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1 Introduction and background

This report presents the initial results from the ASSIST project at Méalardalen
University, funded by the ABB Software Research Grant Program. The project
aims to bridge the gap between recent academic research achievements in the
area of control- and model based development of embedded systems, and con-
crete industrial needs and state of practice in this domain. Concretely, the focus
of the project is to investigate how novel timing analysis and code synthesis tech-
niques developed in the context of ProCom, an academic component model for
embedded systems, can be extended and adapted in order to be applicable to
TEC 61499.

The report is organized as follows: The two languages are presented in Sec-
tions 2 and 3, respectively, followed in Section 4 by a comparison highlighting a
number of important similarities and differences that are particularly relevant
with respect to the project scope. Section 5 discusses the possibilities and diffi-
culties involved in migrating different key aspects of the analysis and synthesis
mechanisms defined for ProCom to an IEC 61499 context.

2 ProCom

ProCom is a component model specifically developed to address the particulari-
ties of the embedded systems domain, including resource limitations and require-
ments on safety and timeliness. It was developed in the context of PROGRESS, a
project at Malardalen University funded by the Swedish Foundation for Strate-
gic Research.

The development of ProCom is a continuation of previous work at Malardalen
University developing the component model SaveCCM [1], and covers aspects
such as formal methods, static code analysis, management of extra-functional
properties, deplyoment and code synthesis. There is also a development envi-
ronment, PRIDE [5], which integrates editors and tools to support many of the
addressed aspects.

This section presents an overview of the ProCom modeling concepts and key
features. For an in-depth description of ProCom, the reader is referred to the
reference manual [6] and the formal definition of the semantics [24]. There are
also publications presenting the overall idea and key concerns of ProCom [7,20].

2.1 The Component Model

ProCom is organized in two distinct layers, addressing the different concerns on
different levels of granularity. The layers differ in terms of architectural style
and communication paradigm. The lower layer, ProSave consists of smaller,
passive components, and is based on a pipes-and-filters interaction style with
an explicit separation between data and control flow. In the top layer, called
ProSys a system is modelled as a collection of active, interconnected components
that execute concurrently and communicate by asynchronous message passing.



Both layers are hierarchical, i.e., supporting composite components, inter-
nally defined by interconnected subcomponents. The way in which the two
layers are linked together is that a primitive ProSys component can be mod-
elled as a collection of ProSave subcomponents and clocks defining represent
periodic activations. At the bottom of the hierarchical nesting, the primitive
ProCom components are implemented by C functions.

From the perspective of this report, ProSave is the more interesting layer,
since it more closely relates to the concepts in IEC 61499, and thus we will not
describe the ProSys layer further.

2.1.1 Components

ProSave components are passive units interacting through explicit data and
control flow connections. The former is captured by data ports where data of a
given type can be written or read, and the latter by trigger ports that control
the activation of components. Data ports always appear in a group together
with a single trigger port, and the ports in the same group are read or written
together in a single atomic action.

Figure 1 shows the graphical representation of a relatively simple ProSave
component with one input trigger group (left side) and two output groups (right
side). Trigger- and data ports are represented by triangles and squares, respec-
tively.

Figure 1: Example of a ProSave component.

The execution semantics of ProSave components is fairly restricted and fol-
lows a strict read-execute-write cycle. Initially, a component is in an idle state,
just receiving data on its input data ports. When one of the trigger ports re-
ceive an activation, execution the following steps: First, the data at the input
data ports of the trigger port are atomically copied to internal representations
which remain unchanged until the end of the service execution, and then the
functionality associated with the trigger port is executed. During the execution,
each output port group associated with the activated trigger port is triggered
once, meaning that the values of the data ports of the group are made avail-
able externally and that the triggering port of the group is activated. When all
output port groups have been triggered, the the excution stops and the input
trigger port is cleared to recieve a new activation.



ProCom permits concurrent (interleaved) execution of components. How-
ever, since data is only read at the beginning of the execution, any data pro-
duced by a component executing concurrently and arriving during the execution
does not affect the component until next invocation.

It is also worth pointing out that the execution semantics is the same for
primitive and composite components. For primitive components, execution cor-
responds to calling the C function associated with the triggered port, while the
functionality of a composite component is defined by an internal collection of
interconnected subcomponents, as described in the next section. The fact that
different component types follow the same semantics means that components can
be treated as black boxes when needed. For example, ProCom supports explicit
modeling of unimplemented components, i.e., components with defined inter-
face but without implementation. Later in the development, an unimplemented
component can be changed into either primitive or composite components, and
further elaborated.

2.1.2 Composite Components

A composite components internally consists of interconnected subcomponents
that, together, define the functionality of the composite. In addition to simple
connections between ports (of two subcomponent or one subcomponent and the
enclosing composite), ProCom include a set of connectors to provide detailed
control over the data- and control flow. These connectors include fork and join
constructs, and a selection construct to define data dependent control flows.

As an example, assuming that the component in Figure 1 is a composite
component, a possible internal structure is shown in Figure 2. The filled circle
denotes a control fork connector.

Figure 2: Example of a composite ProSave component.

2.2 Analysis

ProCom analysis is supported by two general and extensible frameworks. The
attribute framework [19] handles the management of extra-functional properties,



including mechanisms to define new attribute types and the associated meta-
data, and for associating new attribute values with different entities of a model.
There is also an analysis framework which facilitates integration of different
analysis tools by providing a common interface to invoke analysis and to access
and store analysis results. These frameworks facilitate the introduction of new
analysis techniques, but more importantly they provide means to easily decorate
a component with additional information (provided by the developer or derived
by analysis or measurements) to be reused when the component is reused in a
new system.

Based on these frameworks, a number of concrete analysis techniques have
been developed in the ProCom context. Some relatively simple methods have
been developed to verify different aspects of ProCom models, for example type
consistency of connected ports, or conformance of composite components to
the component semantics. There are also a couple of more complex analysis
mechanisms, as described below.

A compositional model-level analysis of worst case execution time (WCET)
has been developed, covering both ProSave and ProSys and the connection be-
tween the two layers [8]. Given a composite component, and WCET information
for the subcomponents, the analysis derives WCET information for the compos-
ite. For ProSave components, the WCET information is relatively simple, and
consists of a single WCET value per input triggering port. The ProSys com-
ponents, however, need more elaborate information since the can be active and
since there is no explicit link between input and output.

There is also an alternative timing analysis method that can handle para-
metric WCET information [16], i.e., where the WCET of a single component
is represented by a function over input values rather than by a single integer.
In the current form, however, this analysis can only address a single hierarchi-
cal level and cannot be applied recursively since the analysis input and output
information differ.

The error propagation analysis originally developed for SaveCCM [2,12], has
been adjusted for ProCom components. It allows the developer to specify for
individual components how errors at the input ports (value, late, omission, etc.)
can lead to errors manifesting at the output ports. From this, and the system
structure, the analysis determines how errors propagate through the system.

Complez behavioural modeling, including functionality, timing and resource
usage and possible dependencies between these aspects, is supported by mean
of REMES [18], a high-level language for behavioural modeling. Individual
components can be decorated with REMES models specifying for example con-
sumption and sharing of resources, allowing the overall system behaviour to be
analysed by model checking techniques.

2.3 Synthesis

ProCom components are design time entities, and during the later stages of
development the final system is generated from the complete system model in
order to achieve the desired runtime efficiency. The final result is a collection



of tasks to be executed under a standard real-time operating system (currently
FreeRTOS).

In addition to the model defining the architecture of the application software,
in terms of interconnected components, the hardware topology is specified, as
well as the allocation of components to hardware nodes. This allocation is
done in two steps: Components are allocated to virtual nodes, concrete reusable
units that provide a degree of temporal isolation. The virtual nodes, in turn,
are allocated to the physical nodes of the system [9].

The ProCom code synthesis is not a single monolithic step performed at
the very end of development. Rather, it is possible to synthesise individual
components on all levels of the hierarchy separately, which allows the developer
to trade-off between reusability and efficiency for different parts of the system.
When a component is synthesised in isolation, no assumptions are made about
the context. For example, since input can be produced by a component execut-
ing concurrently, a mechanism of locks and double buffering is used to ensure
conformance to the semantics. The approach allows for some adjustment of
these mechanisms once a pre-synthesised component is used in a particular con-
text, such as removing the locks when the producer of the input is in the same
composite component, and thus cannot execute concurrently [3] [4].

For maximum runtime efficiency, it is also possible to synthesise multiple
hierarchical levels together, without producing reuseable code for the interme-
diate entities. This flattening approach allows for additional optimizations that
are not possible by interface adjustments. Thus, the developer can decide what
parts of the system hierarchy to generate as reusable units, and where full op-
timization is required [17].

3 IEC 61499

The IEC 61499 standard [25,26] has been developed to accommodate develop-
ment of industrial automation systems. It is proposed as a successor of the IEC
61131-3 standard widely used in industry. The new standard addresses high
level requirements of new automation systems, such as portability, configurabil-
ity, interoperability, reconfiguration and distribution of both devices and system
intelligence.

Since TEC 61499 was first published in 2005, several semantic weaknesses
have been detected. These ambiguities in some parts of the standard defini-
tion have resulted in different implementations of the standard [22,23]. For
the purpose of this report we have decided not to cover all implementation al-
ternatives, but focus on one of the industrial implementation. As our target
implementation we have chosen the open-source 4DIAC engineering tool and
FORTE runtime environment [21].



3.1 Architectural Elements and their Semantics

The main architectural element of IEC 61499 is the Function Block. Function
blocks are reusable units of software that implement a specific functionality with
a clear separation between interface and implementation. To create complex
functionality, function blocks can be connected into Function Block Networks
(FBNs). Considering implementation, a function block can be of three possible
types: Basic function block (BFB), Service interface function block (SIFB) and
Composite function block (CFB). Below, a description of each of these elements
is given.

3.1.1 Function Block Interface

The interface defines how a function block presents its functionality to the rest of
the system. Although all block types share the same interface syntax, execution
semantics is not uniquely defined at the interface level.

The interface explicitly separates event and data inputs and outputs. Event
inputs and outputs are used to specify the execution flow of the system, but
do not provide any means for exchanging data between function blocks. All
data transfers are done by data inputs and outputs. A part of the component
interface definition are also WITH qualifiers. A WITH qualifier connects one
input or output event port with one or more data ports of the same direction.
Such a connection denotes that consumption of an input event will also consume
data from the associated ports, or that output of an output event will coincide
with data being produced at the associated port.

Figure 3 shows an example of a function block with two input event ports
(e1 and eq) three input data ports (d;, do and ds), two output event ports (e
and e4) and two output data ports (ds4 and ds). The connected small squares
denote WITH qualifiers.

EVENT e A €[— EVENT
EVENT e, e, EVENT
REAL d, d, REAL
INT

d; ds REAL
BOOL dy

Figure 3: Example of a IEC 61499 function block.

3.1.2 Basic Function Block

A basic function block (BFB) is implemented by means of an Ezecution Control
Chart (ECC) and one or more algorithms. The ECC is an automaton consisting
of states and guarded transitions. Each state can be associated with zero or



more actions. An action can specify an algorithm which should be executed
once the state is reached, and an output event port that will be activated. We
differentiate between two types of states: stable states in which execution of
ECC stops until a new event arrives at the input ports, and transitional states
which do not require an event for ECC to move to another state.

ECC transitions are labeled by input events that cause the transition to be
performed, and a transition can also be guarded by boolean conditions over
the input variables. Moreover, transitions are ordered, to ensure deterministic
behaviour in cases where more than one transition condition is satisfied for a
given state. The use of input events in ECC transitions is not strictly defined by
the TEC 61499 standard, but 4DIAC and FORTE implementation limits each
transition to use only one event variable, which is reset after the transition is
activated.

Figure 4 shows the ECC of the function block in Figure 3. From the startup
state, the arrival of event e; results in the execution of the algorithm init,
followed by the sending of output event e;. Similarly, in the waiting state, the
arrival of event ez results in execution of main and sending e4, but only if data
port do contains a positive value. According to the WITH qualifier, main can
sample data ports do and d3 and produce output data to both output data
ports.

e, d,>0

. re
startup waiting exec

init | e, main | e,

Figure 4: Execution Control Chart example.

BFBs (as implemented in FORTE) are strictly event driven — execution of
a BFB can only start when an event is received at one of the input ports, and
once the execution stops it will not continue until the next event arrives. One
execution cycle of a BFB is called a run. A single run can traverse more than
one ECC state in case the ECC contains transitional states, and thus result in
an arbitrary number of algorithm executions and output events. Each run is
atomic, meaning that no other function block execution will interrupt it.

3.1.3 Service Interface Function Blocks

Service interface function blocks (SIFBs) are designed to be used as interfaces to
external hardware or services. The definition of SIFB functionality is not speci-
fied by the standard, and although they contain a sequence diagram describing
their behavior, the functionality might not be fully documented in detail. The
SIFBs can also bypass the function block interface for communication with other
parts of the system.



SIFBs can be of two types: passive and active. The execution semantics of
a passive SIFB is similar to that of BFBs, in that a passive SIFB is in idle state
until an input event triggers it for execution. After the execution, a passive
SIFB returns to idle state, in which it stays until it receives a new event. Active
SIFBs, on the other hand, do not need input events to trigger their execution.
They can also start their execution as a reaction to an external trigger (e.g. a
resource interrupt or timer). Thus, active SIFBs can be viewed as event sources.

3.1.4 Function Block Network

A function block network (FBN) combines a number of function block instances
to achieve more complex functionality. A FBN consists of a set of function
blocks of arbitrary types (BFB, SIFB or CFB) and connections between the
ports of these function blocks. As a result of the separation of event and data
ports, the flow of control and data are clearly distinguished in FBNs.

The TEC 61499 standard does not provide a clear semantics of FBN execu-
tion. The FORTE implementation that we consider in this report adopts fully
event-driven, sequential execution based on the event dispatcher concept. When
one of the function blocks in the network is triggered for execution (either by
an input even, or an external trigger in case of an active SIFB) it is added to
a first-in-first-out queue in the event dispatcher. When no function block is
currently executing, a new function block from the event dispatcher queue is
selected and its execution is invoked.

There are also implementations that use a synchronous approach to function
block execution. The synchronous approach defines discrete time steps in which
function blocks are executed. The run-time framework performs cyclic scans
of all function blocks and executes those that have pending input events. The
propagation of output events and data produced by the function blocks during
one execution cycle, is performed at the end of the cycle, and thus influence
execution in the next cycle.

3.1.5 Composite Function Block

A composite function block (CFB) has an implementation defined by a FBN,
with additional connections between the ports of the enclosing CFB and the
ports of the function blocks in the network. There is, however, no clear speci-
fication of the execution semantics of CFBs. In some implementations a CFB
is treated like a concrete entity with semantics similar to that of a BFB, which
for example means that each invocation of the CFB is atomic. Thus, once a
CFB is triggered for execution (and the triggering event is propagated to the
FBN inside the CFB) no new events will be propagated to the network until the
execution is finished. The downside of this approach is possible low reactivity of
systems, since once execution of a CFB has started, this will block the execution
of all other function blocks in the system until it is finished.

An alternative, used for example in the FORTE implementation, is the trans-
parent hull approach. In this approach event ports of the CFB interface are
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directly connected to the event ports of the enclosed function block, and thus
any event arriving to the CFB is directly forwarded to the FBN (with a possi-
bility of buffering). As a result, atomicity of CFB execution is not guaranteed
with this approach. Although this approach results in more reactive systems it
allows for data inconsistencies and makes systems more difficult to analyze.

3.2 Analysis

Currently, analysis of IEC 61499 models is mostly based on verifying functional
correctness of systems [26,28]. Analysis of extra-functional properties of systems
has rarely been explored. An examples of such analysis for IEC 61499 is worst-
case reaction time analysis [15].

Although not defined by the standard itself, formal definition of model el-
ements [10] and execution semantics [11] has been published in the research
community. Because the standard specification does not unambiguously define
execution semantics this work covers different versions of execution semantics
currently used in implementations.

The TEC 61499 standard allows definition of attributes for modeling ele-
ments. The types of attributes are not pre-defined — they can hold any functional
or extra-functional information about an element. An attribute type definition
consists of attribute name, data type, default value, associated element and the
points in the life-cycle during which the attribute can be used. Inheritance of
attributes in supported, for example function block instances inherit attributes
from their respective function block type.

3.3 Run-time Implementation

Main approach used for implementation of IEC 61499 is by providing a runtime
environment which executes function block networks and dispatches execution
of function blocks. ISaGRAPH [14], FORTE [21] and FBRT [13] are amongst
most popular of such run-time environments. An advantage of run-time en-
vironments is that they provide flexibility for system deployment. Although
use of such environments should promote portability of systems in the case of
IEC 61499 it is not fully so. Poorly defined execution semantics resulted in all
these environments providing different implementation of FB execution, thus
sometimes limiting the ability to reuse systems on different platforms. The ad-
ditional processing power and memory resources that the environments require
can make them less suitable for use in embedded systems where such resources
are often very scarce.

The ISaGRAF tool-set also supports generation of executable C code based
on TEC 61499 system models. To deploy this code developers need to compile
and link it with ISaGRAF C run-time libraries. Implementation of the IEC
standard by code synthesis has also been explored [27]. The aim of using code
synthesis is to provide a more efficient implementation of the standard. However,
the presented synthesis results in monolithic code which is hard to maintain,
update and reconfigure.
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4 Comparison

This section will give a detailed comparison of the software levels used in Pro-
Com and IEC 61499. We will first present similarities and differences of different
model constructs of the two models. Next we will give an overview of analysis
techniques developed for both and how they differ. In the end, we will describe
run-time implementations of ProCom and IEC 61499 and explain benefits and
downsides of the approaches.

4.1 Constructs and semantics

In this subsection we will describe how different ProCom and ITEC 61499 model
constructs could be mapped and what are their main differences and similarities.
The comparison will cover both syntax and semantics of the constructs. We will
also point out model elements and concepts that are present in one model have
no equivalent in the other.

4.1.1 Component Interface

The ProSave component interface and the interface of function blocks are very
similar. They both separate event and data inputs and outputs, and the explicit
relation between data and event ports, which in ProSave is achieved by port
groups, is specified by WITH qualifiers in IEC 61499. One difference, however,
is that the IEC standard permits one data port to be associated to more than
one event port, while in ProCom a data port always belong to exactly one port
group.

A notable difference is that in ProCom component interface is a very strong
concept that promotes use of components as black-boxes. All component types
have the same syntax and semantics at the interface level. This facilitates reuse
of components, analysis results and synthesized code without detailed knowl-
edge about the component internals, and allows reasoning about unimplemented
components in early stages of the development (see Section 4.1.6). Such strong
definition of the function block interface is not present in IEC 61499. For ex-
ample, ProSave component interface explicitly shows which output events will
be produced after an input event is consumed, while in IEC 61499 this is visible
only by looking at the component’s internals. Moreover, the IEC standard does
not provide same semantics on the interface level for all function block types.

4.1.2 Basic Function Blocks

The execution semantics of primitive ProSave components and BFBs are also
quite similar. In both cases, component execution is triggered by an incoming
event, their functionality is executed, and after that the component returns to
an idle state until the next event arrives. In ProSave, this execution results in
exactly one event produced at each trigger output, while the execution of a BFB
can produce multiple events at a single output port.
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Functionality of a primitive ProSave component is defined by one an entry
function per input event port, and this function is executed once when the
component is triggered for execution on that port. In BFBs the implementation
is more complex, since the ECC determines what algorithm(s) to execute in
response to an input event, based on the internal state and the current values
of the input data ports. In ProCom, such variable execution would be handled
inside the code, and thus not as easily available for analysis.

In TEC 61499, execution of a BFB is atomic, i.e., an executing BFB will not
be interrupted, but ProCom components are allowed to preempt each other.
However, the ProCom semantics defines that in such cases components will
still functionally behave as if their execution is atomic, since input data ports
are read only when the component is triggered, and the value used internally
remains unchanged during the execution regardless of any new data received.

4.1.3 Service Interface Function Blocks

SIFBs are elements that are very hard to fit into the overall ProCom approach.
The first concern is that the functionality (including communication with other
elements) of a SIFB can be hidden. In ProCom components can interact with
their environment only through their interfaces and their functionality is clearly
defined by an algorithm or a composition of other components. However, SIFBs
may provide a description of its functionality in the form of sequence diagrams.

Another important difference between SIFBs and all other ProSave compo-
nents is that SIFBs can be active. Their execution can be triggered by means
other than an event at their input port. In ProSave only passive components are
supported. Active components are allowed only on the ProSys level of ProCom.

4.1.4 Function Block Networks

The equivalent of FBNs can be seen in a composition of ProSave components. In
both cases components are combined together to provide a desired functionality.
Also, both have event flow detached from data flow.

Apart from component instances and connections between them special con-
nector entities are used when composing ProSave components. ProSave con-
nectors enable operations such as forking and joining event and data paths or
selection of event paths based on data values. The IEC 61499 standard does not
provide such entities, but relies on a standardized set of ordinary function blocks
for this functionality. For example, there exist standardized function blocks for
forking or joining event paths. Also, IEC 61499 allows multiple connections to
be attached to a single data port, thus providing forking and joining of data
without explicit connectors.

4.1.5 Composite Function Blocks

As ProCom insists on a strong notion of component interface where all com-
ponents, including composites, adhere to the same execution semantics. This
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means that although parallel execution of composite components is allowed, the
semantics still ensures that execution of a composite component will not be in-
fluenced by other components executing concurrently. When using the approach
to execution of CFBs as entities same is true for the IEC standard(given that
a CFB does not include an instance of an active SIFB). However, in case of
transparent hull approach CFBs the execution semantics differs from the BFB
execution semantics, and the execution semantics of composite ProCom compo-
nents. During run-time systems behaves as if the whole function block hierarchy
has been flattened so such systems could be compared to a non-hierarchical com-
positions of ProCom components.

4.1.6 Unimplemented Components

TEC 61499 does not support development and analysis of systems containing
components of different maturity. The notion of unimplemented components
which ProCom supports is not present in IEC 61499. Components with unde-
cided realization bring more flexibility in system development enable a mix of
top-down and bottom-up approaches. In ProCom, as opposed to IEC 61499,
developers can analyze, do partial synthesis and experiment with different de-
ployment configurations in early stages of system development.

4.2 Comparison of Analysis

One of the main aims guiding the development of ProCom was to support analy-
sis of different functional and extra-functional properties of systems before their
deployment. In IEC 61499, analysis is not one of the primary concerns. Most
techniques just provide verification of system functionality. Support for analysis
of extra-functional properties is very rare. Analysis in IEC 61499 is mostly on
system level, and most techniques assume complete systems with fully imple-
mented functionality. There is also no support to propagate analysis results
back to individual model elements. ProCom allows for analysis of systems in
their early stages of development using estimated values for parts of the system
that have no implementation defined. Also, in ProCom analysis can be limited
only to parts of a system (for example a subsystem or a composite component)
specified by the developer. Results of such analysis can be propagated back to
system model and used to influence further development of the system. Anal-
ysis results for subsystems or composite components can be attached to these
model elements and possibly reused. As a result of the explicit relation between
input and output in ProCom, the control and data flow in a collection of inter-
connected components is very explicit, which simplifies analysis in general but
particularly facilitates compositional analysis addressing one hierarchical level
at a time. Compositional analysis is currently not supported in IEC 61499.
The Attribute Framework which is part of ProCom provides some benefits
over the attribute definition supported by the IEC standard. For example, it
enables defining condition under which the attribute value is valid, when the
component is reused in new contexts. The Attribute Framework also supports
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defining more than one value for a single attribute, each of them having different
validity conditions.

4.3 Comparison of Run-time Implementations

Most current IEC 61499 solutions implement systems by deploying them to run-
time frameworks. ProCom uses the code synthesis approach for implementing
and deploying systems to tasks of a real-time operating system, which is more
common in hard real-time domain. Run-time frameworks provide more flex-
ibility in deploying systems as the resulting systems consist of loosely bound
elements. On the other side, code provided by synthesis tends to use less of
memory and processing resources, and is more appropriate for optimizations.
ProCom tries to make up for the reduced flexibility of code synthesis by a
non-monolithic approach to synthesis. This includes advanced techniques like
synthesis of reusable composite units, partial code generation in early stages
of system development and flexible flattening of component hierarchy. Code
generation techniques have also been explored in the context of IEC 61499 [27],
but this implementation does not provide any advanced techniques mentioned
above.

5 Feasibility of transfer

Comparison has shown that the ProCom component model and the IEC 61499
standard have many similarities, both in syntax and semantics. In this section
we will describe how some of the ideas, techniques and parts of ProCom im-
plementation could be implemented in the context of the IEC 61499 standard.
Detailed descriptions of all model elements and techniques are given in previous
sections.

5.1 Analysis

As shown in comparison, ProCom provides more advanced analysis techniques
than the ones developed for the IEC 61499 model. This is especially true for
analysis of extra-functional system properties. In this subsection we will describe
what are the possible ProCom analysis techniques that could be applied to IEC
61499.

5.1.1 Transfer of the Attribute Framework

The 4DIAC IDE is an open source engineering tool for developing IEC 61499
systems. It is built on top of the Eclipse framework which allows for simple
integration of new functionality through plug-ins. The PRIDE, IDE developed
for ProCom, is also built as an Eclipse application. art of the PRIDE is the
Attribute Framework — plug-in for management of extra-functional properties.
As the implementation of Attribute Framework is not fully ProCom specific it
may be possible to transfer the plug-in to the 4DIAC IDE and apply it to the
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IEC 61499. This of course depends on the availability of the 4DIAC IDE source
code and the concrete implementation of the tool.

5.1.2 Timing Analysis

Given the similarities of the two models, the Worst Case Execution Time
(WCET) analysis developed for ProCom could be transferred to IEC 61499.
This would allow analysis of timing properties of IEC 61499 systems based on
system models. Such analysis can be performed in early stages of their devel-
opment, even before the system is fully implemented. However, transfer of the
analysis method would not be straightforward, as elements such as ECCs and
active SIFBs need to be taken into account.

Dealing with the ECC

As there is no equivalent for ECC in ProCom it is not possible to directly
transfer any of the ProCom analysis techniques to the IEC 61499. Hovewer,
different solutions for taking the ECC into account can be envisioned.

Simplest solution for would be to limit the ECC for BFBs used in analysis to
having only one ECC state. Similar approach would be to have the BFBs define
values that are safe a overestimation of all ECC states at the interface level,
removing the need to take the ECC into account during analysis. In both cases
existing ProCom analysis techniques would not have to be changed. Although
these solutions are valid they would severely limit use of the IEC 61499 standard
(or the analysis techniques) and would result in analysis techniques that would
hardly be useful.

Another way of dealing with the ECC would be to find all different ECC
execution runs for each event input, but not taking into account data inputs or
internal data values of BFB states. Then, depending on the analysis technique
we could chose one or more run that would be used for analysis. Implementing
such an approach seems very plausible, and would provide useful analysis results.

Best analysis results could be obtained if we would use parameterized anal-
ysis of the ECC, taking into account data inputs and internal BFB data and
states. Applying such parameterized analysis would be quite difficult.

Supporting Active SIFBs

The lower level of ProCom, ProSave, does not support active components.
Although the function block model of IEC 61499 is very similar to the ProSave
level it supports active service interface function blocks. This means that we
would not be able to directly apply timing analysis used on the ProSave level to
IEC 61499. Solution to this problem would be to combine ProSave timing anal-
ysis with parts of analysis for the upper ProCom level, ProSys, which supports
active components.

5.1.3 Fault Propagation Analysis

Fault propagation analysis for ProCom enables reasoning about how errors prop-
agate through a system. It relies on definition of fault propagation between
inputs and outputs of individual components. To transfer such analysis to IEC
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61499 we would first have to provide a way to define fault propagation speci-
fication for IEC 61499 elements. Then, we would need to adapt the analysis
algorithm to support semantics of IEC 61499 function blocks and function block
networks. When trying to apply fault propagation analysis we would also face
similar problems with ECCs and active SIFBs described in timing analysis sec-
tion.

5.1.4 Applying REMES

The REMES language used to describe both functional and extra-functional
behavior of ProCom components could also be used for the same purpose in the
IEC 61499 function block model. REMES is not tightly connected to ProCom,
and by that suitable to apply to other models. For the purpose of applying
REMES to the IEC 61499 standard, we would have to define mapping be-
tween elements of the two models. This would result in the abbility to analyze
functional and extra-functional properties of IEC 61499 systems using analysis
methods developed for REMES.

5.2 Implementation

Comparison of ProCom and IEC 61499 has shown that the two have different
approaches to run-time execution. Transferring the complete ProCom synthesis
to IEC 61499 would require a considerable amount of effort and additional de-
velopment as ProCom synthesis is still a prototype. However, some approaches
used to synthesize ProCom systems could bi applied to existing IEC 61499
implementations. In the following subsections we will describe them stating
possible benefits they could provide.

5.2.1 Synthesis of the IEC 61499 to a Real-Time Operating System
Tasks

Synthesis of IEC 61499 systems to a real-time operating system tasks would
provide an implementation suitable for hard real-time embedded systems. As
with ProCom, methods for assuring that generated code follows the execution
semantics of IEC 61499 would have to be developed. Such implementation of
the IEC standard would allow for concurrent and more efficient execution of
systems. Advanced techniques such as hierarchical scheduling could also be ap-
plied. However, implementing such synthesis would not be trivial as we would
have to implement not only local function block communication, but also com-
munication using different networks for distributed function blocks. ProCom
synthesis has already been demonstrated in the research context. Implementa-
tion of such synthesis for IEC 61499 just for the purpose of proving the concept
does not seem to justify the needed efforts.
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5.2.2 Synthesis of Reusable Units

One of the approaches used in ProCom is synthesis of reusable units. This allows
for generating code of composite components or subsystems which is context-
independent. Once generated code can be stored together with other models of
a component and can easily be reused in different systems, resulting in more
scalable synthesis. Resulting systems are also more robust as changes in parts of
the system do not require re-generating and changing code of the whole system.
Such approach could possibly be applied to an existing IEC 61499 synthesis
implementation.

5.2.3 Flexible Semantics of Composites

Two main approaches to CFB execution implemented for the IEC 61499 stan-
dard are execution as an entity and execution as a transparent hull. We have
already described details of these approaches and how they impact predictabil-
ity, analyzability and responsiveness of IEC 61499 systems. As each of these
execution types brings some benefits it would be sound to try to combine them
and provide the ability for trade-of of their characteristics. However, none of
the current implementations support this.

A model transformation similar to that used in ProCom for flattening the
model hierarchy could be used to allow for combination of the two CFB exe-
cution semantics. These transformation is used to preserve ProCom composite
component execution semantics. It consists of insertion of components and con-
nectors that simulate locking and synchronization normally done by the com-
posite component interface. The same approach could be used for achieving
entity-type execution of selected CFBs in IEC 61499 implementations which
use the transparent hull approach. In implementations that execute CFBs as
entities flattening can be used to provide transparent hull execution. By ap-
plying these techniques we could allow for both execution types to be used in
the same systems. Developers would then be able to select execution type for
each CFB, using the one which provides most benefits for the CFB they are
developing.

6 Conclusions

The overall result of the comparison shows that ProCom and IEC61499 are
very similar in terms of language constructs and semantics, and that the main
difference is the degree of freedom to interpret the detailed IEC61499 semantics,
for example the operational semantics of composite function blocks. Another
important difference is the way the functionality of basic function blocks is
defined by automata in IEC61499 but directly by code in ProCom.

We have identified a number of ideas and techniques related to analysis and
synthesis in ProCom, that would be feasible to migrate to a IEC61499 context
with various effort in terms of required adjustments. The plan for the remaining
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project is to take a closer look at one of them, namely compositional model-
level execution time analysis. This analysis is suitable because it is not too
complex to be addressed within this project, while still involving some of the
key challenges such as dealing with the ECCs of basic function blocks.

Another direction of future work is to identify restrictions to the way the
IEC6149 constructs are used, or in the interpretation of semantic ambiguities,
that would significally improve the analysability of IEC61499 models.
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