
a synchronization channel with thread having identity equal to 2.
(void)schprotocol((int)x): is a function sorting threads in the ready_queue
according to a given scheduling policy. The function is called each time a
thread dispatches where the thread’s identity is given as argument to the
function. In this example, we assume fixed priority scheduling.
(void)completion((int)x): is a function removing threads from the ready_queue.
The function is called each time a thread completes its execution, where the
thread’s identity is given as argument to the function.

(void)addTime(): is a function adding preempted time to the threads in the
preempt_stack. The function is called when a preemption occurs, whereupon
the execution time of the thread causing the preemption is added to the
preemption time of every preempted thread.

(void)checkTime((int)x): is a function adding preempted time to the threads
in the (int)preempt_stack[x][2] stack. The function is called when a thread-
dispatch not causing any preemption occurs, to check if the dispatched thread
is prior to any preempted threads in the ready_queue whereupon preemption
time is added.

nr_preempted>0 and ready_queue[0]==preempt_stack[nr_preempted-1][0] and

completion(ready_queue[0]), sch_clocks[ready_queue[0]][0]>=sch_info[ready_queue[0]][0]+preemptedTime()
preempt_stack[--nr_preempted][1]=0,
threads-- complete[ready queue[0]]!

completion(ready_queue[0]),
threads--

((ny/preempted==0) or (nr_preempted>0 anfl ready_queue[0]'=preempt_stack[nr_preempted-1][0]))
arid sch_clocks[ready_queue[0]][0]>=%ch_info[ready_queue[0]][0]
R[0T)!

threads==0

complete[ready_queu!

MissedDeadline

==ready_queue[0]

atched][i]?
dispatched][i] sc
i int[O,N-1]

edulel

Running
sch_clocks[ready_queue[0]][0]<=
sch_info[ready_queue[0]][0]+preemptedTime()

run[ready_queue[0]]!

run[ready_queue[0]]!
threads++

h_clocks[ready_queue[0]][0]=0
I=ready_queue[0]) or nr_preempted==0

schprotocol(i),
sch_clocks[i][1]=0,
checkTime(i),
threads++

run[ready_queue[0]]!

sch_clocks[i][I1=Q
threads++, )
—

dispatched[i]?

iz int{O,N-1] checkTime(check_preempt)

ready_queue[0]!=check_preempt

Schedule2 Preemption
ready_queue[0]==check_preempt
preempt[ready_queue[1]]!
preempt_stack[nr_preempted++][0]=ready_queue[1],
addTime()

Fig. 1. The scheduler automaton.



awaiting_dispatch

cl <= Period

Connection_3 = OutputPort_1,
Connection_4 = OutputPort_2

cl >= Period
dispatched[ldentifier]!
InputPort_1 = Connection_1,
InputPort_2 = Connection_2,
sch_info[ldentifier][0]=C_E_T,
sch_info[ldentifier][1]=C_D,
sch_info[ldentifier][2]=Priority,

cl=0' 0 running
ready . .

preempt[ldentifier]?

complete[ldentifier]?

run[ldentifier]?

Fig. 2. Example of a thread automaton controlled by the scheduler



