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Abstract—Test-driven development is an essential part of
eXtreme Programming approach with the preference of being
followed in other Agile methods as well. For several years,
researchers are performing empirical investigations to evaluate
quality improvements in the resulting code when test-driven
development is being used. However, very little had been re-
ported into investigating the quality of the testing performed in
conjunction with test-driven development.

In this paper we present results from an experiment specifically
designed to evaluate the quality of test cases created by developers
who used the test-first and the traditional test-last approaches.
On an average, the quality of testing in test-driven development
was almost the same as the quality of testing using test-last
approach. However, detailed analysis of test cases, created by
test-driven development group, revealed that 29% of test cases
were “negative” test cases (based on non-specified requirements)
but contributing as much as 65% to the overall tests quality score
of test-first developers.

We are currently investigating the possibility of extending test-
driven development to facilitate non-specified requirements to
a higher extent and thus minimise the impact of a potentially
inherent effect of positive test bias.

Index Terms—software testing; test case quality; test driven
development; experiment;

I. INTRODUCTION

Quality of agile methods is often a focus of empirical
studies by researchers due to the inability to formally prove
the benefits arising from the usage of such methods. Several
factors may contribute to the overall software product quality
when using agile methods, such as, usage of short cycles,
close customer relationship, pair programming, test-driven
development, continuous integration, and many more. When
performing empirical investigations, researchers usually try to
isolate one factor in particular and evaluate its effects on the
code quality which is often the main metric of evaluation.
However, when isolating test-driven development factor, re-
searchers tend to omit another important metric, quality of test
cases. We believe that measuring the quality and characteristics
of test cases generated during test-driven development is an
important step towards making it more industrially acceptable.

Test-driven development (TDD) was introduced as a prac-
tice within eXtreme Programming (XP) methododology [1].
Developers using TDD write automated unit tests before they
write the actual code, and hence it is also referred as a test-
first approach in literature [2]. Tests are written in the form
of assertions and in TDD their purpose is to define code
requirements. By using TDD, developers build the systems
in cycles of test, development and refactoring.

Test-driven development was identified, in our industrial
survey [3], as a most preferred but lesser used practice in

industry. Interpretation of a main finding of this study could
be: “Respondents would like to use TDD to a significantly
higher extent than they actually do currently”. This preference
towards using TDD could be based on academic research
results often pointing improvements of the code quality when
TDD is used ( [4]–[8]), but also due to the success of early
adopters. As a follow up, we performed a systematic literature
review [9] for the purpose of identifying any obstacles in the
path of full scale adoption of TDD in the industry. Seven
factors, which are potentially limiting full adoption of TDD,
were identified and listed. Inability of developers to write
automated test cases (in an efficient and effective way) is
considered to be one of these limiting factors. In the current
paper we are presenting analysis results of an experiment
formulated and defined in a way to investigate the significance
of such a limiting factor.

An experiment was conducted during the autumn semester
in 2011 with master students enrolled in the Software Verifica-
tion and Validation course at the Mälardalen University, with
the intention of comparing testing efficiency and effectiveness
of agile (test-first) and traditional (test-last) developers. This
experiment allowed us to investigate the quality of testing in
test-driven development by using the created test cases as a
main metric of evaluation.

The remaining of this paper is organised as follows. Sec-
tion II presents the related research work followed by the
experimental design and its execution in section III. The anal-
ysis of quality attributes are presented in section IV followed
by a detailed investigation on test cases in section V. In
section VI, we discuss threats to validity of our study followed
by conclusions and future research plans in section VII.

II. RELATED WORK

During the identification of potential limiting factors of
TDD adoption, our systematic literature review [9] listed 48
empirical studies that had effects of TDD as the focus of
the investigation. Most of the studies had TDD as a primary
focus of investigation, but in some cases effects of TDD were
investigated in conjunction with some other practice, e.g. pair-
programming. Goal of the studies investigating effects of TDD
was related in most cases with respect to: (i) the internal
or the external code quality improvements, (ii) performance
improvements or (iii) a general perception of using TDD.
However, we identified only one study [10] where the focus
of the investigation was quality attributes of test cases when
test-first approach was used.



Madeyski [10] investigated how TDD can impact branch
coverage and mutation score indicators. In this experiment, 22
students were divided in two groups: the test-first and the test-
last, with the task of developing a web based conference paper
submission system. This experiment shows no statistically
significant differences in branch coverage and mutation score
indicators, between the test-first and the test-last groups.

Our experiment investigation relates to the work of
Madeyski, since we are also measuring the code coverage and
the mutation score indicators. However, both those indicators
are considered as an internal quality attributes of a test suite.
Main difference in our experiment is the enforcement of a
programing interface, which allowed us to execute test cases of
one individual participant on the code of all other experiment
participants. This, as a result, provided us with the insight
of the defect-finding ability of participants test cases, thus
creating an external quality attribute used for an additional
analysis. In the following section we are discussing how
internal and external quality attributes are used to make a
judgement on the overall quality of participants tests.

III. EXPERIMENT DESIGN AND EXECUTION

In this section the study design and the process of execution
of the experiment are described. Complete study design of the
experiment is published in [11]. Specific details of the study
(instruction material and code skeleton) can be found at the
first author’s website1.

A. Quality of Testing

To evaluate the quality of testing in test-driven development,
an experiment was conducted to investigate:

Is there a significant difference between the quality
of test cases, produced using test-first and test-last
approaches?

The main goal of the experiment was to compare several qual-
ity attributes that could relate to the overall quality of testing,
when developing software using test driven development (test-
first) and traditional (test-last) approaches. Those attributes are
grouped as internal and external quality attributes of test cases.

Internal quality attributes are measuring, by using a specific
criteria, effectiveness of test cases which are accompanied
with the particular source code. For this experiment we used
two internal quality attributes:

• Code coverage - measuring to what extent a provided set
of test cases is exercising statements in the accompanied
source code.

• Mutation score - measuring to what extent a provided
set of test cases can detect seeded faults within the
accompanied source code.

External quality attributes are measuring effectiveness of
test cases on any given source code. However, it is assumed
that the same functionality is implemented as in the accom-
panied source code of the particular set of test cases. For this
experiment we used one external attribute:

1http://www.mrtc.mdh.se/˜acc01/testqualityexperiment/

• Defect detecting ability - measuring total number of
failing occurrence of test cases on any given source code
implementing the same functionality.

In addition to measuring total number of defects found by
all tests, we grouped test cases into positive and negative and
calculated how many defects each group can reveal. By a
positive test case, we refer to a test case designed to test the
code for explicitly stated requirement. By a negative test case,
we refer to a test case designed to test how the program is
behaving for a non-given requirement.

B. Hypotheses, Parameters and Variables of the Experiment

In order to test the goal of the experiment, following null
and alternative hypotheses were formulated:

• Test Artefact Quality:
– Ht

0. There is no significant difference between the
quality of the test artefacts produced by test-first or
test-last developers.

– Ht
a. Test-first developers produce test artefacts of a

higher quality.
• Code Artefact Quality:

– Hc
0. There is no significant difference between the

quality of the code artefacts produced by test-first or
test-last developers.

– Hc
a. Test-first developers produce code artefacts of

a higher quality.
The test artefact quality and code artefact quality are

operationalized in a list of response variables, provided in
Table I.

C. Subjects of the Experiment

The participants of the experiment were software engineer-
ing master students enrolled in the Software Verification and
Validation (V&V) course at Mälardalen University during the
autumn semester of 2011. The experiment was part of the
laboratory work within the V&V course, and the participants
earned credits for their participation. They were informed that
the final grade for the course will be obtained from the written
exam and their performance during the laboratory work will
not affect the final grade, although they had to fully complete
the laboratory work.

D. Object of the Experiment

The task given to the students was to completely implement
and test (to the extent they consider sufficient) a bowling game
score calculation algorithm. The specification for this problem
was based on the Bowling Game Kata (i.e., the problem also
used by Kollanus and Isomöttönen to explain TDD [12]).

E. Experiment Execution

Fourteen participants were randomly grouped in two groups,
the test-first and the control (test-last) group. The Eclipse [13]
integrated development environment (IDE) was used to create
software solution in the Java programming language and the
jUnit [14] testing framework was used for writing executable



TABLE I
EXPERIMENT RESPONSE VARIABLES

Construct Variable name Description Scale type
Code Artefact Quality Defects in Code Number of defects found in a particular code implementation. Ratio
Test Artefact Quality Coverage Statement coverage of test suite when applied to code implementation. Ratio
Test Artefact Quality Mutation Mutation score indicator of test suite when applied to code implementation. Ratio
Test Artefact Quality Defects Detected Number of defects found by test suite in all code implementations. Ratio

tests. After completely finalising their implementations, the
subjects answered a set of questions using an online survey
system.

Participants in the test-first group were instructed to use
TDD to develop software solutions. Instructions for TDD were
given as prescribed by Flohr and Schneider [15]. Participants
in the test-last (control) group were instructed to use tradi-
tional (test-last) approach for software development. To avoid
problems with subjects’ unfamiliarity with the jUnit testing
framework and/or Eclipse IDE, subjects were given an Eclipse
project code skeleton with one simple test case.

IV. ANALYSIS OF QUALITY ATTRIBUTES

In this section, an analysis of the experiment data is per-
formed and presented. Quality attributes are grouped, defined
and discussed in separate subsections. Overall descriptive
statistics of quality attributes are presented in Table II. First,
the quality of code is presented as a separate quality attribute
which is not directly defining a quality of testing but it does
indirectly contribute to it. Subsequently, three quality attributes
which are directly defining quality of testing (quality by code
coverage, quality by mutation and quality of test cases) are
presented and analysed.

A. Quality of Code (Qcode)

In addition to measuring number of defects, a particular test
case can detect in various source codes, we need to know of
what quality a particular source code is. This way we can
differentiate test cases which are failing on the code of higher
quality. In order to calculate the quality of the code indicator,
we use the following formula:

Qcode(i) = 1− NFTC(i)

NTC

where, i represents a specific individual participant of the
experiment, NTC - total number of test cases created by all
participants and NFTC(i) - number of test cases which are
failing on the code of participant i. Code quality of test-first
group was on an average 5.66% higher than the test-last group.
Looking at the number of defects found in the code of test-
first and the test-last developers, the difference is much higher
(244 errors in test-first code and 330 errors in test-last code).
This results align to the overall impression that usage of test-
driven development does improve the quality of the resulting
code.

B. Quality by Code Coverage (Qcoverage)

The first internal quality attribute of test suite (particular
set of test cases) used in our experiment is code coverage.
Code coverage is calculated as a percentage of statements
that accompanied tests exercise within the total number of
statements in a given participants code. This way we have a
measurement to what extent a provided set of test cases is
exercising statements in the accompanied source code. This
data is collected using EclEmma [16] plug-in for Eclipse.

On an average, code coverage that was achieved by test-
first and test-last group is nearly the same and has a relatively
high value. This, as a result, creates difficulties to derive any
conclusions or reason about the difference in quality of groups’
test cases by using this particular quality attribute.

C. Quality by Mutation (Qmutation)

The second internal quality attribute of a test suite used in
our experiment is a mutation score indicator. Mutation score
indicator is measuring to what extent a provided set of test
cases can detect seeded faults within the accompanied source
code. Faults are seeded with Judy [17] mutation testing tool
following next approach:

1) Compiled code is provided as an input
2) Compiled set of test cases (test suite) is also provided as

an input. However, it is a requirement that all test cases
are not failing on the original source code.

3) N variations of the original program were generated
with the Judy tool, by using a set of default mutation
operators. These variations of programs are referred as
mutants in literature.

4) A complete test suite is executed for each mutant n ∈ N
5) If any test case within the test suite fails during the

execution, current mutant n is marked as “killed”. This
means that the test suite recognised the modification in
a particular variation of the original program.

6) Mutation score is calculated as m/|N | (total number of
killed mutants m (m ≤ |N |) divided by total number of
variations of the original program |N |)

Average mutation score indicators for both the groups were
similar, thus making it again difficult to identify if the test
cases of any group could be considered to be of a better quality
by using this quality attribute.

D. Quality of Test Cases (Qtesting)

The only external quality attribute of a test suite we used in
our experiment is a defect detecting ability attribute. For each
participants test suite we calculated a total number of defects
discovered in all other participants source code. As a result,



TABLE II
DESCRIPTIVE STATISTICS OF QUALITY ATTRIBUTES

Construct Variable Dev. Approach Mean Median Sum Std. Dev. Std. Error Min Max

Code Artefacts
Defects Found in Code Test-First 34.86 44 244 24.04 9.09 3 58

Test-Last 47.14 24 330 48.54 18.35 9 143

Code Quality Test-First 83,94% 79,72% - 11,08% 4,19% 73,27% 98,62%
Test-Last 78,28% 88,94% - 22,37% 8,45% 34,10% 95,85%

Internal Test Artefacts
Code coverage Test-First 96.34% 98.78% - 5.89% 2.23% 83.28% 100.00%

Test-Last 96.18% 98.83% - 4.22% 1.60% 89.4% 100.00%

Mutation Score Test-First 81.90% 85.12% - 11.75% 4.44% 57.54% 92.57%
Test-Last 83.29% 84.31% - 5.80% 2.19% 75.49% 91.30%

External Test Artefacts
Defect Detecting Ability Test-First 40.57 17 284 47.34 17.89 13 144

Test-Last 41.43 31 290 26.68 10.09 17 86

Tests Quality Test-First 27.30 9.45 191.07 35.46 13.40 6.70 104.63
Test-Last 27.27 18.59 190.92 18.68 7.06 9.76 61.35

in Table II, we can see that test-first developers test cases
discovered in total 284 defects, while test-last developers test
cases discovered 290 defects. This result could be interpreted
that our experiment participants, regardless of the development
approach used, had almost the same testing ability. However,
it is important to differentiate test cases which are failing on
the code of higher quality from those which are failing on the
code of lower quality. For that reason we calculated quality
value for each test case of every participant. Quality of test
cases for a participant (i) is calculated as a sum of a quality of
each test case (j) from a set of test cases (n) of that participant
(i):

Qtesting(i) =

n∑
j=1

QTC(i.j)

To calculate the quality of an individual test case (j) of a
participant (i) we need to know on which participants’ code
this test case is failing (m ∈ M ). The logic we follow is
that making an otherwise good quality code fail will give
higher quality value for a test case. Sum of the code quality
values (Qcode) of those participants will define the quality of
a particular test case (j):

QTC(i.j) =

m∑
k=1

Qcode(k)

Here again, on an average, overal quality of test cases is
nearly the same (0.03) for both test-first and test-last group
of developers. This means that ability to write automated
test cases is of the same quality for developers using test-
driven development and developers using traditional test-last
approach. However it still remains unclear if quality of testing
of our experiment participants, on a global scale, is satisfying
this property or not. Basically, we need to investigate if TDD
developers are “as good as” or “as bad as” test-first developers
in testing. Currently we can only infer that they are on the
same level, but cannot confirm whether this level is high or
low.
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Fig. 1. Distribution of Test Cases

V. IMPACT OF “POSITIVE TEST BIAS” ON TEST CASES

From our experiment, it was difficult to obtain some further
understanding about the quality of testing in test-driven devel-
opment by only performing measurement of various quality
attributes. Since the results from our previous investigation
[18] pointed out that students have a very small focus on
“negative” test cases, this experiment had a built-in mechanism
of differentiating whether a particular test case is of positive
or negative type.

By a negative test case, we refer to a test case that was
created for a purpose of exercising a program in a way that
was not specified in the requirements. Positive test case, on
the other hand, is exercising a program in a way that was
specified in the requirements. In literature, phenomenon of
more positive approach to testing is known as a “positive test
bias” [19], [20].

In the following subsections, analysis of test cases is
performed to identify if positive test bias is present and
what effect it has on the quality of testing in test-driven
development.

A. Overall Distribution of Test Cases

In Fig. 1, an overview of the total number of test cases is
presented. All participants created 217 test cases, out of which



TABLE III
A COMPLETE OVERVIEW OF TEST CASES
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Fig. 2. Failing Occurrence for Test Cases

101 was created by test-first developers and 116 by test-last
developers. There were 146 positive test cases and 71 negative
test cases in total.

First observation we can make from this data is that both
groups of developers created less negative than positive test
cases. Additionally, test-first developers created less negative
test cases compared to the test-last developers. Interestingly,
participants created 7 wrong test cases. These test cases were
excluded from our analysis and the total number of test cases
(217) does not contain these 7 test cases. By a wrong test
case we refer to a test case that has a wrong verdict for the
provided input.

B. Failing Occurrence of Test Cases

Since the test cases of each individual experiment partic-
ipant were executed on all the other participants code, it is
often a case that one test case is failing on several occasions.
Fig. 2 presents numbers of failing occurrence of the test cases
which are failing at least once on any of the participants code.
Total number of failing occurrences of test cases (or a total
number of occasions where error was detected) was 574 for all
participants put together. Both test-first and test-last groups of
developers have nearly the same number of failing occurrence
(284 and 290 respectively). This, once again, align with the
results of the quality attributes, where quality of testing for
both groups is relatively the same.

TABLE IV
Qtesting FOR POSITIVE AND NEGATIVE TEST CASES

Test-First Group Test-Last Group All
Positive 66,45 50,47 116,92
Negative 124,62 140,46 265,08
Sum 191,07 190,93 382,00

However, when comparing overall distribution of test cases
and number of failing occurrences we can make one interesting
observation:

146 positive test case detected 226 errors, while
71 negative test cases detected 348 errors.

Even though there are nearly 50% less negative test cases,
they are still detecting 50% more errors than positive ones. To
double-check this observation in Table IV we listed Qtesting

quality attribute values in groups by: (i) type of test cases (pos-
itive and negative) and (ii) approach used for the development
(test-first and test-last). When looking at the data of test-first
group of developers, we notice:

72 positive test case (Fig. 1) with Qtesting = 66, 45,
and 29 negative test cases had Qtesting = 124, 62

This means that negative test cases (29% of all test cases) were
contributing as much as 65% to the overall quality of testing
score for the test-first developers.

Table III represent a complete overview of the testing efforts
from several perspectives. It is presented in a way to identify
test cases (both positive and negative) created by test-first and
test-last developers and the effects they had when executed
on the code of all participants or on the code of the test-first
or the test-last participants. For each set of test cases it is
possible to distinguish number of failing test cases and their
occurrence. For example, there are 23 negative test cases of
test-first developers that are failing on the test-first as well as
on the test-last code. However, those test cases are detecting
83 errors in test-first code and 78 errors in test-last code.

VI. THREATS TO VALIDITY - RESERVATIONS

The analysis presented in this study is based on the data
from the experiment in [11]. Similar to the previously pub-
lished experiments on TDD [9], this experiment was also



performed in an academic setting. Therefore, external valid-
ity is threatened with some known academic limitations: (i)
using students as subjects, (ii) using small scale objects of
investigation, and (iii) having short duration of the experi-
ment. Additionally, due to the low number of participants no
statistically significant conclusions could be drawn based on
the collected data. By using standard software engineering
metrics for calculating quality attributes (e.g., coverage and
mutation indicator) we addressed eventual construct validity
of our empirical research. Additionally, by providing sufficient
information about the experiment we are addressing reliability
threats of this study.

VII. CONCLUSIONS AND FUTURE WORK

We can relate findings of our analysis to the result of the
related study in [10]. Mainly, we can see that difference in
test cases between the test-first and the test-last participants
is almost non-existant, if code coverage and mutation score
indicators are used for comparison. Interestingly, an additional
quality attribute that we introduced (Qtesting) also could not
make any distinction between the test cases created by the
test-first and the test-last participants.

The experimental data analysis is indicative that the code of
test-first group is of better quality as compared to that of the
test-last group. This is an interesting observation considering
that both the groups had same quality of test cases used to test
the implementation. However, even though test-first group has
less failing test cases than test-last group on their code, both
groups still have a relatively high number of errors in the code.

Main implication of this study is a finding that test-first
participants have more positive test cases than negative, which
is probably a result of the “inherent”positive test bias of test-
driven development approach. By nature, test-driven develop-
ment is a development methodology and not a test design
technique. That is why test cases are “driving”a developer
towards implementing required functionality in a constructive
rather than destructive way.

The analysis of the results from an experiment, presented
in this paper, underlines the importance of having negative
test cases as part of the test suite. Test efficiency for test-first
developers was highly dependant on the negative test cases
which represented 65% of overall testing effort. By calculating
the quality of test cases, our study very clearly indicated the
impact of a “positive test bias” factor on TDD.

Since there is no underlying theory behind TDD, it is not
possible to formally validate its claimed benefits by any other
means except performing empirical investigations. In a long
term investigation process, this study should be replicated and
conducted as a fully controlled experiment, with a higher num-
ber of participants in order to validate statistical significance
of the presented results.

We are currently investigating the possibility of extending
test-driven development to facilitate consideration of unspec-
ified requirements during development to a higher extent and
thus minimise the impact of a potentially inherent effect of
positive test bias.
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