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Abstract. Service-Oriented Systems (SOS) have gained importance in
different application domains thanks to their ability to enable reusable
functionality provided via well-defined interfaces, and the increased op-
portunities to compose existing units, called services, into various con-
figurations. Developing applications in such a setup, by reusing existing
services, brings some concerns regarding the assurance of the expected
Quality-of-Service (QoS), and correctness of the employed services. In
this paper, we describe a formal mechanism of computing service guaran-
tees, automatically. We assume service models annotated with pre- and
postconditions, with their semantics given as Priced Timed Automata
(PTA), and the forward analysis method for checking the service cor-
rectness w.r.t. given requirements. Under these assumptions, we show
how to compute the strongest postcondition of the corresponding au-
tomata algorithmically, with respect to the specified precondition. The
approach is illustrated on a small example of a service modeled as Priced
Timed Automaton (PTAn).

1 Introduction

The complexity of software systems has been continuously increasing during the
last decade. One of the reasons underlying such a phenomenon is a new trend
that aims to integrate and connect heterogeneous applications and available re-
sources while aiming at improved software reusability. Service-oriented systems
(SOS), which have emerged as context independent component-based systems
(CBS), are becoming one of the dominant paradigms for developing large scale
systems out of self-contained and loosely coupled services. Among the main
benefits of the approach, the most appealing are: the reusable functionality via
well-defined interfaces, the service infrastructure that enables services to be pub-
lished, discovered, invoked, and, if needed destroyed on demand, as well as the
fast application development by employing existing services.

In systems built up in such a setup, it becomes essential to ensure a satisfying
level of the system’s Quality-of-Service (QoS). Sometimes, based on the QoS,
one simply needs to decide which service to select out of a number of available
services that offer similar functionality. To deliver guarantees on provided QoS,
some SOS approaches [3, 15, 19, 21] support formal analysis; however, in most



cases building the formal system model, out of formalized services, is far from
straightforward.

Once a model is created, it becomes crucial to be able to check the fulfil-
ment of requirements of the employed services, both in isolation, as well as in
the context of the newly created system that involves service compositions. An
important aspect, often ignored, is the service’s resource usage. Any analysis ap-
proach that abstracts from service resource constraints might produce analysis
results that are insufficiently correct, or reliable.

For instance, let us consider a three shuttle system, previously modeled and
analyzed in the Priced Timed Automata (PTA) formal framework [5]. In brief,
the system provides transportation services to three different locations. We as-
sume a scenario in which two out of three shuttles are supposed to stay in a
convoy and reach the common final location. Considering energy to be the most
critical resource in the system (i.e., each shuttle operates on batteries with a lim-
ited capacity), it would be beneficial to be able to formally check if the current
energy level in each shuttle is sufficient to reach the final destination, before the
actual convoy is created. In addition, each shuttle has timing constraints, which
should be in accordance with the deadline of the convoy.

To tackle the above concerns, in this paper, we focus on computing func-
tional and extra-functional service guarantees, automatically. The service model
is time- and resource-aware, being described in Remes [23], a behavioral lan-
guage intended for modeling and analysis of interacting embedded components
and services. The system is obtained by composing Remes models, via operators
that we have defined previously [6].

In our recent work, we have shown how service correctness can be checked
using Hoare triples, and strongest postcondition semantics technique, described
in Section 3.1. However, the postcondition calculation, on which the verification
relies, is not currently automated, thus hindering the applicability of the method.
Here, we address this deficit by presenting algorithms for computing strongest
postconditions (service guarantees) automatically, by applying minimum/maxi-
mum reachability analysis on PTA [17] translations of the Remes service models
(Section 3).

We consider the service resource usage in Remes as a cost variable in PTA,
and we include the computation of the minimum and maximum reachability costs
of a final PTA location in our algorithms, alongside with calculating the strongest
postcondition of reaching such location, over symbolic states. The approach,
described in Section 3, is accompanied by an illustrative example of a simple
model of a PTA service. Last but not least, we compare our approach with some
relevant work in Section 4 before concluding the paper in Section 5.



2 Preliminaries and A Simple Example

2.1 Remes modeling language

To model functional and extra-functional behavior such as timing and resource
usage of SOS, in this paper, we use the dense-time state-based hierarchical mod-
eling language called Remes [23]. The language has been initially intended as a
meaningful basis for modeling and analysis of embedded systems in a component-
based fashion. To make it suitable for modeling SOS too, we have recently ex-
tended Remes with constructs fit for an SOS description [6]. To enable formal
analysis, Remes models can be transformed into Timed Automata (TA) [1], or
PTA [2], depending on the analysis type [13].

Remes is appropriate for describing the behavior of SOS, as it is well-suited
for abstract modeling, since it is a language well-suited for abstract modeling,
supports hierarchical modeling, has an input/ouput distinction, a well-defined
formal semantics, and tool support [14] 1.

Fig. 1. An example of a Remes service

Let us assume a simple example of a composite mode that models a web
service depicted in Fig. 1. The composite mode contains two submodes, i.e.,
atomic modes l0 and l1. The mode has a special Init entry point, visited when
the service executes first, and where all variables are initialized.

1 The Remes tool-chain is available at http://www.fer.hr/dices/remes-id.



In Remes one may model timed behavior and resource consumption. Timed
behavior is modeled by global continuous variables of specialized type clock evolv-
ing at rate 1 (x, y in Fig. 1). Each (sub)mode can be annotated with the corre-
sponding continuous resource usage, if any, modeled by the first derivative of the
real-valued variables that denote resources that evolve at positive integer rates
(res’ == 2 in Fig. 1). Discrete resources are allocated through updates, e.g., res
+= 1 in Fig. 1.

The Remes service shown in Fig. 1 contains a list of attributes (i.e., service
type is Web service, capacity is 5, time-to-serve is 3, status is Idle, service precon-
dition is (x == 0 ∧ y == 0), and postcondition (1 ≤ res ≤ 10∧y ≥ x)) exposed
at the interface of the Remes service. A service precondition is a predicate that
constrains the start of service execution, and must be true at the time a Remes
service is invoked. A postcondition must hold at the end of a Remes service
execution and it can be the same or included into the user defined requirement,
also modeled as a predicate.

To verify the service correctness, we use the forward analysis technique based
on the computation of the strongest postcondition of a Remes service w.r.t. a
given precondition. To prove the correctness of a Remes service in isolation,
we check that the calculated strongest postcondition is no more than the given
requirement. Since Remes models can be automatically transformed to PTA via
a well-defined set of rules [13, 14, 20], in this paper, we propose an algorithmic
technique of strongest postcondition calculation on the PTAn description of a
service, in order to provide automation to our Remes verification procedure.

The service composition correctness check reduces to discharging similar
boolean implications, as we have shown in our recent work [6]. Therefore, au-
tomating the strongest postcondition calculation of services is central to the
applicability of our analysis method.

For a more thorough description of the Remes language, we refer the reader
to our previous work [6, 23].

2.2 Priced Timed Automata

In the following, we recall the model of PTA [2, 4], an extension of TA [1] with
prices on both locations and edges.

Let us assume a finite alphabet Act ranging over a, b etc., a finite set of all
data (i.e., boolean, integer or array) variables V , a finite set of real-valued clocks
χ and B(χ) the set of formulas obtained as conjunctions of atomic constraints of
the form x ./ n, where x ∈ χ, n ∈ N, and ./ ∈ {<,≤,=,≥, >}. The elements of
B(χ) are called clock constraints over χ. Similarly, we use B(V ) to stand for the
set of non-clock constraints that are conjunctive formulas of i ∼ j or i ∼ k, where
i, j ∈ V , k ∈ Z and ∼ ∈ {<,≤,=, 6=,≥, >}. We use B(χ, V ) to denote the set
of formulas that are conjunctions of clock constraints and non-clock constraints.
Additionally, P(χ) represents the powerset of χ.

Definition 1 A linearly Priced Timed Automaton (PTAn) over clocks χ and
actions Act is a tuple (L, l0, E, V, I, P ), where L is a finite set of locations, l0 ∈ L



is the initial location, E ⊆ L×B(χ, V )×Act×P(χ)×L is the set of edges, V is
a finite set of data variables, I : L → B(χ) assigns invariants to locations, and
P : (L ∪ E)→ N assigns prices (or costs) to both locations and edges.

l2l1

y<=1 && cost’==3

l0

y<=1 && cost’== 2

y>x

cost+=2

x=0,
cost+=1

n>0
x=0,
n=n-1,
cost+=1

Fig. 2. The PTAn model of the Remes service of Fig. 1

In the case of e = (l, g, a, r, l′) ∈ E, we also write l
g,a,r→ l′. For an edge e we

refer to l as the source of e, to l′ as the target of e, to g as the guard of e, to a
as the action of e, and to r as the reset set i.e., data- or clock assignment of e.
Fig. 2 depicts the PTAn description of the Remes service introduced in Fig. 1.
We omit the Remes interface from the model, so only the internal behavior
is represented. The PTA description consists of three locations: l0, l1, and l2
(with l0 as the initial location), and edges, which are directed lines connecting
locations. The timing behavior is controlled by two clock variables, x and y. For
each location, it is possible to assign an invariant that must hold in order to
stay in that location (e.g., invariant y ≤ 1), which enforces a location change in
case it ceases to hold. Further, each edge, may be decorated with guards, that is,
boolean expressions that must hold in order for an edge to be taken (e.g., y > x).
For simplicity, to prevent infinite looping in l0, in this example we use the integer
variable n. To model, simulate and verify our example we use the Uppaal Cora
tool. The tool extends Definition 1 with data variables of different types, arrays
of data variables, constants, and records.

The semantics of PTA is defined in terms of priced transition systems over
states of the form (l, u), where l is a location, u ∈ RRX are clock valuations, and
the initial state is (l0, u0), where u0 assigns all clocks in χ to 0. In this model,
there are two kinds of transitions: delay transitions and discrete transitions. In
delay transitions,

(l, u)
d,p→ (l, u⊕ d),

where u ⊕ d is the result obtained by incrementing all clocks of the automata
with delay d, and p = P (l) ∗ d is the cost of performing the delay (the cost of
staying in location l0 is described by cost′ == 2). Discrete transitions

(l, u)
a,p→ (l′, u′)

correspond to taking an edge l
g,a,r→ l′ for which the guard g is satisfied by u.

The clock valuation u′ of the target state is obtained by modifying u according



to updates r. The cost p = P ((l, g, a, r, l′)) is the price associated with the edge
(the cost of taking a self loop in location l0 is annotated as cost+ = 1).

A timed trace σ of a PTAn is a sequence of alternating delays and action
transitions

σ = (l0, u0)
a1,p1→ (l1, u1)

a2,p2→ . . .
an,pn→ (ln, un)

A network of PTA A1, . . . , An over χ and Act is defined as the parallel com-
position of n PTA A1 ‖ . . . ‖ An over χ and Act. Semantically, a network again
describes a timed transition system obtained from those components, by requir-
ing synchrony on delay transitions, and requiring discrete transitions to synchro-
nize on complementary actions (i.e., a? is complementary to a!) [4]. Next, we
recall the basic symbolic reachability analysis notions on which our algorithms
are based.

2.3 Symbolic Optimal Reachability

The text in this subsection is an adaptation for single-cost PTA, from the one
presented by Larsen and Rasmussen, for dual-priced PTA [17]. Symbolic tech-
niques are required in the analysis of infinite state systems. They provide effective
ways to describe and manipulate sets of states simultaneously. To enable cost-
optimal analysis, such techniques are enriched with cost information annotated
to each individual symbolic state [16].

A priced transition systems with a structure τ = 〈S, s0, Σ,→〉, where S is
a set of states, s0 ∈ S is the initial state, Σ is a finite set of labels, and → is
a partial function from S × Σ × S into the non-negative reals, R≥0, defines all
possible systems transitions with their respective costs. An execution of τ is a

sequence γ = s0
a1,p1→ s1

a2,p2→ . . .
an,pn→ sn. The cost of γ with respect to some

goal state G ⊆ S, is defined as:

COSTG(γ) =

{
∞, if ∀ i ≥ 0 : si /∈ G∑n
i=1 pi, if ∃ n ≥ 0 : sn ∈ G ∧ ∀ 0 ≤ i < n : si /∈ G.

For a given goal state s, the minimum cost of reaching s is the infimum
of the costs of the finite traces ending in the s. Dually, the maximum cost of
reaching the goal state s is the supremum of the costs of the finite traces ending
in s. Similarly, the minimum/maximum cost of reaching a set of states G ⊆ S is:

inf {COSTG(γ) : γ ∈ Γ}, and

sup{COSTG(γ) : γ ∈ Γ},

where Γ is the set of all executions in the priced transition system τ .
To effectively analyze priced transition systems, priced symbolic states of the

form (A, π) are used, where A ⊆ S is a set of states, and π : A → 2R≥0 assigns
non-negative costs to all states of A. The reachability of the priced symbolic state
(A, π) assumes that all s ∈ A are reachable with all costs in π(s). To express
successors of priced symbolic states, e.g., all states that can be reached from the
current state s ∈ A, we use a Post-operator Posta(A, π) = (posta(A), η) = (B, η)
expressed as follows:



B = {s
′
| ∃ s ∈ A : s

a→ s
′
}

η(s) = inf{π(s
′
) + p | s

′
∈ A ∧ s

′ a,p→ s}

Here η provides the cheapest cost for reaching states of B via states in A, as-
suming that these may be reached with costs according to π.

A symbolic execution of a priced transition system τ is a sequence β =
(A0, π0), . . . , (An, πn), where for i < n, (Ai+1, πi+1) = Postai

(Ai, πi) for some
ai ∈ Σ and A0 = {s0} and π0(s0) = 0. The relation between executions and
symbolic executions is expressed as follows:

– For each execution γ of τ ending in s, there is a symbolic execution β ending
in (A, π) such that s ∈ A and COST(γ) ∈ π(s).

– Let β be a symbolic execution of τ ending in (A, π); then, for each s ∈ A
and p ∈ π(s), there is an execution γ ∈ s such that COST(γ) = p.

From the statements above, one can notice that symbolic states accurately
capture the cost of reaching all states in the state space.

3 Algorithms for Calculating Strongest Postconditions of
Services

To provide constructs for the correctness check of a Remes service, as described
in Section 2 and introduced in [6], we assume that the service is described by a
Hoare triple, on which we apply the forward analysis technique. The latter relies
on computing the strongest postcondition of the Remes service w.r.t. the given
precondition. Proving the correctness of a Remes service in isolation reduces
to simply checking the Boolean implication between the calculated strongest
postcondition and the given user requirement.

Previously [6], we have focused on less complex systems and employed the
Guarded Command Language (GCL) [9] to prove service correctness by manual
computation of the strongest postconditions needed in the process. In this paper,
we aim for a more automated mechanism to check service correctness, focusing
on developing algorithms that facilitate such computation for Remes services
formally described as PTA. We can perform maximum/minimum resource-usage
trace computation on the corresponding PTA, while accumulating the strongest
postcondition during the analysis. The algorithms for strongest postcondition
calculation, presented in this paper, rely on the symbolic reachability algorithms
for computing the minimum and the maximum reachability cost, respectively,
proposed by Larsen and Rasmussen [17].

In the following, we recall the notion of strongest postcondition, as intro-
duced by Dijkstra and Sholten [10], and the program correctness check based on
it. Next, we introduce two algorithms that compute the strongest postcondition
of a Remes service formally described as PTA, together with the maximum/min-
imum cost reachability analysis, respectively.



3.1 Strongest Postcondition

Assume that {p}S{q} is a Hoare triple denoting the partial correctness of service
S with respect to precondition p and postcondition q. According to Dijkstra and
Sholten [10], the strongest postcondition transformer, denoted by (sp.S.p), is the
set of final states for which there exists a computation controlled by S, which
belongs to class “initially p”. Assuming that p holds, the execution of a service S
results in sp.S.p true, if S terminates. Proving the Hoare triple, that is, proving
the correctness of service S, reduces to showing that (sp.S.p⇒ q) holds.

To illustrate the strongest postcondition calculation on a simple statement,
let us assume that a service performs a simple subtraction operation (x := x−5)
and that the provided precondition is p = (x > 15), while the requirement is
q = (x > 10). Then, calculating the strongest postcondition reduces to the
following:

sp.(x := x− 5).(x > 15) = (∃x0 · x = x0 − 5 ∧ (x0 > 15))

where x0 is the initial value of x. Verifying the correctness of S, with respect to
p, and q above, reduces to showing that:

∃x0 · x = x0 − 5 ∧ (x0 > 15)⇒ (x > 10)

In the following, we show how to compute sp.S.p automatically, assuming S
is the PTA semantic translation of a Remes service.

3.2 Strongest postcondition calculation and minimum cost
reachability

In this section, we show the algorithm that computes the strongest postcondi-
tion, and the minimum cost of resource consumption for a given Remes service,
formally described as a PTAn.

Let us assume (A, π) and (B, η) as our priced symbolic states. If A ⊆ B
and η(s) ≤ π(s), for all s ∈ A, we denote by (B, η) vinf (A, π) the preorder
expressing that (B, η) is “at most as big and cheap” as (A, π) [16].

Algorithm 1 employs two data-structures, Waiting (initially containing the
initial priced symbolic state (A,π0)) and Passed (initially empty) to hold the
priced symbolic states waiting to be examined, and those that are already ex-
plored, respectively. At each iteration, the algorithm selects a priced symbolic
state (A, π) from Waiting. If (A, π) is a goal state 2 not contained in a goal
state previously stored in SP (strongest postcondition), it is added to the calcu-
lated postcondition SP. Otherwise, if it is not a goal state and not contained in
a symbolic state previously stored in Passed, it is added to Passed, and all its
successor states are added to Waiting. When Waiting is empty, the strongest
postconditions calculated for each path reaching the goal state are returned.

2 Note that, in a PTAn describing a Remes service, the goal state is determined by a
unique location and hence, if Final (A, π) holds, then the whole of (A, π) is a goal
state, assuming that every symbolic state (A, π) satisfies the property that all states
in A are in the same location.



We define Final (A, π) as follows:

Final (A, π) =

{
true, if (A, π) ∈ F

false, otherwise.

where F denotes the final priced symbolic state.
The algorithm terminates when Waiting is empty, that is, when no further

priced symbolic state is left to be examined. The algorithm results in a set
of strongest postconditions SP. Termination of the algorithm is guaranteed,
provided that 6vinf is a well quasi-ordering on symbolic states [16].

In addition, information about the cost of service execution is carried within
the calculated strongest postcondition. The cost is assumed to be initially set to
∞ and updated whenever a goal state is found, which can be reached with the
lower cost than the current one.

00 SP := {}
01 Passed := {}
02 Waiting := {({A0}, π0)}
03 while Waiting 6= {} do
04 select (A, π) from Waiting
05 if (Final (A, π) ∧ ∀ (B, η) ∈ SP : (B, η) 6vinf (A, π))
06 then SP := SP ∪ (A, π) else
07 if ∀ (B, η) ∈ Passed : (B, η) 6vinf (A, π) then
08 Passed := Passed ∪ {(A, π)}
09 Waiting := Waiting ∪

⋃
a∈Σ Posta(A, π)

10 end if
11 end if
12 end while
13 return SP

Algorithm 1. Abstract algorithm for computing the service strongest post-
condition and the minimum cost of reaching the goal state.

As stated, the algorithm provides a set of strongest postconditions calculated
for distinctive paths that reach the goal state (location) in the PTAn. Finally,
to get the actual strongest postcondition, we simplify the set SP. The strongest
postcondition can be simplified as follows:

∀ (A, π)i ∈ SP :
⋃
j 6= i

(A, π)j 6vinf (A, π)i

The simplification assumes that each symbolic priced state that is not in-
cluded into the reunion of all other symbolic priced states is subtracted. For
more details regarding simplification, we refer the reader to [7, 12].

Example revisited. To illustrate our approach, we recall the simple service shown
in Fig. 2. In the automaton, it is possible to delay either in location l0 or l1.
Location l2 is assumed to be the final location. From l0, it is possible to take a
self-loop, for maximum two times (integer n is initially set to two) and then take
one of the available edges, or directly take one of the edges that lead to location



l1, and finally end up in location l2. Staying in locations l0 or l1 or taking any
of the available edges increases the accumulated cost, modeled by cost variable.
We are interested in calculating the minimum cost for reaching the final location
(l2) and the respective strongest postcondition.

Let us now assume that our service is annotated with precondition p, which
we assume satisfied, and postcondition q, which represents the service require-
ment, as follows:

p = (x = 0 ∧ y = 0)

q = (1 ≤ res ≤ 10 ∧ x ≤ y)

In the above, x and y are clock variables, n is an integer variable that bounds
the number of loop iterations in location l0, and res is the variable modeling
the resource usage of the original service. In the corresponding PTAn represen-
tation, res translates into the automaton’s cost variable. By verifying q, within
the minimum cost reachability context, we want to check whether our service
consumes at least 1 unit of resource, for the system to be considered correct.

Proving correctness of the PTAn w.r.t. this requirement relies on the strongest
postcondition computation, for minimum cost, according to Algorithm 1.

1
cost = 2y

ρ1

x

1
cost = 2y + 1

ρ2

x

yy

min cost (ρ1) = 0 min cost (ρ2) = min cost (ρ1) + 1 = 1

Fig. 3. Symbolic states for minimum reachability cost

In Fig. 3, we illustrate one trace of the minimum cost reachability analysis
that reaches the goal location l2. Note that in the minimum cost case, it is
optimal to reach l2 in zero time units, via location l1. The accumulated cost is
then 1. In case of the total accumulated delay 1, it is optimal to delay in l0 with
cost 2, hence the cost of reaching l2 is 2y+ 1 and the strongest postcondition of
this trace is cost = 2y + 1 ∧ y ≤ 1 ∧ x ≤ y.

There are four more traces reaching l2. The total SP becomes

(cost = 2y + 1 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 2y + 2 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 2y + 3 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 2y + 3 ∧ y ≤ 1 ∧ x < y) ∨
(cost = 2y + 4 ∧ y ≤ 1 ∧ x < y)

After simplifying according to our definition, the total SP can be reduced to
the following:

(cost = 2y + 4 ∧ y ≤ 1 ∧ x < y)



It is easy to prove that the above strongest postcondition implies the following
predicate:

v = (1 ≤ cost ≤ 6 ∧ x ≤ y),

which in turn implies q, if cost is replaced by res. It then follows that the
minimum-cost strongest postcondition implies q, which completes our correct-
ness proof in this case.

3.3 Strongest postcondition calculation and maximum cost
reachability

Algorithm 1 can be modified to provide the strongest postcondition calculation
together with the maximum reachability cost. At the service level, this would
translate into checking whether, in the worst-case of service resource-usage, the
latter does not exceed a prescribed upper bound. We here briefly sketch the
required modifications of Algorithm 1. As previously, we assume that all paths
eventually reach the goal state. The modification concerns the lines 05 to 07 of
Algorithm 1, which become as follows:

05 if (Final (A, π) ∧ ∀ (B, η) ∈ SP : (B, η) 6wsup (A, π))
06 then SP := SP ∪ (A, π) else
07 if ∀ (B, η) ∈ Passed : (B, η) 6wsup (A, π)) then

Algorithm 2. Extract of abstract algorithm for computing the service
strongest postcondition and the maximum cost of reaching the goal state.

The only difference from the previous algorithm is in the pruning of symbolic
priced states before adding them to Passed or SP. Any symbolic state (A, π)
can be pruned if there exists already a symbolic state (B, η), such that A ⊆ B
and π(s) ≤ η(s) for all states s ∈ A. Similarly, the strongest postcondition can
be simplified as follows:

∀ (A, π)i ∈ SP :
⋃
j 6= i

(A, π)j 6wsup (A, π)i

Example revisited. The PTAn depicted in Fig. 2 is again used to illustrate the ap-
proach described above. According to our methodology, to verify the correctness
of the service w.r.t. p and q, we need to first compute the strongest postcondition
of the corresponding PTAn, under the assumption of worst-case resource usage,
that is, maximum cost in PTA terms.

Fig. 4 depicts a trace of the reachability analysis, assuming the maximum
cost of reaching the goal location. In this case, the trace includes two self-loops
in l0, and then a jump to l1 via the lower of the two possible edges. The costs
are 2y, 2y + 1, and 2y + 2 in l0, and then 3y + 4 in l1 (and in l2). The strongest
postcondition w.r.t. the maximum cost of the trace becomes cost = 3y+ 4∧ y ≤
1 ∧ x < y. The total SP of the whole PTAn w.r.t. maximum cost becomes

(cost = 3y + 1 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 3y + 2 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 3y + 3 ∧ y ≤ 1 ∧ x ≤ y) ∨
(cost = 3y + 3 ∧ y ≤ 1 ∧ x < y) ∨
(cost = 3y + 4 ∧ y ≤ 1 ∧ x < y)



The calculated SP can now be simplified according to our definition and
reduced to the following:

(cost = 3y + 4 ∧ y ≤ 1 ∧ x < y)

By applying simple rules of logic, we can verify that the above SP with
maximum cost implies the following predicate:

w = (1 ≤ cost ≤ 7 ∧ x ≤ y)

Next, after replacing cost by res in w, it follows straightforwardly that
w[cost ← res] ⇒ q, which entails that the strongest postcondition for maxi-
mum cost implies the requirement q. This actually proves the correctness of our
original service, including its feasibility w.r.t. worst-case resource usage.

4 Discussion and Related Work

Beek et al. [24] give an exhaustive survey of several popular approaches [3, 15,
19,21] that provide means for service modeling, service composition, and service
correctness check. While all the described approaches offer a rich environment
for service modeling and composition, neither of them has included direct sup-
port for service correctness check. To overcome this limitation, recently, in some
of these approaches [8, 18, 22] formal methods have been employed with the in-
tention to provide guarantees for web-service compositions.

Diaz et al. describe how BPEL and WS-CDL services can be automatically
translated to timed automata and verified by Uppaal model checker [8]. How-
ever, the described approach is limited to checking service timing properties.
Narayanan et al. show how semantics of OWL-S, described using first-order
logic, can be translated to Petri-nets and then analyzed as such [18]. The analy-
sis includes reachability and liveness properties, and checking if the given service
or service compositions are deadlock free. Weber et al. introduce a formalism to
check control-flow correctness [25]. They first verify whether the given process is
sound, meaning that the control-flow of interest guarantees proper completion
and that there are no deadlocks. Further, they consider process models in which
the individual activities are annotated with logical preconditions and postcondi-
tions. In the last step, the authors aim to determine whether the interaction of
control flow and logical states of the process is correct. Gilmore et al. present a
model-driven approach for the development of SOS that facilitates the specifica-
tion of extra-functional properties [11]. The benefit of this approach is support
for reliability and performance analysis i.e., performance estimates based on the
timed process algebra PEPA.

Compared to these approaches, Remes services can be both mechanically
reasoned about [6], and also, translated to PTA [2] where one can apply algo-
rithmic computation of the strongest postcondition of PTA, as presented in this
paper. Moreover, Remes services formally described as PTA can be analyzed



with Uppaal , or Uppaal Cora tools3, for functional but also extra-functional
behaviors, in particular, timing and resource-wise behaviors.

5 Conclusions

In this paper, we have presented an approach that facilitates the automated
correctness check for services, formally described as PTA, by providing forward
analysis algorithms that compute the most precise postcondition (strongest post-
condition) that is guaranteed to hold upon termination of the service execution,
which corresponds to reaching a final location of the given PTAn service descrip-
tion. The approach serves as the alternative algorithmic verification method for
services modeled as Remes modes, complementary to the deductive method
that uses Hoare triples and the strongest postcondition semantics to prove ser-
vice correctness [6].

In our previous work, we show that proving the correctness of a Remes
service reduces to showing that the calculated strongest postcondition of that
particular service is at least as strong as the user-defined requirement. The al-
gorithms that we propose here extend the existing maximum, minimum cost
reachability algorithms [17], with strongest postcondition calculation. In our
case, the cost variable models the service’s accumulated resource-usage. Conse-
quently, the computed strongest postcondition of a service modeled as a PTAn
could contain both functional, but also timing and resource-usage information,
observable at the end of the service execution.

The approach is illustrated on a small example, on which we also show re-
source usage/cost calculation using symbolic states. However, the complexity of
our algorithms, and their applicability on larger examples have not been inves-
tigated yet. We plan to validate our approach on a more complex case study in
which the direct application of the method on SOS will be emphasized.

As future work, we plan to address the above issues, by first implementing the
strongest postcondition algorithms in the Uppaal Cora tool. We also intend
to extend the Remes tool-chain with a postcondition calculator that would
run Uppaal Cora as a back-end.
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Fig. 4. Symbolic states for maximum reachability cost


