
Submitted to:
FTSCS 2012

c© J. Suryadevara, L.Yin
This work is licensed under the
Creative Commons Attribution License.

Timed Automata Modeling of CCSL Constraints

Jagadish Suryadevara
Mälardalen Real-Time Centre (MRTC)

Mälardalen University, Sweden
jagadish.suryadevara@mdh.se

Ling Yin
Institute of Software Engineering

East China Normal University, Shanghai, China
yinling86@gmail.com

The UML profile MARTE includes CCSL (Clock Constraint Specification Language) for specifying
logical (synchronous/asynchronous) as well as chronometric timing constraints. A reference seman-
tics for CCSL has been defined and transformation techniques proposed e.g. CCSL to Promela.
In this paper, we present transformation of CCSL into timed automata, to enable verification with
UPPAAL modelchecker. Further, we discuss how the transformation approach supports modeling
multiple timebases, timebase relationships and corresponding timing constraints.

1 Introduction

Formal semantics and robust transformation techniques are prerequisites for successful application of for-
mal methods in industrial safety-critical applications. For real-time and embedded systems (RTE), UML
(Unified Modeling Language) provides MARTE (Modeling and Analysis of Real-Time and Embedded
systems) Profile1. MARTE includes Clock Constraint Specification Language (CCSL), for specification
of logical and physical clock constraints; synchronous, asynchronous, and chronometric time. Also, a
reference semantics for a kernel subset of CCSL has been defined [1]. Further, Mallet & Yin have pro-
posed a ’constructive approach’ for transforming CCSL into Promela and also proved the correctness by
checkpoint−bisimulation approach[3].

In this paper, we describe a transformation technique for CCSL specifications into timed automata,
the input language for UPPAAL modelchecker [2]. The approach is similar to the above mentioned
transformations for Promela. However, the differences exist due to the flexibility and time modeling
features in UPPAAL. For example, in addition to intuitive, visual specifications, it is simpler to model
coincident instants using urgent(u) and committed(c) locations in UPPAAL. Further, UPPAAL supports
modeling chronometric time using clock variables and clock invariants. Finally, we will also discuss
how the proposed transformation can support modeling multiple timebases and timebase relationships as
defined in an extension of TADL(Timing Augmented Description Language)2 [4] .

2 CCSL: Clock Constraint Specification Language

CCSL supports specification of logical and physical timing constraints; while logical constraints address
the functionality and associated causality, physical constraints concern the chronometric time. Timing
constraints in CCSL are of three kinds: synchronous, asynchronous and mixed. Synchronous constraints
rely on coincidence relation between the clock instants. For example, ’subclocking’ specifies that
each instant of the subclock must coincide with one instant of the superclock. Asynchronous constraints
are based on precedence relation between clock instants. For example, s precedence specifies that an

1Specialization of a subset of UML elements for a given domain.
2In the context of EAST-ADL architectural modeling for Automotive domain.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Timed Automata Modeling of CCSL Constraints

instant of a clock (strictly) precedes the corresponding instant of another clock. Non-strict ’precedence’
is a mixed constraint; specifies that a clock instant precedes or coincides the corresponding instant of
another clock. Another example of a mixed constraint: ’ c = a delayedFor n on b’ specifies that c
coincides with the n-th tick of b following a tick of a, where a and b are asynchronous.

3 Checkpoint Transition Systems & CCSL

Formally, a CTS (Checkpoint Transition System) is a tuple T = {S,A,→, I,cl p}, where S is a finite set
of states, cl p : S→ {0,1} such that s ∈ S with cl p(s) = 1 is called a checkpoint. A = A∪ τ , A is a finite
set of actions and τ is an invisible action. For each initial state i ∈ I ⊆ S, cl p(i) = 1. →⊆ S×L×S is the
set of transitions, L = P(A). A label l ∈ L is a set of actions, representing the simultaneously performed
actions during that transition.

Figure 1: CCSL constraints: (a) a alternatesWith b (b) a subClock b

CCSL constraints can be modeled as CTS. For example, the CTS of ’a alternatesWith b’ is
shown in Fig. 1. A transition in a CTS represents a valid ticking configuration of the clock constraint.
Every state is marked as a checkpoint. If no clock ticks, the constraint is not violated. This intuitive
formalism makes it easy for further transformations of CCSL; but, properties can only be verified at
states corresponding to the checkpoints of the CTS. Further details of CTS & CCSL can be found in [3].

4 Timed Automata Specification of CCSL

A timed automaton is a tuple < L, l0,C,A,E, I >, where L is a set of locations, l0 ∈ L is the initial
location, C is the set of clocks, A is the set of actions, co-actions and the internal τ-action, E ⊆ L×A×
B(C)×2C×L is a set of edges between locations with an action, a guard, a set of clocks to be reset, and
I : L→ B(C) assigns clock invariants to locations. Further details of timed automata can be found in [2].

For each CCSL constraint, we define a timed automaton based on its CTS representation. It mod-
els the activation conditions, using the attributes ’must tick’ and ’cannot tick’. For example, if
both are false, a non-deterministic choice of ’tick’ or ’not-tick’ is made globally. Also, asynchronous
constraints are state-based, hence the state is encoded and updated locally after each global ’fireable’
step that changes the clock configuration. Synchronous constraints are state-less but depend on clock
ordering, e.g. for subclocking, a subclock ’tick’ enforces a superclock ’tick’.

Logical clocks, Instants, Clock ordering, and non-determinism. In Fig. 2 (a), we present timed
automata modeling of logical clocks. A clock instant is modeled through a global non-deterministic
step, also a timed automaton shown in Fig. 2 (b), using synchronization channel fire. Clock ticks
are based on its attribute values must tick (m) and cannot tick (c); an inconsistency i.e., when both
attribute values are true leads to the location ’ClkErr’. The clock tick itself is denoted by a boolean



J. Suryadevara, L.Yin 3

variable ’t’ and a (broadcast) synchronization channel ’x’. Thus the logical clocks (timed automata)
composed with the global ’triggering’ automaton represent the ’ f irable’ phase for the clocks.

Figure 2: (a) Logical clock. (b) Instance activation and clock ordering

Modeling asynchronous constraints. In Fig. 3(a), we present a timed automata model of an asyn-
chronous constraint a alternatesWith b (based on the CTS in Fig.1 (a)). In enable phase (location
Start to Fire) the attributes ’cannot tick’ (c) may be set i.e. ’ca’ or ’cb’ for logical clocks ’a’ and ’b’
based on the state ’st’. In update phase (End to Start), after the global f ireable phase, the state ’st’ is
updated based on the current state and the current tick values ’ta’ and ’tb’ (of ’a’ and ’b’ resp.).

Figure 3: (a) a alternatesWith b (b) a subClock b

Modeling synchronous constraints. In Fig. 3(b), we present a timed automata model of a syn-
chronous constraint: a subClock b (based on the CTS in Fig.1 (b)). It is state-less and depends on
the clock ordering; b < a. The sub-enable phase (location Pre to Fire) occurs ’during’ the global fireable
phase (and hence so called) and immediately after the super clock ’b’ f ires. The model includes a stricter
version of causality between ’a’ and ’b’ using the boolean value ’tight’; if ’a’ cannot tick ’b’ also cannot
tick (ca⇒ cb) and if ’b’ ticks ’a’ must tick as well (tb⇒ ma).

5 TimeBases and TimeBase Relationships

In automotive domain, the need for explicit modeling of timebases and timebase relationships is identi-
fied. For example, in the context of East-ADL architectural modeling, the associated timing specification
language TADL (Timing Augmented Description Language) has been extended to support timebases and
timebase relationships [4]. The automata modeling of CCSL constraints as described in previous section
can be extended to support modeling timebases and timebase relationships. This is due to clock variables
in timed automata that can be used for modeling chronometric time.

Modeling Unit, Dimension, TimeBase and TimeBase relationships. In TADL, a TimeBase is de-
fined in terms of a TimeDimension and Time Unit. For example, Eqn.1 below defines a timebase ’ecu1’



4 Timed Automata Modeling of CCSL Constraints

in terms of dimension universalTime and micros as units. Similarly we can define timebase ’ecu2’. A
timebase relation between ecu1 and ecu2 is also defined below.

TimeBase ecu1{dimension universalTime precisionFactor 0.1 precisionUnit micros}
TimeBaseRelation tbr{(1.0ms on ecu1) = (2.0ms on ecu2)}

(1)

Figure 4: (a) universalTime Dimension (b) ECU1 TimeBase (c) ECU2 TimeBase

In Fig. 4.(a), we model universalTime as a timed automata3 and clock variable x represents the
units i.e. micros (ms). The timebases ecu1 and ecu2 are defined as global activation ’clocks’, e.g.,
Fig. 2(b) hiding the (logical) clock ordering, for the timing constraints defined w.r.t timebases ecu1 and
ecu2 respectively. When the automata in Fig.4 are composed, ecu1, ecu2 timebases are related w.r.t the
time dimension universalTime as defined by the Eqn. 1 i.e., ecu1 timebase is twice faster than ecu2
timebase w.r.t the universalTime.

6 Conclusions

In this paper, we have presented an approach for timed automata modeling of CCSL timing constraints
in MARTE (UML) profile for real-time and embedded systems. As timing properties are crucial in
safety-critical systems, the approach paves the way for formal verification with UPPAAL, an efficient
modelchecker. However, the approach needs to be validated through an industrial case study. Further,
due to the underlying check-point transition system, property specification templates needs to be defined
for different classes of properties that can be easily verified for the transformed CCSL specifications.

References
[1] Charles André (2009): Syntax and Semantics of the Clock Constraint Specification Language (CCSL). Rapport

de recherche RR-6925, INRIA. Available at http://hal.inria.fr/inria-00384077.
[2] Gerd Behrmann, Alexandre David & Kim G. Larsen (2004): A Tutorial on UPPAAL. In M. Bernardo &

F. Corradini, editors: International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004. Revised Lectures, Lecture Notes in Computer Science 3185, Springer
Verlag, pp. 200–237. Available at http://doc.utwente.nl/51010/.

[3] Frédéric Mallet & Ling Yin (2012): Correct Transformation from CCSL to Promela for verification. Rapport
de recherche RR-7491, INRIA. Available at http://hal.inria.fr/hal-00667849.

[4] Marie-Agnés Peraldi-Frati, Arda Goknil, Julian Deantoni & Johan Nordlander (2012): A Timing Language for
Specifying Multi Clock Automative Systems: The Timing Augmented Description Language. In: 17th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS). Available at http:
//hal.inria.fr/hal-00687562.

3With timed automata modeling, a dimension can also be considered as an implicit timebase.

http://hal.inria.fr/inria-00384077
http://doc.utwente.nl/51010/
http://hal.inria.fr/hal-00667849
http://hal.inria.fr/hal-00687562
http://hal.inria.fr/hal-00687562

	Introduction
	CCSL: Clock Constraint Specification Language
	Checkpoint Transition Systems & CCSL
	Timed Automata Specification of CCSL
	TimeBases and TimeBase Relationships
	Conclusions

