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Abstract—This paper presents a preliminary study of applying
partitioned scheduling in the seL4 microkernel. This microkernel
is the first operating system kernel ever to be formally proven for
its functional correctness. Even though the kernel is completely
verified it still delivers high performance comparable to other
L4 kernels. The seL4 kernel implementsisolation of components
in terms of the memory resource and security. However, there
is still a missing part when it comes to isolation and that is
time partitioning. Time partitioning can be implemented inside
the kernel (privileged mode) or in user space (user mode). The
latter is done using regular user-space thread(s) and can easily
be modified while the other approach requires re-verification
of the kernel whenever modifications to the time-partitioning
policy is done. On the other hand, having the time-partitioning
mechanism in privileged mode would yield better performance.
We have implemented time partitioning (partitioned scheduling)
in the seL4 user space and we elaborate on its performance in
terms of overhead costs.

Index Terms—hard real-time systems, partitioned scheduling,
implementation

I. I NTRODUCTION

Introduction Software defects (bugs) is something that is
difficult to avoid, especially when the code base is large
and complex. Take for example a relative small code base
like the (secure embedded L4) seL4 kernel which comprises
around 9000 Source Lines Of Code (SLOC). The code base
is relatively small compared to, for example, the Linux kernel
(2.6.35) that has 13.5 million SLOC [1]. Still, the verification
process of the seL4 kernel took 20 person years to perform
and it revealed 144 software defects [2]. A system is definitely
not safe and reliable if the underlying software platform isnot
verified. Critical software applications are not reliable if other
applications on the same platform can disrupt them through
shared resources such as memory, CPU etc. On the other
hand, software development in domains such as the automotive
industry [3] and the avionics industry [4] strive towards having
integrated applications on the same platform.

The key idea with seL4 is simple. First of all, make sure that
the code base, which has 100% control of the system, is 100%
free from defects. It is not enough to ensure that the application
code is correct or if the applications are compositionally
developed with well defined components etc. If the kernel
crashes then everything crashes. Secondly, make sure that

the applications are 100% protected from each other by the
means of partitions. Partitoned software is more robust than
flat software since defects will only bring down a delimited
part of the software and not the whole system. Partitioning is
a powerful mechanism and it has been adopted by the avionics
industry in form of the ARINC653 [4] software specification.
However, isolation is of course difficult to achieve becausewe
are dealing with many sources, e.g., memory, CPU, security
etc. seL4 has come a long way when it comes to partitioning.
Applications accessing memory are limited to their assigned
address space (similar to ARINC653). Also, all system callsto
the kernel and Inter-Process Communication (IPC) is strictly
controlled by seL4 through a capability-based access-control
model. This gives the user the possibility to configure access
rights and thereby isolate software components from each
other.

Thread scheduling in seL4 is based on priorities. The policy
is based on round-robin scheduling of threads when they have
the same priority level. In essence, if threads have different
priorities then seL4 resembles the scheduling in VxWorks
andSCHED_FIFO in Linux, i.e., the highest priority thread
will run until it performs a blocking operation and thread
preemption occurs when higher priority threads become active
(when it stops blocking/suspension). Recall that seL4 usestime
slices (round robin) for threads with the same priority, hence,
this resembles thread scheduling in ARINC653 but limited to
one thread per partition and a fixed time slice.

Goal We want achieve protection of real-time applications.
We focus on the protection of the applications temporal
aspects.

Method We want to use partitions to partition applications,
hence, it requires partitioning mechanisms in the scheduling
policy. We refer to this partitioning mechanism aspartitioned
scheduling(on a uni-core platform). The termpartitioned
schedulingshould not be confused with the corresponding
term in the context of multi-core scheduling.

Problem The current thread scheduling in seL4 offers poor
time partitioning of real-time applications. At best, threads can
be scheduled in individual partitions (one thread per partition)
in a fair manner (round robin) which is not a suitable policy
for real-time embedded systems. This is illustrated in Figure 1
where taskA has the highest priority, taskB and taskC have



the same priority level, and taskD has the lowest priority.
TasksB and C are scheduled in a fair manner using round
robin between timez andx (since they have the same priority).
We see that tasksB and C are scheduled using enforcement
(which resembles partitions) in order to implement round-
robin time-slices. If threads have different priority levels
then there is no support for partitioned scheduling. This is
illustrated in Figure 1 between timew andz, and also between
time x andy.

time
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Task

Fig. 1. Scheduling in seL4.

We aim at giving seL4 a flexible scheduling policy (well
suited for real-time systems) by supporting time partitioning of
applications. This form of scheduling is illustrated in Figure 2
where all tasks are confined inside a partition (constrainedby
the partition budget) and the partitions are scheduled period-
ically according to Earliest Deadline First (EDF). Partitioned
scheduling is the only lacking piece in seL4 which would make
it a complete resource-partitioning aware kernel.
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Fig. 2. Partitioned scheduling on uni-core processor.

Possible solutionsThere are in essence 2 ways of support-
ing partitioned scheduling in seL4:

1) Implement the partitioned scheduler (PS) in user mode.
Poor performance but flexible solution.

2) Implement the PS in privileged mode.Good perfor-
mance but static solution.

We see that there is a performance difference between (1)
and (2). This is obvious since solution (1) implements the
scheduler in a user thread while (2) can keep the scheduler
inside the kernel itself, hence, less thread context-switching.
The downside with solution (2) is that any change of the
scheduling policy implies re-verifying the seL4 kernel. Hence,
we are more or less stuck with one or a few defined policies.

In this paper we adopt to solution (1). The obvious reason
behind this choice is that we cannot access the seL4 kernel
source code. But even if we could, we do not possess the
knowledge of re-verifying a kernel with 8700 SLOC using
the Isabelle/HOL theorem prover. Hence, we do not have a

choice. However, as future work, it would be very interesting
to measure how much the performance difference is between
these two solutions (1 and 2). This is the main driver behind
this paper.

Our main goal is to develop a verified partitioned-scheduler
for the seL4 user space. One important feature is that the
scheduler should have good performance (otherwise we ruin
the whole idea with seL4 since it is a high performance
microkernel). We have previously developed [5] such a verified
partitioned scheduler for VxWorks. However, it has poor per-
formance and a large model (with many states and transitions)
since it is based on timed automata. We intend to develop a
new scheduler but based on a different language than timed
automata. The first obstacle is to find out if it is possible
to implement partitioned scheduling in the seL4 user space.
Secondly, if possible in user space, implement a (manually
coded) prototype scheduler and observe the overhead.

Contribution In this paper we present a prototype PS
implemented for the seL4 microkernel. We will present exact
overhead measurements (with CPU cycle accuracy) of the im-
plemented scheduler itself and other related system overheads.
We cannot compare this solution to (2) since such a scheduler
does not exist yet but this prototype scheduler can be used
later as a reference when comparing against a verified (user
space) version. We consider the implementation presented in
this paper as our baseline.

Outline The outline of this paper is as follows: In Section II
we present the preliminaries. Section III presents the related
work. Further, Section IV describes the scheduler implemen-
tation and, in Section V, we evaluate the overhead of our
solution and related system overheads. Finally, Section VI
concludes our work.

II. PRELIMINARIES

Partitioning is, as mentioned, the primary method that seL4
uses to tackle software complexity since partitioning facilitates
verification and verification itself facilitates the handling of
software complexity. The partitioning mechanism is also used
by the avionics industry (ARINC653) to build safe systems.
When it comes to partitioning of time, i.e., the CPU resource, a
common framework used (for example in ARINC653) is a two
level (hierarchical) scheduling scheme as depicted in Figure 3.
We can observe that there are two kinds of schedulers; global
and local. The global scheduler is responsible for scheduling
partitions and the local scheduler (if any) handles scheduling
of threads (tasks). The scheduling policy at any level can be
arbitrary. For example, ARINC653 defines static time-table
scheduling at the global level and Fixed-Priority Preemptive
Scheduling (FPPS) of periodic threads at the local level.

The main advantage with hierarchical scheduling is the run-
time mechanism that divides the CPU cycles among groups
of threads (a partition) instead of giving CPU resource dis-
tribution at the level of threads which is common in most
operating systems. Hence, the CPU resource is distributed
at the level of applications which is more suitable if we
let different applications share the same CPU. Examples of
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Fig. 3. Hierarchical Scheduling Framework.

applications can be a Virtual Machine (VM) or an engine
control management system. The division of the CPU becomes
easier, as well as the analysis, and we get a form of fault
isolation within partition bounds. Another benefit is that well
defined partitions with clear interfaces have the advantagethat
they are easier to reuse in other systems.

III. R ELATED WORK

A significant amount of work [6], [7], [8], [9], [10], [11],
[12], [13] has focused on analyzing hierarchically scheduled
systems, which initially originated from the open systems
principle [14] back in the 90’s. Open-systems analysis suchas
the work from Shinet al. [8] fits well with our implementation.

a) Scheduler implementations:The first papers dealing
with resource reserves of the CPU was Wanget al. [15]
and Oikawaet al. [16] (1999). Both approaches are based
on modifications of the Linux kernel in order to enhance
the real-time capabilities by introducing some form of CPU
reserves. Kimet al. [17] proposed the SPIRIT-µKernel back
in year 2000 that implemented a two-level hierarchical FPPS
framework. The next year, Regehret al. [18] presented an
implementation of hierarchical scheduling in Windows 2000.
In 2005, Linet al. [19] implemented a scheduler (Vsched) that
could schedule periodic type-2 virtual machines in Linux with-
out requiring modifications to the kernel. “Hijack” [20] (by
Parmeret al., 2007) is a resource reservation module for Linux
which does not require any modifications to the kernel itself.
SCHED DEADLINE by Faggioli et al. [21], [22] (2009) is
a scheduler that implements EDF scheduling of partitions in
Linux. AQuoSA (Adaptive Quality of Service Architecture) by
Palopoliet al. [23] (2009) is a resource reservation scheduler
for Linux based on feedback. More recently, Behnamet
al. [24] (2008), Heuvelet al. [25] (2009) and Inamet al. [26]
(2011) implemented two-level hierarchical FPPS in the com-
mercial real-time operating systems VxWorks,µC/OS-II and
FreeRTOS respectively. Yanget al. [27] (2011) implemented a
two level hierarchical scheduler in the L4/Fiasco microkernel
running L4Linux virtual machines on top.̊Asberget al. [28]
(2012) presented the ExSched scheduling framework which
is capable of hierarchical and multi-core scheduling in Linux

and VxWorks without requiring kernel modifications. Molnos
et al. [29] presents an implementation of a light-weight RTOS
with two-level scheduling running on top of a SoC platform.
The global scheduler resides within the RTOS itself along with
a few local schedulers. The RTOS and all of its schedulers
are claimed to be verified. Applications (in this case H264
and JPEG decoders) can either use their own (un-trusted)
local scheduler or one of the verified local schedulers in the
RTOS. The global scheduler is in charge of scheduling the
applications.

b) Scheduler modelling/verification:Few papers touch
upon the field of modelling and verification of hierarchical
(partitioned) scheduling. Mulleret al. [30], [31] presented
Bossa in 2002/2004. This framework is used for scheduler
development and has a domain specific language (DSL) which
can model schedulers (such as hierarchical schedulers). Bossa
supports scheduler synthesis for early Linux kernel versions.
Ha et al. [32] (2004) presented theorem-proving verification
of the Integrated Modular Avionics (IMA) scheduler in the
DEOS kernel (which is used in safety-critical domains). This
scheduler assigns a period and a time slice to each thread
and schedules them using Rate Monotonic (RM). Singhoffet
al. [33] (2007) presented modelling and schedulability analysis
of two-level hierarchical scheduling (using timed automata)
in their simulation tool Cheddar. Recently (2011),Åsberg
et al. [5] presented modelling, verification and synthesis of
two-level hierarchical FPPS. The synthesized scheduler was
integrated into VxWorks.

IV. I MPLEMENTATION

The PS implementation is based on the seL4 microkernel
version 1.11. Compilation was done using the cross-compiler
in Sourcery CodeBench Lite 4.6.3.

The PS prototype implements EDF scheduling of parti-
tions where each partition contains one thread each. Hence,
this scheduler is identical to theSCHED DEADLINE [21],
[22] scheduler in Linux. We have chosen not to add local
scheduling inside the partitions due to technical challenges
with implementing the periodic task model [34] in seL4. We
defer the work of adding a second layer scheduling to future
work.

It is easy to switch the EDF algorithm at the global
scheduling level to FPPS instead. Its just a matter of replacing
the deadline queue with a thread-priority queue.

Partitions have the parameters period (T), deadline (D) and
budget (Θ). The active partition with the smallest absolute
deadline will always be the current executing partition, i.e., the
priority of the partitions are dynamic depending on the current
absolute deadline. The reason for choosing EDF instead of
FPPS is because they have the same implementation complex-
ity and almost the same runtime overhead (EDF has one more
addition operation than FPPS) but EDF has in general better
CPU utilization and it generates less number of preemptions
compared to FPPS [35].

1seL4 http://www.ertos.nicta.com.au/software/seL4/home.pyl



seL4 has a sealed kernel since it is verified and any
modifications would invalidate the verification. Hence, we
are forced to implement the scheduler in a user thread. We
implemented the EDF PS in the root thread which is the first
thread to start at bootup. We set up this thread to be awakened
by periodic interrupts (Figure 4).

1. while(true) {
2. // Acknowledge the interrupt.
3. seL4 IRQHandler Ack(irq);
4. // Wait to receive interrupt notifications.
5. seL4 Wait (endpoint, &sender);
6. }

Fig. 4. Main loop in the PS.

We let the root thread be responsible for setting up the
partitions and creating threads (to schedule) and connect these
to their partitions. The thread body is represented in Figure 5.
We save a timestamp in the beginning of its execution so that
we can trace and record the execution of threads. Since we
do not have access to the kernel we cannot do proper thread-
execution recording which is important in order to debug the
scheduler.

1. void thread(void) {
2. long long tstamp;
3. // Timestamp when this thread started.
4. tstamp = getRDTSC();
5. log(tstamp);
6. while (1) ;
7. }

Fig. 5. Thread body.

A. Queue management

The core functionality of the EDF scheduler is the release
and deadline queue. The release queue keeps the release
times ordered with the smallest value first. The ordering
will decrease the thread-release overhead, especially since
element insertion and retrieval has O(1) complexity in our
implementation. The deadline queue has the thread absolute-
deadlines stored in a ordered fashion. Hence, the complexity
to determine the highest priority thread is also O(1). As
mentioned, deadlines are stored as absolute values, the same
as for release times. The reason for storing them as absolute
values (instead of relative [25]) is because we avoid the
complexity of having to decrement the relative time as time
progresses. However, the problem with absolute values is that
they must wrap around at some point (an unsigned 32 bit
integer will for example wrap at 4 294 967 296). We solve
this by keeping two data structures of the queue. The values are
stored in the second queue whenever there is a wrap around.
The queue itself is based on bitmaps, i.e., an element in the
queue is represented by a bit in an integer. The queue is
illustrated in Figure 6.

As the figure shows, bit 0 inbitmap[0] and bit 30 in
bitmap[2] is set which means that we have the two values
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Fig. 6. Representation of the bitmap queue structure.

1 and 95 stored in the queue currently. Thebitmap_nodes
structure keeps the information about which threads that are
represented in the bitmap queuebitmap. For example, there
are two threads, both with the value 1. The linked-list structure
in bitmap_nodes links the thread ID (through the linked
nodes) to the bitmap. The nodes are inserted/retrieved in
FIFO order in the linked list (this will minimize unneces-
sary task switches). Thebitmap_nodes structure could of
course be optimized in terms of memory usage by having
a bitmap_nodes structure with less elements and use a
hash function to map between it and the bitmap structure
(bitmap).

Recall the discussion about the problem with wrap arounds.
To solve this problem we have the data structures in Figure 6
replicated. So for example, assume we have a task with period
95. When the schedule reaches absolute time 95 then we
release the task and update its value in the release queue
(Figure 6). The next absolute release time for this task will
be 95 + 95 = 190. We wrap the new period value around 96
since the queue in this example can only represent the values
1−96. Hence, the new period value will be190−96 = 94. So
we insert the value 94 into the replicated queue. We always
keep one queue as the active one, hence, this means that we
first retrieve the elements in the active queue. When the active
queue is empty then we switch to the second queue and start
retrieving elements from this queue instead. Hence, the second
queue becomes the active queue. In this manner we form a
circular queue that wraps the element values.

The period and deadline values of all the partitions in
the system will dictate the length of the bitmap queue. The
length of the bitmap queue must be large enough to contain
the largest period/deadline value otherwise the wrapping will
not work. Using a hash table and/or small period/deadline
values may actually incur less memory overhead than non
bitmap-based queues. However, if the period/deadline value



distribution is too wide then it could be the other way around.
The positive aspect with a bitmap queue is that it only has a
time complexity of O(1) for both insertion and retrieval of
elements. As a comparison, one of the main Linux kernel
queue-structures is the Red Black Tree (RBT) which has a time
complexity of O(log n), i.e., worse than bitmap. For example,
SCHED DEADLINE [21], [22] uses RBT.

The reason why the bitmap queue has O(1) time complexity
is because it takes a constant time to set a bit in an integer
and the same goes for the retrieval of the least significant
bit. The time length to perform these two operations are
constant independent of the amount of elements (bits) stored
in the queue. The algorithm to retrieve the least significantbit
is shown in Figure 7. The algorithm systematically detects
bits and bit-shifts towards the least significant bit. Using
the corresponding CPU instructionffs did not affect our
experimental results significantly (Section V). However, using
this algorithm instead makes the implementation hardware
independent.

1. int my ffs(int the integer){
2.
3. int least signif bit = 1;
4.
5. if ( the integer == 0 )
6. return 0;
7.
8. if ( (the integer & 0x0000FFFF) == 0 ){
9. the integer>>= 16;
10. leastsignif bit += 16;
11. }
12. if ( (the integer & 0x000000FF) == 0 ){
13. the integer>>= 8;
14. leastsignif bit += 8;
15. }
16. if ( (the integer & 0x0000000F) == 0 ){
17. the integer>>= 4;
18. leastsignif bit += 4;
19. }
20. if ( (the integer & 0x00000003) == 0 ){
21. the integer>>= 2;
22. leastsignif bit += 2;
23. }
24. if ( (the integer & 0x00000001) == 0 ){
25. the integer>>= 1;
26. leastsignif bit += 1;
27. }
28. return least signif bit;
29. }

Fig. 7. Algorithm to retrieve the least significant bit in a 32bit integer.

The intention with this scheduler implementation is to
reduce the number of scheduler invocations (hence we have
chosen EDF) and to minimize the scheduler execution time
(hence the bitmap queues). We did this in order to keep the
overhead to a minimum, since having the scheduler implemen-
tation in user space is not efficient in general.

V. EVALUATION

This section presents our experiments with the PS imple-
mentation. We will present the measured overhead of the
scheduler itself and seL4 context switches. Further, we also
provide execution traces of threads scheduled by the PS and
we visualize these using the Grasp tool [36].

A. Hardware and software setup

Our PS implementation was executed in the Quick EMU-
lator2 [37] (QEMU), version 0.13.91, running on Linux open-
SUSE 11.4. QEMU is an open-source machine (processor)
emulator that emulates real hardware accurately down to CPU
cycle level. We configured QEMU to emulate an Intel 533
MHz Pentium3 Katmai processor (model 7, stepping 3). We
chose Pentium3 Katmai since it is reliable to use its timestamp
counter for time measurements. We will elaborate more on this
in the next section.

B. Time measurement

We chose to use the ReaD Time-Stamp Counter (RDTSC)
processor register (only for x86 architecture) for accounting
time since we wanted a low overhead (and high resolution)
facility for time measurements. The RDTSC instruction returns
the processor timestamp from a CPU register. This register
records the number of CPU clock-cycles since the processor
was last reset. However, there are well known issues which
can make RDTSC timestamping unreliable.

1) In multi-core architectures, cores may have different
values in their RDTSC registers. Hence, threads that
migrate from one CPU to another might read incorrect
timestamps since registers on different CPUs are not
synchronized.

2) Dynamic frequency scaling (called SpeedStep on x86)
will change the elapsed time between clock cycles,
hence, the counter value becomes unreliable.

3) Out-of-order execution can change the location of the
RDTSC timestamp in the source code. Hence, the times-
tamp may happen earlier or later than intended, giving
incorrect time measurements.

In order to tackle these issues we chose a processor (Pen-
tium3 Katmai) with only one core and no SpeedStep. Before
each call to RDTSC we put a CPUID instruction-call to
flush the instruction pipeline. This will serialize the instruction
queue in order to prevent out-of-order execution of the RDTSC
operation.

C. Overhead measurements

Figure 8 shows the measured overhead of the PS (without
rollback), PS using rollback when resuming threads (rollback
is used for tracing purposes, see Section V-D) and the seL4
context switch when switching from the scheduler thread to
another thread. Rollback means that a resume of a thread will
re-start the thread from its first instruction in its sequence of
code. Without the use of rollback, threads are resumed to the
last instruction they were at, prior to the thread preemption. If
rollback is not used then we can not perform task tracing (for
debugging purposes) since the trace point is located prior to
the first task instruction (on all tasks). A context switch using
rollback will re-start the task at the trace point, hence, this will
enable task tracing and the context switch will be registered
(see line 4 and 5 in Figure 5).

2QEMU www.qemu.org/



The server (partition) parameters were as follows; periods
(T ) were set randomly to 11, 12, 14, 17, 19, 21, 23, 25 and
28 time units while the budget (Θ) was set to 1 time unit
on all servers. Maximum server utilization (with 9 servers)
is approximately 52.5% and the time length that we ran the
systems and measured overhead was 5000 time units (seL4
ticks). We chose maximum 9 servers due to a limitation of
the memory allocation in seL4.

Fig. 8. Average overhead measurements of the PS (with and without rollback)
and seL4 thread context-switches.

The context switch was triggered by theseL4_Wait()
call from the scheduler thread. The figure shows the average
amount of CPU cycles it took at each scheduler invocation and
context switch for different server (partition) configurations
(2−9). The context switch overhead should be constant relative
to the number of servers running. We see a slight increase
which is likely due to measurement uncertainties such as
cache effects etc. However, the scheduler overhead of the PS
(with and without rollback) should increase as the number
of servers increase since more servers increase the risk of
multiple scheduling jobs (server releases and server budget-
depletions) happening at the same time during a scheduler
invocation. Simultaneous scheduling jobs, for example several
server releases, during a scheduler invocation will increase the
measured average time represented in Figure 8. The difference
in scheduler overhead (PS with rollback) when we compare
the configuration of 2 and 9 servers is only 14283 clock
cycles (26.8 µs) which is relatively small. This is due to the
effective O(1) queue management (Section IV-A) in the PS.
The overhead of PS without rollback is also increasing with
the number of servers but at a lower rate. The average number
of clock cycles for a scheduler invocation (with rollback) is
184661 (346 µs). PS without rollback is in average 113747
clock cycles (213 µs) per invocation which may be perceived
as long. On the other hand it is only two times the time length
of a context switch which is in average 58282 clock cycles
(109 µs).

As a comparison, the overhead of setting a timer (at the
global scheduling level) in a hierarchical scheduling frame-
work [27] in L4/Fiasco takes in average 236 µs on a 2GHz

AMD Athlon processor. Another comparison is the measured
time of a system call (seL4_Send(), seL4_Wait(),
seL4_ReplyWait()) in seL4 on an ARM Cortex-A8
800MHz which takes approximately 20 µs [38]. Another
example from [38] is the time it takes from the arrival of an
interrupt until a thread handler starts. This time was measured
to be 59.5 µs and 318.3 µs depending on whether certain
system calls were allowed (open system) or not (closed sys-
tem). [39] reported on inter- and intra-process communication
(IPC) overheads of 54 µs and 35 µs respectively, running
on an ARM1176 (416MHz) processor (with L4/Fiasco). The
comparisons are summarized in Table I.
Conclusively, it is difficult to draw any final conclusions from
our measurements. The comparisons we have made relate to
general system overheads in the seL4 and L4/Fiasco kernels.
Based on this, the overhead of the PS (without rollback) does
not seem overwhelming, i.e., this overhead is at least not
orders of magnitude larger than general system overheads in
seL4/L4/Fiasco kernels.

Measurement Platform Time (µs)
PS (with rollback) Intel Pentium3 533MHz (seL4) 346

PS Intel Pentium3 533MHz (seL4) 213
Context switch Intel Pentium3 533MHz (seL4) 109

Set timer in HSF [27] AMD Athlon 2GHz (L4/Fiasco) 236
System call [38] ARM Cortex-A8 800MHz (seL4) 20

Interrupt delivery [38] ARM Cortex-A8 800MHz (seL4) 59/318
IPC [39] ARM1176 416MHz (L4/Fiasco) 35/54

TABLE I
OVERHEAD COMPARISON.

Figure 9 shows the execution trace when the PS interrupts an
executing thread to perform a scheduling operation. It is then
followed by the seL4 context-switch execution. The context
switch was measured by timestamping the end of the PS
and the start of the next running thread. It is not possible
to measure the time (of the context switch execution) between
an interrupted thread and the PS due to that the interrupted
thread cannot timestamp the time when it gets interrupted.

D. Execution trace

Figure 10 shows a thread execution trace scheduled with
our EDF PS. The threads (denotedtask1, task2 and task3
in this figure) partitions had the period (T ) values 3, 4 and 5.
The budget (Θ) values were set to 1, 1 and 2 respectively.

As mentioned in Section V-B, we used the RDTSC instruc-
tion to timestamp the start and end of the thread execution.
These timestamp points were placed at the beginning of the
thread body and at the beginning and end of the PS code.
We also created a background thread with the lowest priority.
This thread represents the part of the trace when the scheduled
threads are not running. In order to be able to trace thread
preemptions, we simply restart (rollback) the thread to the
beginning of its body such that we can get a timestamp when
it gets re-scheduled by the PS.

The trace (Figure 10) was verified by comparing it with
a corresponding EDF trace from the TIMES tool [40]. Its
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Fig. 9. Execution trace of the PS (with rollback) and a context switch in seL4.

interesting to note that the FIFO order in the thread deadline-
queue prevents unnecessary preemptions when deadlines are
equal. This can be seen attask3s third instance.task1 is
released in the middle oftask3s execution with the same
deadline (15) but there is no preemption sincetask3 was
released beforetask1 and hence it is ahead oftask1 in the
deadline queue at index 15.

VI. CONCLUSION

The seL4 microkernel is a high performance kernel with
the uniqueness that the entire kernel is verified using theorem
proving. Hence, this makes the kernel suitable for safety-
critical systems. The principle of seL4 is to isolate applications
from each other and execute them on a safe and trusted plat-
form. This means that if an application is correctly constructed,
in terms of its functionality, then it will never be disrupted or
fail due to a faulty kernel or other error-prone applications.
One missing piece in the seL4 kernel is the partitioning of
time. A solution to this is to put the policy outside of the
kernel, i.e., in user space. The downside with this approachis
whether it is possible to perform scheduling from user space,
and secondly, it will cause a lot of overhead compared to
having the policy in the kernel instead. We have aimed at
giving answers to these two questions. Can we implement it
in user space, and if so, what figures do we get in terms of
overhead?

This paper presents a prototype O(1) partitioned scheduler
in the seL4 microkernel user-space. The scheduler is based on
the earliest deadline first algorithm and it schedules threads
periodically (in partitions) delimited by a budget capacity. We
have focused on keeping the overhead of the scheduler to a
minimum. This is done by choosing the earliest deadline first
algorithm to minimize the amount of preemptions, and by
selecting time-complexity O(1) queues with FIFO order for
equal valued elements.

We have presented the overhead of the scheduler when
scheduling 2−9 partitions. The time length of a scheduler
invocation does not increase much when the number of servers
is increased. The average overhead of a scheduler invocation
is approximately 2 times as large as a context switch (from
the scheduler to a thread). The total overhead of a scheduler
instance, including a scheduler invocation plus two context
switches, is approximately 431 µs. This value can be compared

with the observed interrupt latency (from interrupt to thread
handler) of 318 µs in an open system running on a platform
that is faster than ours (533MHz vs. 800MHz). But still, the
overhead is substantial. Two facts can still justify our measured
values. First of all, we used an outdated and slow CPU (for
the sake of getting reliable measurements). For example, if
our platform would have a frequency of 800MHz, then the
scheduler-invocation length would be 142 µs. Hence, it would
be comparable to the interrupt-latency time. Secondly, we
believe that further optimizations could decrease the amount
of overhead of our scheduler.

Future work includes optimizing the scheduler for perfor-
mance gains. If we manage to get it down to a reasonable level
then we might consider developing a new scheduler with the
same policy, but based on verification using theorem proving.
The idea is to use Event-B or Frama-C formal analysis and
verification, and try to develop a scheduler that is similar to the
scheduler presented in this paper (in terms of its source-code
and performance).
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