
Automated Verification of AADL-Specifications Using UPPAAL

Andreas Johnsen, Kristina Lundqvist, Paul Pettersson, Omar Jaradat
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

forename.surname@mdh.se

Abstract—The Architecture Analysis and Design Language
(AADL) is used to represent architecture design decisions of
safety-critical and real-time embedded systems. Due to the far-
reaching effects these decisions have on the development pro-
cess, an architecture design fault is likely to have a significant
deteriorating impact through the complete process. Automated
fault avoidance of architecture design decisions therefore has
the potential to significantly reduce the cost of the development
while increasing the dependability of the end product. To
provide means for automated fault avoidance when developing
systems specified in AADL, a formal verification technique
has been developed to ensure completeness and consistency of
an AADL specification as well as its conformity with the end
product. The approach requires the semantics of AADL to be
formalized and implemented. We use the methodology of se-
mantic anchoring to contribute with a formal and implemented
semantics of a subset of AADL through a set of transformation
rules to timed automata constructs. In addition, the verification
technique, including the transformation rules, is validated using
a case study of a safety-critical fuel-level system developed by
a major vehicle manufacturer.

I. INTRODUCTION

Safety-critical systems such as real-time embedded sys-
tems within the domains of avionics and automotive are de-
veloped under stringent requirements on high dependability.
Fault avoidance, in addition to fault tolerance, is essential to
achieve high dependability levels. Fault avoidance represents
means focused on producing a fault-free system, both by
proactive methods which prevent faults from being intro-
duced (known as fault prevention), and by reactive methods
which remove faults that have been introduced (known as
fault removal). Although the development of a fault-free
system seldom is practical, and has to be supported by
means of retaining dependability even in the presence of
faults (known as fault tolerance), automated fault avoidance
is necessary to guarantee dependability within a competitive
schedule and budget. One of the most critical development
phases with respect to fault avoidance is the architecture
design phase where the design decisions needed to achieve
the required quality attributes, such as dependability and
performance, are determined. Due to the fact that these
architecture design decisions have the most far-reaching

This work was partially supported by the Swedish Research Council
(VR), and Mälardalen Real-Time Research Centre, Mälardalen University.

effects on the development, and are the most costly to correct
at a later stage, they are the most critical design decisions
to evaluate.

The Architecture Analysis and Design Language
(AADL) [1] has been developed to provide a formalism
from which architectures of real-time embedded systems
can be designed and analyzed. In order to provide
means for automated fault avoidance when designing
systems by AADL, a verification technique based on
formal methods has been developed in previous work [2].
Automated fault avoidance is provided through the
entire development process by the adaptation of both
model checking and model-based testing approaches to
an architectural perspective. Assuming a development
process where initially a system designed to fulfill the
system requirements is specified in AADL, and where the
specification is used as a blueprint to guide the subsequent
development process, the goals of the technique are:

Goal 1. to ensure completeness and consistency of an
AADL specification through model-checking before the de-
velopment process progresses, and

Goal 2. to ensure conformance of the end product with
respect to its AADL specification through model-based
testing.

The approach however requires the semantics of AADL
to be formalized and implemented. The main contributions
of this paper are a formal and implemented semantics
of a subset of AADL including features commonly used
in real-time systems, and a validation of the verification
technique. Formal and implemented semantics is achieved
through formally defined transformation rules to constructs
in timed automata – the input language to the UPPAAL
model checker [3]. The methodology is known as semantic
anchoring, where the defined transformation rules anchor
the semantics of AADL to the – formal and implemented –
semantic domain of timed automata in the UPPAAL environ-
ment. In addition, a transformation to timed automata allows
for the use of the UPPAAL model checker to automatically
perform verification of the specification through model-
checking, and verification of the implementation through
model-based conformance testing. It is important to note that

the transformation rules also enable simulation of AADL
specifications, which provides numerous benefits in the
development of safety-critical systems, such as improving
correctness analysis and understandability. The technique
has been applied on a safety-critical fuel-level estimation
system developed by a major vehicle manufacturer as an
initial validation of its applicability and scalability to indus-
trial systems.

The rest of this paper presents an overview of AADL and
the verification technique in Section II. The transformation
rules from AADL to timed automata are presented in Sec-
tion III. Results of the case study are presented in Section IV,
followed by related work in Section V and finally concluding
remarks in Section VI.

II. AADL AND THE VERIFICATION TECHNIQUE

AADL was initially released and published as a Society
of Automotive Engineers (SAE) Standard AS5506 [1] in
2004, and a second version (AADLv2) was published in
2009. It is a textual and graphical language used to model,
specify and analyze software- and hardware-architectures
of real-time embedded systems. AADL is based on a
component-connector paradigm that hierarchically describes
components, component interfaces and the interactions (con-
nections) among components. Hence, the language captures
functional properties of the system, such as input and output
through component interfaces, as well as structural proper-
ties through configurations of components, subcomponents
and connectors. Furthermore, means to describe quality
attributes, such as timing and reliability, are also provided.
AADL defines component abstractions dividable into three
groups: application software components (process, thread,
thread group, data, subprogram and subprogram group),
execution platform components (memory, bus, virtual bus,
processor, virtual processor and device) and general com-
posite components (system and abstract). In this paper, we
will focus on threads, processes and processors. A thread
component represents a schedulable and concurrent unit of
(sequential) execution, a process component represents a
protected address space (must contain at least one thread
subcomponent), and a processor component represents hard-
ware and software responsible for scheduling and executing
threads.

AADL specifications have explicit control-flows and data-
flows through the architecture as defined in [2]. The flows
are dependent on how components transfer control and data
through their interfaces which is described in the standard
with a precise execution model (dynamic semantics). The
possible interactions among components are represented
by four different types of connections: port connections,
data access connections, subprogram calls and parameter
connections. Port connections represent a transfer of data,
control or both, depending on the type of interconnected

interfaces (data port, event port or event data port). Subpro-
gram calls represent a transfer of control whereas parameter
connections and data access connections represent a transfer
of data.

The runtime configuration of subcomponents and their
interactions within a component may change if it is specified
with modes. For each mode, it is possible to set the ac-
tive components and connections, mode-specific subprogram
calls and mode-specific properties. Furthermore, the logical
execution of thread and subprogram components may be
modeled by using the Behavioral Annex (BA) [4]. Logical
execution is modeled through states, state variables and
transitions operating on a component’s interfaces which
consequently refines the interactions with other components.

The four different types of connections specify the ar-
chitectural control-flows and data-flows of an AADL spec-
ification. These flows may be dependent on mode state
machines, refined by the BA and constrained by associated
property annotations where conflicts may occur between
these constructs.

The objective of the verification criteria defined in the
verification technique [2] is, with respect to the semantics
(semantic rules) of AADL and Goal 1, to ensure consis-
tency and completeness of and between the AADL flows,
their refinements and their constraints through the analysis
of control-flow reachability, data-flow reachability and
concurrency among flows. Consequently, the verification
technique is, with respect to Goal 1, comparable with
semantic analysis techniques in compilers.
• Control-flow reachability is the property where each

architectural element in an execution order can reach
the subsequent element to be executed without conflict-
ing constraints of the control-flow.

• Data-flow reachability is the property where each data
element can reach its target component, where the data
is used, from its source component, where the data
is defined. The data element should reach the target
component without conflicting constraints of the data-
flow. Analysis of single flows of data or control is not
enough since there are implicit relations between them
that may cause deadlocks in the system.

• Concurrency among flows is the property where re-
lations between flows should not prevent control-flow
reachability or data-flow reachability, and where the
system should be free from deadlocks.

Note that the analysis of flows consider constraints from
AADL property annotations, such as, the latency of a
data flow, or the period, execution time and deadline of
threads. Hence, analysis of control-/data-flow reachability
and concurrency among flows imply analysis of additional
aspects, such as timing and schedulability.

To perform the analysis the control- and data-flow dia-
grams must be extracted from the AADL specification. This
is done through defined AADL relations which three of them

we briefly present here but a complete description and the
formal definitions can be found in [2]. In the definitions
below, N denotes a component, N.Int denotes an interface
of a component N, and C denotes a connection. Component
Internal Relation defines the (possibly constrained) data or
control transfer that is generated between two interfaces of
a component that are connected through a connection or a
BA (Behavior Annex). Relation b in Figure 1 illustrates the
definition, where the BA connection C2 internally connects
N2.Int1 to N2.Int2. Direct Component to Component
Relation defines the (possibly constrained) data or control
transfer that is generated between two components that are
directly connected through a connection. Both relation a and
c illustrate the definition, where C1 connects N1.Int1 to
N2.Int1, and C3 connects N2.Int2 to N3.Int1. Indirect
Component to Component Relation defines the (possibly
constrained) data or control transfer that is generated be-
tween two components that are indirectly connected through
one or several component(s). Relation d illustrates the defi-
nition, where C1, C2 and C3 indirectly connect N1.Int1 to
N3.Int1. Based on the relations three types of verification

Figure 1. Illustration of relations between three interconnected compo-
nents. ”*” denotes a BA connection.

sequences have been defined [2]. A verification sequence is
a sequence of interfaces where each interface has a relation
to the subsequent interface in the sequence. They describe
the possible internal, direct and indirect paths of execution
in control- and data-flow diagrams, that is, the possible
interactions among interfaces in an AADL specification.
For example, since there exists an indirect relation d from
N1.Int1 to N3.Int1 as shown in Figure 1, there exists an
indirect path of a sequence on the form Pathd = N1.Int1
→ N2.Int1 → N2.Int2 → N3.Int1. A path is constrained
if any member in the sequence is associated with a property
annotation. For example, assume that relation d exists due to
an end-to-end data-flow from N1.Int1 to N3.Int1 through
the interfaces and that the flow is specified with a latency
property, path Pathd will be constrained such that the
time from when data i sent through N1.Int1 until it is
received through N3.Int1 must not exceed the value of
the property. In addition, assuming that each component in
Pathd is a thread specified with Compute Execution Time,
Compute Deadline and Priority properties, path Pathd will
be constrained such that each thread must execute for a
specified amount of time before output is generated, each
thread must generate output before a specified deadline, and
the sequence of thread execution must not contradict their

priorities.
In order to verify the completeness and consistency of

an AADL specification, all paths must be verified that they
fulfill their constraints. Or to be more precise, each path must
be able to be executed according to the semantics (semantic
rules) of AADL such that each (active) property-value is
valid in each state of the execution. The AADL specifi-
cation is consistent if each path is free from contradictory
behavior, that is, each path does not contradict Control-flow
reachability, Data-flow reachability and Concurrency among
flows. The AADL specification is complete if each path not
yielding an end-to-end flow (typically a sensor-to-actuator
flow) is subsumed in another path.

End-to-end paths can also be used to generate test cases
for the implementation to test the conformity with its
AADL specification. The objective of the verification criteria
defined in the verification technique [2] is, with respect
to the semantics (semantic rules) of AADL and Goal 2,
to ensure conformance of the end product with respect to
its AADL specification. From each end-to-end path, it is
possible to derive the initial expected state of the system,
the input needed to stimulate an execution according to
the expected path, the expected output and the expected
timing constraints. A step by step description of the complete
verification technique can be found in [2].

However, the verification of paths must be executed in
accordance to the dynamic semantics (execution model) of
the language. To perform this in a formal and automated way
the dynamic semantics of AADL must first be formalized
and implemented (see Section III). We provide a formal and
implemented semantics of AADL through transformation
rules (mappings) to timed automata, the input language to
the UPPAAL model checker.

III. TRANSFORMATION TO TIMED AUTOMATA

AADL supports specification of real-time and scheduling
properties such as dispatch protocol, deadline, execution
time, scheduling policy, period, etc. The AADL execution
model is described in the AADL standard by terms of thread
(automata) states, thread dispatching, and thread schedul-
ing and execution states. It consists of several different
aspects of a run-time environment, such as synchronous
interactions, asynchronous interactions, nominal execution,
recovery execution, etc. The standard defines a default run-
time environment with synchronous interactions and pre-
emptive scheduling where periodic threads interact through
data ports. Data is available at the input ports at the time
of a thread’s dispatch, which is followed by computation of
output data that is transmitted (from out ports) at the time
of the sending thread’s completion or deadline, to (the in
ports of) the recipient thread. Port connections can either be
specified as immediate or delayed, the former transmits data
at a thread’s completion whereas the latter transmits data at
a thread’s deadline.

Since these features are commonly used in real-time
systems, we define formal semantics for a subset of AADL
consisting of synchronous interactions with fixed-priority
preemptive scheduling (non-preemptive scheduling is sub-
sumed). Formal semantics is defined through transformation
rules to the UPPAAL modeling language, an extension of
the timed automata theory. The AADL subset and timed
automata in UPPAAL are defined as follows, upon which
the transformation rules are defined.

Definition 1. An AADL-specification A = 〈Pr, T, C〉 has
a processor component Pr, a set of thread components
T and a set of data port connections C of the form
Connection ::= Identifier : data port source port reference
−−− >>> destination port reference; | Identifier : data port
source port reference −−− >>>>>> destination port reference;.
Let t range over T and c over C.
A thread ti = 〈Identi, Interfi, Sch Propi,MSMi, BMi〉
has an identifier Identi, a set of in and out data port
interfaces (features) Interfi = In Interfi ∪Out Interfi
of the form Feature :: = Identifier : in data port ; | Identifier
: out data port ;, scheduling properties Sch Propi =
〈Dispatch Protocoli, P eriodi, Compute Execution
T imei, Compute Deadlinei, P riorityi〉 of the form Prop-
erty ::= Identifier ===>>> Value, a mode state machine MSM ,
and a behavioral model BM 1. We assume that the value of
the Dispatch Protocol is ”periodic”.
Let Connect : Interf → C be a function which as-
signs active connections to interfaces. A processor Pr =
〈Ident, T Bind, Scheduling Protocol〉 has an identifier
Ident, a set of threads bound to it T Bind ⊆ T and a
scheduling protocol property.

Definition 2. A timed automaton TA =
〈L, `o, X, V ar, I, E〉 has a set of locations L, an initial
location `0 ∈ L, a set of real-valued variables X called
clocks, a set of (bounded) integer-typed variables V ar, a
function assigning invariants to locations I : L → G and
a set of edges E ⊆ L × G × Act × U × L, where G is a
(possibly empty) set of guards which are conjunctions of
predicates over variables and clock constraints of the form
x expr1 c, where x ∈ X , c ∈ N and expr1 ∈ {<,≤,≥, >}.
Act = I ∪ O ∪ {τ} is a set of input (denoted a?) and
output (denoted a!) synchronization actions and the non-
synchronization τ . U is a (possibly empty) set of updates
which are sequences of variable-assignments of the form
v := expr2 and/or clock resets of the form x := 0, where
v ∈ V ar ∪ V arG, x ∈ X and expr2 is an arithmetic
expression over integers. We shall use the denotation
`

g,a,u−−−→ `′ iff 〈`, g, a, u, `′〉 ∈ E.
Semantically, a TA is defined by a timed transition system
over states which are pairs of the form 〈`, φ〉, where

1Mode state machines and behavioral models are only briefly discussed
due to space limitations

` ∈ L, φ ∈ RX
+ is a clock valuation and φ |= I(`).

Progress is either performed through delay transitions
〈`, φ〉 d−→ 〈`, φ ⊕ d〉 where φ ⊕ d is the result of adding
the delay d to each clock valuation in φ, or by discrete
transitions 〈`, φ〉 a−→ 〈`′, φ′〉 where an (instantaneous) edge
〈`, g, a, u, `′〉, such that φ |= g, is taken from a location `
to another location `′.
A network of timed automata NTA =
〈TA, V arG, XG, Ch〉 has a vector of n timed automata
TA = 〈TA0, TA1, . . . , TAn−1〉, a set of shared (global)
variables V arG, a set of shared clocks XG, and a set of
synchronization channels Ch. The semantics of a NTA is
defined by a timed transition system such that a state is a
location vector over all automata and the union of clock
valuations from all automata where delay transitions are
synchronized and discrete transitions are synchronous over
complementary actions (a? complements a!).

In addition, UPPAAL extends the timed automata the-
ory with the possibility to declare locations as urgent or
committed and coding of functions (in UCode, a subset
of C) callable at transitions. In an urgent location, time is
not allowed to progress whereas in a committed location,
time is not allowed to progress and the next transition must
involve one of its outgoing edges. A timed automata path
or trace is defined as a sequence of states such that there
exist transitions from each state in the sequence leading
to its successor state. Finally, we shall use Id(c), Id(ti),
Id(V ar) etc., to denote the identifier of the respective
element whereas V al(V arG), V al(Priorityi), etc., is used
to denote its value.

A. Transformation Rules

In this section, we firstly present the formally defined
transformation rules, and secondly, we describe each trans-
formation rule informally while applying them to an AADL-
example presented in Example 1. Due to the complexity of
the semantics of AADL processor components, the details
of the corresponding rules are presented in a separate
subsection, Section III-A1.

The transformation rules are defined by means of func-
tions where a transformation is initiated through function
TA : A→ NTA which maps an AADL specification A of
the form 〈Pr, T, C〉 to a network of timed automata NTA.

Rule TA: TA(A) = 〈TA, V arG, ∅, Ch〉 such that
TA[0] = TPr(Pr) and for 0 ≤ i < |T |, TA[i + 1] =
TT (ti), V arG = {TC(c) | c ∈ C} and Ch is generated
as presented in Section III-A1.

Function TP r : Pr → TA maps a processor component Pr
of the form 〈Ident, T Bind, Scheduling Protocol〉 to a
timed automaton TA.

Rule TPr: TP r(Pr) = 〈L, `o, X, V ar, I, E〉 where L,
`o, X , V ar, I and E are as defined in Section III-A1.

Function TT : T → TA maps a thread component ti of
the form 〈Identi, Interfi, Sch Propi,MSMi, BMi〉 to a
timed automaton TA.

Rule TT: TT (ti) = 〈L, `o, X, V ar, I, E〉 such
that L = {awaiting dispatch, ready, running},
`0 = awaiting dispatch, X = {cl}, V ar =
{Period, C E T,C D,Priority}∪V arIn∪V arOut
where V al(Period) = V al(Periodi),. . . , V al(Prior
ity) = V al(Priorityi), V arIn = {TInterf (int) |
int ∈ In Interfi} and V arOut = {TInterf (int) |
int ∈ Out Interfi}. Let V in and V out range over
V arIn and V arOut respectively.
I(awaiting dispatch) = {cl <= Period} and

E = {awaiting dispatch
cl>=Period,dispatched[i]!,u1−−−−−−−−−−−−−−−−−−−→

ready, ready
run[i]?−−−−→ running, running

preempt[i]?−−−−−−−→
ready, running

complete[i]?,u2−−−−−−−−−−→ awaiting dispatch}
where u1 = 〈sch info[i][0/1/2] := C E T/C D/
Priority, V in0 = Id(Connect(V in0)), V in1 = Id(C
onnect(V in1)), . . . , V inn = Id(Connect(V inn)),
cl := 0〉 and u2 = 〈Id(Connect(V out0)) :=
V out0, Id(Connect(V out1)) := V out1, . . . , Id(Con
nect(V outm)) := V outm〉.

Function TC : C → V arG maps an interface connection c
to a global variable vG.

Rule TC: TC(c) = vG, such that Id(c) = Id(vG).

Function TInterf : Interf → V ar maps a data port
interface int to a (local) variable v.

Rule TInterf : TInterf (int) = v, such that Id(int) =
Id(v).

In the following example we will describe an application
of the transformation rules with respect to the (incomplete)
AADL specification given in Table I, and under the as-
sumption that there is a scheduler automaton (described in
Section III-A1) providing the required thread behavior.

Example 1. Table I comprises typical constructs in the cho-
sen subset of AADL. It includes a process component pro-
cess example.impl with two thread subcomponents thread 1
and thread 2, which are instances of thread example1.impl
and thread example2.impl (not shown in the example) re-
spectively. The process example.impl has two in data ports
Input 1 and Input 2, as shown by its process type pro-
cess example. These ports are connected to the in data

ports of thread example1.impl, as shown by the connection
declarations of process example.impl. Furthermore, these
connection declarations do also show that the out data ports
of thread example1.impl are connected to the in data ports
of thread example2.impl. The execution platform of the
system has been left out in the example due to limited
space, however, we assume that the threads are bound to
a processing unit with a fixed-priority preemptive scheduler.
We refer to thread example1(.impl) when presenting trans-
formation to the thread automaton shown in Figure 2. Note
that the following (informal) description of threads’ behavior
is traceable to the AADL standard unless it is explicitly
stated that it is not.

Table I
AN AADL EXAMPLE OF A PROCESS COMPONENT WITH TWO THREAD

SUBCOMPONENTS.

process process example
features
Input 1: in data port int;
Input 2: in data port int;

end process example;

process implementation process example.impl
subcomponents
thread 1: thread thread example1.impl;
thread 2: thread thread example2.impl;
connections
Connection 1: data port Input 1 –>

thread 1.InputPort 1;
Connection 2: data port Input 2 –>

thread 1.InputPort 2;
Connection 3: data port thread 1.OutputPort 1 –>

thread 2.InputPort 1;
Connection 4: data port thread 1.OutputPort 2 –>

thread 2.InputPort 2;
end process example.impl;

thread thread example1
features
InputPort 1: in data port int;
InputPort 2: in data port int;
OutputPort 1: out data port int;
OutputPort 2: out data port int;

end thread example1;

thread implementation thread example1.impl
properties
Dispatch Protocol => Periodic;
Period => 50ms;
Compute Execution Time => 5ms..10ms;
Compute DeadLine => 30ms; – –by default equal to period
Priority => 1;

end thread example1.impl;
...

In order to transform the given AADL specification Rule
TA is first applied. Through the rule, each thread is mapped
(Rule TT) to an automaton such as in Figure 2. The AADL
execution model (dynamic semantics) is partly specified
in the AADL standard as a hybrid automaton describing
the different states of an AADL thread from a scheduler’s
perspective. This hybrid automaton can be reduced to an
UPPAAL automaton consisting of three locations — awaiting

dispatch, ready and running. The automaton describes the
different states of a thread that are common for all threads,
and thus form the basis of the transformation rules since any
AADL thread can be mapped to such an automaton. Each
thread is initially in the awaiting dispatch location where a
transit to the ready location depends on the thread’s dispatch
protocol property. For periodic threads, the occurrence of
dispatch is entirely dependent on its period in relation
to a clock. A local clock (cl) is used to keep track of
dispatches of the particular thread, which is acceptable –
from a synchronous perspective – since all UPPAAL clocks
progress synchronously. Input on the input ports is frozen
and accessible at the time when a thread dispatches and
enters the ready location. The edge is synchronized with the
scheduler to notify the dispatch where the thread’s schedul-
ing properties are made available for the scheduler through
its Identifier (i). The scheduling properties are mapped to
local integer variables C E T, C D and Priority, which with
respect to the thread specification are assigned to 10 (worst
case execution time considered here), 30 and 1 respectively2.
Input ports of a thread are mapped (Rule TInterf) to local
variables (e.g. InputPort 1) which are assigned at dispatch
by global variables (e.g. Connection 1) mapped (Rule TC)
from the connections the input ports are involved with.

Arrival of new input is accessible at the next dispatch
or at specified input times (requires modification of the
automaton). Threads in the ready location are assigned to
be executed, by the processor component they are bound
to, according to a scheduling policy property. Assuming a
scheduler with fixed priority scheduling policy with preemp-
tion, the thread with the highest priority is selected to run on
the processor and thus transits, through synchronization with
the scheduler, to the running location. No more than one
thread is allowed to be in a running location simultaneously
where a running thread can be preempted if a thread with
higher priority enters the ready location. A thread in the
running location that completes its execution transits to the
awaiting dispatch location to repeat its life cycle. Data on a
thread’s output ports are transmitted through the connections
at a thread’s completion, that is, if the connections are
declared as immediate. The connections shown in Table I
are immediate (represented by ”–>”) and thus map to
the completion edge in the automaton. Output ports and
their connections are mapped in the same manner as with
the input ports. For delayed connections (represented by
”–>>”), the completion edge has to be extended with an
intermediate location guarded until the time of the thread’s
deadline.

1) The Scheduler Automaton: An AADL processor com-
ponent is mapped (Rule TPr) to a scheduler automaton such
as shown in Figure 4, which provides the required behavior

2The mechanism of handling scheduling properties of threads is solely
for representation purposes and is not derived from the AADL standard

runningready

awaiting_dispatch

cl <= Period

complete[Identifier]?

Connection_3 = OutputPort_1,
Connection_4 = OutputPort_2

preempt[Identifier]?

run[Identifier]?

cl >= Period
dispatched[Identifier]!

InputPort_1 = Connection_1,
InputPort_2 = Connection_2,
sch_info[Identifier][0]=C_E_T,
sch_info[Identifier][1]=C_D,
sch_info[Identifier][2]=Priority,
cl=0

Figure 2. The thread automaton.

of threads bound to a processor. A detailed description of
its elements can be found in [5]. The automaton includes
two clocks per thread, lists and functions with corresponding
variables to handle the thread execution and preemption. The
reason for having two clocks per thread (sch clocks[i][2] is
a list of clocks in sets of two, each set referenced by a thread
identifier i) is that the UPPAAL language does only allow
reset and comparison of clocks, i.e., clocks cannot be read
or assigned/set. Because of these constraints, a preempted
thread’s time of completion can not be obtained solely from
its execution time. In order to model thread preemption, a
method considering the execution time of the threads causing
preemption is used to calculate preempted threads’ time of
completion.

The method is illustrated in Figure 3. A, B and C are
denotations for threads where priority of A < priority
of B < priority of C. CA is the execution time of A
and DA is the deadline for A. cA (sch clocks[i][0]) and
dA (sch clocks[i][1]) are clocks for A, which are used to
measure the time of completion and the time of a missed
deadline respectively. rA is a variable used to summarize
the time required to complete thread A and all – during
the execution of A – dispatched threads with priority higher
than A. As shown in the illustration, the time of completion
for thread A is when the comparison cA = rA evaluates
to true. In addition to this comparison, dA > DA should
not evaluate to true before or while A’s completion. The
comparison is used for schedulability analysis where an
evaluation to true indicates a missed deadline. Note that we
are illustrating the method explicitly for thread A though
the methodology is applied to each thread. A formal proof
of the methodology is presented in [6]. Furthermore, the
behavior of the scheduler assumes immediate switching-
time of threads. If the processor the threads are bound to
is specified with a Thread Swap Execution Time property,
the scheduler has to be modified with intermediate locations
delaying the switching-time according to the specified prop-
erty.

The scheduler is initially in the Empty location, awaiting
until the occurrence of a dispatch. When dispatch occurs,
the scheduler transits to the Schedule1 location whereby
the corresponding thread is added to the ready queue via
the schprotocol() function and its deadline clock is reset
(corresponds to dA = 0 in Figure 3). The Schedule1

location is a committed repetition of the Empty location,
allowing several threads to be dispatched (through the edge
to the same location) simultaneously. Succeeding to all
simultaneous dispatches, the scheduler synchronizes with the
first thread in the ready queue and transits to the Running
location through one of two different edges depending on
which action should be executed. If the number of preempted
threads is zero, or if the number is more than zero and the
latest preempted thread is not the first in the ready queue,
the execution time clock of the thread to be run is reset
(corresponds to cA = 0). If the number of preempted threads
are more than zero and the latest preempted thread is the
first thread in the ready queue, the scheduler transits to
the Running location without reseting its execution time
clock since it already has been reset (corresponds to the
start of execution of A after preemption by B and C).
The scheduler remains in the Running location until the

B

C

r
A
= C

A
+C

B

r
A
= C

A
+C

B
+C

C

t

A

c
A
=0

d
A
=0

r
A
=C

A

c
A
=r

A

d
A
>D

A
?

Figure 3. Thread execution schema for threads A, B and C, where ↑
indicates dispatch and ↓ indicates completion.

running thread completes its execution, until another thread
is dispatched, or until the running thread misses its deadline.
If a running thread completes its execution (corresponds to
cA = rA), the scheduler transits to the ”anonymous location”
through one of two different edges. Note that the running
location is modeled with an invariant in order to force a
fire of the completion-edge at the time of completion. The
two edges have guards for execution time where additional
expressions are used to differentiate between a preempted
thread and a thread which has not been preempted. If the
thread has not been preempted, the thread is simply removed
from the ready queue through the completion() function. A
preempted thread, on the other hand, is not only removed
from the ready queue, but also from the preempt stack.
From the ”anonymous” location, the scheduler transits to the
Empty or Schedule1 location depending on whether there are
any dispatched threads left or not.

If a dispatch occurs when the scheduler is in the Running
location, an edge is fired to the Schedule2 location, where-
upon the thread is added to the ready queue and the corre-

sponding execution time clock is reset. Two different edges
are available from the Schedule2 location depending on if the
recently dispatched thread was scheduled as the first thread
in the ready queue or not. If scheduled as the first thread
in the ready queue, that is, if it preempts the latest running
thread, the scheduler transits to the Preemption location from
where the thread is synchronized for execution. Whereby the
edge from the Schedule2 location to the Preemption location,
the preempted thread is added to the preempt stack and
preempted time is added – to all preempted threads – through
the addTime() function (corresponds to rA = CA + CB or
rA = CA + CB + CC). On the other hand, if the recently
dispatched thread does not cause a preemption, no further
actions are taken other than adding preempted time – if the
thread is scheduled prior to currently preempted threads –
to preempted threads, through the checkTime() function.

The edge from the Running location to the MissedDead-
line location is modeled for schedulability analysis. Or to be
more specific, to provide effective means for checking that
control flows do not contradict their scheduling constraints.
If the edge is fired (corresponds to dA > DA), it indicates
a missed deadline for the currently running thread. Hence,
all direct, internal and indirect paths can be verified to be
consistent with the scheduling properties simply by checking
if the MissedDeadline location is reachable in the corre-
sponding timed automata paths. Note that specified priorities
of threads may contradict the modeled interactions among
threads (incorrectly specified priorities may prevent interac-
tions to take place although they are modeled), however, the
mere ability to exercise the UPPAAL model according to the
path imply consistency with the priorities. Furthermore, note
that a fire of the edge to the MissedDeadline location yields
a deadlock in the system due to the design of the model and
not due to the dynamic semantics of AADL, which has to
be considered at deadlock analysis.

IV. CASE STUDY

In this section we will present an overview of the results
from applying the verification technique to a safety-critical
fuel level system developed by a major vehicle manufacturer.
As in any technique based on a state-space search, the
practical applicability and scalability is typically limited due
to the state space explosion problem. For this reason, the
main goal is to validate that the extensive set of relations
that must be exercised does not cause a state space explosion
problem. In this sense, only Goal 1 of the verification
technique is necessary to pursue in the case study.

The functionality of the Fuel level system is to estimate
the fuel level in the vehicle tanks and present this level
on the display located in the dashboard. Additionally, the
fuel level system must warn the driver if the fuel level is
below a predefined level. The functionality is deployed on
two ECUs (Electronic Control Unit), one is responsible for
estimating the fuel level (called the Estimator) and the other

MissedDeadline

PreemptionSchedule2

Running
sch_clocks[ready_queue[0]][0]<=
sch_info[ready_queue[0]][0]+preemptedTime()

Schedule1Empty

sch_clocks[ready_queue[0]][1]>sch_info[ready_queue[0]][1]

((nr_preempted==0) or (nr_preempted>0 and ready_queue[0]!=preempt_stack[nr_preempted-1][0]))
and sch_clocks[ready_queue[0]][0]>=sch_info[ready_queue[0]][0]

complete[ready_queue[0]]!

completion(ready_queue[0]),
threads--

(nr_preempted>0 and preempt_stack[nr_preempted-1][0]
!=ready_queue[0]) or nr_preempted==0

run[ready_queue[0]]!

sch_clocks[ready_queue[0]][0]=0

nr_preempted>0 and preempt_stack[nr_preempted-1][0]
==ready_queue[0]

run[ready_queue[0]]!

nr_preempted>0 and ready_queue[0]==preempt_stack[nr_preempted-1][0] and
sch_clocks[ready_queue[0]][0]>=sch_info[ready_queue[0]][0]+preemptedTime()

complete[ready_queue[0]]!

completion(ready_queue[0]),
preempt_stack[--nr_preempted][1]=0,
threads--

run[ready_queue[0]]!

sch_clocks[ready_queue[0]][0]=0

ready_queue[0]==check_preempt
preempt[ready_queue[1]]!

preempt_stack[nr_preempted++][0]=ready_queue[1],
addTime()

ready_queue[0]!=check_preempt
checkTime(check_preempt)

i: int[0,N-1]
dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
threads++,
check_preempt = i

threads==0

threads>0

i: int[0,N-1]

dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
checkTime(i),
threads++

i: int[0,N-1]

dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
threads++

Figure 4. The scheduler automaton.

one is responsible for displaying it (called the Presenter).
The ECUs are interconnected by a CAN (Controller Area
Network) bus. The system has one sensor located in the
fuel tank to sense the fuel volume, and two actuators, a
fuel level display and a low fuel level lamp, to display the
corresponding information to the driver.

As an illustration of the complexity of the system and
the verification process we informally describe the control-
flow and data-flow related to the Estimator ECU, which
(graphical) AADL model is shown in Figure 5. The fuel level
estimation begins with the fuel level sensor which outputs
a voltage signal to the Estimator ECU. The received signal
is initially processed by an A/D converter, and then trans-
formed into the corresponding fuel volume in percentage
(not shown in the Figure). The Estimator has a software
layer called Basic Software (B-Software In, B-Software Out)
modeled as a process subcomponent ”BasicSoftware”. The
SoftwareIN receives the converted value and stores it to the
RTDB (Real Time Data Base). Subsequently, the fuel level
estimation function (FuelEstimation) reads the converted
fuel level value from the RTDB, and uses it to estimate
the fuel level (the complexity of the estimation steps is
not shown in the example). The result is written to the
RTDB. The stored result will be read by 1) SoftwareOUT
which forwards the result to the second ECU (Presenter)
via a CAN (Controller Area Network) bus to present the
fuel level on the vehicle dashboard and 2) the fuel level
warning function (FuelLevelWarning) which evaluates if the
fuel level is under a predefined value or not, and writes
the result to the RTDB. The result of the evaluation is read
by the SoftwareOUT which forwards it to the presenter
via the CAN bus, to activate the warning lamp if the

Figure 5. Graphical AADL representation of the Estimator system.

fuel level is too low. The Estimator has numerous other
tasks, but they are not involved in the fuel level estimation
system and therefor abstracted as a single task in the AADL
specification. Each task in the fuel level estimation system
has specific properties regarding execution time, deadline
and priorities.

The AADL specification was transformed according to
the rules in Section III-A to a timed automata model,
whereupon the UPPAAL model checker was used to verify
completeness and consistency. Observer automata [7] and
auxiliary variables were used to exercise the specific verifi-
cation sequences and Time Computation Tree Logic (TCTL)
queries were used to draw the conclusions. The verification
process showed no sign of excessive use of memory or
time. As a benchmark, we present the time consumption
and memory usage for deadlock analysis in a breath-first

search order. The state exploration was performed on a PC
with a Intel(R) Core(TM) i7-2670QM (2.2 GHz, 6MB L3
Cache) processor and a Windows 7 64-bit operating system.
The time consumption resulted in 2.4s whereas the memory
usage resulted in 2.2MB.

V. RELATED WORK
Several studies have proposed a formal semantics through

transformations to constructs in a state-based formalism. A
mapping of AADL behavioral semantics into Petri Nets is
presented in [8], where the objective is to verify that the
system is free from deadlocks and that data communication
among threads are correct. The methodology does not pre-
serve any timing constraints of the AADL model due to the
lack of timing expressiveness of the target language. Yang
et al. in [9] define formal semantics of a synchronous subset
of AADL in both TASM [10] and Timed Transition Systems
(TTS). A definition of formal semantics in TTS enables
proofs of semantic-preservation to be generated during the
model transformation from AADL to TASM. The notion of
scheduling protocols is not mentioned, and the semantics is
restricted to non-preemptive scheduling. In [11], a transla-
tion to the BIP (Behavior Interaction Priority) language is
defined in a natural language and enables simulation and
formal verification. The definition is on a high abstraction
level and lacks a precise semantics. In [12], a fixed-priority
scheduling semantics is transformed into TTS through an
intermediate Fiacre model. The paper does not present any
translation rules, or a translation algorithm, and solely non-
preemptive scheduling is considered. A single study [13]
uses UPPAAL as the formal underpinning for schedulability
verification. However, the translation does not consider pre-
emptive scheduling or data communication, thus it cannot
be used for our purpose.

VI. CONCLUSION

Achieving high dependability of real-time embedded sys-
tems requires effective and efficient fault avoidance tech-
niques. In this paper, we present an overview of a verification
technique providing means for automated fault avoidance
when developing systems designed in AADL. Automation
of the verification technique is achieved through a formal
and implemented semantics of a subset of AADL through
semantic anchoring. The formal and implemented semantics,
in addition, enables simulation of AADL specifications.
Timed automata constructs in UPPAAL are used as the
formal underpinning, which semantics is not only formally
specified but also implemented. The technique was validated
against a safety-critical fuel level estimation system where
the case study showed that the verification criteria could be
met without any excessive use of memory or time.

REFERENCES

[1] As-2 Embedded Computing Systems Committee SAE, “Ar-
chitecture Analysis & Design Language (AADL),” SAE Stan-
dards no AS5506, November 2004.

[2] A. Johnsen, P. Pettersson, and K. Lundqvist, “An
Architecture-Based Verification Technique for AADL Spec-
ifications,” in Software Architecture, ser. Lecture Notes in
Computer Science, I. Crnkovic, V. Gruhn, and M. Book, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6903, pp. 105–113.

[3] G. Behrmann, R. David, and K. G. Larsen, “A tutorial on
UPPAAL.” Springer, 2004, pp. 200–236.

[4] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland,
D. Chemouil, and D. Thomas, “The AADL behaviour annex
– experiments and roadmap,” in ICECCS ’07: Proceedings
of the 12th IEEE International Conference on Engineering
Complex Computer Systems. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 377–382.

[5] A. Johnsen, “Fixed-Priority Preemptive Scheduling Semantics
of AADL in UPPAAL Timed Automata,” Mälardalen Univer-
sity, Tech. Rep., July 2012.

[6] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi, “Schedu-
lability analysis of fixed-priority systems using timed au-
tomata,” Theor. Comput. Sci., vol. 354, pp. 301–317, March
2006.

[7] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson, “Specifying
and Generating Test Cases Using Observer Automata,” in
Proc. 4 th International Workshop on Formal Approaches to
Testing of Software 2004 (FATES04), volume 3395 of Lecture
Notes in Computer Science. SpringerVerlag, 2005, pp. 125–
139.

[8] X. Renault, F. Kordon, and J. Hugues, “From AADL Ar-
chitectural Models to Petri Nets: Checking Model Viabil-
ity,” in Proceedings of the 2009 IEEE International Sympo-
sium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, ser. ISORC ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 313–320.

[9] Zhibin Yang and Kai Hu and Jean-Paul Bodeveix and Lei
Pi and Dianfu Ma and Jean-Pierre Talpin, “Two Formal
Semantics of a Subset of the AADL,” Engineering of Complex
Computer Systems, IEEE International Conference on, vol. 0,
pp. 344–349, 2011.

[10] M. Ouimet, “TASM Language Reference Manual,” Mas-
sachusetts Institute of Technology, USA, Tech. Rep., 2006.

[11] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis, “Models
in software engineering,” M. R. Chaudron, Ed. Berlin,
Heidelberg: Springer-Verlag, 2009, ch. Translating AADL
into BIP - Application to the Verification of Real-Time
Systems, pp. 5–19.

[12] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Zilio, M. Filali,
and F. Vernadat, “Formal Verification of AADL Specifications
in the Topcased Environment,” in Proceedings of the 14th
Ada-Europe International Conference on Reliable Software
Technologies, ser. Ada-Europe ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 207–221.

[13] Q. Liu, S.-l. Gui, and L. Luo, “Schedulability verification of
AADL model based on UPPAAL,” Computer Applications,
vol. 29, no. 7, pp. 1820–1824, 2009.

