
Improved Precision in Polyhedral Analysis with
Wrapping

Stefan Bygde,1 Björn Lisper,1 Niklas Holsti2

1 School of Innovation, Design, and Engineering, Mälardalen University,
SE-721 23 Väster̊as, Sweden

{stefan.bygde,bjorn.lisper}@mdh.se
2 Tidorum Ltd, Helsinki, Finland

niklas.holsti@tidorum.fi

Abstract. Abstract interpretation using convex polyhedra is a common
and powerful program analysis technique to discover linear relationships
among variables in a program. However, the classical way of perform-
ing polyhedral analysis does not model the fact that values typically are
stored as fixed-size binary strings and usually have wrap-around seman-
tics in the case of overflows. In resource-constrained embedded systems,
where 8- or 16-bit processors are used, wrapping behaviour may even
be used intentionally to save instructions and execution time. Thus, to
analyse such systems accurately and correctly, the wrapping has to be
modelled.
We present an approach to polyhedral analysis which derives polyhedra
that are bounded in all dimensions. Our approach is based on a previ-
ously suggested wrapping technique by Simon and King [19], combined
with limited widening, a suitable placement of widening points and size-
induced restrictions on unbounded variables. With this method, we can
derive fully bounded polyhedra in every step of the analysis.
We have implemented our method and Simon and King’s method com-
pared them. Our experiments show that for a suite of benchmark pro-
grams it gives at least as precise result as Simon and King’s method. In
some cases we obtain a significantly improved result.

Keywords: Abstract Interpretation, Abstract Domains, Numerical Domains,
Convex Polyhedra, Widening, Overflows, Wrapping

1 Introduction

A common program analysis is value analysis, which finds safe approximations
of the possible numerical values the program variables can take at each point
in a program. This is typically done using abstract interpretation [6] with some
numerical abstract domain. Many relational and non-relational such domains
have been developed [6, 8, 9, 16, 7], with the common assumption that variables
can take arbitrarily large integer values. However, in real programs, a value is
usually stored as a fixed-size binary string. This introduces the risk of overflows,

meaning that a value is too large to be stored in a binary string of the given size.
An overflow could result in a run-time error, saturation of the result at the largest
or smallest representable value of the type, or, for integers, a wrap-around. It
is not uncommon that wrap-arounds are used intentionally, in particular on
resource-constrained processors with a short word-length, to save instructions
and clock cycles. Thus, to analyse such programs it is crucial to have abstract
numerical domains that are sound also in the presence of wrap-arounds. The
goal of our work is to advance the state of the art regarding such domains, and
their use in value analysis, to widen the scope of such analyses to software for
small embedded systems.

1.1 Related Work

Sen and Srikant [18] present a variation of the reduced product of the integer and
congruence domain which handles special cases when overflow occurs. In addition
they use a relational analysis of affine equalities. Gustafsson et al. [11] modify
the interval domain so that variables are bounded to within their size-induced
range, and wrap-arounds are handled by using a more powerful representation
of intervals. Relational domains are more challenging. Müller-Olm and Seidl [17]
present an analysis that can derive all affine equalities (but not inequalities)
among variables of programs which is safe in the case of wrap-arounds. Brauer
and King [3] suggest a method to derive transfer functions for relational domains,
and do so for the octagon domain, while considering wrap-around effects by
using a SAT-solver. Finally, Simon and King [19] present a way to use classical
polyhedral analysis [7] soundly for programs with wrap-around semantics for
integers. Our work builds on this approach.

1.2 Contributions

We present a polyhedral analysis, originally introduced in [5], which is sound
in the presence of wrap-arounds. Our approach is based on a combination of
wrapping polyhedra (using the approach in [19]), limited widening [14], an ap-
propriate placement of the widening, and imposing bounds on variables based
on type information.

Our original motivation for developing this analysis is the use of polyhe-
dral value analyses in the parametric loop bounds analysis described in [15, 4].
This loop bounds analysis requires a relational abstract domain, and the re-
sults are typically used in a subsequent parametric Worst-Case Execution Time
(WCET) analysis [21]. Thus, to make such analysis sound for software using
wrap-arounds, a sound value analysis is required. As mentioned wrap-arounds
are not uncommon in code for small embedded processors, which are commonly
used in embedded time-critical applications. However, our results are general
and by no means restricted to this particular application.

The major benefit of our approach is the increased precision compared to
using the approach outlined in [19], while retaining the soundness in the presence
of wrap-arounds.

Section 2 contains preliminaries to our approach, including terminology and
an explanation of Simon & King’s method. In Section 3 we describe our bounded
polyhedral analysis. Section 4 describes the implementations, and an evaluation
and comparison of the methods is given in Section 5. We conclude with a sum-
mary of the results in Section 6.

2 Preliminaries

2.1 The Polyhedral Domain

The classical abstract domain of convex polyhedra [7] is a powerful relational
abstract domain that can capture linear inequalities among program variables.
We will call this domain CP and define it as follows. Let V be the set of numerical
variables in a program with |V | = n. A linear inequality (or simply constraint)
c is of the syntactic form

c =

n−1∑
i=0

aivi ≤ k

where ai, k ∈ R and vi ∈ V . We then define a convex polyhedron as a finite
set of linear inequalities P . Using this definition means that a polyhedron is
synonymous with a set. The universal polyhedron (top), then is P = > = ∅, i.e.,
the polyhedron without constraints, whereas the empty polyhedron (bottom) is
represented by an inconsistent constraint such as P = ⊥ = {0 ≤ −1}.

A convex polyhedron can be interpreted as a set of points in the concrete
domain of values in Rn space via the concretisation function:

γCP(P) = {x ∈ Rn|∀c ∈ P : c ` x}

where c ` x means that the point x fulfills the constraint c, or formally:

n−1∑
i=0

aivi ≤ k ` x⇔
n−1∑
i=0

aixi ≤ k

We will also use P v Q to mean that P is a subpolyhedron of Q, that is,
the conjunction of the constraints in P implies each of the constraints in Q, or
equivalently, that γCP(P) ⊆ γCP(Q).

The methods we investigate in this paper are only concerned with integers,
so the term variable will refer to an integer-variable. Furthermore, we restrict
the image of γCP to Zn by simply ignoring all non-integers in the result.

2.2 Simon and King’s method

In [19], Simon and King presented a method to make classical polyhedral anal-
ysis sound for programs with wrapping integer semantics. Since our method is
directly based on theirs, we summarise their method here, but refer to the origi-
nal publication for details. To distinguish their method from others, we will from
now on refer to it as SK.

Definitions. SK assumes that each variable has a size and a type; the size is the
number of bits used to store the integer and the type is whether the value of the
variable is to be interpreted as signed or unsigned. From this information we can
associate a set of constraints for each variable. We define R(v) = {l ≤ v, v ≤ u}
to be the set of range constraints for v dictated by the size and interpretation of
v. For example, if v0 is an 8-bit signed variable, then R(v0) = {−128 ≤ v0, v0 ≤
127}. We define the set of range constraints for a set of variables S ⊆ V as

R(S) =
⋃
v∈S

R(v)

R(V), which is the set of range constraints for all the variables, is called the
base window. This concept is important because it represents an invariant of the
concrete environment at any point of the execution of a program.

Next we define a specific modulo operator on integers. Let x be an integer,
and v be a variable then we define

x mod v = l + (x mod (u− l))

where l, u comes from R(v) = {l ≤ v, v ≤ u}. For example, if R(v0) = {−128 ≤
v0, v0 ≤ 127}, then 129 mod R(v0) = −128 + (129 mod 255) = 1. As can be
seen, this modulo operation simulates the wrap-around effect when value x is
stored in variable v. This operation can lifted to a point x ∈ Zn modulo a set of
variables S:

〈x0, ..., xn−1〉 mod S = 〈x0 mod s0, ..., xn−1 mod sn−1〉

where

si =

{
vi if vi ∈ S
∞ if vi /∈ S

where x mod ∞ = x.

Implicit wrapping. SK defines the concretisation function γSK as

γSK(P) = {x mod V |x ∈ γCP(P)}

This interpretation does not affect the actual analysis in any way, but correctly
interprets all values to be within the base window. Note that the points in γSK(P)
will not necessarily form a convex polyhedron. This implicit wrapping works for
the analysis of equality-based linear transfer functions, such as assignments of
linear expressions to variables, because linear transformations commute with
modulo. However, polyhedral abstract interpretation also includes adding linear
constraints to polyhedra, which typically happens at linear conditionals. Adding
a linear inequality constraint does not commute with the modulo operation and
therefore Simon and King introduced an explicit wrapping procedure which has
to be performed when adding a linear inequality constraint.

Explicit Wrapping. The idea with the explicit wrapping is to make sure that
the dimensions of the polyhedron that corresponds to the variables involved in
the linear constraint are within their size-induced range before the constraint is
added.

Let P be a polyhedron and let σ be a linear constraint involving the variables
Sσ. Intuitively, the wrapping procedure consist of first partitioning the subspace
of Zn involving the variables Sσ into a finite grid of windows of the same size
and dimension as R(Sσ) as shown in Figure 1(a). If any variable v ∈ Sσ is
unbounded in P , then that variable is eliminated from P (see the procedure
for this in, for example [7]) and then assumed to only be constrained by R(v),
making it possible to create a finite grid.

Then each partition, which is the size of the base window, is shifted to the
position of the base window and intersected by σ. Finally, the convex hull of all
these shifted and intersected partitions is taken as the result (see Figure 1(b)).
The procedure is explained in detail in [19]. The result of wrapping P with
constraint σ and a set of variables S is denoted as follows:

wrap(P, σ, S)

It is important to notice that explicit wrapping potentially loses precision of
P . This is for two reasons: computing the convex hull is naturally approximate
and the elimination of unbounded variables in the condition may lose relational
information. Thus, explicit wrapping should be applied only when necessary.

3 Bounded Polyhedral Analysis

In this section we present our method of bounded polyhedral analysis. Our idea
was first presented in [5]. Our approach is an extension of SK: we use γSK as the
concretisation function, and we do explicit wrapping at conditionals.

The main idea of our approach is to reduce the imprecision introduced in SK
by the wrapping. As explained, wrapping may introduce loss of precision, espe-
cially for unbounded polyhedra. Thus, our approach is to make an analysis where
unbounded polyhedra never occur. An illustrating example of the approach can
be found in [5]. From now on, we will refer to our approach as BD.

3.1 Unboundedness in Polyhedral Analysis

When performing abstract interpretation on a program, a polyhedron may be-
come unbounded in three cases: First, at the initial program point, where nothing
is known about the program variables. Second, any non-linear assignment will
eliminate the assigned variable from the constraints of the polyhedron, leaving
it unbounded in the dimension the assigned variable represent. Third, classical
widening often produces an unbounded polyhedron since it removes constraints.

Fig. 1. The picture on the left (a), shows a polyhedron before wrapping. The base
window is shown outlined by a dot-dashed square. The polyhedron covers a part of
the base window and parts of the three neighbouring windows. The grid of variously
hatched triangles shows the condition x0 ≤ x1 taken as a signed comparison of the 8-bit
unsigned residue of x0 with the 8-bit signed residue of x1. The polyhedron intersects
three components of this condition, one in the base window, one in the next window
to the right of the base window, and one in the next window above the base window.
To the right (b), the intersections of the condition with the unwrapped polyhedron
are shown, shifted to the base window, and their convex hull, which is the resulting
wrapped polyhedron.

3.2 Making Polyhedra Bounded

We consider each of the possible ways of making a polyhedron unbounded and
show how to soundly and precisely make it bounded.

One way of defining the abstract semantics of a program is through a func-
tion τ taking a program point (typically an edge in the flow chart or CFG of a
program) and returning an abstract environment, in this case a convex polyhe-
dron. The function is typically defined as a recurrence equation, τ0(p) = ⊥ for
all program points p, and τn(p), where n > 0, is defined in terms of τn−1. Fixed
point iteration is then used to find a solution to these equations.

The definition of this function τCP for classic polyhedral abstract interpreta-
tion can be found in [7]. In this section we will define τBD where it differs from
τCP. We will also note the single case where τSK differs from τCP.

Entry point In abstract interpretation, a common assumption is that nothing
is known about the values of program variables at the entry point of the program.
In CP, this is represented by the polyhedron with no constraints. Let p be the
entry point of the program. Then:

τCP
n (p) = ∅

However, in SK and BD, each integer variable is associated with a type and
a size. As explained in Section 2.2, the set of possible points lies within the
base window. Consequently, in BD we assign the whole base window as the
polyhedron at the entry point of the program.

τBD
n (p) = R(V)

This is sound and more precise than CP and SK.

Non-Linear Assignments In CP and SK, a non-linear assignment discards
all information about the assigned variable by eliminating it from the set of
constraints. Let p0 represent the program point before the non-linear assignment
x := ?, and let p1 be the program point directly after. Then,

τCP
n (p1) = ∃x(τCP

n (p0))

where ∃x(P) represents the polyhedron P where the variable x has been
eliminated. Since x is not involved in any constraint after elimination, it is safe
to assume that it is within its range.

τBD
n (p1) = ∃x(τCP

n (p0)) ∪R(x)

Again, this is sound and more precise than SK and BD.

Widening For a program whose control-flow graph (CFG) contains cycles,
widening is necessary to ensure termination of the analysis. In classical abstract
interpretation, the widening is usually inserted immediately where the program
flow joins in a cycle. The classical widening operation removes unstable bounds
from the polyhedron which often results in an unbounded polyhedron. However,
removing single constraints does not necessarily destroy all relational information
among variables, so it would not be safe to apply any range constraints after
doing widening. We have to use another approach.

3.3 Making Widening Bounded

The standard widening operation, as mentioned, often makes polyhedra un-
bounded. However, with the help of limited widening it might be possible to
intersect the result with a finite number of constraints. Our idea is to use widen-
ing in such a way that it is always possible to intersect the result with a fully
bounded polyhedron.

Limited Widening Limited widening was suggested in [14]. The idea with
limited widening is to have a set of constraints C and define limited widening
∇C as follows:

P∇CQ = (P∇Q) ∪ {c ∈ C|P v {c} ∧Q v {c}}

That is, the result of the widening is intersected with all constraints in C which
hold in both P and Q. It can be shown that this is a widening operation for
any set of constraints C. The set C is typically selected strategically for each
program.

Our idea is to use a limited widening such that C v R(V). Our goal is to
be able to intersect the result of the widening with at least R(V), to make the
polyhedron fully bounded.

Placement of the Widening Points Since our goal is to safely intersect
the polyhedron with the base window, we can see from the definition of lim-
ited widening that both arguments to the widening operator have to be fully
contained within the base window. Fortunately, there are certain points in the
program where this is always true: at explicit wrappings, i.e., at conditionals.

SK requires that polyhedra are explicitly wrapped when conditionals are ap-
plied. Wrapping guarantees that wrap(P, σ, S) v R(S), thus if S = V the result
will be fully contained in the base window. For this reason, our strategy is to
make sure widening is done in conjunction with wrappings. To avoid unnecessary
loss of precision, the widening points cab be distributed so that each cycle in the
CFG contains exactly one widening point.

Specifically, this means that widening is applied where the control flow takes
a conditional jump due to evaluating the constraint σ to true (if program flow
enters a cycle from evaluating a conditional to false, it can still be seen as evalu-
ating its negation to true). The exact placement of widening points in the cycles
is not dictated by BD, as long as they are placed at conditionals.

Let p0 be the program point before a conditional, and let p1 represent the
point where control flow enters a cycle from evaluating the condition σ to true.
If σ is non-linear, σ is considered to be always be true. Classical polyhedral
analysis just adds the condition as a new constraint to the polyhedron (widening
is typically done elsewhere):

τCP
n (p1) = τCP

n (p0) ∪ {σ}
In SK, the polyhedron is wrapped,

τSKn (p1) = wrap(τSKn (p0), σ, Sσ)

In BD, this is where widening is done, in particular limited widening:

τBD
n (p1) = τBD

n−1(p1)∇R(V)∪{σ}(wrap(τBD
n (p0), σ, V))

Note that all variables V will be wrapped to ensure that the resulting poly-
hedron is contained within the base window: this differs from SK, where only

the variables that appear in the condition are wrapped. This will potentially be
less precise than wrapping with Sσ, but it will always result in a fully bounded
polyhedron, stated formally as:

Theorem 1. Let p be a program point where control flow enters a cycle from
evaluating the condition σ to true. Then,

τBD
n (p) v R(V)

for all n ≥ 0.

A proof can be found in [5].

4 Implementation

In order to do an evaluation of bounded polyhedra we have implemented both
SK and BD in the static analysis tool SWEET [1, 13].

4.1 SWEET and ALF

SWEET is a Worst-Case Execution Time (WCET) analysis tool, but it uses a
number of general program analysis techniques, including value analyses based
on abstract interpretation, and it can be used as a pure value analysis tool.
SWEET analyses code on an intermediate format called ALF [12]. ALF is a
language designed specifically for program analysis, and to be able to represent
both source and object code faithfully. Currently, translators exist from C to
ALF and from PowerPC binaries to ALF. In our evaluation, we have analysed
C code translated into ALF.

4.2 Analysis Details

We implemented polyhedral analysis in SWEET using the Parma Polyhedra
Library [2]. Conveniently, this library has an implementation of the explicit
wrapping procedure presented in [19].

Our current implementations of BD and SK do not distinguish individual
fields of structs, and individual elements of arrays. Currently we use the safe
approximation to give array elements and elements of structs the top value in
the analysis.

In the evaluation, we have applied widening in loops at the exits of their
header basic blocks that do not exit the loop. This ensures that each path in the
loop has exactly one widening point. All of the programs that we have analysed
in our evaluation have structured loops (meaning that each loop has exactly
one header), so it is possible to place widening in this way. Other placements of
widening points are also possible, but this has not been investigated.

5 Evaluation

Our aim is to compare the precision of the polyhedra resulting when analysing
programs with SK and BD. Our evaluation consists of analysing a set of bench-
mark programs with both SK and BD. Abstract interpretation yields results for
all points in the analysed program, in our case each basic block is associated
with a polyhedron. For each of basic block p of a program, we have a polyhedron
SK(p) resulting from analysis with SK and a polyhedron BD(p) resulting from
analysis with BD. While the usefulness of the results should ideally be compared
considering a particular application, we have settled on two ways of comparison.
The first one is to investigate the relation between the sets γSK(SK(p)) and
γSK(BD(p)) in terms of inclusion. However, this does not show how much better
the result is, just if it is better or not. For this reason we also measure the pre-
cision of a result by the number of integer points it contains. This measurement
is highly relevant in for instance the WCET analysis in [15, 4], which is directly
based on counting the number of integer points inside polyhedra derived from
abstract interpretation.

5.1 Computing the set of integers of a polyhedron

We concluded in Section 2 that γSK(P) does not necessarily form a convex poly-
hedron. This means we cannot use conventional techniques to compare and count
elements in convex polyhedra when dealing with these kind of sets. However, if
P is a fully bounded polyhedron, then γSK(P) is the union of a finite set of
convex polyhedra within the base window. The Barvinok library [20] provides
techniques for manipulating and counting sets of integers, including unions of
convex polyhedra. Thus, as long as the polyhedra are fully bounded, we can use
Barvinok to compare them inclusion-wise as well as count the size of these sets.

If P is unbounded, we can no longer see γSK(P) as a finite union of convex
polyhedra and we have to use another technique. We can form the polyhedron
wrap(P,∅, V) ⊆ R(V) which is fully contained within the base window. More-
over, γSK(wrap(P,∅, V)) always forms a convex polyhedron, which means that
straightforward counting techniques for convex polyhedra can be used. However,
wrap(P,∅, V) is potentially less precise than P . Furthermore, both SK and BD
are designed to avoid explicit wrapping as much as possible to avoid impreci-
sion. Still, to give an indication of the improvement of BD compared to SK in
the cases where SK results in unbounded polyhedra, we use this comparison.

5.2 The Setup

We used six benchmarks from the Mälardalen Benchmark suite [10]. The pro-
grams were translated into ALF using a C-to-ALF compiler and were analysed
using SWEET compiled for Windows XP using Cygwin. The experiments were
performed on a 2.4 GHz dual core Intel with 3.45 GB ram.

We analysed the benchmarks programs with SK and BD. Each basic block p
in the analysed program is associated with a SK polyhedron SK(p) and a BD

polyhedron BD(p). In two of the benchmarks, namely bs and bsort100, SK(p) is
unbounded for some basic blocks p. For these two benchmarks we compared the
results using wrap(SK(p),∅, V), as described Section 5.1. This is also indicated
in the tables.

5.3 The Results

Table 1. Subset Relations

Benchmark BBs γSK(BD) ⊆ γSK(SK) γSK(BD) ⊂ γSK(SK)

bs (wrap) 11 100% 27%
bsort100 (wrap) 20 100% 40%

fibcall 6 100% 33%
insertsort 7 100% 43%
jcomplex 14 100% 57%
loop3 392 100% 27%

Total 450 100% 29%

Set Relations. Table 1 shows the percentage of program points p in which the
set γSK(BD(p)) is a subset respective proper subset to γSK(SK(p)).

The column BBs shows how many basic blocks the benchmark has, and
consequently, how many pairs of polyhedra are compared. As can be seen, BD is
in all observed cases at least as precise as SK in terms of inclusion, often strictly
better.

Number of Integer Points. Table 2 shows statistics when com-
paring |γSK(BD(p))| to |γSK(SK(p))|, except for bs and bsort where
|γSK(wrap(BD(p)),∅, V)| is compared to |γSK(wrap(SK(p)),∅, V)|. We explain
the table below:

Table 2. Comparing number of integer points

Benchmark BBs Best Avg str. Avg imp.

bs (wrap) 11 < 1% < 1% < 1%
bsort100 (wrap) 20 25% 15% 6%
fibcall 6 75% 75% 25%
insertsort 7 < 1% < 1% < 1%
jcomplex 14 75% 31% 17%
loop3 392 25% 3% 1%

BBs The number of basic blocks in the benchmark.

Best This column shows the highest percentage-decrease in number of integer
points when comparing BD to SK observed in this benchmark.

Avg str. This shows the average decrease in number of integer points when
comparing BD to SK, in the cases where there is a strict improvement. The
percentage of polyhedra with strict improvement can be seen in Table 1.

Avg imp. This shows the average decrease in number of integer points inside
polyhedra when comparing BD to SK, including cases where there was no
strict improvement.

In total 450 SK polyhedra have been compared to 450 BD polyhedra. As
seen in Table 1, BD is at least as good as SK in all cases, and in 29% of the
total cases strictly better. The amount of improvement varies from less than one
percent, to 75% in some polyhedra. As we will see in the following section, this
improvement comes with little cost.

5.4 On Efficiency

To be able to compare the precision of the analyses, the SK and BD methods
were run simultaneously in the above experiments. To also give an impression of
the complexity of the two approaches, we have run the analyses in isolation on
the two biggest benchmarks (in terms of program points): loop3 and bsort100.
We compare them with two criteria: the running times and the number of iter-
ations before termination. Note that the analysis implementastion has not been
optimised and contains a lot of run-time checks and debugging information. The
running times are just intended to give a rough idea of the difference in perfor-
mance. The running times were acquired by the single user real-time component
of the result of the Cygwin command time.

Table 3 compares the running times and iterations of three methods, the clas-
sical polyhedral analysis (CP), Simon and King’s method (SK) and our bounded
polyhedral method (BD).

Table 3. Complexity

Benchmark Running Time Iterations

CP SK BD CP SK BD

loop3 1m 2.81s 1m 14.84s 1m 24.62s 878 1054 1082
bsort100 4.64s 4.98s 5.33s 34 35 48

As can be seen, BD takes a few more iterations to terminate than SK due to
the more complex polyhedra resulting. This also shows that SK takes more iter-
ations than classical polyhedral analysis. It can be concluded that the increased
cost of running BD compared to SK is quite limited.

6 Summary and Conclusions

We have developed an analysis using fully bounded convex polyhedra which is
sound for programs with wrap-around semantics. The method is based on earlier
work by Simon & King [19] but has some additional features to compensate for
imprecision. This is done by imposing range bounds on variables at the initial
program point and at non-linear assignments, wrapping polyhedra at condition-
als and finally by using limited widening with range constraints and placing this
widening at conditionals. The idea was first presented in [5] but has been refined,
implemented and evaluated in this paper.

We have implemented both our and Simon & King’s methods into the static
analysis tool SWEET. The evaluation shows that in all the observed cases our
method is at least as precise as Simon & King’s, and in some cases is considerably
better. This increase of precision is obtained without too much added analysis
time.

Our method is particularly useful in the cases where the number of integer
points inside polyhedra are interesting, since our method derives only polyhedra
with a finite number of integer points. In particular it is interesting in the method
for parametric worst-case execution time analysis developed in [15, 4], which is
based on these numbers. We plan to evaluate our analysis for this application as
well.

Acknowledgement. This work was supported by the EU FP7 project
APARTS, Grant Number 251413.

References

1. Sweet (Feb 2012), http://www.mrtc.mdh.se/projects/wcet/sweet.html

2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

3. Brauer, J., King, A.: Transfer function synthesis without quantifier elimination. In:
Barthe, G. (ed.) ESOP. Lecture Notes in Computer Science, vol. 6602, pp. 97–115.
Springer (2011)

4. Bygde, S., Lisper, B.: Towards an automatic parametric WCET analysis. pp. 9–17.
Austrian Computer Society (July 2008)

5. Bygde, S., Lisper, B., Holsti, N.: Fully bounded polyhedral analy-
sis of integers with wrapping. In: International Workshop on Numer-
ical and Symbolic Abstract Domains (NSAD’11) (September 2011),
http://www.mrtc.mdh.se/index.php?choice=publications&id=2595

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252 (1977)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL. pp. 84–96 (1978)

8. Granger, P.: Static analysis of arithmetical congruences. In: International Journal
of Computer Mathematics, Volume 30. pp. 165–190 (1989)

9. Granger, P.: Static analysis of linear congruence equalities among variables of a
program. In: Proceedings of the international joint conference on theory and prac-
tice of software development on Colloquium on trees in algebra and programming
(CAAP ’91): vol 1. pp. 169–192. Springer-Verlag New York, Inc., New York, NY,
USA (1991), http://portal.acm.org/citation.cfm?id=111310.111320

10. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET bench-
marks – past, present and future. pp. 137–147. OCG, Brussels, Belgium (Jul 2010)

11. Gustafsson, J., Ermedahl, A., Lisper, B.: Towards a flow analysis for em-
bedded system C programs. In: The 10th IEEE International Workshop on
Object-oriented Real-time Dependable Systems (WORDS05) (February 2005),
http://www.mrtc.mdh.se/index.php?choice=publications&id=0972

12. Gustafsson, J., Ermedahl, A., Lisper, B., Sandberg, C., Källberg, L.: Alf a language
for wcet flow analysis. In: Holsti, N. (ed.) Proceedings of the 9th International
Workshop on Worst-Case Execution Time Analysis (WCET’09). OCG (June 2009),
http://www.mrtc.mdh.se/index.php?choice=publications&id=1672

13. Gustafsson, J., Ermedahl, A., Sandberg, C., Lisper, B.: Automatic derivation of
loop bounds and infeasible paths for WCET analysis using abstract execution. In:
Proc. 27th IEEE Real-Time Systems Symposium (RTSS’06) (Dec 2006)

14. Halbwachs, N.: Delay analysis in synchronous programs. In: Courcoubetis, C. (ed.)
CAV. Lecture Notes in Computer Science, vol. 697, pp. 333–346. Springer (1993)

15. Lisper, B.: Fully automatic, parametric worst-case execution time anal-
ysis. In: Gustafsson, J. (ed.) Proc. Third International Workshop on
Worst-Case Execution Time (WCET) Analysis. pp. 77–80 (July 2003),
http://www.mrtc.mdh.se/index.php?choice=publications& id=0629

16. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1),
31–100 (2006)

17. Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Trans. Program.
Lang. Syst. 29 (August 2007), http://doi.acm.org/10.1145/1275497.1275504

18. Sen, R., Srikant, Y.N.: Executable analysis using abstract interpretation with
circular linear progressions. In: Proceedings of the 5th IEEE/ACM Interna-
tional Conference on Formal Methods and Models for Codesign. pp. 39–48.
MEMOCODE ’07, IEEE Computer Society, Washington, DC, USA (2007),
http://dx.doi.org/10.1109/MEMCOD.2007.371251

19. Simon, A., King, A.: Taming the wrapping of integer arithmetic. In: Static Analysis,
Lecture Notes in Computer Science, vol. 4634, pp. 121–136. Springer Berlin /
Heidelberg (2007)

20. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Counting
integer points in parametric polytopes using Barvinok’s rational functions. Al-
gorithmica 48(1), 37–66 (Jun 2007), uRL: http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publ info.pl?id=41970, DOI: 10.1007/s00453-006-1231-0

21. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.B.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P.P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem - overview of methods and survey of tools. ACM Trans. Embedded Comput.
Syst. 7(3) (2008)

