
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Efficient Software Component Reuse in Safety-Critical

Systems – An Empirical Study

Rikard Land
1
, Mikael Åkerholm

1
, Jan Carlson

2

1 CrossControl, Västerås, Sweden
2 School of Innovation, Design, and Engineering, Mälardalen University, Västerås, Sweden

rikard.land@crosscontrol.com, mikael.akerholm@crosscontrol.com,

jan.carlson@mdh.se

Abstract. The development of software components to be reused in safety-

critical systems involves a number of challenges. These are related to both the

goals of using the component in several systems, with different definitions of

system-specific hazards, and on the high demands of today’s safety standards,

which assume a top-down system and software development process. A large

part of the safety-related activities is therefore left for integrator, and there is a

risk that a pre-existing component will neither be feasible nor more efficient to

use than internal development of the same functionality. In this paper we ad-

dress five important challenges, based on an empirical study consisting of inter-

views with experts in the field, and a case study. The result is twelve concrete

practices found to improve the overall efficiency of such component develop-

ment, and their subsequent reuse. These are related to the component architec-

ture and configuration interface, component and system testing and verification,

and the information to be provided with the component.

1 Introduction

Safety-critical systems are systems which may, should they fail, harm people and/or

the environment – such as vehicles, power plants, and machines. To develop such

systems, one must demonstrate that potential hazards have been analyzed, and that all

prescribed activities listed in an applicable safety standard have been performed.

There are generally applicable safety standards, such as the IEC-61508, and domain-

specific standards, such as IEC-61511, ISO-15998, ISO-26262, RTCA DO-178B/C,

EN50126/8/9, ISO-13849, and IEC-62061. In the daily development work, achieving

a sufficient level of safety boils down to adhering to the relevant standard(s).

These standards are based on an assumed top-down approach to system construc-

tion. Each system must be analyzed for its specific hazards and risks in its specific

environment, and the system requirements must be traced throughout the development

to design decisions, to implementation units, to test cases, and to final validation. The

standards’ general approach to the inclusion of pre-existing software components in a

system is to present them as being an integrated part of the development project, and

let them undergo the same close scrutiny as newly developed software for the specific

mailto:jan.carlson@mdh.se

system (which is inefficient). The standards in general provide very little guidance for

potential developers of software components, intended for reuse in several safety-

critical systems – with the main exceptions of the recently issued ISO-26262 and the

advisory circular AC20-148 complementing RTCA DO178B.

For a reusable component to be included in a safety-critical system, the component

developer needs to not only comply with the relevant standard throughout the life

cycle, but also ensure that the integrator saves effort by reusing the component. In

safety-critical systems, the actual implementation is just a small part of the “compo-

nent” being reused and savings are lost if the integrator has to re-perform much or all

of the safety-related work (e.g. verification, traceability, adaption of documentation).

This paper takes an overall view and intends to identify the most important chal-

lenges, as perceived by practitioners, and provide some guidance on how to address

these challenges. Five specific challenges are (Åkerholm & Land, 2009):

 Component interface. The challenge is to define a well-specified interface (in a

wide sense, including e.g. configuration parameters, restrictions on tools,

assumptions on usage etc.) which does not unnecessarily restrict the integrator.

 Component abstraction. The challenge is to create a component which is general

enough to provide the expected functionality in many different systems, while

addressing e.g. traceability and deactivation of unused code.

 Activities left for the integrator. Many analyses and verification activities will

necessarily be left for the integrator, and the challenge is to make this easy.

 System level traceability. Each system requirement has to be traced throughout all

relevant project artifacts such as documents, design models, source code, and test

cases; a challenge is to define a “traceability interface” so that component design

decisions and assumptions can easily be linked to system hazards and contexts.

 Certified or certifiable. The challenge is to make the strategic decision whether to

aim at certifying a component, or to develop it according to a standard and provide

all relevant information with the component, packaged in a format so that the

integrator easily can certify the system including the component.

This paper presents an empirical study, consisting of interviews and a participatory

case study, resulting in twelve practices that address these challenges.

The research method is further described in section 2, and section 3 describes relat-

ed work. Section 4 is organized per the challenges listed above and presents identified

practices the component developer should perform. Section 5 concludes the paper.

2 Research Method

The purpose of the study is to collect valuable experience, but the extent to which the

suggested practices improve efficiency is not independently validated. First four

open-ended interviews were performed (see section 2.1). Secondly, as action research

we used an industrial project (see section 2.2), applying some of the findings from the

interviews. All observations were compiled (qualitatively), and the synthesized result

is presented here, with the source of each observation indicated in the text.

2.1 First Phase: Interview Study

The four interviewees are listed in Table 1. We used AC20-148 as a template to con-

struct the interview questions, added further open-ended discussion topics. The inter-

views lasted approximately two hours, with more than one author participating. The

interviewees approved the interview notes after minor clarifications, additions, and

corrections. The interview data is not intended for statistical analysis; the purpose was

to collect valuable experiences.

Table 1. The interviewees and their background and experience.

Interviewee # Background and experience

1 Experience as developer as well as independent assessor from a number of

projects, according to e.g. IEC61508.

2 Experience as independent assessor from a number of projects in various

domains, in particular railways (standards IEC-50126/8/9. Experience

from development of safety-certified operating system.

3 Technical expert; the company develops a software component for avion-

ics applications, approved under DO-178B / AC20-148.

4 Safety expert; the company develops a HW/SW platform, certified to

several standards (IEC61508, IEC61511, ISO13849, and IEC62061).

2.2 Second Phase: Industrial Project

The development project was action research in the sense that it was from the start

explicitly set up as a case study for our research, where we intended to implement

some of the findings of the interviews. A reusable component was developed, imple-

menting mechanisms to handle all data communication failures as specified in IEC

61784-3. The component was developed according to SIL3 of IEC61508. Some fur-

ther technical details are described under each topic heading in section 4.

The authors were heavily involved throughout the project, as project manager, de-

signer, reviewer, and verifier, together with other staff as well. This gives us first-

hand insight into the project, but is also a potential source of bias. During the project,

observations and ideas were recorded in a research log, which was studied at the end

together with other project documentation. AC20-148 was used as a template for (part

of) the safety manual of the component, describing e.g. activities left for the integra-

tor. A limitation is that the component has not yet been included in a certified system.

3 Related Work

From the area of component-based software engineering, it is known that predicting

or asserting system properties from component properties is difficult in general (see

e.g. (Hissam, Moreno, Stafford, & Wallnau, 2003) (Larsson, 2004)), and particularly

difficult for safety (Voas, 2001), partly because the safety argument is not embedded

in the component itself but in the surrounding documentation and the rigor of the

activities during its development. Among the few attempts to describe reuse of soft-

ware in safety-critical software from a practical, industrial point of view, we most

notably find descriptions of components pre-certified according to the AC20-148

(Lougee, 2004) (Khanna & DeWalt:, 2005) (Wlad, 2006), which describe some of the

potential benefits of reusing pre-certified software, rather than provide guidance on

how to develop a reusable software component efficiently as we do in this paper.

Common challenges of software reuse (Karlsson, 1995) also hold true for reuse of

safety-critical software components; for example, there are various methods and prac-

tices addressing the need of designing a system with potential components in mind

(Land, Blankers, Chaudron, & Crnković, 2008) (Land, Sundmark, Lüders, Krasteva,

& Causevic, 2009). In general, there is more data and experiences on development

with reusable components than development of reusable components (Land,

Sundmark, Lüders, Krasteva, & Causevic, 2009), while the present study takes a

broad perspective and includes both.

Literature on modularized safety argumentation provide several promising research

directions, such as how to extend e.g. fault tree analysis (Lu & Lutz, 2002) and state-

based modeling (Liu, Dehlinger, & Lutz, 2005) to cover product lines, that should in

principle work also for composition of component models. A bottom-up, component-

based process is described in (Conmy & Bate, 2010), where internal faults in an

FPGA (e.g. bit flips) are traced to its output and potential system hazards. Such anal-

yses should be possible to apply to components being developed for reuse, leading to

a description at the component interface level, e.g. of the component’s behavior in the

presence. In the direction of modularized safety arguments, there are initiatives relat-

ed to GSN (Goal Structuring Notation) (Despotou & Kelly, 2008) and safety contracts

(Bate, Hawkins, & McDermid, 2003).

4 Twelve Practices that Address the Challenges

This section contains the observations made in the study, based both on the interviews

and the development project, formulated as concrete practices the component devel-

oper should perform. The section is organized according to the five challenges listed

in (Åkerholm & Land, 2009) and in the introduction of the present paper.

4.1 Addressing Challenge #1: Component Interface

The component’s interface in a wide sense must be fully specified, including not only

input and output parameters but also configuration parameters, restrictions on tools,

the requirements on memory, execution time and other resources, and communication

mechanisms (see e.g. AC20-148) (Åkerholm & Land, 2009).

Identification of Documentation Interface. A large amount of documentation re-

lated to the reusable component must be integrated into the integrator’s life cycle

data; the AC20-148 lists e.g. plans, limitations, compliance statement, and software

approval approach. To make this as straightforward as possible, interviewees #2 and

#3 give the advice to both component developers and integrators to follow the rele-

vant safety standard as closely as possible with regards to e.g. terminology and re-

quired documents. According to the experience of interviewee #2, companies unnec-

essarily create a problem when using an internal project terminology and then provid-

ing a mapping to the standard. Interviewee #4 on the other hand, describes such a

mapping from the platform’s terminology to that of the standards it is certified

against; however, since the same assessor (i.e. the same individual person at the certi-

fication authority) is appointed for all standards, this poses no major obstacles.

Still, the safety standards assume that the documentation structure is a result from a

top-down system construction, and a component will need to specify for which part of

this structure it provides (some of) the required documentation, and how it should be

integrated into the system’s documentation structure. When we followed the structure

outlined in (Åkerholm & Land, 2009) in our project, we observed that the documenta-

tion interface is highly dependent on the technical content, due to the fact that design

decisions on one level are treated as requirements on the level below. When defining

a component for reuse, there are some specific challenges involved: the perhaps not

obvious distinction between the architecture and requirements of the component, and

it was realized in the project that the documentation needs to distinguish these more

clearly than we did at the outset. Hazard and risk analysis for the component need to

be performed backwards and documented as a chain of assumptions rather than as a

chain of consequences; this needs to be documented very clearly to make the hazard

analysis and safety argumentation of the system as straightforward as possible. Fur-

ther research is needed to provide more detailed suggestions on how to structure the

component documentation in order to provide an efficient base for integration.

Practice I: Follow the requirements of the standard(s) on documentation structure

and terminology as closely as possible. Two important parts of a component’s docu-

mentation interface are the component requirements and the component hazard and

risk analysis, which should aim for easy integration into the system’s design and haz-

ard/risk analysis.

Identification of Configuration Interface. A reusable component should have a

modular design and configuration possibilities, so that “hot spots” where future antic-

ipated changes are identified and isolated (Interviewee #3; see also e.g. (Lougee,

2004)). Knowledge of the specific differences between customers and systems is re-

quired; interviewee #3 describes that their operating system has support for different

CPUs, its ability to let the integrator add specific initialization code, and its support

for statically modifying the memory map. With configurability come requirements on

verification and testing of a specific configuration of a component in a specific system

(interviewees #1 and #3). In our industrial project, we clearly separated the user con-

figurable data from other data in the system, by setting up a file structure where only

two files with a strict format are user modifiable. We used mechanisms provided by

the source code language to both provide an easy-to-use configuration interface and

the possibility of being able to statically include this data into the program with ap-

propriate static checks (see also section 4.3 for construction of adaptable test suites).

Interviewee #3 describes that with configuration variables which are read from

non-volatile memory during startup, the integrator needs to show that the parameters

cannot change between startups. See section 4.2 on deactivation of dead code.

Practice II: Create a modular design where known points of variability can be eas-

ily expressed as configuration settings which are clearly separated and easy to under-

stand for the user.

4.2 Addressing Challenge #2: Component Abstraction

Components suitable for reuse, in particular for safety-critical systems, need to ad-

dress well-defined, commonly occurring design problems or commonly needed ser-

vices (Khanna & DeWalt:, 2005). The product of interviewees #3 and #4 are indeed

“platforms”, in the sense that their components provide basic services on top of which

applications are built. As such, the services they provide are of a general nature, such

as partitioning of memory, which are not directly connected to a system’s functional

requirements. In the industrial project case, our main functional requirements come

from the IEC 61784-3 standard on data communication in industrial networks, which

defines all conceivable communication errors that need to be addressed, and which

will be the same in many different systems, independently of the safety-critical func-

tions they perform. All these components, as well as the published examples (Khanna

& DeWalt:, 2005) (Wlad, 2006) of components constructed according to AC20-148,

provide general functionality needed to address needs at the design level.

Practice III: Define the component functionality as well-defined abstractions solv-

ing commonly recurring problems on the system design level, rather than on the sys-

tem requirements level.

Deactivation and Removal of Unused Code. Some of the features of a reusable

component may not be used. In safety-critical systems, there is a very important dif-

ference between “dead code”, i.e. unreachable statements left by mistake, and “deac-

tivated code”, i.e. program code deactivated with a hardware switch, configuration

parameter in the program, or a runtime parameter (see e.g. RTCA DO-178B). Alt-

hough it is preferable to identify unexecuted code and remove it altogether from the

executable, the interviewees refer to the standards which do not prohibit deactivated

code per se (e.g. RTCA DO-178B). In such cases, however, the interviewees stress

that an argument must be provided showing that the code will not cause harm even if

executed, and this must be supported by careful testing, including fault injection tests.

Also, one must reason about possible side effects such as I/O operations and writes to

shared variables or permanent storage in deactivated code (interviewee #2). The inte-

grator also needs to provide an argument that the parameters cannot change between

startups (interviewee #3; see also section 4.1); such argumentation is avoided if the

code is statically excluded (interviewee #3 and case study). In our project, the source

code used only by either senders or recipients are protected with macro definitions.

Practice IV: For deactivated code, base the safety argumentation on the avoidance

of hazards, and be particularly observant on code with side effects. Whenever possi-

ble, replace runtime mechanisms for deactivating code with static mechanisms to

remove the code completely from the executable. (Related to Practice II.)

Definition of High-Level Design/Architecture. Although some of the design of a

reusable component is hidden from the integrator, and should remain so, the defini-

tion of a reusable component’s high-level design is also, to a large extent, a definition

of the architecture of an assumed system: interaction paradigms (i.e., messages, func-

tions, etc.), execution models (i.e., passive libraries, active tasks, etc.), expected inter-

action patterns, semantics of the source code functions, etc. Standardization of these

aspects have led to the definition of formalisms such as AADL (As-2 Embedded

Computing Systems Committee, 2009), EAST-ADL, AUTOSAR, SysML and

MARTE
1
. Interviewee #1 stresses that the architecture of the component reflects what

the component developer believes to be useful for the integrator. This is strongly sup-

ported by our experiences from the industrial project, where we investigated four

conceivable execution models on the receiving side of the communication:

 Time-triggered. Execution of a task is started periodically, which retrieves all

newly arrived messages and processes them; this is suitable approach for a node

with a real-time operating system.

 Event-triggered (using hardware interrupts). Execution of code is trigged by

hardware interrupts, which are either “a message has arrived” or a timeout. This is

suitable for an otherwise interrupt-driven system.

 Event-triggered (infinite loop with blocking wait). The code hangs on a “wait

for message” function call, which returns when a message has arrived or when a

timeout limit has been reached. This blocking approach may be suitable when

communication with other tasks is limited.

 Continuous polling. The application implements an infinite loop, that first reads

data (if any) from the bus and then handles it, in one single thread without any de-

lays or interrupts. This “busy waiting” approach is suitable for a node which have

no other tasks to do, or where those tasks can also be performed in the same loop.

Our component is a passive library component to be called by the application to

process messages rather than an abstraction layer.

Practice V: Define the execution models, interaction paradigms, etc., of the com-

ponent, to support the assumed architecture(s) of many potential target systems.

To verify in the design phase that our designed API would support the four execu-

tion models, we a) wrote pseudocode for each of these (this later became part of the

component’s usage documentation), and b) let developers review the design given the

question: “Could you create a good system design with this component?” Through

this somewhat iterative analysis and design work, we were able to create an API, i.e.

functions and rules for interaction, supporting all four execution models. However,

due to the lack of firm boundaries in terms of requirements from a specific system,

this activity required significantly more effort than expected.

Practice VI: Allocate a team to evaluate the feasibility and usefulness of your

component at the early conceptual and architectural design stage. Allocate sufficient

time in this phase for the necessary development and iterations of design proposals.

Structure of Component Design Artefacts. In our project, we first planned for

one single software architecture document. We realized later in the project that the

architecture of a reusable component is a mixture of both 1) inputs to the require-

ments (e.g., “the component shall support the following four execution models”) and

1 http://www.autosar.org/, http://www.sysml.org/, http://www.omgmarte.org/

2) implementation decisions made to fulfill the requirements (e.g. definition of data

structures and functions, including traceability information to requirements). This

caused an unnecessary circular dependency between requirements and architectural

design documents. We therefore recommend that these two types of architectural

information are kept distinct in separate documents, one being an input document to

the requirements specification and one being a downstream document. However, this

was perceived to be a clarity issue, not a real threat to safety or project efficiency.

Practice VII: Use separate documents for the external architecture (the assumed

architecture of the system) and the component’s internal architecture and design.

4.3 Addressing Challenge #3: Activities left for the integrator

There will remain a number of activities for the integrator, related to the context and

environment of the component in a specific system. The challenge for the component

developer is to aid the integrator in these activities by providing the component with

certain information and artefacts. In the studies, we identified what can be labeled

“analysis interface”, and adaptable test suites as two important means for this.

Identification of Analysis Interface. Data coupling analysis, control coupling

analysis, and timing analysis are examples of activities that can only be performed by

the integrator, when the complete software is available (AC20-148). However, some

analyses may in principle be partially performed at the component level, or some

useful data or evidence may be constructed at the component level. In spite of re-

search on composing system properties from component properties (see e.g. (Hissam,

Moreno, Stafford, & Wallnau, 2003) (Larsson, 2004) and the TIMMO project
2
), the

challenge remains to identify such analysis interfaces, including assertions that need

to be made by the component developer, properties that need to be specified, and how

to use these automatically in a system-level analysis. In the study, interviewees #3 and

#4 mentioned timing issues to be especially important. With a simple application

design, and certain component information, it may be sufficient to perform timing

measurements of the integrated system, given that the component developer makes

assertions on the behavior of the component. The current state of practice includes,

according to interviewees #3 and #4, component assertions that the function calls are

non-blocking, or information that the component disables interrupts, which is valua-

ble for the integrator’s more detailed timing analysis. Also, a specification of input

data which will cause the longest path through a function to be executed, and/or the

path that includes the most time-consuming I/O operations, is useful for finding upper

bounds on the timing within a specific system and on a specific hardware.

Practice VIII: Provide information on the component’s (non-)blocking behavior,

disabling and enabling of interrupts, and input data which is likely to cause the upper

bounds on timing, to facilitate the integrator’s system level analysis of e.g. timing.

Adaptable Test Suites. The component of our project is delivered with a module

test suite which automatically adapts itself to the configuration. The component con-

figuration is made through macro definitions and filling static data structures with

2 http://www.timmo.org/

values, and the test suite is conditionally compiled based on the same macros, and

uses the actual values of the data structures to identify e.g. boundary values to use in

testing, and of course determine the expected correct output. The test suite includes all

necessary fault injection in order to always achieve sufficient code coverage (for the

SIL 3 according to IEC-61508).

The creation of a module test suite on this higher level of abstraction forced us to

reason about many boundary values, possible overflow in computations, and similar

border conditions. Also, it helped us identify user errors, such as what would happen

if the component is configured with empty lists or inconsistent configuration parame-

ters. In addition, the resulting number of actual tests executed on a single configura-

tion is significantly higher than we would otherwise have created, which also increas-

es our confidence in the component, although strictly the number of test cases can

never in itself be an argument for testing being sufficient. Thus, as a side effect, this

greatly helped us to design for testability, and to design good test suites.

The main purpose of providing adaptable test suites is that the integrator easily can

perform module tests on the specific configuration used in the system. To verify the

configuration mechanisms and the test suite itself, we created a number of configura-

tions and re-executed the tests with very little effort (a matter of minutes). This in-

creased our confidence, not only in the component itself but in that we are saving a

significant amount of effort for integrators. (However the integrator must learn and

understand how to run the test suite correctly for a specific configuration, and how to

interpret the test output (including verification of the code coverage reached).) Anoth-

er extra benefit is that some changes (e.g. addition of messages on the bus) can be

made late in the development process and easily re-tested.

The test suite is written in ANSI-C and is therefore as portable as the component

itself, but the fault injection mechanism and the code coverage analysis rely on exter-

nal tools and therefore somewhat restrict the integrator’s freedom. To account for this,

we have designed the test suite and test environment so that adapting the suite to an-

other tool set should not be too effort-consuming.

Practice IX: Deliver an adaptable test suite with the component, so that the inte-

grator can (re-)perform configuration-specific testing with little effort.

4.4 Addressing Challenge #4: System level traceability

Demonstrating traceability means tracing each requirement to design items, imple-

mentation items, test cases, etc. This requires extra attention when a part of the system

is developed by an external company prior to and/or independently of specific system

requirements since the traceability chain goes across organization boundaries.

Identification of Traceability Interface. Some steps towards defining a traceabil-

ity interface were identified in the study: if the component provides an abstraction

with error handling (such as operating systems, communication layers, or platforms in

some other sense), it may be sufficient to demonstrate that the component’s functional

interface solves some of the design goals of the system (e.g., that it handles certain

types of communication failures with a certain level of integrity) without introducing

new hazards, that the component is verified sufficiently (e.g. using code coverage

metrics), and that it is used as intended and its safety manual has been followed (in-

terviewee #4; our project). Interviewee #2 in particular stresses that the objective

when arguing safety is to perform the argumentation in relation to the system hazards;

if a fault analysis (e.g. a fault tree analysis) shows that a component does not contrib-

ute to a specific hazard, the tracing may stop there.

Practice X: Specify component requirements and functional interface, so that a de-

tailed traceability analysis is not required when integrated into a system. This includes

providing a safety manual with assumptions and rules for component usage.

Standardization of Traceability Tools. Often traceability is managed manually as

tables in electronic documents, and even if a traceability tool is used, there are prob-

lems to share the same database, and it is also likely that the component developer

uses a different tool than its customers (interviewee #1). This is a challenge for stand-

ardization and tool developers, rather than for component developers or integrators.

Meeting the Requirements on System Hazard and Risk Analysis. Normally, the

system hazards are used, with their estimated frequency, consequence etc., to deter-

mine the SIL level (or similar; the standards have different classifications), which

influences all downstream activities. When developing a component for reuse, the risk

analysis is instead performed backwards: a target market is selected, and the compo-

nent is developed according to common requirements and a SIL level which it is be-

lieved that integrators will require. It is only in a system context safe external behav-

iors in case of detected failures can be determined (e.g. to shut down the unit immedi-

ately, apply a brake, or notify the operator; it may or may not be safe and desirable to

first wait for X more messages in case the communication recovers; etc.). It is always

the responsibility of the system developer to focus the argumentation around the haz-

ards and show that they cannot conceivably occur. “A general software component

does not have safety properties, but a quality stamp. Only in a specific context do

safety properties exist.” (interviewee #2)

In the case study we performed some analysis based on assumed, realistic, values

for usage and disturbances to demonstrate that an average system or application using

our component also meets the hardware requirements at the target SIL level. (It may

be noted that there is no major differences in the requirements on development of

software between SIL2 and SIL3 according to IEC61508; the requirements on hard-

ware however typically impose more expensive solutions including redundancy etc.)

Practice XI: Lacking a definition of system hazards, identify component error-

handling, fault tolerance mechanisms, and behavior that are common for many sys-

tems, as independently as possible of the specific system hazards. (See also Practice

III.)

4.5 Addressing Challenge #5: Certified or certifiable?

A developer of a component intended for reuse needs to make a decision between

certifying the component, or developing the component according to a target standard

and handing over all the safety-related documentation for the certification of each

system. This decision is dependent on the situation of the component developer. This

section lists the goals that were mentioned by the interviewees in the study, and de-

scribes some of their considerations in meeting these goals.

Goal 1: Saving Effort, Time and Money for the Integrator. Since component

development is carried out according to the standard, and much of the required docu-

mentation and evidence is created, the integrator may potentially save the same effort

(interviewee #1; see section 4.1). However, for interviewees #3 and #4, the effort

savings for the integrator are not so significant. Interviewee #4 shared his experience

of a component not developed according to the required safety standards, which

brought a significant additional cost to construct the required evidence and document-

ing it. Interviewee #3 states that with AC20-148, the effort spent by the certification

authority is decreased since only changes of the component have to be investigated.

Goal 2: Reducing Risk for the Integrator. Interviewees #1, #3, and #4, all state

that with a pre-certified component (or a certifiable component, which has been used

in another, certified, system), the confidence is high that the component will not cause

any problems during system certification. Interviewee #3 specifically mentions that

the customers using the component from his organization do it because the compo-

nent is pre-certified according to AC20-148 and thus is a low-risk choice.

Practice XII: If the main goal is to present a component as risk-reducing, the

component developer should consider certifying the component. If the main goal is to

save efforts for the integrator, it may be sufficient to develop it according to a stand-

ard, and address effort savings in the ways outlined in this paper.

5 Conclusions and Future Work

Twelve practices for development of reusable software components for safety-critical

systems were identified in an empirical study with interviews with industrial experts

and an industrial case study. Being based on five previously identified challenges

(Åkerholm & Land, 2009), they potentially represent important effort savings.

Further empirical studies, complemented by theoretical research, are needed, to

further define many of the details relevant for a component interface, such as guaran-

teed behavior in the presence of (certain) faults, or a demonstration that “component-

level hazards” have been appropriately analyzed and addressed.

Not to be underestimated is the potential gain in efficiency through standardization

of platforms, tools, languages, etc. In the long term, safety standards also need to

evolve to recognize the possibilities of reusable software components, while continu-

ing to ensure systems’ safety integrity. Our participation in the large European

SafeCer
3
 project provides an opportunity to study also other industrial cases in order

to collect further good practices and to validate the conclusions brought forward in the

present paper. Methods and notations to support modularized safety argumentation,

such as those described in the related work section, will also be further developed,

applied, and evaluated. Finally, the project aims at influencing future editions of safe-

ty standards to incorporate sound practices and methods that will make it easier and

3 http://www.safecer.eu

more economical to build safety-critical systems from pre-existing components, while

ensuring that they are still at least as safe as with the current standards.

5.1 Acknowledgements

We want to thank the interviewees for sharing their experiences with us. This study

was partially funded by The Knowledge Foundation (KKS), CrossControl, ARTEMIS

Joint Undertaking, and Vinnova.

6 References

1. Mikael Åkerholm and Rikard Land, “Towards Systematic Software Reuse in Certifiable

Safety-Critical Systems”, in RESAFE - International Workshop on Software Reuse and

Safety, Falls Church, VA, 2009.

2. Scott A. Hissam, A. G. Moreno, Judith Stafford, and Kurt C. Wallnau, “Enabling Predict-

able Assembly”, Journal of Systems & Software, vol. 65, no. 3, 2003.

3. Magnus Larsson, “Predicting Quality Attributes in Component-based Software Systems”,

Ph.D. Thesis, Mälardalen University, 2004.

4. Jeffrey Voas, “Why Is It So Hard to Predict Software System Trustworthiness from Soft-

ware Component Trustworthiness?”, in 20th IEEE Symposium on Reliable Distributed

Systems (SRDS'01), 2001.

5. Hoyt Lougee, “Reuse and DO-178B Certified Software: Beginning With Reuse Basics”,

Crosstalk – the Journal of Defense Software Engineering, December, 2004.

6. Varun Khanna and Mike DeWalt:, “Reusable Sw components (RSC) in real life”, in

Software/CEH conference, Norfolk, VA, 2005.

7. Joe Wlad, “Software Reuse in Safety-Critical Airborne Systems”, in 25th Digital Avion-

ics Systems Conference, 2006.

8. Even-André Karlsson, Software Reuse : A Holistic Approach. ISBN 0 471 95819 0: John

Wiley & Sons Ltd., 1995.

9. Rikard Land, Laurens Blankers, Michel Chaudron, and Ivica Crnković, “COTS Selection

Best Practices in Literature and in Industry”, in Proceedings of 10th International Con-

ference on Software Reuse (ICSR), Beijing, China, 2008.

10. Rikard Land, Daniel Sundmark, Frank Lüders, Iva Krasteva, and Adnan Causevic, “Re-

use with Software Components – A Survey of Industrial State of Practice”, in 11th Inter-

national Conference on Software Reuse (ICSR), Falls Church, VA, USA, 2009.

11. Dingding Lu and Robyn R. Lutz, “Fault Contribution Trees for Product Families”, in 13th

International Symposium on Software Reliability Engineering (ISSRE’02), 2002.

12. Jing Liu, Josh Dehlinger, and Robyn Lutz, “Safety Analysis of Software Product Lines

Using State-Based Modeling”, in 16th IEEE International Symposium on Software Relia-

bility Engineering (ISSRE’05), 2005.

13. Philippa Conmy and Iain Bate, “Component-Based Safety Analysis of FPGAs”, IEEE

Transactions on Industrial Informatics, vol. 6, no. 2, 2010.

14. George Despotou and T. Kelly, “Investigating The Use Of Argument Modularity To

Optimise Through-Life System Safety Assurance”, in 3rd IET International Conference

on System Safety (ICSS), Birmingham, 2008.

15. I Bate, R Hawkins, J McDermid, “A Contract-based Approach to Designing Safe Sys-

tems”, in 8th Australian Workshop on Safety Critical Systems and Software (SCS'03),

2003.

16. As-2 Embedded Computing Systems Committee, “Architecture Analysis & Design Lan-

guage (AADL)”, Document Number AS5506, 2009.

	1 Introduction
	2 Research Method
	2.1 First Phase: Interview Study
	2.2 Second Phase: Industrial Project

	3 Related Work
	4 Twelve Practices that Address the Challenges
	4.1 Addressing Challenge #1: Component Interface
	4.2 Addressing Challenge #2: Component Abstraction
	4.3 Addressing Challenge #3: Activities left for the integrator
	4.4 Addressing Challenge #4: System level traceability
	4.5 Addressing Challenge #5: Certified or certifiable?

	5 Conclusions and Future Work
	5.1 Acknowledgements

	6 References

