
Mälardalen University Licentiate Thesis
No.155

On the Development of
Hierarchical Real-Time

Systems

Mikael Åsberg

June 2012

Department of Computer Science and Engineering
Mälardalen University

Väster̊as, Sweden

Copyright © MikaelÅsberg, 2012
ISSN 1651-9256
ISBN 987-91-7485-075-8
Printed by Mälardalen University, Västerås, Sweden

Populärvetenskaplig
sammanfattning

Begreppet ”realtid“ används ofta i sammanhang där en uppgift genomförs i
samma tempo som ett pågående informationsflöde. Ett exempel kan vara ett
företag som övervakar sin egen verksamhet (inköp, leverans etc.) i realtid för
att på så sätt kunna korrigera avvikelser innan det är f¨or sent.

Inom det vetenskapliga området Datateknik har begreppet realtid (Real-
Time Systems) en helt annan innebörd. I det föregående exemplet finns det inga
direkt strikta krav på hur länge tidsfördröjningen kanvara från t.ex. ett inköp
till att systemet notifierar detta till användaren (men manräknar med att det
bör ske inom några minuter). En intressant observation är att det inte påverkar
företaget negativt om det dröjer någon minut extra p.g.a. överbelastning i
nätverket exempelvis. Med andra ord, man nöjer sig med en medelmåttig
prestation av systemet i avseende på tid. Däremot har den funktionella de-
len av systemet hårda krav på sig, t.ex. att korrekt data ska presenteras för
användaren.

Realtids system inom Datateknik kräver, utöver att systemen är funktionellt
korrekta, att de även håller alla satta tidsgränser. Om ett system har 1000
olika tidsgränser, varav dessa ligger i ordningen på några mikrosekunder, så
får aldrig en enda av dessa 1000 tidsgränser överskrida den satta tiden. En
sådan försening skulle kunna leda till katastrof där t.o.m. dödsfall skulle kunna
förekomma. Eftersom konsekvensen av en försening är såpass katastrofal, så
analyserar man och testar dessa system noga. En viktig aspekt är att varenda
del i systemet ska kunna analyseras med avseende på tid, såatt förutsägelser
kan göras innan systemet sätts i bruk. I många fall introducerar man feltol-
eranstekniker som hanterar situationer där en tidsgränsär överskriden, för att
minska eller helt undvika en katastrof.

i

ii

Ett av dagens stora mjukvaru/hårdvaru problem är att många system in-
nehåller en stor och nära ohanterlig mängd datorer och n¨atverk mellan dessa.
Ett exempel på en industri med dessa problem är fordonsindustrin. Problemet
är att antalet funktioner ökar (anti-sladd, parkerings-assistans etc.) vilket leder
till fler datorer. En bil är idag full av kablage och datorer vilket ökar vikt,
kostnad och komplexitet.

Målet är att minska antalet datorer (och kablage) genom att låta realtidsmjuk-
vara samsas på ett mindre antal datorer. Nya mjukvarustandarder för bilin-
dustrin bygger på detta koncept. Dessa mjukvaror har strikta tidskrav som
beskrivet ovan, vilket orsakar problem när dessa ska integreras. Integrerin-
gen är ett stort riskmoment eftersom tidsgränserna riskerar att brytas. Det kan
därför bli en dyr och svår uppgift att lösa.

Avsikten med denna licentiatavhandling är att hjälpa till att lösa denna
uppgift. I detta arbete använder vi oss av en teknik vid namn”hierarkisk
schemaläggning“ för att underlätta mjukvaruintegrering. Detta görs genom
att partitionera mjukvaror i separata delar, vilket gör systemet säkert och lätt
att analysera. Tekniken härrör från 60-talet men har ej applicerats i så stor ut-
sträckning p.g.a. att den inte har anpassats för användning inom olika
teknikområden.

Avhandlingen presenterar anpassningar av hierarkisk schemaläggning för
att göra den mer användbar. Vi presenterar en teknik som m¨ojliggör att köra en
realtidsmjukvara i en partition på ett operativsystem i prototypsyfte. Detta kan
ses som en förstudie för att testa en mjukvarupartition utan att behöva imple-
mentera och exekvera alla andra mjukvarupartitioner samtidigt. All program-
meringskod genereras automatiskt och passar de flesta realtidsoperativsystem,
inklusive Linux (standardversionen). Vi har även utvecklat två stycken partitions-
schemaläggare. Den ena är skriven manuellt för realtidsoperativsystemet Vx-
Works. I syfte att kontrollera dess korrekthet har en program-spårare utveck-
lats speciellt för denna typ av schemaläggare. Den andra versionen är mod-
ellerad och verifierad med tidsautomater. Dess programkod ¨ar automatiskt
genererad från modellen och passar de flesta realtidsoperativsystem. Dessa
två versioner har en avvägning vad det gäller prestanda gentemot korrekthet
(både tidsmässigt och funktionellt). Den verifierade schemaläggaren har sämre
prestanda än den manuellt utvecklade varianten. I det fortsatta arbetet ingår det
bl.a. att förbättra prestandan för verifierade schemal¨aggare.

Abstract

Hierarchical scheduling (also referred to as resource reservation) is a hot topic
within the research of real-time systems. It has many advantages including that
it can facilitate software integration, fault isolation, structured analysis, legacy
system integration etc. The main idea is to partition resources (processors,
memory, etc.) into well defined slots. This technique is rarely used in the most
common real-time applications; however, it is used in the avionics industry to
isolate error propagation between system parts, and to facilitate analysis of the
system.

Much of the research within resource reservation deals withtheoretical
schedulability analysis of partitioned systems, including shared resources (other
than the processor). We will in this thesis address more practical issues related
to resource reservation. We focus on implementation and prototyping aspects,
as well as verification and instrumentation. One of our assumptions is that we
deal only with fixed-priority pre-emptive scheduling (FPPS).

The first part in this thesis deals with individual software systems that may
have its own tasks as well as a scheduler and it is assumed to bepart of another
larger system, hence, we refer to this individual system as asubsystem. The
subsystem is assumed to be integrated together with other subsystems, but at
an early stage, we make it possible to simulate the subsystemrunning together
with the rest of the subsystems. This ”simulation“ does not require the actual
resource reservation mechanism, the only requirement is anoperating system
that supports FPPS. This pre-study may be a natural step towards the ”real“
integration, since each individual subsystem can be test-executed within its as-
signed partition. All subsystems are assumed to run together using a resource
reservation mechanism (during the actual integration). Wehave developed two
prototypes of this mechanism. The first prototype is hand-crafted and it is
equipped with a program tracer for partitioned based schedulers. This instru-
mentation is useful for debugging and visualization of program traces for this

iii

iv

type of scheduling. The second prototype is developed usingtimed automata
with tasks (task automata). This model-based scheduler is verified for correct-
ness and it is possible to automatically generate source code for the scheduler.
We have successfully synthesized this scheduler for the real-time operating
system VxWorks. However, it can easily be extended for otherplatforms. Both
prototypes have pros and cons. The first version has good performance while
the second can guarantee its correctness; hence, there is a trade-off between
performance and correctness.

Acknowledgments

The two most important people that got me engaged in PhD studies and that
have supported me from master thesis up until now is my excellent supervisor
Prof. Thomas Nolte and my wonderful (and former master thesis supervisor)
colleague Dr. Moris Behnam. Special thanks also goes to my former study
mates Alexander Casal and Amir Shariat for their encouragement during my
undergraduate studies.

I owe a lot of gratitude to my co-authors Prof. Paul Pettersson and Dr.
Shinpei Kato (Nagoya University). I cannot even put words into how helpful
and supportive they have been. I would also like to thank Dr. Reinder Bril
(Eindhoven University of Technology), Clara M. Otero Pérez (NXP Semicon-
ductors/Research), Mike Holenderski (Eindhoven University of Technology),
Martijn van den Heuvel (Eindhoven University of Technology), Dr. Johan
Kraft and Dr. Insik Shin (Korea Advanced Institute of Science and Technol-
ogy) for the interesting discussions and valuable feedback.

A bunch of teachers at IDT gave me a lot of inspiration and encourage-
ment during my years as a undergraduate student. These teachers are sim-
ply great, big thanks to̊Asa Lundkvist, Christer Sandberg, Anders Pettersson,
Frank Lüders, Daniel Sundmark, Rikard Land, Ingrid Runnérus, Johan Stärner,
Mohammed El Shobaki, Daniel Flemström, Jan Gustafsson, Jukka Mäki-Turja,
Henrik Thane, Mats Björkman, Damir Isovic, Gordana Dodig-Crnkovic, An-
dreas Ermedahl and Dag Nyström.

I would also like to thank some of the professors for interesting discussions
and PhD courses; Hans Hansson, Ivica Crnkovic, Sasikumar Punnekkat, Björn
Lisper, Mikael Sjödin and Kristina Lundkvist.

My gratitude also goes to some of the administrative staff atIDT who
makes life as a PhD student easier; Carola, Jenny, Susanne, Malin Å. and Else-
Maj (who recently retired).

A lot of gratitude to the people that make it even more fun to goto work;

v

vi

Aida, Aneta, Séverine, Nima, Rafia, Ana, Sara D., Adnan, Andreas H., Hüseyin,
Christina, Tibi, Stefan By., Yue, Jagadish, Abhilash, Jan C., Nikola, Holger,
Federico, Linus, Saad, Mehrdad, Svetlana, Juraj, Luka, Leo, Josip, Antonio,
Rikard Li., Thomas Le., Hang, Barbara, Andreas G., Anna, Andreas J., Batu,
Mobyen, Afshin, Shahina, Gunnar, Malin R., Fredrik, Jörgen, Lars, Carl, Radu,
Giacomo, Elisabeth, Stefan C., Ella, Daniel H., Baran, Kivanc, Raluca, Eduard,
Guillermo, Sara A., Mohammad, Shihong, and others. My warmest gratitude
goes to the ones that left IDT but who brought a lot of joy; Farhang, Kathrin,
Eun-Young, Rui, Etienne and Amine.

I have supervised three bachelor students; Nils, Per-Erik and Tim. I want
to thank them for their contributions to my research and I wish them the best
of luck.

I am grateful for the support and love from my parents; Arne and Joyce,
and my siblings; Patrik, Anne, Jenny and Josefin. Lots of gratitude goes to the
“big” Karlsson family, LorenaÅsberg and Pontus Einarsen.

Last but not least, lots and lots of gratitude to my wonderfulgirlfriend, Ma-
lin Karlsson, for the support, love and fun.

This work has been supported by the Swedish Foundation for Strategic Re-
search (Stiftelsen för strategisk forskning) and the Swedish Research Council
(Vetenskapsrådet).

Mikael Åsberg
Västerås, June, 2012

List of publications

Papers included in the licentiate thesis1

Paper A Prototyping and Code Synthesis of Hierarchically Scheduled Systems
using TIMES. Mikael Åsberg, Thomas Nolte, Paul Pettersson. Journal
of Convergence (FTRA), pages 77-86, December, 2010.

Paper B Towards Hierarchical Scheduling in VxWorks. Moris Behnam,
Thomas Nolte, Insik Shin, Mikael̊Asberg, Reinder J. Bril. In 4th In-
ternational Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT’08), pages 67-76, July, 2008.

Paper C A Loadable Task Execution Recorder for Hierarchical Scheduling in
Linux. Mikael Åsberg, Thomas Nolte, Shinpei Kato. In 17th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA’11), pages 380-387, August, 2011.

Paper D Modelling, Verification and Synthesis of Two-Tier Hierarchical Fixed-
Priority Preemptive Scheduling. MikaelÅsberg, Paul Pettersson, Thomas
Nolte. In 23rd Euromicro Conference on Real-Time Systems (ECRTS’11),
pages 172-181, July, 2011.

1The included articles have been reformatted to comply with the licentiate layout

vii

viii

Additional papers, not included in the licentiate the-
sis

Conferences and workshops

• ExSched: An External CPU Scheduler Framework for Real-TimeSys-
tems. Mikael Åsberg, Shinpei Kato, Thomas Nolte, Ragunathan Rajku-
mar. In 18th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’12), pages1-10,
August, 2012.

• Towards Hierarchical Scheduling in AUTOSAR. Mikael Åsberg, Moris
Behnam, Farhang Nemati, Thomas Nolte. In 14th IEEE International
Conference on Emerging Technologies and Factory Automation
(ETFA’09), pages 1181-1188, September, 2009.

• Prototyping Hierarchically Scheduled Systems using Task Automata and
TIMES. Mikael Åsberg, Thomas Nolte, Paul Pettersson. In 5th Interna-
tional Conference on Embedded and Multimedia Computing (EMC’10),
pages 1-8, August, 2010.

• Implementation of Overrun and Skipping in VxWorks. Mikael Åsberg,
Moris Behnam, Thomas Nolte, Reinder J. Bril. In 6th International
Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT’10), pages 45-52, July, 2010.

• A Loadable Task Execution Recorder for Linux. Mikael Åsberg, Shin-
pei Kato, Johan Kraft, Thomas Nolte. In 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Sys-
tems (WATERS’10), pages 31-36, July, 2010.

• Towards Adaptive Hierarchical Scheduling of Real-Time Systems. Nima
Moghaddami Khalilzad, Thomas Nolte, Moris Behnam, MikaelÅsberg.
In 16th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’11), pages 1-8, September, 2011.

• On Adaptive Hierarchical Scheduling of Real-Time Systems Using a Feed-
back Controller. Nima Moghaddami Khalilzad, Thomas Nolte, Moris
Behnam, MikaelÅsberg. In 3rd Workshop on Adaptive and Reconfig-
urable Embedded Systems (APRES’11), pages 1-6, April, 2011.

ix

• Overrun and Skipping in Hierarchically Scheduled Real-Time Systems.
Moris Behnam, Thomas Nolte, MikaelÅsberg, Reinder J. Bril. In 15th

IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA’09), pages 519-526, August, 2009.

• Synchronization Protocols for Hierarchical Real-Time Scheduling Frame-
works. Moris Behnam, Thomas Nolte, MikaelÅsberg, Insik Shin. In 1st

Workshop on Compositional Theory and Technology for Real-Time Em-
bedded Systems (CRTS’08), pages 53-60, November, 2008.

• Hierarchical Scheduling of Complex Embedded Real-Time Systems.
Thomas Nolte, Moris Behnam, Mikael̊Asberg, Reinder J. Bril, Insik
Shin. In École d’Éte Temps-Réel (ETR’09), pages 129-142, August,
2009.

Work in progress

• Execution Time Monitoring in Linux. Mikael Åsberg, Thomas Nolte,
Clara M. Otero Pérez, Shinpei Kato. In Work-In-Progress (WIP) track of
the 14th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA’09), pages 1601-1604, September, 2009.

• Towards Hierarchical Scheduling in Linux/Multi-Core Platform. Mikael
Åsberg, Thomas Nolte, Shinpei Kato. In Work-In-Progress (WIP) track
of the 15th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA’10), pages 1-4, September, 2010.

• Towards Real-Time Scheduling of Virtual Machines Without Kernel Mod-
ications. Mikael Åsberg, Nils Forsberg, Thomas Nolte, Shinpei Kato.
In Work-In-Progress (WIP) track of the 16th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA’11),
pages 1-4, September, 2011.

Technical reports

• Comparison of Priority Queue algorithms for Hierarchical Scheduling
Framework. Mikael Åsberg. Technical Report, Nr. 2598, Mälardalen
Real-Time Research Centre, Mälardalen University, October, 2011.

• Model of Two-Tier Hierarchical Fixed-Priority PreemptiveScheduling.
Mikael Åsberg. Technical Report, Nr. 2379, Mälardalen Real-TimeRe-
search Centre, Mälardalen University, January, 2011.

Contents

I Thesis 1

1 Introduction 3
1.1 Contributions . 4
1.2 Thesis outline . 5

2 Background 7
2.1 Real-time systems . 7
2.2 Hierarchical systems . 8
2.3 Operating system scheduling 9
2.4 Assumptions of the thesis . 11

3 Development of hierarchically scheduled systems 13
3.1 Independent subsystem development 13
3.2 Operating system mechanism for supporting hierarchical systems 14
3.3 Testing and verification . 15
3.4 Summary . 15

4 Conclusions 17
4.1 Summary . 17
4.2 Future work . 18

5 Overview of papers 19
5.1 Paper A . 19
5.2 Paper B . 20
5.3 Paper C . 20
5.4 Paper D . 21
Bibliography . 23

xi

xii Contents

II Included Papers 25

6 Paper A:
Prototyping and Code Synthesis of Hierarchically Scheduled Sys-
tems using TIMES 27
6.1 Introduction . 29
6.2 Preliminaries . 31

6.2.1 Hierarchical scheduling 31
6.2.2 Task automata and TIMES 32

6.3 Problem statement . 32
6.3.1 System model . 33
6.3.2 Approach . 34

6.4 Analysis of hierarchical systems 34
6.5 Modeling example . 37

6.5.1 Code synthesis . 39
6.5.2 SubsystemC . 40
6.5.3 SubsystemA . 46

6.6 Related work . 50
6.7 Conclusion . 51
Bibliography . 53

7 Paper B:
Towards Hierarchical Scheduling in VxWorks 57
7.1 Introduction . 59
7.2 Related work . 60
7.3 System model . 61
7.4 VxWorks . 62

7.4.1 Scheduling of time-triggered periodic tasks 63
7.4.2 Supporting arbitrary schedulers 64

7.5 The USR custom VxWorks scheduler 64
7.5.1 Scheduling periodic tasks 64
7.5.2 RM scheduling policy 66
7.5.3 EDF scheduling policy 67
7.5.4 Implementation and overheads of the USR 68

7.6 Hierarchical scheduling . 69
7.6.1 Hierarchical scheduling implementation 70
7.6.2 Example . 76

7.7 Summary . 76
Bibliography . 79

Contents xiii

8 Paper C:
A Loadable Task Execution Recorder for Hierarchical Scheduling
in Linux 83
8.1 Introduction . 85
8.2 Preliminaries . 87

8.2.1 System model . 87
8.2.2 RESCH . 88
8.2.3 Task-switch hook patch 90

8.3 Implementation . 91
8.4 Evaluation . 93

8.4.1 Overhead measurements 94
8.4.2 Multimedia example 95

8.5 Related work . 100
8.6 Conclusion . 101
Bibliography . 103

9 Paper D:
Modelling, Verification and Synthesis of Two-Tier Hierarchical Fixed-
Priority Preemptive Scheduling 107
9.1 Introduction . 109
9.2 Preliminaries . 111

9.2.1 Hierarchical scheduling 111
9.2.2 Task automata and TIMES 112

9.3 Model . 114
9.3.1 Global scheduler . 116
9.3.2 Event handler . 116
9.3.3 Local scheduler . 117

9.4 Verification . 118
9.4.1 Task/server systems used in the verification 118
9.4.2 Global level verification 120
9.4.3 Local level verification 124

9.5 Code synthesis . 126
9.6 Related work . 127
9.7 Conclusion . 130
Bibliography . 133

I

Thesis

1

Chapter 1

Introduction

The increasing product competition and customer demand formore function-
ality in electronic products, such as consumer electronics[1] (smart phones),
cars [2], aeroplanes [3, 4] etc., makes them more complex to develop. Take a
mobile phone for example, which as of today not only has the ability to make
phone calls but it can also navigate, take photos, browse theinternet etc. Due to
the demand on its limited size, vendors can not afford to increase the amount of
hardware. However, the amount of software increases rapidly since this gives
rise to more functionality. Car vendors experience the samekind of problems,
i.e., more functionality in the form of selective shock absorber, steering assis-
tance, electronic stability programme, braking assistance, parking assistance,
navigation etc. Due to weight and volume demands, the amountof onboard
computers, referred to as Electronic Control Unit (ECU), aswell as connecting
cables need to be reduced. The difference, as compared to mobile phones, is
that much of the software executed on ECUs have real-time requirements with
strict time deadlines. An example of such an application is an airbag, which
can cause severe human casualty if not executed correct according to time. The
problem of integrating a rapidly increasing amount of software on a steadily
decreasing amount of hardware, without violating extra functional properties
(time deadlines), is not completely solved yet but under progress using new
standards such as the automotive standard AUTOSAR [2]. Similar problems
are solved in the aerospace industry through the ARINC653 standard [3, 4].
ARINC653 adapts to partitioning of systems to solve integration related prob-
lems. Techniques similar to ARINC653 are also used to get predictability and
composability in hardware such as memory controllers [5].

3

4 Chapter 1. Introduction

We believe that system partitioning techniques has the potential to solve
integration related problems in industry but it has not gotten any foothold
yet. This is most likely because the technique itself bringssome complex-
ity/problems which are also needed to be solved. Another reason could be the
difficulty to adapt it to fit with operating systems, standards, development pro-
cesses etc. in industry. Hence, the intention with this thesis is to develop the
partitioning technique, which we refer to as hierarchical scheduling, in differ-
ent ways. One of our goals is to maintain total isolation and separation be-
tween partitions; hence, we try to avoid dependencies between partitions. This
property is worth to maintain since it can facilitate independent development,
verification, analysis, tests etc. prior to system integration. This increases
safety and it is less costly since partitions will not affecteach other during the
development and integration phase.

1.1 Contributions

The main contributions of this thesis are as follows.

1. Prototyping
We have proposed a technique that can create a periodic partition using
only a set of periodic tasks. What is needed to run the partition is a task
scheduler that can schedule periodic tasks with offsets. Wehave used
the TIMES [6] tool to generate such a scheduler automatically once the
task parameters are set. We introduce an algorithm that can generate
these parameters. In this way, a partition can be executed ona platform
(which has support for periodic releases of tasks) and get the same inter-
ference as it would in the final integrated platform. Hence, this conform
to independent development of partitions and suits well forprototyping
partitions. Paper A directs this contribution.

2. Implementation
We present an implementation of a two-level partition scheduler in one of
the most popular real-time operating systems: VxWorks. We give details
on implementation aspects and performance measurements. This imple-
mentation is presented in Paper B. We have also developed a recorder
that is specialized for debugging partitioned systems. This instrumenta-
tion does not require any kernel modifications but still it performs well
compared to existing recorders. Our recorder is presented in Paper C.

1.2 Thesis outline 5

3. Modelling and Verification
A second version of an implementation of a two-level partition scheduler
is presented in Paper D. The difference, as compared to PaperB, is that
this scheduler is modelled and verified using timed automataand logics.
The partitions are verified independently of each other, which conforms
to our goal of independent partition development. The last step, after
verifying each partition scheduler, is the verification of the entire sys-
tem, i.e., the global scheduler. Modularized verification is useful since
modifications to a part of the system do not require re-verification of the
entire system. We have also synthesized the scheduler for VxWorks and
measured its performance and compared it to the scheduler inPaper B.

1.2 Thesis outline

The outline of the thesis is as follows. Chapter 2 presents theory of real-time
systems, hierarchical systems and operating system scheduling. In Chapter 3
we give an overview of the research presented in this thesis.In Chapter 4 we
present our conclusion and future work. The technical overviews of the papers
that are included in this thesis are presented in Chapter 5, and we present these
papers in Chapters 6 - 9.

Chapter 2

Background

2.1 Real-time systems

A real-time system can be defined as a computer system (including both hard-
ware and software) that has strict demands on timing [7]. Most often, these re-
quirements require tasks to finish their execution before a pre-defined point in
time. Real-time systems have not only demands on the functional correctness,
but also demands on that functions within these systems should be guaranteed
to complete within exact time boundaries. The guarantees that these systems
must provide are normally 100% guarantees, i.e., theymay not ever exceed
these deadlines.

A system is usually divided into several software parts called taskswhich
execute a sequence of operations. These tasks execute in parallel, either on a
single processor in which case they interleave each other (calledpseudo par-
allelism), or on multiple processors in which case they execute at thesame
time in parallel. Each task has special attributes related to the timing demands
and these are used in analysis [8] (calculations) in order tocheck that all tasks
timing demands are met before executing them together. The timing attributes
can consist of adeadlinewhich is the latest point in time when the task should
finish its execution (delays that other parts of the system causes usually affects
the actual finishing time of the task) andWorst Case Execution Time(WCET)
which is an analyzed maximum value of time that a task needs inorder to com-
plete its execution. Tasks may be triggered to execute basedon time points or
other events. In this case it executes (not more than specified in its WCET)
and then waits for its next activation time. If the task gets triggered at every

7

8 Chapter 2. Background

fixed interval of timeperiod, then we call this task a periodic task [9]. If a task
gets triggered with a bounded minimum interval of time (but possibly a larger
interval) then the task is referred to assporadic. A task that gets triggered at
any arbitrary time instant is referred to as anaperiodictask.

There are two main categories of real-time systems;hard real-time systems
andsoft real-time systems[7]. Tasks in hard real-time systems arenever al-
lowed to miss their deadlines. Soft real-time systems on theother hand can
tolerate some deadline misses. A system referred to as asafety-critical system
is a type of hard-real time system which can lead to catastrophic incidents if
any task deadlines are missed. Examples of products that contain such safety-
critical systems are cars, aeroplanes, medical devices etc.

2.2 Hierarchical systems

The task is often the entity in which a system is divided into, i.e., the tasks
together form the system [7]. System requirements which deal with temporal
aspects (deadlines) of the functionality, callednon-functionalproperties (as
opposed tofunctionalproperties which is related to the functionality of the
system), can be fulfilled by having a set of tasks with “correct” timing attributes
that meet these requirements. The functional requirementsare checked with
respect to what operations the tasks perform.

The reason why the task has become the natural entity to divide a system
into is mainly due to how operating systems are built. Operating systems are
the backbone of most real-time systems with respect to the software. For exam-
ple,UNIX based operating systems have an internal architecture which is based
on processes[10, 11]. The process can be viewed as a task. These processes
execute applications and internal operating-system operations. All of the func-
tionality of an UNIX-based operating system resides in all of the processes that
run within the operating system. It is usual that vendors useoperating systems
(e.g. UNIX) in their products and adapt their system to it, considering that
UNIX-based operating systems are widely used in PCs (GNU/Linux and Mac
OS/X), mobile phones (Android and iOS), industrial applications (Embedded
Linux, RTLinux, VxWorks) etc. Hence, it becomes natural to divide a system
into entities that are found in the operating system.

There exist products (with real-time systems) where the vendors of the
product (and the industry itself) have realized that it can be more safe and
easier to develop software systems with a more coarse-grained division of
the system than just using tasks. Such an example is the aerospace indus-

2.3 Operating system scheduling 9

try. They even created a standard/specification related to this issue, they call
it ARINC653 [3, 4] (Avionics Application Standard SoftwareInterface). AR-
INC653 specifies that a system should be divided intopartitions (instead of
just tasks) and that these partitions have separate memory and time allocations.
Within each partition, tasks may execute in the same fashionas they have been
doing in a regular operating system context. In this way, we get two levels
of abstraction; high level functions can be divided and separated into different
partitions giving rise to protective boundaries of each other which is safer; each
high-level function, in the second level, can execute its own tasks separate from
other partitions. We call this ahierarchical system.

Operating system vendors, such as WindRiver, have adapted their operating
system to the aerospace industry and the ARINC 653 standard.This is natural
since the aerospace industry has important customers for companies such as
WindRiver. WindRivers most sold operating system is calledVxWorks and it
is widely used in many different industries. The VxWorks operating system
has a special version called VxWorks 653 which is adapted forthe ARINC 653
standard. This is a perfect example were we can see how a trendof hierarchical
software systems has emerged from an industry and later transferred to the
operating system which they use.

However, this is unfortunately a special case. We can see some efforts
being done in the GNU/Linux operating system, however, the results are lim-
ited so far (Control Groups). The real-time systems research-community is
working hard and pushing to adopt GNU/Linux to the partitioning scheme
(SCHED EDF/SCHEDDEADLINE [12, 13]), however, it is not quite there
yet.

2.3 Operating system scheduling

This Licentiate thesis has a strong focus on the practical side of operating sys-
tem scheduling, i.e., almost all included research articles in this thesis present
an implemented scheduler. Hence, this section will shed some light on operat-
ing system scheduling.

Most operating systems, e.g. Microsoft Windows, VxWorks etc., have an
important software component calledscheduler. The duty of the scheduler is
to schedule thetasks, i.e., choose in which order they should execute on the
processor. If there are more tasks than available processors to execute them
on, then they have to share the processor. The scheduler’s job is to schedule
the tasks according to some rule such that all tasks execute for some amount of

10 Chapter 2. Background

time that complies with this rule. For example, the GNU/Linux scheduler will
execute most processes in a fair way, i.e., in a way that they all get an equal
amount of time of the processor. This is done by running each process for a
small amount of time (in the order of milli seconds), and thenswitch to an-
other process etc. All processes are stored in a list and the scheduler executes
each of them in turn. When reaching the end of the list, the scheduler starts
all over again in the beginning of the list. This type of scheduling is called
round robinand it is a type offair scheduling. A process in GNU/Linux has
a so calledpriority associated with it. Most operating systems have a prior-
ity for their corresponding task. A higher priority value means that a task is
more important, hence, the scheduler can choose the next task to run based on
the tasks priority. GNU/Linux has two levels of priority:fair and real-time
priority. Tasks with real-time priority will always have higher priority to the
processor wrt fair priority tasks. In turn, a task with higher real-time priority
will monopolize the processor wrt lower real-time prioritytasks. If the priority
of a task does not change during its life-span, then we say that the scheduler
schedules according to thefixed-priorityscheduling algorithm. If the scheduler
re-assigns task priorities during runtime, then it implementsdynamic-priority
scheduling. If the scheduleractivatesa task, it means that the task is eligible
to execute on a processor, but it will only run if it has the highest priority of
all activetasks. If the scheduler activates a task periodically, thenwe refer to
this as scheduling ofperiodic tasks[9]. Note that all schedulers can not sched-
ule tasks periodically, for example, GNU/Linux and VxWorkshas no native
support for this.

2.4 Assumptions of the thesis 11

2.4 Assumptions of the thesis

With respect to the above presented background material, the work presented
in this thesis has been developed under the following limitations:

Real-Time Systems:
We assume hard real-time systems for the main part of this research,
although some parts relate to soft real-time.

Hardware Architecture:
We assume uni-core architectures, i.e., a single processorsystem.
Our assumptions include hard real-time systems but we use hardware
for our experiments which are not adapted for hard real-time, e.g., In-
tel processors. Despite this, we assume that our software (schedulers
etc.) should also be able to execute on hardware that have no or limited
sources of unpredictable (and non-composable) behaviour.This kind
of behaviour typically comes from hardware functionality in memory
caches, branch-prediction components etc.

Scheduling Protocol:
We assume fixed-priority scheduling.

Synchronization Protocol:
This work does not account for resource sharing between tasks or parti-
tions. However, our future work will include resource sharing.

Chapter 3

Development of
hierarchically scheduled
systems

This chapter presents the main idea of this thesis and connects the different
research results into a coherent story.

3.1 Independent subsystem development

Assume that software systems development will strive towards a partition based
software division. As we described in Chapter 2, Section 2.2, aerospace has al-
ready adopted to this mechanism. In this scenario, it is likely that partitions,
which we also refer to as subsystems, will be part of a software system. This
software system may itself form another subsystem and so on.For example,
the sensor software in an Anti Lock Brake System (ABS) forms asubsystem
in the ABS application, while the ABS system itself can be considered as a
subsystem in a vehicle. Independent of which level in this hierarchy we are fo-
cusing on, subsystems will most likely be developed by different development
teams residing in different locations in the world, in different companies etc.
Take a car for example, the Original Equipment Manufacturer(OEM), i.e., the
company that produces the final product (Volvo, BMW, Honda etc.), does not
develop and produce all subsystems in their cars. Subcontractors, for example

13

14 Chapter 3. Development of hierarchically scheduled systems

BOSCH, are responsible for delivering subsystems, e.g., anABS system. One
of the big challenges in software development is the software integration where
all software parts, i.e., subsystems, are integrated. Thischallenge has become
such a huge problem that the automotive industry has developed a software-
architecture standard called AUTOSAR [2] in order to tackleintegration re-
lated problems. One of the concerns is how the non-functional properties of
subsystems will change (and perhaps violate requirements)once you integrate
them. An ARINC based approach solves timing and memory related problems
at integration phase, i.e., non-functional properties canbe preserved. However,
the first part of this thesis (paper A) will focus on the development phaseprior
to the integration of subsystems where an operating system like VxWorks 653
is needed to execute them together in a safe manner. The main idea that we
have is to facilitate so that subsystem developers can execute their subsystem,
given timing parameters such as period etc., in an environment which gives the
illusion that their subsystem executes together with the rest of the system. This
emulation can be done in most real-time adapted operating systems (includ-
ing GNU/Linux) without the need for the actual mechanism like in VxWorks
653. The assumption here is that there is no communication between subsys-
tems and it is limited to fixed-priority scheduling. Once thesubsystem has
been tested with this technique, it will behave exactly the same (wrt to time)
when it is integrated together with other subsystems, assuming that the system
parameters are the same.

3.2 Operating system mechanism for supporting
hierarchical systems

We have developed two operating system schedulers; the firstone is developed
for VxWorks and the second can be considered as platform independent. These
two implementations give the mechanism support for hierarchical systems in
operating systems. The reason for developing two new schedulers (paper B and
D), even though similar schedulers already exist in GNU/Linux and VxWorks
653 for example, is because we want to extend the scheduler functionality and
property compared to existing solutions. The advantage with developing our
own schedulers is that we can measure their overhead easier which is interest-
ing since the increase in overhead is a drawback with partitioned scheduling.
We can test more advanced scheduling schemes, i.e., we support both fixed and
dynamic priority scheduling in all levels. The scheduling schemes that we have
developed has theoretical research behind it [14, 15, 16]. Our schedulers are

3.3 Testing and verification 15

also easy to adapt to resource sharing which is an interesting line of research.
The second scheduler that we have developed has the interesting property that
it has been mathematically verified, i.e., we can guarantee its correctness wrt
its specification. Moreover, it has a simple structure making it easily adaptable
to GNU/Linux, VxWorks etc.

We always implement our schedulers with the intention that they should
never require modifications to the operating system. This isan important prop-
erty in industry in order to preserve stability in the operating systems and to
avoid tedious updates to the scheduler when new versions of the operating sys-
tem are released.

3.3 Testing and verification

Our last theme for this thesis is related to testing and verification of partitioned
schedulers (paper C and D). We have developed a tool which canrecord the
execution of tasks and subsystems; hence, we can then analyze the behaviour of
the scheduler. This is a useful tool for schedulers which have not been analyzed
wrt correctness, i.e., verified. The recorder is based on a platform independent
framework which makes it possible to record tasks and subsystems on any
operating system for which the framework has support for. Wehave developed
this framework as well and currently it supports VxWorks andGNU/Linux.
The recorder is compatible with the (partitioned scheduler) trace visualization
tool Grasp [17].

We have also developed a method for verifying two-level partitioned sched-
ulers using the timed automata language. Verification and certification of soft-
ware (including schedulers) is very important in industries which have rigorous
safety standards to follow such as ISO 26262 which is relatedto the automotive
industry.

3.4 Summary

In this chapter we presented an overview of the contributions of the thesis. The
first part relates to independent subsystem development prior to the integration
phase. The second part of the thesis contribution relates tothe practical im-
plementations of two different schedulers. The final part relates to testing and
verification of these two schedulers.

Chapter 4

Conclusions

4.1 Summary

In this thesis we have proposed techniques to aid in the development of hierar-
chical real-time systems. We have partly focused on the pre-integration phase
where each subsystem developer may develop and test their subsystem in iso-
lation of other subsystems without any partitioned scheduling support in the
operating system.

The main part of this thesis relates to the practical implementations of par-
titioned schedulers.

Finally, we have implemented a tool (together with a framework) which can
record traces of partitioned schedulers, and hence, make itpossible to debug
such schedulers. We have also proposed a technique to model and verify two-
level hierarchical schedulers.

17

18 Chapter 4. Conclusions

4.2 Future work

In the future we plan to extend our work by including logical resource sharing
between subsystems. We will also develop a platform/scheduling independent
framework which can aid in the development of any real-time scheduler. An-
other interesting line of work, connected to this thesis, isto improve the code
synthesis (of schedulers) in terms of its runtime efficiency. This will also have
a great performance impact if the target is to synthesize thecode for other hard-
ware platforms such as Graphics Processing Units (GPUs). Inthis line of work
we aim at running the scheduler on the GPU which makes it possible to run
schedulers with much more complex behaviour than state-of-the-art schedul-
ing algorithms such as FPS and EDF.

We already have some preliminary research results aiming atconnecting
resource reservation with AUTOSAR. We see that AUTOSAR fits well with
partitioning; hence, there is a potential future work within this area as well.

Chapter 5

Overview of papers

5.1 Paper A

Mikael Åsberg, Thomas Nolte and Paul Pettersson.Prototyping and Code
Synthesis of Hierarchically Scheduled Systems using TIMES. Journal of Con-
vergence (FTRA), pages 77-86, December, 2010.

Summary In hierarchical scheduling a system is organized as a tree ofnodes,
where each node schedules its child nodes. A node contains tasks and/or sub-
systems, where a subsystem is typically developed by a development team.
Given a system where each part is subcontracted to differentdevelopers, they
can benefit from hierarchical scheduling by parallel development and simpli-
fied integration of subsystems. Each team should have the possibility to test
their system before integration. Hence, we show how a node, in a hierarchical
scheduling tree, can be analyzed in the Times tool by replacing all interference
from nodes with a small set of higher priority tasks. We show an algorithm that
can generate these tasks, including their parameters. Further, we use the Times
code-generator, in combination with operating system extensions, to gener-
ate source code that emulates the scheduling environment for a subsystem, in
an arbitrary level in the tree. Our experiments include two example systems.
In the first case we generate source code for an industrial oriented platform
(VxWorks) and conduct a performance evaluation. In the second example we
generate source code that emulates the scheduling environment for a video ap-
plication, running in Linux, and we perform a frame-rate evaluation.

19

20 Chapter 5. Overview of papers

My contribution The basic idea of this paper was suggested by Thomas
Nolte. Mikael Åsberg was responsible for conducting the experiments and
writing the paper.

5.2 Paper B

Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg and Reinder J. Bril.
Towards Hierarchical Scheduling in VxWorks. In 4th International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications (OS-
PERT’08), pages 67-76, July, 2008.

Summary Over the years, we have worked on hierarchical scheduling frame-
works from a theoretical point of view. In this paper we present our initial
results of the implementation of our hierarchical scheduling framework in a
commercial operating system VxWorks. The purpose of the implementation
is twofold: (1) we would like to demonstrate feasibility of its implementation
in a commercial operating system, without having to modify the kernel source
code, and (2) we would like to present detailed figures of various key properties
with respect to the overhead of the implementation. During the implementation
of the hierarchical scheduler, we have also developed a number of simple task
schedulers. We present details of the implementation of Rate-Monotonic (RM)
and Earliest Deadline First (EDF) schedulers. Finally, we present the design
of our hierarchical scheduling framework, and we discuss our current status in
the project.

My contribution The idea of this paper was suggested by Moris Behnam.
Moris Behnam was the main driver in writing the paper. MikaelÅsberg was
responsible for the implementation and evaluation of the scheduler proposed in
this paper.

5.3 Paper C

Mikael Åsberg, Thomas Nolte and Shinpei Kato.A Loadable Task Execution
Recorder for Hierarchical Scheduling in Linux. In 17th IEEE International
Conference on Embedded and Real-Time Computing Systems andApplica-
tions (RTCSA’11), pages 380-387, August, 2011.

5.4 Paper D 21

Summary This paper presents a Hierarchical Scheduling Framework (HSF)
recorder for Linux-based operating systems. The HSF recorder is a loadable
kernel module that is capable of recording tasks and serverswithout requiring
any kernel modifications. Hence, it complies with the reliability and stabil-
ity requirements in the area of embedded systems where proven versions of
Linux are preferred. The recorder is built upon the loadablereal-time sched-
uler framework RESCH (REal-time SCHeduler). We evaluate our recorder
by comparing the overhead of this solution against another (patched) recorder.
Also, the tracing accuracy of the HSF recorder is tested by running a media-
processing task together with periodic real-time Linux tasks in combination
with servers. The tests are recorded with the HSF recorder, and theFtrace
recorder, in order to show the correctness of the experiments and the HSF
recorder itself.

My contribution Mikael Åsberg was the main driver in writing the paper
and performing the experiments.

5.4 Paper D

Mikael Åsberg, Paul Pettersson and Thomas Nolte.Modelling, Verification and
Synthesis of Two-Tier Hierarchical Fixed-Priority Preemptive Scheduling. In
23rd Euromicro Conference on Real-Time Systems (ECRTS’11), pages 172-
181, July, 2011.

Summary Hierarchical scheduling has major benefits when it comes to in-
tegrating hard real-time applications. One of those benefits is that it gives a
clear runtime separation of applications in the time domain. This in turn gives
a protection against timing error propagation in between applications. How-
ever, these benefits rely on the assumption that the scheduler itself schedules
applications correctly according to the scheduling parameters and the chosen
scheduling policy. A faulty scheduler can affect all applications in a negative
way. Hence, being able to guarantee that the scheduler is correct is of great
importance. Therefore, in this paper, we study how properties of hierarchical
scheduling can be verified. We model a hierarchically scheduled system us-
ing task automata, and we conduct verification with model checking using the
Times tool. Further, we generate C-code from the model and weexecute the
hierarchical scheduler in the VxWorks kernel. The CPU and memory over-
head of the modelled scheduler is compared against an equivalent manually

22 Chapter 5. Overview of papers

coded two-level hierarchical scheduler. We show that the worst-case memory
consumption is similar and that there is a considerable difference in CPU over-
head.

My contribution Mikael Åsberg was the main driver in writing the paper
and conducting the modelling, verification and synthesis.

Bibliography

[1] D. Andrews, I. Bate, T. Nolte, C. M. Otero Pérez, and S. M.Petters.
Impact of Embedded Systems Evolution on RTOS Use and Design.In 1st
International Workshop on Operating Systems Platforms forEmbedded
Real-Time Applications, pages 13–19, July 2005.

[2] T. Scharnhorst, H. Heinecke, K.-P. Schnelle, H. Fennel,J. Bortolazzi,
L. Lundh, P. Heitkämper, J. Leflour, J.-L. Mate, and K. Nishikawa. AU-
TOSAR - Challenges and Achievements. In12th International VDI
Congress Electronic Systems for Vehicles, Oct 2005.

[3] ARINC. ARINC 653: Avionics Application Software Standard Interface
(Draft 15). Airlines Electronic Engineering Committee (AEEC), 1996.

[4] ARINC/RTCA-SC-182/EUROCAE-WG-48. Minimal Operational Per-
formance Standard for Avionics Computer Resources. 1999.

[5] BennyÅkesson, Anca Molnos, Andreas Hansson, Jude Ambrose Angelo,
and Kees Goossens. Composability and Predictability for Independent
Application Development, Verification, and Execution. InMultiprocessor
System-on-Chip — Hardware Design and Tool Integration. Springer, Dec
2010.

[6] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: A Tool for Modelling and Implementation of Embed-
ded Systems. In8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 460–464, April 2002.

[7] Giorgio C. Buttazzo.Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag TELOS, 2004.

23

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.Wellings. Ap-
plying New Scheduling Theory to Static Priority Pre-emptive Scheduling.
Journal of Software Engineering, 8:284–292, 1993.

[9] C.L. Liu and James Layland. Scheduling Algorithms for Multi-
Programming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, Jan 1973.

[10] S.N. Bokhari. The Linux operating system.Journal of Computer,
28(8):74–79, Aug 1995.

[11] J. Wiegand. The cooperative development of Linux. In29th IEEE Pro-
fessional Communication Conference, pages 386–390, Oct 1993.

[12] D. Faggioli, M. Trimarchi, and F. Checconi. An implementation of the
Earliest Deadline First algorithm in Linux. In24th Annual ACM Sympo-
sium on Applied Computing, pages 1984–1989, March 2009.

[13] D. Faggioli and F. Checconi. An EDF Scheduling Class forthe Linux
Kernel. In11th Real-Time Linux Workshop, Sep 2009.

[14] Rob Davis and Allan Burns. Hierarchical Fixed PriorityPre-emptive
Scheduling. In26th IEEE International Real-Time Systems Symposium,
pages 389–398, Dec 2005.

[15] T.-W. Kuo and C.H. Li. A Fixed-Priority-Driven Open Environment for
Real-Time Applications. In20th IEEE International Real-Time Systems
Symposium, pages 256–267, Dec 1999.

[16] Insik Shin and Insup Lee. Periodic Resource Model for Compositional
Real-Time Guarantees. In24th IEEE International Real-Time Systems
Symposium, pages 2–13, Dec 2003.

[17] Mike Holenderski, Martijn Heuvel, Reinder Bril, and Johan Lukkien.
Grasp: Tracing, Visualizing and Measuring the Behavior of Real-Time
Systems. In1st International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems, pages 37–42, July 2010.

II

Included Papers

25

Chapter 6

Paper A:
Prototyping and Code
Synthesis of Hierarchically
Scheduled Systems using
TIMES

Mikael Åsberg, Thomas Nolte and Paul Pettersson
In Journal of Convergence, pages 77–86, December, 2010

27

Abstract

In hierarchical scheduling a system is organized as a tree ofnodes, where
each node schedules its child nodes. A node contains tasks and/or subsystems,
where a subsystem is typically developed by a development team. Given a sys-
tem where each part is subcontracted to different developers, they can benefit
from hierarchical scheduling by parallel development and simplified integra-
tion of subsystems. Each team should have the possibility totest their system
before integration. Hence, we show how a node, in a hierarchical scheduling
tree, can be analyzed in the Times tool by replacing all interference from nodes
with a small set of higher priority tasks. We show an algorithm that can gen-
erate these tasks, including their parameters. Further, weuse the Times code-
generator, in combination with operating system extensions, to generate source
code that emulates the scheduling environment for a subsystem, in an arbitrary
level in the tree. Our experiments include two example systems. In the first
case we generate source code for an industrial oriented platform (VxWorks)
and conduct a performance evaluation. In the second examplewe generate
source code that emulates the scheduling environment for a video application,
running in Linux, and we perform a frame-rate evaluation.

6.1 Introduction 29

6.1 Introduction

The increase in global competitiveness and requirement of shorter time-to-
market has increased the need for rapid development of embedded software
systems. A crucial characteristic, in being fast and reliable in the development
of embedded software systems, is to do analysis and prototyping early in the
development process, in order to decrease the load, complexity and cost in the
integration phase.

Sy
ste

m

CPU

Global scheduler

Subsystem Task Subsystem

Local
scheduler

Local
scheduler

Interface Interface Interface

.

… … … …

Figure 6.1: Hierarchical scheduling.

Recently, the technique of hierarchical scheduling (HS) has been intro-
duced in order to simplify parallel development of embeddedsystems. HS
facilitates integration of such systems, by providing mechanisms for temporal
isolation of system parts, called subsystems. Essentially, a system consists of a
number of subsystems that typically represents a particular function/feature of
the whole system. For example, a car could have one subsystemimplementing
a engine control system, and another being the anti-lock braking system. These
two subsystems should ideally be developed in parallel, andat the integration
phase, no integration related problems should occur [1]. One such integration
related problem is software that turn out to require more time to execute than
originally intended, and therefore causing unforseen interference with the rest
of the system. Another integration problem is the introduction of new subsys-
tems, not apparent at early design. Integration of unforseen subsystems should
not cause too much interference, i.e., the entire system should not be required

30 Paper A

to be verified/validated again. HS insures that no unpredictable interference
will occur, related to timing, hence by allowing for timing analysis of subsys-
tems in isolation before the integration. Figure 8.1 illustrates HS. The top node
is defined as theGlobal scheduler. It is responsible for multiplexing the entire
CPU resource to the second layer of the scheduling tree. A node can be either
a Subsystem, or aTask(except for the top node which is a scheduler). In this
way, a node schedules its child nodes with itsLocal scheduler. All nodes have
anInterface(set of scheduling parameters) which specifies the amount ofCPU
that the node may access. The schedulers uses these interfaces to schedule its
nodes.

It is desirable to be able to conduct analysis of a subsystem’s functional and
non-functional properties in isolation, i.e., without requiring details of the rest
of the system. It is hard to get access to all details of other subsystems, espe-
cially at an early stage in the construction of a system. Our proposed technique
makes it possible to perform schedulability analysis of tasks, with respect to its
subsystem interface. Also, the subsystem can be realized bygenerating source
code (for our target platforms VxWorks and Linux) that will emulate the sub-
system (under development) executing together with other subsystems/tasks.
The subsystem’s schedule will look like it is executing together with the other
subsystems in the tree (early prototyping). What is required are the interfaces
of the other subsystems/tasks, i.e., no subsystem internaldata such as task
source code, execution time, period etc. are needed. Also, there is no need to
implement any scheduler. The internal scheduler of the Times tool is responsi-
ble for the schedulability analysis, and the generated source code will emulate
the scheduler(s) in the system.

Recently, automata based techniques have been proposed as ageneric way
to describe and analyze a broad variety of real-time scheduling algorithms. One
of the strengths of these techniques is the possibility to encode general release
patterns of tasks. In the task automata model [2], release patterns are modeled
using timed automata [3]. The schedulability analysis problem has shown to be
decidable for both fixed and dynamic priority scheduling algorithms. Further,
this approach has the possibility to perform simulation andformal verification
of timing and functional safety properties, as well as code-synthesis [4]. For
the model of task automata, the Times tool provides this support [5].

In this paper our overall goal is to provide a technique for analysis and
synthesis of hierarchically scheduled real-time systems,at an early stage in the
development process. Our main contributions are1:

1This work is an extension of our previous work [6]

6.2 Preliminaries 31

1. We have enabled timing analysis of hierarchically scheduled, fixed-priority
preemptive systems, in the Times tool.

2. We have transformed and made extensions to the generated source code
(from Times) for VxWorks and Linux, allowing for early prototyping/testing
of hierarchically scheduled, fixed-priority, preemptive systems.

3. Related to the above contribution (2), we have conducted experiments
on the generated code (for both VxWorks and Linux). We have included
response time measurements, overhead measurements of boththe gener-
ated scheduler, and a manually coded scheduler, and we have compared
these. Also, we have been running a video processing application (VLC)
in Linux, and conducted frame-rate performance comparisons using a 2-
level hierarchical scheduler, as well as task tracing.

The outline of the paper is as follows: in Section 9.2 we outline prelimi-
naries on hierarchical scheduling, task automata and Times. In Section 6.3 we
outline the problem statement including its limitations, and in Section 6.4 we
show our solution. Section 6.5 shows two case-studies, including an example
system, code generation and a performance evaluation. Section 9.6 presents
related work, and finally, Section 9.7 concludes.

6.2 Preliminaries

6.2.1 Hierarchical scheduling

Hierarchical scheduling has been introduced to facilitateresource sharing among
applications under different scheduling policies. Hierarchical scheduling can
be represented as a tree of nodes (Figure 8.1), where each node corresponds
to an application, equipped with a scheduler that schedulesinternal workloads.
Looking at the tree-structure representation of HS, CPU resources are reserved
from a parent node to its children nodes (Shin and Lee [7]). One of the ad-
vantages of HS is that it provides a way to decompose a complexsystem into
well-defined parts (subsystems). HS provides the mechanismfor predictable
composition (in the time domain) of coarse-grained subsystems. This makes
it possible for subsystems to be developed independently and later integrated,
without introducing timing errors. Also, HS makes it easy toreuse subsystems,
since their computational demands are characterized by well defined interfaces.

Subsystems and tasks are scheduled according to the scheduling scheme
of the above scheduler and the parameters in the interface ofthe subsystem.

32 Paper A

In this paper, we assume that the schedulers follow the fixed-priority preemp-
tive scheduling policy. Subsystems can be viewed as ”virtual tasks”, where
the interface parameters corresponds to those in the periodic task model [8].
At runtime, subsystems reserve a defined time (budget) at everyperiod and
the execution order is based on theirpriority. This is similar to a traditional
periodic task, scheduled preemptively with a fixed-priority scheduler. When
a subsystem is selected for execution by the overlaying scheduler, the subsys-
tem’s tasks are executed and scheduled according to the scheduling policy of
the subsystem local scheduler. In the general case, the schedulers in HS may
all have different scheduling schemes.

6.2.2 Task automata and TIMES

Timed automata[3] is a modeling language that is widely used for formal mod-
eling and analysis of real-time systems. Essentially, a timed automaton is a
finite state automaton to which clocks, that can be tested andreset, are added.
Timed automata has shown to be suitable for a wide range of real-time systems.

More recently, the model of timed automata has been extendedwith a no-
tion of real-time tasks.Task automata(of timed automata with tasks), asso-
ciates asynchronous tasks with the states of a timed automaton. It assumes that
tasks are executed with static or dynamic priorities by a preemptive or non-
preemptive scheduling algorithm. Task automata is supported by the Times
tool [5]2, it facilitates schedulability analysis, formal verification by model-
checking and code synthesis.

An input system to the Times tool can consist of a task table inwhich the
following parameters are defined for each task: name, computation time, (rela-
tive) deadline, priority (in case of static priority scheduling), offset and period
(if applicable), interface, semaphore usage, and its C-code. Alternatively, a
task can be of typecontrolledwhich means that its release pattern is defined by
a user defined timed automata.

6.3 Problem statement

The aim of this paper is to consider a subsystem (potentiallywith tasks and a
fixed-priority scheduler), residing in a scheduling tree, and to perform schedu-
lability analysis of it. The analysis is done by the Times tool, although it does

2For more information about Times, see
http://www.times-tool.com/.

6.3 Problem statement 33

not support schedulability analysis of hierarchically scheduled systems. The
solution to this is to map the rest of the tasks and subsystemsin the tree to
a small amount of interference tasks. Also, for the sake of prototyping, we
generate executable code (that emulates the scheduling of ascheduling tree) of
hierarchically scheduled systems. In this section, we firstoutline the system
model used, followed by some limitations and a description of our approach.

6.3.1 System model

A systemS consists of a rootS0 andn subsystemsS1, ..., Sn. We assume inde-
pendent tasks, i.e., there is no synchronization between tasks in the scheduling
tree. Each subsystemSi is defined as a tuple〈Pi, Qi, Ti, pi, pri〉, wherePi

is the subsystem period,Qi is the amount of CPU (or computation time) pro-
vided to the subsystem in eachPi, Ti is the set of subsystems (S) and tasks
(τ) residing in subsystemSi, pi ∈ [0..n] is the index of the parent ofSi, and
pri is the fixed priority ofSi (higher value means higher priority). Each task
τj is defined as a tuple〈Tj , Cj , Dj , prj〉, whereTj is the task period,Cj is the
task worst case execution time,Dj is the relative deadline andprj is the task
priority (higher value means higher priority). The rootS0 is defined by the
tuple〈T0〉, i.e., just a set of subsystems and tasks.

An example system with rootS0, subsystemsS1 andS2 (of S0), and sub-
subsystemsS3 andS4 (subsystems ofS2), is illustrated in Figure 6.2.

Limitations: We assume that the whole system and all subsystems are sched-
uled by fully preemptive fixed-priority schedulers. Generalizing the considered
scheduling policy is deferred to future work. Given the system model defined
above, we also impose the following two limitations on the relationship be-
tween task and subsystem periods:

• {∀ Si,i∈[1,n] : Pi ≥ Ppi
}, i.e., all subsystem periods are greater or equal

to their respective parent’s subsystem period and

• {∀ Si,i∈[1,n], ∀ τk ∈ Ti : Tk ≥ Ppi
}, i.e., all task periods are greater or

equal to its corresponding subsystem’s period.

The main reasons for these assumptions are twofold: (1) the inequalities
are recommended in order to have a resource efficient system,(2) analysis of
the system is simplified given the fulfillment of the above 2 inequalities.

34 Paper A

6.3.2 Approach

The objective is to perform schedulability analysis of the contents (tasks/subsystems
resident inTi) of a subsystemSi, with respect to its interface and the interfer-
ence from the rest of the tree. This analysis is intended to assist engineers
in the development of a subsystem. In doing the analysis, we create a set of
interference tasksIi, representing (and consuming the computation time of)
the rest of the system, i.e., the whole system excluding the subsystem under
analysis. Hence, the interference fromIi represents the interference from the
whole tree (excluding the subsystem under analysis). Each interference task is
described by period aT , an offsetO, and a computation timeC. Given the
interference tasks and the contents of the subsystem under analysis (i.e. the
subsystem tasks), the Times tool is used to calculate timingproperties (worst
case response time) of the task set inSi. Moreover, the Times tool is used
for code synthesis, allowing for early prototyping of hierarchically scheduled
subsystems.

In order to perform analysis of a complete system, i.e., for each subsystems
in a system, the approach outlined above can be repeated for each subsystem in
the system. If the analysis shows that the scheduling of eachsubsystem is suc-
cessful, then we can conclude that the whole system is schedulable. Traversing
the system tree and analysing each subproblem can be performed automati-
cally, either encoded as an automata in Times, or using an external script pro-
gram. In this paper however, we leave the details of how to analyze a whole
system, and focus on the analysis of one subsystem.

6.4 Analysis of hierarchical systems

In order to analyze the tasks and subsystems, residing inside a subsystem (i.e.,
the subsystem under analysis), we create a set of interference tasksIi. Tasks
and subsystems residing in the subsystem under analysis arethen, together with
the interference tasksIi, used as input to a tool for timing analysis. In this
paper, we use the Times tool because it supports analysis of several properties,
as well as code synthesis (see Section 6.5).

In the following, we outline how to obtain the setIi, a procedure with the
following three main steps:

Step 1: First we create a partial schedulesi, i.e., execution sequence (an
example can be found in Figure 6.3). This schedule includes all subsystems and

6.4 Analysis of hierarchical systems 35

tasks interfering with the subsystem under analysis, including the subsystem
itself (Si). The set of subsystems and tasks influencing the execution of a
given subsystem is computed by the functionHEP .

We define the recursive functionHEP (Si) for a given systemS in the
following way. HEP (Si) is the set of subsystems (includingSi itself), on the
same level of the scheduling tree asSi (with the same parent asSi), that have
higher priority than subsystemSi. The recursiveness is defined in thatHEP
must also be calculated for the parent ofSi (Eq. 6.1). However, theHEP set
of the root node is empty (Eq. 6.2).

HEP (Si) = HEP (Spi
) ∪ {∀ Sk ∈ Tpi

: prk ≥ pri} ∪ Si (6.1)

HEP (S0) = {} (6.2)

For the set of tasksHEP (Si), we compute the schedulesi for the time
interval[0, li], where

li = LCM({∀ k ∈ HEP (Si) : Pk})

,i.e., upto the least common multiple of the periods in the set HEP (Si).

Example: To show how the procedure works, we use a simple example of
a hierarchical scheduled system consisting of 4 subsystemswith the following
parameters:

S1 = 〈4, 1, T1, 0, 3〉

S2 = 〈3, 2, T2, 0, 4〉

S3 = 〈5, 1, T3, 2, 2〉

S4 = 〈6, 2, T4, 2, 1〉

The example system is outlined in Figure 6.2. Suppose that subsystemS3

is the subsystem that we are analyzing. Looking atS3, HEP(S3) = {S2, S3}
(highlighted in Figure 6.2) andl3 = LCM(HEP(S3)) = 15.

Scheduling the example system, for the interval 0 tol3 = 15, gives the
schedules3, depicted in Figure 6.3.

Step 2: In this step, we take schedulesi as input and create an ordered set of
time pointsφi. The first element is 0, the last isli = LCM({∀ k ∈ HEP (Si) :
Pk}), and the intermediate are the time-points when subsystemSi is scheduled
for execution, and is started, preempted or finished, in the time interval [0,li].

36 Paper A

S� S�S�
S� S�

)(3SHEP

Figure 6.2: Example hierarchical system.

� � �� ���	 �	 �	 �	 �	�
 �
 �

Figure 6.3: Schedules3 givenS3 andl3 = 15.

Example (continued): Given the example system above,φ3 is as follows:

φ3 = {0, 0, 1, 6, 7, 10, 11, 15}

representing a schedule starting at time 0, where the subsystem under analysis
is scheduled initially at time 0, finished at time 1, scheduled again at time 6,
finished at time 7, scheduled again at time 10, finished at time11, and LCM is
15.

Step 3: In this step, givenφi as input, we create a set of interference tasksIi.
Let |φi| denote the number of elements inφi. We have to createm = |φi|

2 in-
terference tasks,∂0, ..., ∂m−1. The task parameters are∂j = 〈Tj , Oj , Cj , prj〉,
whereTj is the period of the task (set toTj = LCM({∀ k ∈ HEP (Si) : Pk})
for all interference tasks),Oj is the offset of the interference tasks given by
Oj = φi[j ∗ 2], given thatφi[x] returns the value stored inφi at positionx
(given that positions are indexed starting with0 and finishing with|φi| − 1),

6.5 Modeling example 37

Cj = φi[1 + j ∗ 2] − φi[j ∗ 2], and forprj the following holds:prj > prk,
where indexk is defined by the set∀ (τk ∧ Sk) ∈ Ti.

Example (continued): Looking at the example system again,m = |φ3|
2 = 4,

henceI3 hosting the set of 4 interference tasks isI3 = {∂0, ∂1, ∂2, ∂3} with

∂0 = 〈15, 0 , 0, pr0〉

∂1 = 〈15, 1 , 5, pr1〉

∂2 = 〈15, 7 , 3, pr2〉

∂3 = 〈15, 11, 4, pr3〉

Once the above three steps are finished, all interference tasks stored inIi,
together with the tasks and subsystems (Ti) in the subsystem under analysis,
are taken as input to Times, giving detailed analysis of all tasks inTi.

6.5 Modeling example

In order to illustrate our solution, we have modeled an example system con-
sisting of 4 subsystems, arranged in a hierarchical tree, depicted in Figure 6.4.
The engineering challenge, highlighted in this example, ishow a development
team (given a scheduling tree and a dedicated subsystem within it) can develop
an application, consisting of real-time tasks, and be able to perform schedu-
lability analysis of these tasks, in order to verify whetheror not they meet
their respective deadlines. Such a verification should be possible when speci-
fying and allocating task parameters, preferably early during the development
and testing phase, allowing for early prototyping. The latter requires a way to
execute the tasks, on a given platform, within their corresponding time slots,
determined by the actual scheduling of the whole system (of subsystems). This
will be shown in section 6.5.2 and 6.5.3.

Recall, in this paper it is assumed that tasks within one subsystem do
not need to synchronize/communicate with tasks residing inother subsystems.
Given this assumption, we do not need to consider detailed scheduling of tasks
in other subsystems, since their exact scheduling does not affect the scheduling
of the subsystem under analysis.

To summarize the above, in this example, we want to:

1. conduct schedulability analysis of a subsystems content(subsystemA
andC’s content in this example), with respect to the interface(s) of sub-
systemA, respectivelyC, and the rest of the subsystems, and

38 Paper A

2. generate executable code, a scheduler to be precise, thatexecute sub-
systemA andC’s content, within its precise time slots, as if the whole
system of subsystems was executing (even though we only havesource
code and task parameters of subsystemA andC).

An assumption is that the subsystems in the tree are schedulable (for which
they are in this example) and that the scheduling tree is pre-determined by the
system description or similar. As a development team, you are given the timing
parameters of your subsystem (i.e., subsystemA or C in this case), which is the
period and capacity of these subsystems. The responsibility of the development
team is to develop an application consisting of a set of tasksthat are schedulable
given the timing parameters of their subsystem. The issue for the development
team to solve, is to assure that their application is schedulable considering that
their application will (in the future and final system) be scheduled together with
other subsystems in the hierarchical scheduling tree. Hence, the development
team cannot assume that their subsystem,C for example, will get 1 time slot
exactly every 10 time units because subsystems, at the same or higher level
in the scheduling tree, might interfere (as they may have higher priority than
subsystemC). The timing analysis of a subsystem (and its tasks) must consider
all subsystem (of the same or higher level and with higher priority) parameters,
including its own.

The first step is to analyze whether the chosen task parameters are suffi-
cient in order for the tasks to meet their deadlines. What should be done is to
add these tasks to the scheduling tree, like the one in Figure6.4, under their
subsystem, and check if they are schedulable with relation to the interfaces of
the subsystems in the tree. This can be done with a schedulability test such as
Response Time Analysis (RTA) [9] for hierarchical systems [10]. However, we
want to show how this can be done in Times, by generating interference tasks
(called dummy tasks in this section). These tasks emulate correct execution of
the subsystem under analysis by blocking out time representing higher priority
subsystem execution time, as well as time when the system should be idle. By
laying out the schedule of all subsystems, one can identify the time-slots when
the subsystem under analysis should be executed, and thereby also the inverse
of this time. This inverse time represents the time that should be ”blocked out”
in order to simulate interference from higher priority subsystems, as well as
idle time. We achieve this ”blocking out” (interference) bycreating dummy
tasks with higher priority than that of the tasks in the subsystem under analysis
(as described in Section 6.4). Once the dummy tasks are generated (which can
be done following the steps in Section 6.4), they can be inserted into the Times

6.5 Modeling example 39

tool. The dummy tasks’ release pattern can either be described (in Times) in
a task-parameter table (e.g. by setting offset, priority, period etc.) or by con-
structing an automata. The latter has an advantage when generating code (this
will be covered in more detail in Section 6.5.2). However, for schedulability
analysis of tasks in Times, the easier approach is to specifythe dummy tasks in
the task-parameter table. After entering the dummy task parameters together
with the subsystem tasks in Times, it can simulate the systemand do response-
time analysis as shown in Figure 6.6 and 6.14. Times will output whether or
not the system is schedulable, and if schedulable, it will also give the Worst
Case Response Time (WCRT) of all tasks.

In conclusion, the schedulability analysis performed in Times, is a simula-
tion which will produce the WCRT of each task. So we have actually simplified
the problem into a response time analysis of a set of periodictasks (belonging
to the subsystem under analysis), together with a set of periodic tasks with off-
sets (the dummy tasks). The WCRT value will include the interference from
subsystems (that can reside at different levels of the scheduling tree), which
is actually modeled as interference from higher priority tasks, as well as the
execution time of the task itself. Hence, for the sake of timing analysis, timing
analysis tools other than Times can be used. However, we are not only inter-
ested in timing analysis, but also in generating code for early prototyping of
the subsystem under analysis.

6.5.1 Code synthesis

The Times tool is equipped with an automatic code generator which can gen-
erate C-code of the modeled system to the platform brickOS3, as well as a
simulator for Linux. We have used this code generator to generate code of
our example system. We show two examples, where we synthesize code for a
scheduler for VxWorks (section 6.5.2) and Linux (section 6.5.3). The gener-
ated code is then transformed (extended) to fit the new software platform, i.e.,
VxWorks or Linux. This transformation was done manually butcould also be
done automatically.

The reason for choosing VxWorks is that we are well familiar with task
scheduling, execution tracing etc. in this platform, it provides an industry stan-
dard task scheduler, and it is a preferred platform of several of our industrial
partners. Having knowledge of scheduling is specially important since we need
to map brickOS scheduling to VxWorks (since the code generator generates
brickOS code).

3http://brickos.sourceforge.net/

40 Paper A

For Linux, we generate the Linux simulator code from Times, then we
remove the simulator code manually (could be done automatically). What is
left is the actual automata code (i.e., the scheduler). The automata code in turn
is extended to fit in the Linux kernel, such that it can schedule tasks. This is a
manual step (which can be automated).

6.5.2 Subsystem C

In this example, the global scheduler and all local schedulers (i.e. the inter-
nal scheduler of each subsystem) schedule their tasks/subsystems according to
fixed-priority preemptive scheduling. The priority assignment is done accord-
ing to Rate Monotonic [8], i.e, the shorter the period, the higher the priority.
SubsystemC resides in the tree represented in Figure 6.4.

Global
Scheduler

A B

C D

(1,5) (2,3)

(1,10) (3,6)

Figure 6.4: SubsystemC.

In doing schedulability and response-time calculations, we need a detailed
description of the task set resident in subsystemC; these details are represented
in Table 6.1.

Name T C D pr
task1 (τ1) 40 1 40 5
task2 (τ2) 50 1 50 4
task3 (τ3) 80 1 80 3
task4 (τ4) 90 1 90 2
task5 (τ5) 250 7 250 1

Table 6.1: Task set of subsystemC.

6.5 Modeling example 41

Schedulability analysis

The corresponding schedule forsC , executing in the example system, is illus-
trated in Figure 6.5.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A

B

D

C

C’s tasks

Dummy tasks

5 11 23

4 5 11 7

30

0

task1 task2 task3

dummy1 dummy2 dummy3 dummy4

Figure 6.5: Schedule for subsystemC.

From this schedule we can conclude which dummy tasks that we need (∂1-
∂4), as shown in Table 6.2.

Name T O C pr
dummy1 (∂1) 30 0 4 6
dummy2 (∂2) 30 5 5 6
dummy3 (∂3) 30 11 11 6
dummy4 (∂4) 30 23 7 6

Table 6.2: Generated dummy tasks for subsystemC.

The last step is to input all tasks in the Times tool and let it perform a
simulation. Figure 6.6 shows that subsystemC’s tasks are schedulable with
the 4 dummy tasks, i.e., the other three subsystems in the system.

Code synthesis to VxWorks (kernel version 6.6)

In the analysis part (Section 6.5.2), we analyzed the systembased on dummy
tasks (with offsets). We created periodic tasks and assigned the offsets through
the task parameter table (all other tasks were also created in this manner). Cre-
ating tasks with offsets can also be done by creating an automata. This has the

42 Paper A

Figure 6.6: Times schedulability analysis (for subsystemC).

advantage that we can specify that only one dummy task is released at all offset
instances and thereby replacing all dummy tasks with only one. This is good
when generating code, since most RTOSs have an upper limit onthe amount
of tasks. At code level, the execution time of this dummy taskmust be set to
be dynamic, since it is replacing tasks which most probably have different ex-
ecution times. The two automata in Figure 6.7 models the releasing of dummy
tasks (a similar automata, but with other release times, is used for the example
in section 6.5.3).

Start

ReleaseDummy1
dummy1

offsetTime<=5

ReleaseDummy4
dummy1

offsetTime<=24

ReleaseDummy2
dummy1

offsetTime<=11

ReleaseDummy3
dummy1

offsetTime<=23

MainLoop
time<=30

RunOffsetTasks?
offsetTime:=0

offsetTime==5
offsetTime==11

offsetTime==23

offsetTime==24

�
Init

RunOffsetTasks!

time==30
RunOffsetTasks!
time:=0

a) b)

Figure 6.7: Task automata.

The automata in Figure 6.7b), releases the second automata (Figure 6.7a))

6.5 Modeling example 43

every 30 time units by calling a synchronization functionRunOffsetTasks!
which starts a transition in the edge whereRunOffsetTasks? is located. The
second automata releases the dummy tasks according to the calculated offsets
(with relation to the period).time and offsetTime are two clocks that pro-
gresses in discrete time. An invariant such asoffsetTime<=5 (located inside
a state) means that the automata may only be in that state until this condi-
tion does not hold. A condition at an edge such asoffsetTime==5means that
the transition can be made only when this condition holds. A statement such
as time:=0 means that the variable (in this case a clock) is assigned a value.
Whenever there is a transition to a state with a task name, such asdummy1,
this task is released for execution.

1: task() {
2. while(TRUE){
3. wait event(task release, releaseflag)
4. // Task code here
5. }
6. }
7: controller() {
8: wait event(check trans, 0)
9: }

Figure 6.8: Function task() and controller().

1. Register check_trans

4.
Run check_trans
Run task_release

2. Register task_release

3.
Run check_trans
Run task_release

5. Register task_release

Figure 6.9: brickOS scheduling.

The mapping from the C-code (generated by Times) to VxWorks consists
mostly of changing the way the task is suspended and released. In the brickOS
generated code, an initializer task calledcontroller (Figure 6.8, lines 7-9) calls
wait event in order to register a functioncheck trans that will be executed
at every system tick by an interrupt routine. This will stop when the function

44 Paper A

3.
Run check_trans
Run task_release

2.
Run check_trans
Run task_release

1.
Run check_trans
Run task_release

Figure 6.10: VxWorks scheduling.

returns a non-zero value (which is not the case forcheck trans). This function
traverses the automata (both user defined automata and Timesdefault gener-
ated automata) and sets a flag whenever there should be a task release. Each
task (Figure 6.8, lines 1-6) registers a functiontask releaseat the beginning of
its execution, before it suspends. This function checks whether the flag is set,
if so, it will return a non-zero value that in turn will release the correspond-
ing task. Figure 6.9 illustrates how the scheduling is done in the generated
code for brickOS. The mapping of this scheduling to VxWorks is illustrated
in Figure 6.10. We create an interrupt routine that is executed at every sys-
tem tick. This routine executes both thecheck trans function and each tasks
task releasefunction. Whenevercheck trans sets the task flag, i.e. that is
whentask releasereturns a non-zero value, the corresponding task is inserted
into the VxWorks ready queue.

We have successfully generated C-code for the example system in Fig-
ure 6.4, that is comprised of the tasks in Table 6.1 and Table 6.2. We trans-
formed the generated code and ran the system in VxWorks 6.6 ona Intel Pen-
tium4 platform. Further, we recorded and visualized the execution trace with
the Tracealyzer tool4.

Figure 6.11 shows the graphical representation of the running tasks (note
that tasks ’dummy1’ etc. from Figure 6.6 are named ’idle1’ etc. in Figure 6.11)
at critical instant and the recorded data is shown in Table 6.3. Figure 6.6 shows
the WCRT of the simulation, corresponding toMax. Response timein Ta-
ble 6.3, note that the time-base is 1000 times bigger in Table6.3. The maxi-
mum response times in Table 6.3 are significantly higher thanthe simulation
values because of overhead (scheduling, context switches etc.). This prolonged
response time is illustrated in Figure 6.11.task2 does not finish its entire ex-
ecution beforeidle3 starts, leading to thattask2 has to wait for it to finish
(which will take 11 time units), and then execute the final part (it is a very
small amount so it does not show in this resolution). This kind of execution

4http://www.tracealyzer.se/.

6.5 Modeling example 45

Figure 6.11: Tracealyzer screenshot.

scenario is valuable for a development team and can only be discovered in time,
in the development process, through early prototyping/testing.
Table 8.3 shows the scheduling overhead (from running the tasks in Table 6.1
and 6.2) from the generated scheduler (Times) and a manuallycoded sched-
uler; the Hierarchical Scheduling Framework (HSF) [11]. Wemeasured the
schedulers execution times with micro-second resolution,10 times each (Ta-
ble 8.3 shows the average values), between time zero (when the system started)
and LCM of all tasks (18000000 µs). The HSF scheduler only executes at
task release and task deadline (in the latter case it checks if the task has fin-
ished), while the Times scheduler executes at every system tick (i.e. every
milli-second), and releases tasks if necessary. VxWorks itself handles task
switching due to that a task has finished. The conclusion is that even though
Times runs more frequently than HSF, HSF still produces moreoverhead (the
majority of it comes from queue-management [11]).

46 Paper A

Task Execution time (µs) Response time(µs)
Avg. Max. Avg. Max.

task1 996 999 11999 14003
task2 996 999 16998 24000
task3 995 997 27994 33996
task4 995 997 32042 63982
task5 6267 6973 228643 291888
idle1 3995 4004 3995 4004
idle2 5000 5001 5000 5001
idle3 11000 11001 11000 11001
idle4 6999 7007 10994 11004

Table 6.3: Tracealyzer result.

Scheduler Avg. overhead/Duration (µs) Avg. overhead(%)
Times 1952/18000000 0.01084
HSF 3283/18000000 0.01824

Table 6.4: Scheduling overhead.

6.5.3 Subsystem A

This example also assumes fixed-priority preemptive scheduling of periodic
tasks/subsystems, as well as rate monotonic priority assignment.

Global
Scheduler

A B

(1,5) (2,3)

Figure 6.12: SubsystemA.

The content of subsystemA is one task (Table 6.5), which correspond to
the parameters of its subsystem. SubsystemA’s position in the scheduling tree
is shown in Figure 6.12.

Schedulability analysis

By laying out the schedule for subsystemA (Figure 6.13), we have generated
the necessary dummy tasks (Table 6.6).

6.5 Modeling example 47

Name T C D pr
taskA 5 1 5 1

Table 6.5: Task set of subsystemA.

0 2 4 6 8 10 12 14

A

B

Dummy tasks

3 6 12

2 2 5 3

15

0dummy1 dummy2 dummy3 dummy4

Figure 6.13: Schedule for subsystemA.

By inserting all tasks (Table 6.5 and 6.6) into Times and running its simu-
lation, we can get the schedulability analysis for subsystem A’s task. This is
shown in Figure 6.14, the tool will output the worst case response times of all
tasks if the system is schedulable.

Figure 6.14: Times schedulability analysis (for subsystemA).

Code synthesis to Linux (kernel version 2.6.31-9)

The subsystem (A) execution trace is illustrated in Figure 6.13, as illustrated,
the four dummy tasks replace subsystemB. We let a video processing appli-

48 Paper A

Name T O C pr
dummy1 (∂1) 15 0 2 2
dummy2 (∂2) 15 3 2 2
dummy3 (∂3) 15 6 5 2
dummy4 (∂4) 15 12 3 2

Table 6.6: Generated dummy tasks for subsystemA.

cation (VLC5) replace tasktaskA in subsystemA in our experiments. The
release of subsystemA and dummy tasks 1-4 is done with two automata simi-
lar to the ones in Figure 6.7. We generate code, using the Times code generator
for generating a Linux simulator. The simulator will run theautomata, which
is also generated by Times. We then replace the simulator with Linux kernel
scheduling functions, which are exported by the schedulingframeworkResch
[12]. Resch is unique in that it does not require the user to make any changes
in the Linux kernel, when implementing a scheduler in Resch.It runs as a
kernel module, and the user implemented scheduler will act as a plugin kernel
module to Resch (hence no kernel patches are required). The automata code
generated from Times, is wrapped with Resch scheduling primitives, and it is
executed as a kernel module in Linux. In the experiments, alltasks, i.e., the
VLC application and the dummy tasks, are running as Linux real-time tasks.

We also ran the VLC application in a 2-level hierarchical scheduling frame-
work, which is able to run a global scheduler, scheduling an arbitrary number
of subsystems in one level. The subsystems themselves may have their own
local scheduler. All schedulers (local and global) schedule with fixed-priority
preemptive scheduling of periodic tasks/subsystems. The framework is imple-
mented by the authors of the paper, and it runs as a plugin scheduler in Resch,
i.e., as a kernel module. We executed subsystemA andB (Figure 6.12) with
corresponding parameters, including rate monotonic priorities, in the hierar-
chical scheduling framework. SubsystemB corresponds toB in Figure 9.16
and subsystemA maps toA (Idle is the idle subsystem). The VLC application
(referred to asvlc A in Figure 9.16) was running in subsystemA, the dummy
tasktask B was running inB and dummy taskidle was running in subsys-
temIdle (which has lowest priority among the subsystems). Tasklinux is the
Linux idle task which will run whenevertask B, vlc A or idle does not run.

Figure 6.16 shows the execution trace when running the Timesautomata
in Resch, as a plugin scheduler. The dummy tasks (dummy1, dummy2,
dummy3 anddummy4) in Figure 6.16 corresponds to our generated dummy

5VLC http://www.videolan.org/vlc

6.5 Modeling example 49

0 50 100 150 200 250

linux

vlc_A

idle

task_B

0

10

19

B

0

5

10

A

0

25

50

Idle

Figure 6.15: Execution recording from the HSF scheduler.

tasks in Figure 6.13 (these tasks have highest priority). The VLC application
was running as taskvlc (intermediate priority) and the Linux idle tasklinux
was running with lowest task priority.

We ran all the experiments on an Intel Pentium Dual-Core (E5300 2,6GHz)
platform, equipped with a Linux kernel version 2.6.31.9, running with load
balancing disabled (no automatic task migration) for simplicity. The task ex-
ecution recording was done with the toolFtrace [13], and the recording of
subsystem scheduling events were done by our own recorder [14] (which is in-
tegrated in HSF). The recordings were visualized (Figure 9.16 and 6.16) with
the toolGrasp [15].

Scheduler fps (average)
Times scheduler 25.3174938
HSF scheduler 25.3582266
Linux scheduler 30

Table 6.7: Frames per second (fps) measurements of VLC.

We measured the execution time of the VLC application, whileit processed
a 91 frame long video, with corresponding audio. The measurements were
done 10 times for each scheduler, and the data presented (Table 6.7) represents
the average values. The resulting data is presented as the number of frames dis-

50 Paper A

0 50 100 150 200 250

linux

vlc

dummy1

dummy2

dummy3

dummy4

Figure 6.16: Execution recording from the Times scheduler.

played per second (Table 6.7). The measurements were done while schedul-
ing the VLC application with the HSF scheduler, and the Timesscheduler.
When running VLC with only the native Linux scheduler, the video process-
ing reached approximately 30 fps. The presented fps values shows that both
schedulers (HSF and Times) gives almost the same amount of CPU power (ap-
proximately 20%) to the VLC application. However, VLC does not use all
of its allocated CPU time (Figure 9.16 and 6.16) because its internal clock will
decide when to process and display frames, which is dependant on the intended
frame-rate of the application (which is 30 fps).

The time points when the Times scheduler allocates CPU time to VLC
(Figure 6.16), matches the points that are generated by the scheduling frame-
work HSF (Figure 9.16), which implements the scheduler thatis intended to be
used in the final system. However, HSF “leaks“ CPU time, as canbe seen in
Figure 9.16. This is due to that we set the budget of subsystemB to less than
20, so that the budget does not deplete at the same time as the other subsystem
is released (which may cause our scheduler to execute the scheduling events in
wrong order).

6.6 Related work

Related work in the area of hierarchical scheduling originated in open sys-
tems [16] in the late 1990’s, and it has been receiving an increasing research
attention ever since. Since Deng and Liu [16] introduced a two-level hierar-
chical scheduling framework, its schedulability has been analyzed under fixed-

6.7 Conclusion 51

priority global scheduling [17] and under EDF-based globalscheduling [18,
19]. Mok et al. [20] proposed the bounded-delay resource model so as to
achieve a clean separation in a multi-level hierarchical scheduling framework,
and schedulability analysis techniques [21, 22] have been introduced for this
resource model. In addition, Shin and Lee [7] introduced theperiodic resource
model (to characterize the periodic resource allocation behavior), and many
studies have been proposed on schedulability analysis withthis resource model
under fixed-priority scheduling [10, 23, 24] and under EDF scheduling [7].

Looking at the kind of analysis possible with these hierarchical scheduling
approaches, typically only timing is considered. In this paper, we are also inter-
ested in code synthesis, as well as analysis using task automata. This is similar
to [25], where the authors show how modeling and schedulability analysis of
two-level hierarchical scheduling, with timed automata, can be accomplished
in the simulation tool Cheddar. Limeet al. [26] model fixed and dynamic pri-
ority scheduling using time petri nets, which is similar to the work in [27].
Scheduler modeling is showed in [28] using the controller paradigm.

6.7 Conclusion

We have shown how to perform schedulability analysis in the Times tool,
where a subsystem within fixed-priority preemptive hierarchical scheduling is
the system under analysis. The concept we present simplifiesthe analysis of
the whole system by analysing one subsystem and abstractingthe rest of the
system (black-boxing). Iterating through all subsystems in this manner results
in analysing the whole system. In each step, the black-boxing is done by re-
placing interfering subsystems with a small set of high priority tasks (which
we refer to as dummy tasks). The procedure is described with an algorithm in
the paper, and the output of the algorithm is a set of dummy tasks that are pe-
riodic with offsets. These tasks, and the tasks of the subsystem to be analyzed,
are then modeled in the Times tool (with a task-table or timedautomata). The
last step is to run a simulation in Times which will generate the worst case
response time of each task, thereby deciding if the subsystem is schedulable
or not. The Times tool could traverse the scheduling tree andanalyze each
subsystem, resulting in a complete analysis of the whole tree. The simulation
itself is essentially a response time analysis of tasks thatare periodic, whereas
some of them will also have offsets (the dummy tasks).

We have used the Times code synthesis and shown how to generate C-code
of two example systems. The code has been extended to executeon an in-

52 Paper A

dustrial platform (i.e. VxWorks), and also on a PC desktop platform (Linux).
Hence, our proposed method has shown to be practical. After the code gen-
eration, a subsystem can be executed as if it would be runningwithin a hi-
erarchically scheduled system. Hence, our proposed approach supports early
prototyping of hierarchically scheduled systems, by usingour dummy-task al-
gorithm together with our code synthesis for VxWorks and Linux.

Our example in VxWorks shows that response times can vary significantly
when moved from simulation to a real platform, even though a very small
amount of overhead is introduced. The overhead measurements show that
the scheduler, generated from Times, produces less overhead compared to a
manually coded scheduler. Our other example in Linux shows how a video
processing application (VLC) is affected when running it ina prototyped sub-
system. We have measured the frame-rate and compared the results from the
same example system running in a 2-level hierarchical scheduling framework.

As future work, we plan to optimize the code synthesis (in order to min-
imize scheduler overhead) as well as to model and generate code for hierar-
chical scheduling frameworks. This is interesting in the context of proving the
correctness of scheduling, since model checking could be used to verify the
schedulers. As a last step of the contribution of this paper we plan to imple-
ment the concept in a tool, which will provide graphical modeling of systems,
automatic generation of dummy tasks as well as automatic synthesis for various
platforms (such as VxWorks, Linux and FreeRTOS).

Bibliography

[1] Mikael Åsberg, Moris Behnam, Farhang Nemati, and Thomas Nolte. To-
wards Hierarchical Scheduling in AUTOSAR. In14th IEEE International
Conference on Emerging Technologies and Factory Automation, pages
1181–1188, Sep 2009.

[2] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task Au-
tomata: Schedulability, Decidability and Undecidability. Journal of In-
formation and Computation, 205(8):1149–1172, Aug 2007.

[3] Rajeev Alur and David L. Dill. A Theory of Timed Automata.Journal
of Theoretical Computer Science, 126(2):183–235, April 1994.

[4] Tobias Amnell, Elena Fersman, Paul Pettersson, Wang Yi,and Hongyan
Sun. Code Synthesis for Timed Automata.Nordic Journal of Computing,
9(4):269–300, Dec 2002.

[5] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: A Tool for Modelling and Implementation of Embed-
ded Systems. In8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 460–464, April 2002.

[6] Mikael Åsberg, Thomas Nolte, and Paul Pettersson. Prototyping Hier-
archically Scheduled Systems using Task Automata and TIMES. In 5th
IEEE International Conference on Embedded and Multimedia Comput-
ing, pages 1–8, Aug 2010.

[7] Insik Shin and Insup Lee. Periodic Resource Model for Compositional
Real-Time Guarantees. In24th IEEE International Real-Time Systems
Symposium, pages 2–13, Dec 2003.

53

54 Bibliography

[8] C.L. Liu and James Layland. Scheduling Algorithms for Multi-
Programming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, Jan 1973.

[9] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.Wellings. Ap-
plying New Scheduling Theory to Static Priority Pre-emptive Scheduling.
Journal of Software Engineering, 8:284–292, 1993.

[10] Rob Davis and Allan Burns. Hierarchical Fixed PriorityPre-emptive
Scheduling. In26th IEEE International Real-Time Systems Symposium,
pages 389–398, Dec 2005.

[11] Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg, and Reinder J.
Bril. Towards Hierarchical Scheduling in VxWorks. In4th International
Workshop on Operating Systems Platforms for Embedded Real-Time Ap-
plications, pages 67–76, July 2008.

[12] Mikael Åsberg, Shinpei Kato, Thomas Nolte, and Ragunathan Rajku-
mar. ExSched: An External CPU Scheduler Framework for Real-Time
Systems. In18th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, pages 1–10, Aug 2012.

[13] Tim Bird. Measuring Function Duration with Ftrace. In1st Annual Japan
Linux Symposium, Oct 2009.

[14] Mikael Åsberg, Thomas Nolte, and Shinpei Kato. A Loadable Task Ex-
ecution Recorder for Hierarchical Scheduling in Linux. In17th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 380–387, Aug 2011.

[15] Mike Holenderski, Martijn Heuvel, Reinder Bril, and Johan Lukkien.
Grasp: Tracing, Visualizing and Measuring the Behavior of Real-Time
Systems. In1st International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems, pages 37–42, July 2010.

[16] Z. Deng and J. W.-S. Liu. Scheduling Real-Time Applications in an Open
Environment. In18th IEEE International Real-Time Systems Symposium,
pages 308–319, Dec 1997.

[17] T.-W. Kuo and C.H. Li. A Fixed-Priority-Driven Open Environment for
Real-Time Applications. In20th IEEE International Real-Time Systems
Symposium, pages 256–267, Dec 1999.

[18] G. Lipari and S. Baruah. Efficient Scheduling of Real-Time Multi-Task
Applications in Dynamic Systems. In6th IEEE Real Time Technology
and Applications Symposium, pages 166–175, May 2000.

[19] G. Lipari, J. Carpenter, and S. Baruah. A Framework for Achieving
Inter-Application Isolation in Multiprogrammed Hard-Real-Time Envi-
ronments. In21th IEEE International Real-Time Systems Symposium,
pages 217–226, Nov 2000.

[20] A. Mok, X. Feng, and D. Chen. Resource Partition for Real-Time Sys-
tems. In7th Real-Time Technology and Applications Symposium, pages
75–84, May 2001.

[21] X. Feng and A. Mok. A Model of Hierarchical Real-Time Virtual Re-
sources. In23rd IEEE International Real-Time Systems Symposium,
pages 26–35, Dec 2002.

[22] Insik Shin and Insup Lee. Compositional Real-Time Scheduling Frame-
work. In 25th IEEE International Real-Time Systems Symposium, pages
57–67, Dec 2004.

[23] G. Lipari and E. Bini. Resource Partitioning Among Real-Time Applica-
tions. In15th IEEE Euromicro Conference on Real-Time Systems, pages
151–158, July 2003.

[24] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein.Analysis of
Hierarchical Fixed-Priority Scheduling. In14th IEEE Euromicro Confer-
ence on Real-Time Systems, pages 152–160, July 2002.

[25] Frank Singhoff and Alain Plantec. AADL Modeling and Analysis of
Hierarchical Schedulers. InACM International Conference on SIGAda,
pages 41–50, Nov 2007.

[26] Didier Lime and Olivier H. Roux. Formal Verification of Real-Time
Systems with Preemptive Scheduling.Journal of Real-Time Systems,
41(2):118–151, Feb 2009.

[27] K. Altisen, G. Gosler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine.
A Framework for Scheduler Synthesis. In20th IEEE International Real-
Time Systems Symposium, pages 154–163, Dec 1999.

[28] Joseph Sifakis. Scheduler Modeling Based on the Controller Synthesis
Paradigm.Journal of Real-Time Systems, 23(1/2):55–84, July 2002.

Chapter 7

Paper B:
Towards Hierarchical
Scheduling in VxWorks

Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg and Reinder J. Bril
In OSPERT’08 Workshop, pages 67–76, July, 2008

57

Abstract

Over the years, we have worked on hierarchical scheduling frameworks from
a theoretical point of view. In this paper we present our initial results of the
implementation of our hierarchical scheduling framework in a commercial op-
erating system VxWorks. The purpose of the implementation is twofold: (1)
we would like to demonstrate feasibility of its implementation in a commercial
operating system, without having to modify the kernel source code, and (2) we
would like to present detailed figures of various key properties with respect to
the overhead of the implementation. During the implementation of the hierar-
chical scheduler, we have also developed a number of simple task schedulers.
We present details of the implementation of Rate-Monotonic(RM) and Ear-
liest Deadline First (EDF) schedulers. Finally, we presentthe design of our
hierarchical scheduling framework, and we discuss our current status in the
project.

7.1 Introduction 59

7.1 Introduction

Correctness of today’s embedded software systems generally relies not only on
functional correctness, but also on extra-functional correctness, such as satisfy-
ing timing constraints. System development (including software development)
can be substantially facilitated if (1) the system can be decomposed into a num-
ber of parts such that parts are developed and validated in isolation and (2) the
temporal correctness of the system can be established by composing the cor-
rectness of its individual parts. For large-scale embeddedreal-time systems, in
particular, advanced methodologies and techniques are required for temporal
and spatial isolation all through design, development, andanalysis, simplify-
ing the development and evolution of complex industrial embedded software
systems.

Hierarchical scheduling has shown to be a useful mechanism in supporting
modularity of real-time software by providing temporal partitioning among ap-
plications. In hierarchical scheduling, a system can be hierarchically divided
into a number of subsystems that are scheduled by a global (system-level)
scheduler. Each subsystem contains a set of tasks that are scheduled by a local
(subsystem-level) scheduler. The Hierarchical Scheduling Framework (HSF)
allows for a subsystem to be developed and analyzed in isolation, with its own
local scheduler, and then at a later stage, using an arbitrary global scheduler,
it allows for the integration of multiple subsystems without violating the tem-
poral properties of the individual subsystems analyzed in isolation. The in-
tegration involves a system-level schedulability test, verifying that all timing
requirements are met. Hence, hierarchical scheduling frameworks naturally
supportconcurrent developmentof subsystems. Our overall goal is to make hi-
erarchical scheduling a cost-efficient approach applicable for a wide domain of
applications, including automotive, automation, aerospace and consumer elec-
tronics.

Over the years, there has been a growing attention to HSFs forreal-time
systems. Since a two-level HSF [1] has been introduced for open environments,
many studies have been proposed for its schedulability analysis of HSFs [2, 3].
Various processor models, such as bounded-delay [4] and periodic [5], have
been proposed for multi-level HSFs, and schedulability analysis techniques
have been developed for the proposed processor models [6, 7,8, 9, 10, 5, 11].
Recent studies have been introduced for supporting logicalresource sharing in
HSFs [12, 13, 14].

Up until now, those studies have worked on various aspects ofHSFs from
a theoretical point of view. This paper presents our work towards a full im-

60 Paper B

plementation of a hierarchical scheduling framework. We have chosen to im-
plement it in a commercial operating system already used by several of our
industrial partners. We selected the VxWorks operating system, since there is
plenty of industrial embedded software available, which can run in the hierar-
chical scheduling framework.

The outline of this paper is as follows: Section 9.6 presentsrelated work
on implementations of schedulers. Section 7.3 present our system model. Sec-
tion 7.4 gives an overview of VxWorks, including how it supports the imple-
mentation of arbitrary schedulers. Section 7.5 presents our scheduler for Vx-
Works, including the implementation of Rate Monotonic (RM)and Earliest
Deadline First (EDF) schedulers. Section 7.6 presents the design, implementa-
tion and evaluation of the hierarchical scheduler, and finally Section 8.6 sum-
marizes the paper.

7.2 Related work

Looking at related work, recently a few works have implemented different
schedulers in commercial real-time operating systems, where it is not feasi-
ble to implement the scheduler directly inside the kernel (as the kernel source
code is not available). Also, some work related to efficient implementations of
schedulers are outlined.

Buttazzo and Gai [15] present an implementation of the EDF scheduler
for the ERIKA Enterprise kernel [16]. The paper discusses the effect of time
representation on the efficiency of the scheduler and the required storage. They
use the Implicit Circular Timer’s Overflow Handler (ICTOH) algorithm which
allows for an efficient representation of absolute deadlines in a circular time
model.

Diederichs and Margull [17] present an EDF scheduler plug-in for OSEK/VDX
based real-time operating systems, widely used by automotive industry. The
EDF scheduling algorithm is implemented by assigning priorities to tasks ac-
cording to their relative deadlines. Then, during the execution, a task is re-
leased only if its absolute deadline is less than the one of the currently running
task. Otherwise, the task will be delayed until the time whenthe running task
finishes its execution.

Kim et al. [18] propose the SPIRIT uKernel that is based on a two-level
hierarchical scheduling framework simplifying integration of real-time appli-
cations. The SPIRIT uKernel provides a separation between real-time appli-
cations by using partitions. Each partition executes an application, and uses

7.3 System model 61

the Fixed Priority Scheduling (FPS) policy as a local scheduler to schedule the
application’s tasks. An offline scheduler (timetable) is used to schedule the
partitions (the applications) on a global level. Each partition provides kernel
services for its application and the execution is in user mode to provide stronger
protection.

Parkinson [19] uses the same principle and describes the VxWorks 653
operating system which was designed to support ARINC653. The architecture
of VxWorks 653 is based on partitions, where a Module OS provides global
resource and scheduling for partitions and a Partition OS implemented using
VxWorks microkernel provides scheduling for application tasks.

The work presented in this paper differs from the last two works in the
sense that it implements a hierarchical scheduling framework in a commercial
operating system without changing the OS kernel. Furthermore, the work dif-
fers from the above approaches in the sense that it implements a hierarchical
scheduling framework intended for open environments [1], where real-time ap-
plications may be developed independently and unaware of each other and still
there should be no problems in the integration of these applications into one
environment. A key here is the use of well definedinterfacesrepresenting the
collective resource requirements by an application, rich enough to allow for
integration with an arbitrary set of other applications without having to redo
any kind of application internal analysis.

7.3 System model

In this paper, we only consider a simple periodic task modelτi(Ti, Ci, Di)
whereTi is the task period,Ci is a worst-case execution time requirement, and
Di is a relative deadline (0 < Ci ≤ Di ≤ Ti). The set of all tasks is denoted
by Γ (Γ = {τi| for all i = 1, .., n} where n is the number of tasks).

We assume that all tasks are independent of each other, i.e.,there is no
sharing of logical resources between tasks and tasks do no suspend themselves.

The HSF schedules subsystemsSs ∈ S, whereS is the set representing the
whole system of subsystems. Each subsystemSs consists of a set of tasks and a
local scheduler (RM or EDF), and the global (system) scheduler (RM or EDF).
The collective real-time requirements ofSs is referred to as atiming-interface.
The subsystem interface is defined as(Ps, Qs), wherePs is a subsystem pe-
riod, andQs is a budget that represents an execution time requirement that will
be provided to the subsystemSs every periodPs.

62 Paper B

7.4 VxWorks

VxWorks is a commercial real-time operating system developed by Wind River
with a focus on performance, scalability and footprint. Many interesting fea-
tures are provided with VxWorks, which make it widely used inindustry, such
as; Wind micro-kernel, efficient task management and multitasking, deter-
ministic context switching, efficient interrupt and exception handling, POSIX
pipes, counting semaphores, message queues, signals, and scheduling, pre-
emptive and round-robin scheduling etc.

The VxWorks micro-kernel supports the priority preemptivescheduling
policy with up to 256 different priority levels and a large number of tasks,
and it also supports the round robin scheduling policy.

VxWorks offers two different modes for application-tasks to execute; either
kernel mode or user mode. In kernel mode, application-taskscan access the
hardware resources directly. In user mode, on the other hand, tasks can not
directly access hardware resources, which provides greater protection (e.g., in
user mode, tasks can not crash the kernel). Kernel mode is provided in all
versions of VxWorks while user mode was provided as a part of the Real Time
Process (RTP) model, and it has been introduced with VxWorksversion 6.0
and beyond.

In this paper, we are considering kernel mode tasks since such a design
would be compatible with all versions of VxWorks and our application do-
mains include systems with a large legacy in terms of existing source codes.
We are also considering fixed priority preemptive scheduling policy for the
kernel scheduler (not the round robin scheduler). A task’s priority should be
set when the task is created, and the task’s priority can be changed during the
execution. Then, during runtime, the highest priority ready task will always
execute. If a task with priority higher than that of the running task becomes
ready to execute, then the scheduler stops the execution of the running task
and instead executes the one with higher priority. When the running task fin-
ishes its execution, the task with the highest priority among the ready tasks will
execute.

When a task is created, an associated Task Control Block (TCB) is created
to save the task’s context (e.g., CPU environment and systemresources, during
the context switch). Then, during the life-cycle of a task the task can be in one
or a combination of the following states (see Figure 7.1):

• Ready state, the task is waiting for CPU resources.

• Suspended state, the task is unavailable for execution but not delayed

7.4 VxWorks 63

Ready

Delayed

Suspended

Pending

Ready

Delayed

Suspended

Pending

Figure 7.1: The application task state.

or pending.

• Pending state, the task is blocked waiting for some resource other than
the CPU.

• Delayed state, the task is sleeping for some time.

Note that the kernel scheduler sorts all tasks that are readyto execute in a
queue called theready queue.

7.4.1 Scheduling of time-triggered periodic tasks

A periodic task is a task that becomes ready for execution periodically once
everyn-th time unit, i.e., a new instant of the task is executed every constant
period of time. Most commercial operating systems, including VxWorks, do
not directly support the periodic task model [20]. To implement a periodic
task, when a task finishes its execution, it sleeps until the beginning of its next
period. Such periodic behaviour can be implemented in the task by the usage
of timers. Note that a task typically does not finish its execution at the same
time always, as execution times and response times vary fromone period to
another. Hence, using timers may not be easy and accurate as the task needs
to evaluate the time for next period relative to the current time, whenever it
finishes its execution. This is because preemption may happen between the
time measurement and calling the sleep function.

64 Paper B

In this project we need to support periodic activation ofserversin order
to implement the hierarchical scheduling framework. The reason for this is
that we base our hierarchical scheduling framework around the periodic re-
source model [5], and a suitable implementation of the periodic resource model
is achieved by the usage of a server based approach similar tothe periodic
servers [21, 22] that replenish their budget every constantperiod, i.e., the
servers behave like periodic tasks.

7.4.2 Supporting arbitrary schedulers

There are two ways to support arbitrary schedulers in VxWorks:

1. Using the VxWorks custom kernel scheduler.

2. Using the original kernel scheduler and manipulating theready queue by
changing the priority of tasks and/or activating and suspending tasks.

In this paper, we are using the second approach since implementing the
custom kernel scheduler is a relatively complex task compared with manipu-
lating the ready queue. However, it will be interesting to compare between the
two methods in terms of CPU overhead, and we leave this as a future work.

In the implementation of the second solution, we have used anInterrupt
Service Routine (ISR) to manipulate the tasks in the ready queue. The ISR is
responsible for adding tasks in the ready queue as well as changing their prior-
ities according to the hierarchical scheduling policy in use. In the remainder of
this paper, we refer to the ISR as the User Scheduling Routine(USR). By using
the USR, we can implement any desired scheduling policy, including common
ones such as Rate Monotonic (RM) and Earliest Deadline First(EDF).

7.5 The USR custom VxWorks scheduler

This section presents how to schedule periodic tasks using our scheduler, the
User Scheduling Routine (USR).

7.5.1 Scheduling periodic tasks

When a periodic task finishes its execution, it changes its state to suspended by
explicitly calling the suspend function. Then, to implement a periodic task, a

7.5 The USR custom VxWorks scheduler 65

timer could be used to trigger the USR once every new task activation time to
release the task (to put it in the ready queue).

The solution to use a timer triggering the USR once every new period can
be suitable for systems with a low number of periodic tasks. However, if we
have a system withn periodic tasks such a solution would require the use ofn
timers, which could be very costly or not even possible. In this paper we have
used a scalable way to solve the problem of having to use too many timers. By
multiplexing a single timer, we have used a single timer to serve n periodic
tasks.

The USR stores the next activation time of all tasks (absolute times) in a
sorted (according to the closest time event) queue called Time Event Queue
(TEQ). Then, it sets a timer to invoke the USR at the time equalto the shortest
time among the activation times stored in the TEQ. Also, the USR checks if a
task misses its deadline by inserting the deadline in the TEQ. When the USR
is invoked, it checks all task states to see if any task has missed its deadline.
Hence, an element in the TEQ contains (1) the absolute time, (2) the id of task
that the time belongs to, and (3) the event type (task next activation time or
absolute deadline). Note that the size of the TEQ will be2∗n∗B bytes (where
B is the size in bytes of one element in the TEQ) since we need to save the
task’s next period time and deadline time.

When the USR is triggered, it checks the cause of the triggering. There are
two causes for the USR to be triggered: (1) a task is released,and (2) the USR
will check for deadline misses. For both cases, the USR will do the following:

• Update the next activation and/or the absolute deadline time associated
with the task that caused triggering of the USR in the TEQ and re-insert
it in the TEQ according to the updated times.

• Set the timer equal to the shortest time in the TEQ so that theUSR will
be triggered at that time.

• For task release, the USR changes the state of the task to Ready. Also, it
changes priorities of tasks if required depending on the scheduler (EDF
or RM). For deadline miss checking, the USR checks the state of the task
to see if it is Ready. If so, the task missed its deadline, and the deadline
miss function will be activated.

Updating the next activation time and absolute deadline of atask in the
TEQ is done by adding the period of the task that caused the USRinvocation
to the current absolute time. The USR does not use the system time as a time

66 Paper B

reference. Instead it uses a time variable as a time reference. The reason for
using a time variable is that we can, in a flexible manner, select the size of
variables that save absolute time in bits. The benefits of such an approach is
that we can control the size of the TEQ since it saves the absolute times, and
it also minimizes the overhead of implementing 64 bits operations on 32 bit
microprocessor [15], as an example. The reference time variable ts used to
indicate the time of the next activation, is initialized (i.e., ts = 0) at the first
execution of the USR. The value ofts is updated every time that the USR
executes and it will be equal to the time given by the TEQ that triggered the
USR.

When a taskτi is released for the first time, the absolute next activation
time is equal tots + Ti and its absolute deadline is equal tots + Di.

To avoid time consuming operations, e.g., multiplicationsand divisions,
that increase the system overhead inherent in the executionof the USR, all ab-
solute times (task periods and relative deadlines) are saved in system tick unit
(system tick is the interval between two consecutive systemtimer interrupts).
However, depending on the number of bits used to store the absolute times,
there is a maximum value that can be saved safely. Hence, saving absolute
times in the TEQ may cause problems related to overrun of time, i.e., the ab-
solute times become too large such that the value can not be stored using the
available number of bits. To avoid this problem, we apply a wrapping algo-
rithm which wraps the absolute times at some point in time, sothe time will
restart again. Periods and deadlines should not exceed the wrap-around value.

The input of the timer should be in a relative time, so evaluating the time
at which to trigger the USR again (next time) is done byTEQ[1] − ts where
TEQ[1] is the first element in the queue after updating the TEQ as wellas
sorting it, i.e., the closest time in the TEQ. The USR checks to see if there
are more than one task that have the same current activation time and absolute
deadline. If so, the USR serves all these tasks to minimize the unnecessary
overhead of executing the USR several times.

7.5.2 RM scheduling policy

Each task will have a fixed priority during run-time when RateMonotonic
(RM) is used, and the priorities are assigned according to the RM scheduling
policy. If only RM is used in the system, no additional operations are required
to be added to the USR since the kernel scheduler schedules all tasks directly
according to their priorities, and the higher priority tasks can preempt the exe-
cution of the lower priority task. Hence, the implementation overhead for RM

7.5 The USR custom VxWorks scheduler 67

will be limited to the overhead of adding a task in the ready queue and man-
aging the timer for the next period (saving the absolute timeof the new period
and finding the shortest next time in the TEQ) for periodic tasks.

The schedulability analysis for each task is as follows [23];

∀τi ∈ Γ, 0 < ∃t ≤ Ti dbf(i, t) ≤ t. (7.1)

And dbf(i, t) is evaluated as follows

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉

Ck, (7.2)

whereHP(i) is the set of tasks with priority higher than that ofτi.
Eq. (7.2) can be easily modified to include the effect of usingthe USR on

the schedulability analysis. Note that the USR will be triggered at the begin-
ning of each task to release the task, so it behaves like a periodic task with
priority equal to the maximum possible priority (the USR canpreempt all ap-
plication tasks). Checking the deadlines for tasks by usingthe USR will add
more overhead, however, also this overhead has a periodic nature as the task
release presented previously.

Eq. (7.3) includes the deadline and task release overhead caused by the
USR in the response time analysis,

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉

Ck +
∑

τj∈Γ

⌈ t

Tj

⌉

XR

+
∑

τj∈Γ

⌈ t + Tj − Dj

Tj

⌉

XD

(7.3)

whereXR is the worst-case execution time of the USR when a task is released
andXD is the worst-case execution time of the USR when it checks fordead-
line misses (currently, in case of deadline misses, the USR will only log this
event into a log file).

7.5.3 EDF scheduling policy

For EDF, the priority of a task changes dynamically during run-time. At any
timet, the task with shorter deadline will execute first, i.e., will have the highest
priority. To implement EDF in the USR, the USR should update the priorities
of all tasks that are in the Ready Queue when a task is added to the Ready

68 Paper B

Queue, which can be costly in terms of overhead. Hence, on onehand, using
EDF on top of commercial operating systems may not be efficient depending
on the number of tasks, due to this sorting. However, the EDF scheduling
policy provides, on other hand, better CPU utilization compared with RM, and
it also has a lower number of context switches which minimizes context switch
related overhead [24].

In the approach presented in this paper, tasks are already sorted in the TEQ
according to their absolute times due to the timer multiplexing explained ear-
lier. Hence, as the TEQ is already sorted according to the absolute deadlines,
the USR can easily decide the priorities of the tasks according to EDF without
causing too much extra overhead for evaluating the proper priority for each
task.

The schedulability test for a set of tasks that use EDF is shown in Eq. (7.4) [25]
which includes the case when task deadlines are allowed to beless than or equal
to task periods.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋

· Ci ≤ t (7.4)

The overhead of implementing EDF can also be added to Eq. (7.4). Hence,
Eq. (7.5) includes the overhead of releasing tasks as well asthe overhead of
checking for deadline misses.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋

· Ci +
∑

τj∈Γ

⌈ t

Tj

⌉

XR

+
∑

τj∈Γ

⌈ t + Tj − Dj

Tj

⌉

XD ≤ t
(7.5)

7.5.4 Implementation and overheads of the USR

To implement the USR, we have used the following VxWorks service func-
tions;

• Q PUT - insert a node into a multi-way queue (ready queue).

• Q REMOVE - remove a node from a multi-way queue (ready queue).

• taskCreat - create a task.

• taskPrioritySet - set a tasks priority.

7.6 Hierarchical scheduling 69

We present our initial results inherent in the implementation of the USR,
implementing both the Rate Monotonic (RM) scheduler as wellas the Earliest
Deadline First (EDF) scheduler. The implementations were performed on a
ABB robot controller with a Pentium 200 MHz processor running the VxWorks
operating system version5.2. To trigger the USR for periodic tasks, we have
used watchdog timers where the next expiration time is givenin number of
ticks. The watchdog uses the system clock interrupt routineto count the time
to the next expiration. The platform provides system clock with resolution
equal to4500ticks/s. The measurement of the execution time of the USR
is done by reading a timestamp value at the start as well as at the end of the
USR’s execution. Note that the timestamp is connected to a special hardware
timer with resolution12000000ticks/s.

Table 7.1 shows the execution time of the USR when it performsRM and
EDF scheduling, as well as deadline miss checking, as a function of the num-
ber of tasks in the system. The worst case execution time for USR will happen
when USR deletes and then inserts all tasks from and to TEQ andto capture
this, we have selected a same period for all tasks. The table shows the mini-
mum, maximum and average out of50 measured values. Comparing between
the results of the three cases (EDF, RM, deadline miss), we can see that there
is no big difference in the execution time of the USR. The reason for this result
is that the execution of the USR for EDF, RM and deadline miss checking all
includes the overhead of deletion and re-inserting the tasks in the TEQ, which
is the dominating part of the overhead. As expected, EDF causes the largest
overhead because it changes the priority of all tasks in the ready queue dur-
ing run-time. Figures 7.2-7.3 show that EDF imposes between6 − 14% extra
overhead compared with RM.

7.6 Hierarchical scheduling

A Hierarchical Scheduling Framework (HSF) supports CPU sharing among
subsystems under different scheduling policies. Here, we consider a two-level
scheduling framework consisting of a global scheduler and anumber of local
schedulers. Under global scheduling, the operating system(global) scheduler
allocates the CPU to subsystems. Under local scheduling, a local scheduler
inside each subsystem allocates a share of the CPU (given to the subsystem by
the global scheduler) to its own internal tasks (threads).

We consider that each subsystem is capable of exporting its own interface
that specifies its collective real-time CPU requirements. We assume that such a

70 Paper B

Number XR (RM) XR (EDF) XD (Deadline miss check)
of tasks Max Average Min Max Average Min Max Average Min

10 71 65 63 74 70 68 70 60 57
20 119 110 106 131 118 115 111 100 95
30 172 158 155 187 172 169 151 141 137
40 214 202 197 241 228 220 192 180 175
50 266 256 249 296 280 275 236 225 219
60 318 305 299 359 338 331 282 268 262
70 367 352 341 415 396 390 324 309 304
80 422 404 397 476 453 444 371 354 349
90 473 459 453 539 523 515 415 398 393
100 527 516 511 600 589 583 459 442 436

Table 7.1: USR execution time inµs, the maximum, average and minimum
execution time of45 measured values for each case.

subsystem interface is in the form of the periodic resource model(Ps, Qs) [5].
Here, Ps represents aperiod, andQs represents abudget, or an execution
time requirement within the period(Qs < Ps). By using the periodic re-
source model in hierarchical scheduling frameworks, it is guaranteed [5] that
all timing constraints of internal tasks within a subsystemcan be satisfied, if
the global scheduler provides the subsystem with CPU resources according to
the timing requirements imposed by its subsystem interface. We refer inter-
ested readers to [5] for how to derive an interface(Ps, Qs) of a subsystem,
when the subsystem contains a set of internal independent periodic tasks and
the local scheduler follows the RM or EDF scheduling policy.Note that for
the derivation of the subsystem interface(Ps, Qs), we use the demand bound
functions that take into account the overhead imposed by theexecution of USR
(see Eq. (7.3) and (7.5)).

7.6.1 Hierarchical scheduling implementation

Global scheduler: A subsystem is implemented as a periodic server, and pe-
riodic servers can be scheduled in a similar way as scheduling normal periodic
tasks. We can use the same procedure described in Section 7.5with some mod-
ifications in order to schedule servers. Each server should include the following
information to be scheduled: (1) server period, (2) server budget, (3) remaining

7.6 Hierarchical scheduling 71

EDF/RM

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

10 20 30 40 50 60 70 80 90 100

Number of Tasks

Average

Figure 7.2: EDF normalized against RM, for average USR execution time.

budget, (4) pointer to the tasks that belong to this server, and (5) the type of the
local scheduler (RM or EDF) (6) local TEQ. Moreover, to schedule servers we
need:

• Server Ready Queueto store all servers that have non zero remaining
budget. When a server is released at the beginning of its period, its
budget will be charged to the maximum budgetQ, and the server will be
added to the Server Ready Queue. When a server executes its internal
tasks for some timex, then the remaining budget of the server will be
deceased withx, i.e., reduced by the time that the server execute. If
the remaining budget becomes zero, then the server will handover the
control to the global scheduler to select and remove the highest priority
server from Server Ready Queue.

• Server TEQ to release the server at its next absolute periodic time since
we are using periodic servers and also track their remainingbudgets.

Figures 7.4 illustrates the implementation of HSF in VxWorks. The Server
Ready Queue is managed by the routine that is responsible forscheduling the
servers. Tracking the remaining budget of a server is solvedas follows; when-
ever a server starts running, it sets an absolute time at which the server budget

72 Paper B

EDF/RM

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

10 20 30 40 50 60 70 80 90 100

Number of Tasks

Max

Figure 7.3: EDF normalized against RM, for maximum USR execution time.

expire and it equals to the current time plus its remaining budget. This time
is added to the server event Queue to be used by the timer to trigger an event
when the server budget expires. When a server is preempted byanother server,
it updates the remaining budget by subtracting the time thathas passed since
the last release. When the server executes its internal tasks until the time when
the server budget expiry event triggers, it will set its remaining budget to zero,
and the scheduling routine removes the server from the Server Ready Queue.

Local scheduler: When a server is given the CPU resources, the ready tasks
that belong to the server will be able to execute. We have investigated two
approaches to deal with the tasks in the Ready Queue when a server is given
CPU resources:

• All tasks that belong to the server that was previously running will be
removed from the Ready Queue, and all ready tasks that belongto the
new running server will be added to the Ready Queue, i.e., swapping
of the servers’ task sets. To remove tasks from the Ready Queue, the
state of the tasks is changed to suspend state. However, thiswill cause
a problem since the state of the tasks that finish their execution is also
changed to suspend and when the server run again it will add non-ready

7.6 Hierarchical scheduling 73

Server TCB�� ������� ���!���"�!����� �����!������������������#�$%&�!���
'()*()+ '()*(), '()*()-Server ready queue

'()*()- '()*()+ '()*(),Server event queue

task1
task2
task3
task4
task5
task6

VxWorks task TCB ���#. ���#/ ���#0Vxworks ready queue���#1���#2���#3���#3 ���#2 ���#1���#3 ���#2 ���#1 Task TCB��������4����������#"��5�
User defined data structures
VxWorks kernel data structures
Task defined data structures

������������ ������� ���!���"�!����� �����!������������������#�$%&�!���
Figure 7.4: The implementation of HSF in VxWorks.

tasks to the Ready Queue. To solve this problem, an additional flag is
used in the task’s TCB to denote whether the task was removed from
Ready Queue and enter to suspend state due to budget expiration of its
server or due to finishing its execution.

• The priority of all tasks that belong to the preempted server will be set to
a lower (the lowest) priority, and the priority of all tasks that belong to the
new running server will be raised as if they were executing exclusively
on the CPU, scheduled according to the local scheduling policy in use
by the subsystem.

The advantage of the second approach is that it can give the unused CPU
resources to tasks that belong to other servers. However, the disadvantage of
this approach is that the kernel scheduler always sorts the tasks in the Ready
Queue and the number of tasks inside Ready Queue using the second approach
will be higher which may impose more overhead for sorting tasks. In this
paper, we consider the first approach since we support only periodic tasks.
When a server is running, all interrupts that are caused by the local TEQ, e.g.,

74 Paper B

t6t7
t8 t9 t: t;

S1

S2

S3

Figure 7.5: Simple servers execution example.

releasing tasks and checking deadline misses, can be servedwithout problem.
However, if a task is released or its deadline occurs during the execution of
another server, the server that includes the task, may miss this event. To solve
this problem, when the server starts running after server preemption or when it
finishes its budget, it will check for all past events (including task release and
deadline miss check events) in the local TEQ that have absolute time less than
the current time, and serve them.

Note that the time wrapping algorithm described in section 7.5.1 should
take into account all local TEQ’s for all servers and the server event queue,
because all these event queues share the same absolute time.

Figure 7.5 illustrates the implementation of hierarchicalscheduling frame-
work which includes an example with three serversS1, S2, S3 with global and
local RM schedulers, the priority ofS1 is the highest and the priority ofS3 is
the lowest. Suppose a new period ofS3 starts at timet0 with a budget equal
to Q3. Then, the USR will change the state ofS3 to Ready, and since it is the
only server that is ready to execute, the USR will;

• add the time at which the budget will expire, which equals tot0 + Q3,
into the server event queue and also add the next period eventin the
server event queue.

• check all previous events that have occurred while the server was not
active by checking if there are task releases or deadline checks in the
time interval of[t∗, t0], wheret∗ is the latest time at which the budget of
S3 has been expired.

7.6 Hierarchical scheduling 75

• start the local scheduler.

At time t1 the serverS2 becomes Ready and it has higher priority thanS3.
SoS2 will preemptS3 and in addition to the previously explained action, the
USR will remove all tasks that belong toS3 from the ready queue and save the
remaining budget which equals toQ3 − (t1 − t0). Also the USR will remove
the budget expiration event from the server event queue. Note that whenS3

executes next time it will use the remaining budget to calculate the budget
expiration event.

Number of servers Max Average Min
10 91 89 85
20 149 146 139
30 212 205 189
40 274 267 243
50 344 333 318
60 412 400 388
70 483 466 417
80 548 543 509
90 630 604 525
100 689 667 570

Table 7.2: Maximum, average and minimum execution time of the USR with
100 measured values as a function of the number of servers.

The USR execution time depends on the number of the servers, and the
worst case happens when all servers are released at the same time. In addition,
the execution time of the USR also depends on the number of ready tasks in
both the currently running server to be preempted as well as the server to pre-
empt. The USR removes all ready tasks that belong to the preempted server
from ready queue and adds all ready tasks that belong to the preempting server
with highest priority into the ready queue. Here, the worst case scenario is that
all tasks of both servers are ready at that time. Table 7.2 shows the execution
time of the USR (when a server is released) as a function of thenumber of
servers using RM as a global scheduler at the worst case, where all the servers
are released at the same time, just like the case shown in the previous section.
Here, we consider that each server has a single task in order to purely investi-
gate the effect of the number of servers on the execution timeof the USR.

76 Paper B

7.6.2 Example

In this section, we will show the overall effect of implementing the HSF using
a simple example, however, the results from the following example are specific
for this example because, as we showed in the previous section, the overhead is
a function of many parameters affect the number of preemptions such as num-
ber of servers, number of tasks, servers periods and budgets. In this example
we use RM as both local and global scheduler, and the servers and associated
tasks parameters are shown in Table 7.3. Note thatTi = Di for all tasks.

S1(P1 = 5, Q1 = 1) S2(P2 = 6 ,Q2 = 1) S3(P3 = 70 , Q3 = 20)
τi Ti Ci τi Ti Ci τi Ti Ci

τ1 20 1 τ1 25 1 τ1 140 7
τ2 25 1 τ2 35 1 τ2 150 7
τ3 30 1 τ3 45 1 τ3 300 30
τ4 35 1 τ4 50 1
τ5 40 7 τ5 55 7
- - - τ6 60 7

Table 7.3: System parameters inµs.

The measured overhead utilization is about2.85% and the measured re-
lease jitter for taskτ3 in serverS3 (which is the lowest priority task in the
lowest priority server) is about49ms. The measured worst case response time
is 208.5ms and the finishing time jitter is60ms. These results indicate that
the overhead and performance of the implementation are acceptable for further
development in future project.

7.7 Summary

This paper has presented our work on the implementation of our hierarchical
scheduling framework in a commercial operating system, VxWorks. We have
chosen to implement it in VxWorks so that it can easily be tested in an in-
dustrial setting, as we have a number of industrial partnerswith applications
running on VxWorks and we intend to use them as case studies for an industrial
deployment of the hierarchical scheduling framework.

This paper demonstrates the feasibility of implementing the hierarchical
scheduling framework through its implementation over VxWorks. In partic-

7.7 Summary 77

ular, it presents several measurements of overheads that its implementation
imposes. It shows that a hierarchical scheduling frameworkcan effectively
achieve the clean separation of subsystems in terms of timing interference (i.e.,
without requiring any temporal parameters of other subsystems) with reason-
able implementation overheads.

In the next stage of this implementation project, we intend to implement
synchronization protocols in hierarchical scheduling frameworks, e.g., [12]. In
addition, our future work includes supporting sporadic tasks in response to spe-
cific events such as external interrupts. Instead of allowing them to directly add
their tasks into the ready queue, we consider triggering theUSR to take care of
such additions. We also plan to support aperiodic tasks while bounding their
interference to periodic tasks by the use of some server-based mechanisms.
Moreover, we intend to extend the implementation to make it suitable for more
advanced architectures including multicore processors.

Acknowledgements

The authors wish to express their gratitude to the anonymousreviewers for their
helpful comments, as well as to Clara Maria Otero Pérez for detailed informa-
tion regarding the implementation of hierarchical scheduling as a dedicated
layer on top of pSoSystem.

Bibliography

[1] Z. Deng and J. W.-S. Liu. Scheduling Real-Time Applications in an Open
Environment. In18th IEEE International Real-Time Systems Symposium,
pages 308–319, Dec 1997.

[2] T.-W. Kuo and C.H. Li. A Fixed-Priority-Driven Open Environment for
Real-Time Applications. In20th IEEE International Real-Time Systems
Symposium, pages 256–267, Dec 1999.

[3] G. Lipari and S. Baruah. Efficient Scheduling of Real-Time Multi-Task
Applications in Dynamic Systems. In6th IEEE Real Time Technology
and Applications Symposium, pages 166–175, May 2000.

[4] A. Mok, X. Feng, and D. Chen. Resource Partition for Real-Time Sys-
tems. In7th Real-Time Technology and Applications Symposium, pages
75–84, May 2001.

[5] Insik Shin and Insup Lee. Periodic Resource Model for Compositional
Real-Time Guarantees. In24th IEEE International Real-Time Systems
Symposium, pages 2–13, Dec 2003.

[6] L. Almeida and P. Pedreiras. Scheduling within TemporalPartitions:
Response-Time Analysis and Server Design. In4th ACM International
Conference On Embedded Software, pages 95–103, Sep 2004.

[7] Rob Davis and Allan Burns. Hierarchical Fixed Priority Pre-emptive
Scheduling. In26th IEEE International Real-Time Systems Symposium,
pages 389–398, Dec 2005.

[8] X. Feng and A. Mok. A Model of Hierarchical Real-Time Virtual Re-
sources. In23rd IEEE International Real-Time Systems Symposium,
pages 26–35, Dec 2002.

79

80 Bibliography

[9] G. Lipari and E. Bini. Resource Partitioning Among Real-Time Applica-
tions. In15th IEEE Euromicro Conference on Real-Time Systems, pages
151–158, July 2003.

[10] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein.Analysis of
Hierarchical Fixed-Priority Scheduling. In14th IEEE Euromicro Confer-
ence on Real-Time Systems, pages 152–160, July 2002.

[11] Insik Shin and Insup Lee. Compositional Real-Time Scheduling Frame-
work. In 25th IEEE International Real-Time Systems Symposium, pages
57–67, Dec 2004.

[12] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Nolin. SIRAP:
A Synchronization Protocol for Hierarchical Resource Sharing in Real-
Time Open Systems. In7th ACM International Conference On Embedded
Software, pages 279–288, Oct 2007.

[13] R. I. Davis and A. Burns. Resource Sharing in Hierarchical Fixed Prior-
ity Pre-emptive Systems. In27th IEEE International Real-Time Systems
Symposium, pages 257–270, Dec 2006.

[14] Nathan Fisher, Marko Bertogna, and Sanjoy Baruah. The Design of an
EDF-Scheduled Resource-Sharing Open Environment. In28th IEEE In-
ternational Real-Time Systems Symposium, pages 83–92, Dec 2007.

[15] G. Buttazzo and P. Gai. Efficient Implementation of an EDF Scheduler for
Small Embedded Systems. In2nd International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, July 2006.

[16] Evidence Srl. ERIKA Enterprise RTOS.

[17] C. Diederichs, U. Margull, F. Slomka, and G. Wirrer. An Application-
Based EDF scheduler for OSEK/VDX. In11th Conference on Design,
Automation and Test in Europe, pages 1045–1050, Aug 2008.

[18] D. Kim, Y. Lee, and M. Younis. SPIRIT-uKernel for Strongly Partitioned
Real-Time Systems. In7th International Workshop on Real-Time Com-
puting and Applications Symposium, pages 73–80, Dec 2000.

[19] L. Kinnan P. Parkinson. Safety Critical Software Development for Inte-
grated Modular Avionics. InWind River white paper, 2007.

[20] Jane W.S. Liu. Real-time Systems.Prentice Hall, page 610, 2000.

[21] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced Aperiodic Respon-
siveness in Hard Real-Time Environments. In8th IEEE International
Real-Time Systems Symposium, pages 261–270, Dec 1987.

[22] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for
Hard Real-Time Systems.Journal of Real-Time Systems, 1(1):27–60,
June 1989.

[23] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algo-
rithm: Exact Characterization and Average Case Behavior. In 10th IEEE
International Real-Time Systems Symposium, pages 166–171, Dec 1989.

[24] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgement day.Journal of
Real-Time Systems, 29(1):5–26, Jan 2005.

[25] S. Baruah, R. Howell, and L. Rosier. Algorithms and Complexity Con-
cerning the Preemptive Scheduling of Periodic, Real-Time Tasks on One
Processor.Journal of Real-Time Systems, 2(4):301–324, Nov 1990.

Chapter 8

Paper C:
A Loadable Task Execution
Recorder for Hierarchical
Scheduling in Linux

Mikael Åsberg, Thomas Nolte and Shinpei Kato
In RTCSA’11 Conference, pages 380–387, August, 2011

83

Abstract

This paper presents a Hierarchical Scheduling Framework (HSF) recorder for
Linux-based operating systems. The HSF recorder is a loadable kernel module
that is capable of recording tasks and servers without requiring any kernel mod-
ifications. Hence, it complies with the reliability and stability requirements in
the area of embedded systems where proven versions of Linux are preferred.
The recorder is built upon the loadable real-time schedulerframework RESCH
(REal-time SCHeduler). We evaluate our recorder by comparing the overhead
of this solution against another (patched) recorder. Also,the tracing accu-
racy of the HSF recorder is tested by running a media-processing task together
with periodic real-time Linux tasks in combination with servers. The tests are
recorded with the HSF recorder, and theFtrace recorder, in order to show the
correctness of the experiments and the HSF recorder itself.

8.1 Introduction 85

8.1 Introduction

The research that we conduct is primarily focused on the development of hi-
erarchical scheduling [1, 2, 3]. Our previous and ongoing work within hier-
archical scheduling includes practical (implementation)aspects of this kind of
scheduling [4, 5], the applicability/usage [6, 7] of it, as well as applying formal
methods [8] on it. In server-based scheduling (the predecessor of hierarchi-
cal scheduling), tasks (a sequence of instructions) are only allowed to execute
whenever their server (the virtual task which they belong to) runs. The server
itself executes according to some scheduling scheme (global scheduling) which
is independent of the tasks. The advantage is that it can improve the response
time (the time length between task activation and completion) of event trig-
gered tasks, and still keep the scheduling deterministic since the server schedul-
ing parameters are known and included in the schedulabilityanalysis. Further,
introducing a scheduler within each server (local scheduling) makes it more
general since it supports time triggered tasks as well. Thiscan be generalized
even further by representing a task as a set of tasks togetherwith a scheduler.
When we have separate scheduling inside a server, i.e. both global and local
scheduling, then we refer to hierarchical scheduling or a Hierarchical Schedul-
ing Framework (HSF), this is illustrated in Figure 8.1.

Sy
ste

m

CPU

Global scheduler

Server Task Server

Local
scheduler

Local
scheduler

Interface Interface Interface

.

… … … …

Figure 8.1: Hierarchical scheduling framework.

Hierarchical scheduling has several advantages, besides improving response
time of event triggered tasks. It enables parallel development of system parts

86 Paper C

(subsystems), simplifies integration of subsystems (analysis), supports runtime
temporal partitioning and safe execution of tasks etc. However, except for
ARINC653 [9, 10] compliant operating systems that are commonly found in
avionics applications, hierarchical scheduling is rarelyan integrated part of
an operating system (OS). Indeed, there is a need to develop/implement new
scheduling algorithms, such as hierarchical scheduling, in the area of embed-
ded and/or real-time systems [6]. A motivation of this can befound in our
scheduling example in the evaluation (Section 8.4), where we let a media-
processing task (which does a movie playback) execute within a server (server-
based scheduling). The server executes with a certain frequency, giving (guar-
anteeing) the media task an even amount of CPU power which improves the
playback quality of the movie, even though it executes amongother time trig-
gered tasks. The media task has an unknown execution pattern, i.e., the releases
are undefined. Still, we get predictability (since we can analyze the behavior)
from both the media tasks point of view, and the time triggered tasks. Also, we
avoid (temporal) interference at runtime, meaning that we get a safe execution
environment for the tasks because temporal errors do not propagate between
the media task and the time triggered tasks.

From a practical point of view, it is an advantage if hierarchical scheduling
can be implemented easily/efficiently and without modifying the kernel. The
latter makes it easier for both developers and users since there is no need to
maintain/apply kernel modifications every time the kernel is replaced or up-
dated. Moreover, keeping the scheduler isolated in a kernelmodule, without
modifying the kernel, simplifies debugging and potential certification of its cor-
rectness (component-based development advantages). We see that the RESCH
scheduling framework [11] is useful because it has the advantages mentioned,
since it does not need any kernel modifications. Also, it makes scheduler de-
velopment easier because it simplifies the scheduling interface to the user and
it supports the development of schedulers (plugins) which run as independent
kernel modules. However, while the development of schedulers are simplified
with this framework, it lacks support for debugging the schedulers. That is
why we have developed a HSF recorder, which can easily be plugged in to a
server-based/hierarchical scheduler, developed in RESCH. The recorder does
not require kernel modifications and it is of course also suitable for analyzing
the runtime behavior of tasks/servers since the recorded trace can be visualized
graphically with the Tracealyzer [12] or Grasp [13] visualization tools. In turn,
these tools can present valueable trace data such as execution- and response-
time.

The HSF recorder is able to record the following scheduling events during

8.2 Preliminaries 87

run-time:

1. The time instance when a task/server is released (even though it might
not start to execute).

2. The time instance when a task/server starts to execute.

3. When there is a task/server context switch, the recorder distinguishes
between preemption and non-preemption.

4. The time instance when a task/server finishes its execution.

Contribution The main contributions of this paper are:

1. We have implemented a task/server recorder with the use ofRESCH,
i.e., it does not require any kernel modifications. The recorder enables
debugging at task and server level, in Linux based real-time/general-
purpose OSs.

2. We have evaluated our HSF recorder by implementing yet another recorder
(Section 8.2.3), using the technique presented in [14], andcompared the
overhead of this recorder, with the HSF recorder.

3. We have tested our recorder by running a media-processingtask together
with time triggered tasks and servers. The example shows howthe play-
back quality gets improved by putting the media-processingtask in a
server. The HSF recorder is used in this example to debug and display
the runtime behavior.

Outline The outline of this paper is as follows: Section 8.2 presentspre-
liminary background, in Section 8.3 we describe the HSF-recorder implemen-
tation. Section 8.4 evaluates the overhead and tracing accuracy of the HSF
recorder. Section 8.5 presents related work, and finally, Section 8.6 concludes.

8.2 Preliminaries

8.2.1 System model

We assume fixed-priority, preemptive, scheduling of periodic tasks, according
to the periodic task model [15]. A taski is presumed to have the following pa-
rameters,〈Ti,WCET i, Di, pri〉, where the periodTi represents the frequency

88 Paper C

in which the task is released for execution,WCET i is the worst case execution
time of the task, the relative deadlineDi (within the period) is when the task
must complete its execution (RESCH monitors this) andpri is the task priority
(lower value represents higher priority). Also, all tasks are assumed to execute
independently of eachother and on the same core, i.e., single core.

The servers are also assumed to have fixed priority and they are scheduled
preemptively and periodic. A serverj has similar parameters as tasks, i.e.
〈Pj , Qj , prj〉, wherePj is the server period,Qj is defined as a budget (which
is the time given at each periodPj to the tasks within the server) andprj is the
server priority (lower value represents higher priority).

8.2.2 RESCH

We have been developing a loadable real-time scheduler framework, RESCH
[11], designed to work with the POSIX-compliant SCHEDFIFO scheduling
policy implementation. RESCH has previously been used as the basis for an-
other scheduler called AIRS [16] - a multi-core CPU scheduler for interactive
real-time applications. As mentioned previously, RESCH isa modification-
free scheduling framework for Linux. It supports periodic tasks which can be
scheduled in a fixed-priority preemptive manner. RESCH is simply composed
of external kernel modules and user-space libraries for easy installation. It
gives both an interface to the users in user space (e.g. a taskspecific interface
like rt wait for period()) as well as in the kernel space. The kernel
space API (Application Programming Interface) has the interface shown be-
low:

1. task run plugin()

2. task exit plugin()

3. job releaseplugin()

4. job completeplugin()

These functions can be implemented by aRESCH plugin (Figure 8.3), i.e.,
a kernel module that has access to the RESCH kernel API. Thesefunctions
are called in theRESCH core at certain events which are illustrated in Fig-
ure 8.2. Functions 1) and 2) are executed every time a task registers/unregisters
to RESCH. With register we mean that the task does a RESCH API call, trans-
forming it to a RESCH task, which creates a RESCH TCB (Task Control
Block) and puts it in the RESCH ready-queue etc. A RESCH TCB has, among

8.2 Preliminaries 89

other real-time specific data, a reference to its corresponding Linux task TCB
(task struct). Once the task is registered in RESCH, it will be scheduled
periodically (and preemptive) according to its real-time priority. The primitives
3) and 4) are called whenever a RESCH task is released for execution or when
it has finished its execution. The plugins get these scheduling notifications
and can thereby affect scheduling, trace tasks etc. The plugin notifications are
shown in Figure 8.2. When a task notifies RESCH that it has finished its exe-
cution in its current period, the RESCH core will inform any plugin about this
event and set a timer for the release of the tasks next period.As a last step, it
will call the Linux kernel to re-schedule another task. The next running task
might be a RESCH task or any other Linux process.

user level
kernel level

RESCH task

RESCH core

RESCH plugin

Linux kernel

interrupt context
kernel-thread context

rt_wait_for_period()

job_complete_plugin()
schedule()

mod_timer()

<=>?@
ABCDEFGFHIFDJGKLMNOP QRSTUVWUWXYZT[[OP \]=<̂_`<abc

Figure 8.2: RESCH control flow.

When the kernel responds to the corresponding timeout (taskrelease), a
handler in the RESCH core will get notified about this event. The handler will
notify any plugin about the task release and then call the kernel to wake up the
task.

In Linux, since kernel version 2.6.23 (October of 2007), tasks can be either
afair or areal-time task. The latter group has higher priority (0-99 where 0
is highest) than fair tasks (100-140). A task that registersto RESCH is auto-
matically transformed to a real-time task. RESCH is responsible for releasing
tasks, and tasks registered to RESCH must notify when they have finished their
execution in the current period. In this way, RESCH can control the schedul-
ing. RESCH uses an absolute-time clock, i.e., it does not wrap around. Also,
release times are stored as absolute values, so release patterns are exact.

90 Paper C

RESCH
core

HSF
plugin

Linux Kernel

Real-time task

Timers

RESCH
libraryApplication

ApplicationApplication

Ke
rn

el
Sp

ac
e

Us
er

Sp
ac

e

RESCH
task

Scheduler

Figure 8.3: RESCH framework.

The cost of having a modification-free solution is that RESCHcan only see
scheduling events related to its registered tasks. Real-time tasks with higher
priority than RESCH tasks (i.e. tasks that are not registered in RESCH) can
thereby interfere with RESCH tasks without the RESCH core being able to
detect it. A simple solution to this problem is to schedule all real-time tasks
with the RESCH framework.

8.2.3 Task-switch hook patch

Our previous work [14] includes an implementation of atask switch hook
function (Figure 8.4), residing in a kernel module, which iscalled by the Linux
scheduler at every scheduler tick. In this way, it is possible to record task
scheduling events. This solution requires modification of two code lines in two
separate kernel source files (sched rt.c andsched fair.c). The modifi-
cation of filesched rt.c is illustrated in Figure 8.4 (a similar change is done
in sched fair.c). Linux has (since kernel version 2.6.23) two scheduling
classes, namely thefair and thereal-time scheduling classes. When a new
task should be released, the Linux scheduler iterates through its scheduling
classes (first thereal-time class, secondly thefair class) in order to find the
next task to release.

8.3 Implementation 91

The modification (Figure 8.4) makes it possible to re-directa scheduling
class’ function pointer.pick next task to point to a user defined function
(i.e., our function
task switch hook), instead of the original functionpick next task rt.
Our function will instead point topick next task rt, in this way, we do
not alter the kernel functionality other than executing ourfunctiontask switch hook
(which contains user defined code) just beforepick next task rt starts to
execute. Our function (hook) can be inserted and removed during runtime.
A task recorder can easily be implemented (as a kernel module) and use the
task switch hook function to register task context switches, however, the
kernel must be modified.

Static const struct sched_class rt_sched_class = {
.
.
.

.pick_next_task = pick_next_task_rt,

sched_rt.c

re-compile
kernel

Linux kernel
rt_sched_class

.pick_next_task

Execution time monitor

task_switch_hook
after

Loadable kernel module

pick_next_task_rt

patch

before

Figure 8.4: Hook patch.

8.3 Implementation

The implementation of the HSF recorder is based on the scheduler plugin HSF
which in turn is based on the scheduling framework RESCH. Figure 8.5 shows
that the HSF scheduler uses primitives exported by RESCH andexports these,
as well as server specific primitives, to the recorder. Theseprimitives are used
to register server and task context switches. Note that the flexible structure
allows for new scheduler plugins to reuse the recorder as long as they export
the same primitives.

For the recording to work correctly, it is assumed that no higher priority
real-time Linux tasks, which are not registered by RESCH, are executed.

The current implementation does not supportload balancing (a function
in Linux that migrates tasks to other CPUs based on load). This is because the

92 Paper C

HSF
plugin

RESCH core

HSF recorder
plugin

server_complete
server_release

job_complete_plugin
job_release_plugin

Figure 8.5: HSF-recorder plugin.

RESCH scheduler cannot detect task migrations made by the Linux scheduler.
Each recorded event has 2 records:

• ID of the next task/server to execute.

• Timestamp of the event.

The ID of the next task/server is used to calculate the previous task/server.
The 4 hook functions (Figure 8.5) are used by the recorder to save scheduling
records in memory (this is a circular implementation). The recorder flushes the
recorded data to disk when it gets unloaded by the user. The recording format
can easily be converted to match any visualization tool. We have successfully
converted the format to fit with the Tracealyzer [12] and the Grasp [13] visual-
ization tools. We use Grasp in the evaluation (Section 8.4) in order to visualize
the trace of the HSF recorder since it also supports hierarchical scheduling in
addition to regular (flat) scheduling.

Figure 8.6 illustrates how the HSF recorder gets triggered.As can be
seen, the HSF scheduler gets triggered by its own timers as well as by the
RESCH core. The HSF scheduler relays task releases and completions to the
HSF recorder when the HSF scheduler itself is triggered by the RESCH core.
Whenever the HSF scheduler gets triggered by a timer, it automatically calls its
server release/completion plugin, which in turn starts therecorder. The figure
also shows that the HSF recorder executes mostly in interrupt context. This
makes it less expensive in terms of context-switch overhead.

8.4 Evaluation 93

user level
kernel level

RESCH task

RESCH core

RESCH HSF

Linux kernel

interrupt context
kernel-thread context

rt_wait_for_period()

schedule()

mod_timer()

tim
er job_release_plugin()

wake_up_process()

sw
itc
h_
to(

)

RESCH server

HSF recorder
job_complete_plugin()

server_release()

mod_timer()

re
lea

se

sto
p

server_complete()

re
lea

se

Figure 8.6: HSF recorder control flow.

8.4 Evaluation

We have evaluated our HSF recorder by recording a set of tasksand servers (Ta-
ble 8.1 and 8.2). In our example, taskrt task1 belongs to serverServer0,
rt task2 andrt task3 does not belong to any server whilert task4
belong to serverServer1 andrt task5 to Server2.

The evaluation shows two aspects: the measured overhead (section 8.4.1)
of the HSF recorder compared to the patched recorder [14], and an example of
how the Quality of Service (QoS) of multimedia tasks can be improved with
hierarchical scheduling as well as how our HSF recorder can assist in this work
(section 8.4.2). In the multimedia example we used our HSF recorder and the
Ftrace [17] recorder.

During our experiments, the two recorders were recording the tasks and
servers simultaneously.

94 Paper C

Task-name T WCET D Prio Server
rt task1 80 9 80 0 Server0
rt task2 200 75 200 1 -
rt task3 105 9 105 2 -
rt task4 500 100 500 3 Server1
rt task5 - - - 4 Server2

Table 8.1: Tasks used in the evaluation.

Server-name P Q Prio
Server0 40 6 1
Server1 90 23 2
Server2 25 8 0

Table 8.2: Servers used in the evaluation.

8.4.1 Overhead measurements

In order to estimate the overhead impact, we measured the execution time of the
patched and the HSF recorder, running simultaneously and recording the same
trace. We also noted the amount of data (in kilo bytes) that the two recorders
produced (out of curiosity we also measuredFtrace). We implemented an
optimized version of the patched recorder,Patch (Table 8.3) so that it only
saved recorded data of the tasks that we were interested in recording. In this
way, the comparison to the HSF recorder became fair since it is only triggered
at task/server events related to the tasks/servers we are interested in recording
(RESCH related task and servers).

Recorder Exec. time (µs) Rec. data (KB)
HSF 45 10.5
Patch 1246 17.4

Ftrace - 888.6

Table 8.3: Measurements of the recorders.

The values listed in Table 8.3 are the average measured values of 10 runs
and the recorders recorded about 4 seconds at each run. We seethat the HSF

8.4 Evaluation 95

recorder has a ratio of 4.3 µs/KB while Patch has 71.6 µs/KB. The conclu-
sion is that the HSF recorder produces less overhead than thepatched recorder,
comparing the execution-time/data ratio. The small amountof recorded data
compared toFtrace suggests that our recorder might be a better option if the
user is only interested in a subset of tasks. Having a small amount of over-
head is attractive for recorders since they can remain active in shipped prod-
ucts (without wasting too much resources), and thereby eliminating the probe
effect.

8.4.2 Multimedia example

The purpose of this example is to show how a multimedia task (processing a
movie) can benefit from hierarchical scheduling in such a waythat the movie
playback runs more smoothly. The HSF scheduler has never been evaluated
(and debugged) as properly as the example we are about to show, so this is a
good case study for the HSF recorder. We run the multimedia task in differ-
ent setups (with and without hierarchical scheduling), andmeasure its perfor-
mance. The hierarchical scheduling gives the multimedia task an even amount
of CPU power, and thereby improves the movie playback. Note that all of
this is done, including the recording, without modifying the kernel. The HSF
recorder plays a key role since knowledge of the scheduling behavior is im-
portant in order for the result of this evaluation to be correct. For example,
the recorder shows that the tasks and servers get the amount of CPU that we
specify (i.e., that tasks run within their servers) and thatthe tasks/servers run
according to the specified frequency andWCET/Q. During our experiments,
the recording showed that the HSF cannot keep tasks within their server if they
do a lot of blocking (e.g. multimedia tasks). Therefore, we set lowest pri-
ority to the multimedia task and add idle tasks with higher priority than the
multimedia task. This will keep the multimedia task within its server, thereby
guaranteeing the upper limit on its resource supply. This was confirmed by the
recording of our HSF recorder. A second recorder (Ftrace) was also used in
order to show that the HSF recorder recorded correctly. We used the Grasp tool
[13] to visualize our recordings (for both the HSF recorder and Ftrace), since
it can display both tasks and servers.

In this example, we have 5 tasks, i.e.,rt task1 tort task5 (Table 8.1).
Tasksrt task1 tort task4 are dummy tasks, i.e., they just loop (rt task1
in Figure 8.7).rt task5 does a movie playback, its task body is shown in
Figure 8.7.

96 Paper C

// rt task1
int main(int argc,char *argv[])
{

.

.
for (i = 0; i < NR OF JOBS; i++){

for (j = 0; j < USEC UNIT; j++) {
}
if (!rt wait for period()){

printf(”deadline is missed!\n”);
}

}
.
.

}
// rt task5
int main (int argc,char *argv[])
{

.

.
libvlc mediaplayerplay(player);
.
.

}

Figure 8.7: Task bodies.

rt task5 used the libVLC1 for movie playback and the library itself has
the nice property that the movie processing can be executed by a task running
in real-time mode. We executedrt task5 in 4 different setups:

1. rt task5with lowest priority and tasksrt task1 tort task4with
priority order as in Table 8.1.

2. rt task5with medium priority (in betweenrt task2 andrt task3)
and tasksrt task1 to rt task4 with priority order as in Table 8.1.

3. rt task5 with highest priority and tasksrt task1 to rt task4
with priority order as in Table 8.1.

4. rt task5 executed in serverServer2, andrt task1 andrt task4

1libVLC http://wiki.videolan.org/Libvlc

8.4 Evaluation 97

in serverServer0 andServer1 respectively (rt task2 andrt task3
was not included in this setup).

Given these 4 setups, taskrt task5will get different amount/distribution
of CPU power and the processing of movie images (frames) willtherefore
also be affected. The movie processing is measured in amountof produced
frames per second (FPS). The CPU utilization (percantage ofCPU time) of task
rt task5 is shown in Table IV as well as the frame rate of whichrt task5
is processing a movie. We measured the FPS by timestamping the beginning
and end of the movie playback system call and dividing the amount of frames
of the movie with the measured time. The amount of frames is 91and this
value was generated by Mplayer2 (using thebenchmark flag). It is important
to note that the CPU utilization given in Table IV is theavailable CPU time, it
does not mean that taskrt task5 uses this CPU time. The FPS values may
not considered to be 100% accurate, but it shows the approximate efficiency.
For example, runningrt task5 with 100% CPU should of course not give
worse FPS value than running it with 32% CPU. These values areof course
affected by overhead from the Linux kernel etc. We ran the theexperiments on
an Intel Pentium Dual-Core (E5300 2,6GHz) platform, equipped with a Linux
kernel version 2.6.31.9, running withload balancing disabled. The recorded
tasks (and servers) ran on the same core, i.e., all tasks weremigrated to CPU
#0 at initialization phase.

Setup CPU utilization (%) FPS
Lowest prio 22.65 22.55
Medium prio 51.25 23.57
Highest prio 100 25.48

HSF 32 25.66

Table 8.4: FPS of taskrt task5.

The conclusion based on Table IV is that the distribution of CPU power
influences the frame frequency a lot and that utilization alone is not sufficient
for determining this. For example, giving taskrt task5 51.25% of the CPU
produces less FPS than giving it 32%. The 32% CPU is guaranteed (no more
no less) and it is distributed evenly as can be seen by the recording of HSF
recorder in Figure 8.8 (visualized with the Grasp tool [13]).

2Mplayerhttp://www.mplayerhq.hu/design7/news.html

98 Paper C

Apparently, (during our experiments) taskrt task5 must have been ac-
tive when other higher priority tasks were occupying the CPU, thereby tem-
porarely getting less than 51.25% CPU. This is not the case when running the
multimedia task in its server, since it is always supplied 32%.

0 50 100 150 200 250 300 350

idle

rt_task5

s3_idle

s1_idle

rt_task4

s0_idle

rt_task1

0

4

8

Server2

0

3

6

Server0

0

12

23

Server1

0

1125

2250

Server3

Figure 8.8: Tasks and servers recorded with the HSF recorder.

Figure 8.9 shows the same trace as in Figure 8.8, but recordedwith the
Ftrace recorder. As can be seen, the HSF recorder records correctly, also, it
shows that taskrt task5 does not consume CPU continuously (i.e., it blocks
often).

Figure 8.10 shows a trace by our HSF recorder when taskrt task5 was
running with lowest priority, without HSF. As can be seen, the CPU availability
for taskrt task5 is highly dependant on when higher priority tasks execute.

Our example shows that it is difficult to fine tune the CPU supply for a
multimedia task, i.e., we can only do it by changing the priority of the task
since it is not periodic. However, it is possible to do tuningby setting server
period, budget and priority, when using HSF. The main contribution of this
example is the trace (Figure 8.8) made by the HSF recorder which shows the
correctness of the CPU distribution, made by HSF, to real-time tasks (with
media processing). We have also tested the correctness of the HSF recorder by

8.4 Evaluation 99

0 50 100 150 200 250 300 350

idle

rt_task5

s3_idle

s1_idle

rt_task4

s0_idle

rt_task1

Figure 8.9: Tasks recorded with theFtrace recorder.

0 50 100 150 200 250 300 350

idle

rt_task5

rt_task4

rt_task3

rt_task2

rt_task1

Figure 8.10: Tasks recorded with the HSF recorder.

comparing its trace results with theFtrace recorder, i.e., the trace in Figure 8.8
is identical with the trace in Figure 8.9, which shows that itrecords correctly.
Also, the trace in Figure 8.8 shows the amount of unused CPU time (slack
time) at both server level and within each server, since the different idle tasks
represent this. For example, serverServer3 (which has lowest priority) and
its tasks3 idle represent slack time at server level, whiles0 idle represent
unused time inServer0. The conclusion is that the HSF recorder can be a
good tool for debugging hierarchical schedulers in RESCH, since it records
accurately and with low overhead. Further, this example shows that our (HSF)
recorder and scheduler records (and schedules) correctly,even though we do
not modify the kernel.

100 Paper C

8.5 Related work

The idea of our solution is based on the replay debugging approach [18], which
records system events online and replays them offline. In later work [19],
the replay debugging has been extended to be compiler- and OS-independent.
While the replay debugging works with off-the-shelf compilers for application-
level debugging, our solution is self-contained software using Grasp [13] for
OS-level debugging, and it is primarily focused on real-time scheduler debug-
ging.

The SCHED DEADLINE project [20], which is in charge of the EDF
scheduler implementation for Linux, has used thesched switch tracer pro-
vided by theFtrace toolkit [17] to output the recordings of context switches.
The output logs are later converted to the Value Change Dump (VCD) format so
thatGtkWave can visualize the task execution traces. The trace can of course
be converted to other trace formats, such as the Tracealyzer[12] or the Grasp
[13] format. Given thatFtrace is supported by the Linux community, it is rea-
sonable to use this toolkit to trace task executions for kernel debugging, but it
is dedicated to the Linux kernel, so it is not necessarily suitable for real-time
scheduler debugging in general. For instance,sched switch does not catch job
releases, however, context switches are precisely traced,and it can distinguish
between task completions and task preemptions. Our solution is more flexible
and integrated in that it is available not only for the Linux kernel, but also for
other OSs, once the RESCH framework is ported to other platforms.

Our previous work [21] includes a simple task recorder in Linux (based
on RESCH) which supports the Tracealyzer [12] and the Grasp [13] format.
Further, we have also implemented a task recorder [14] (in Linux) which is
able to record all task scheduling events, but it requires modifications to the
kernel.

DTrace [22], SystemTrap [23], LTT [24], and LTTng [25] are advanced
tools for OS debugging. They are oriented for tracing entirekernel events, so
it is required that the developers understand how to use them. Meanwhile, our
solution is more simplified by focusing on real-time scheduler debugging, and
it is very easy to use in practice.

Real-Time Application Interface for Linux (RTAI) [26] is a collection of
loadable kernel modules and a kernel patch which together provides a rich real-
time API to the user. It gives the possibility to add/delete hooks for every task-
start, task-switch and task-delete. These hooks give the possibility to monitor
task execution in a detailed level.

Tracealyzer [12] is a visualization and analysis tool for embedded systems.

8.6 Conclusion 101

It can visualize task traces as well as task communication. Recorders imple-
mented in the OSs VxWorks, OSE, Rubus and RTXC support the Tracealyzer
format.

8.6 Conclusion

We have presented the implementation and evaluation of a task/server recorder
based on the RESCH (REal-time SCHeduler) framework in Linux. RESCH is
a scheduling framework for Linux which support scheduler plugins, i.e., multi-
, uni-core, flat-, server-based-scheduling etc. Our recorder implementation
is a plugin on top of an already existing hierarchical scheduler plugin called
HSF (Hierarchical Scheduling Framework). This framework supports fixed-
priority preemptive scheduling of servers as well as tasks.The HSF recorder
uses scheduling primitives supported by RESCH itself, and HSF, in order to
record scheduling events. The RESCH framework, the HSF scheduler plugin
as well as our HSF recorder require no modification of the kernel and this is the
main contribution of this approach. To the best of our knowledge, this is the
first attempt to perform task tracing (within hierarchical scheduling) in Linux,
without kernel modifications.

The evaluation of the HSF recorder includes two parts:

• Overhead comparison against an optimized version of our previously im-
plemented task-switch patch [14].

• The correctness of the HSF recorder (as well as the HSF scheduler)
is tested with a media processing example. The tracing capability and
accuracy of the HSF recorder is compared against the main-line Linux
recorderFtrace [17].

Our HSF recorder produces very low overhead, in terms of CPU consump-
tion, compared to the task-switch patch. The amount of recorded data is also
much smaller thanFtrace, suggesting that the HSF recorder could be a better
choice if only a subset of Linux tasks is of interest to monitor.

The media-processing example shows 5 real-time tasks running with, and
without servers, i.e., with the HSF scheduler activated andwith only RESCH.
In the example, we show that one of the tasks (which is processing a movie)
produces higher frame rate with theoretically lower CPU utilization (using the
HSF scheduler) than with higher CPU utilization (using onlyRESCH). The

102 Paper C

reason for this is that HSF gives the media-processing task better CPU re-
source distribution. In this example, the HSF recorder contributes by showing
that the media task uses only its allocated CPU resource, thereby showing that
the example is correct. It also shows a weakness with the HSF scheduler in
that it has problems with keeping media tasks (and similar tasks which blocks
often) within its server. However, non-blocking real-timetasks are shown to
be properly contained inside their servers. All traces fromthe HSF recorder,
in this example, are done in parallel with theFtrace recorder, thereby showing
the accuracy (and correctness) of our HSF recorder.

The conclusion is that the HSF recorder could be a good tool for debugging
hierarchical schedulers in RESCH. The recorder can, together with a visual-
ization tool, such as Grasp [13], visualize the execution oftasks and servers
as well as display worst-case, best-case and average value of both execution-
and response-time of tasks. In case that the Linux kernel is configured with
Ftrace, then it could be useful to use also, since it complements ourrecorder
well. Our recorder can record server events and task releases, while Ftrace
can record the context switches between the RESCH real-timetasks and other
Linux tasks.

Future work includes mergingFtrace and the HSF recorder to get more
detailed and complete traces. We will also continue with improving the HSF
scheduler plugin as well as developing new server-based schedulers (Band-
width Sharing Server, Constant Bandwidth Server, SporadicServer etc.) and
support for multi-core scheduling (and tracing).

Bibliography

[1] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU Scheduler for Mul-
timedia Operating Systems. In2nd USENIX Symposium on OS Design
and Implementation, pages 107–121, Oct 1996.

[2] Z. Deng and J. W.-S. Liu. Scheduling Real-Time Applications in an Open
Environment. In18th IEEE International Real-Time Systems Symposium,
pages 308–319, Dec 1997.

[3] John Regehr and John A. Stankovic. HLS: A Framework for Compos-
ing Soft Real-Time Schedulers. In22nd IEEE International Real-Time
Systems Symposium, pages 3–14, Dec 2001.

[4] Mikael Åsberg, Moris Behnam, Thomas Nolte, and Reinder J. Bril. Im-
plementation of Overrun and Skipping in VxWorks. In6th International
Workshop on Operating Systems Platforms for Embedded Real-Time Ap-
plications, pages 45–52, July 2010.

[5] Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg, and Reinder J.
Bril. Towards Hierarchical Scheduling in VxWorks. In4th International
Workshop on Operating Systems Platforms for Embedded Real-Time Ap-
plications, pages 67–76, July 2008.

[6] Mikael Åsberg, Moris Behnam, Farhang Nemati, and Thomas Nolte. To-
wards Hierarchical Scheduling in AUTOSAR. In14th IEEE International
Conference on Emerging Technologies and Factory Automation, pages
1181–1188, Sep 2009.

[7] Mikael Åsberg, Thomas Nolte, and Paul Pettersson. Prototyping and
Code Synthesis of Hierarchically Scheduled Systems using TIMES.Jour-
nal of Convergence, 1(1):77–86, Dec 2010.

103

104 Bibliography

[8] Mikael Åsberg, Paul Pettersson, and Thomas Nolte. Modelling, Verifi-
cation and Synthesis of Two-Tier Hierarchical Fixed-Priority Preemptive
Scheduling. In23rd IEEE Euromicro Conference on Real-Time Systems,
pages 172–181, July 2011.

[9] ARINC. ARINC 653: Avionics Application Software Standard Interface
(Draft 15). Airlines Electronic Engineering Committee (AEEC), 1996.

[10] ARINC/RTCA-SC-182/EUROCAE-WG-48. Minimal Operational Per-
formance Standard for Avionics Computer Resources. 1999.

[11] Mikael Åsberg, Shinpei Kato, Thomas Nolte, and Ragunathan Rajku-
mar. ExSched: An External CPU Scheduler Framework for Real-Time
Systems. In18th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, pages 1–10, Aug 2012.

[12] Anders Wall, Johan Andersson, and Christer Norström.Decreasing
Maintenance Costs by Introducing Formal Analysis of Real-Time Behav-
ior in Industrial Settings. In1st International Symposium on Leveraging
Applications of Formal Methods, pages 130–145, Oct 2004.

[13] Mike Holenderski, Martijn Heuvel, Reinder Bril, and Johan Lukkien.
Grasp: Tracing, Visualizing and Measuring the Behavior of Real-Time
Systems. In1st International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems, pages 37–42, July 2010.

[14] Mikael Åsberg, Thomas Nolte, Clara M. Otero Perez, and Shinpei Kato.
Execution Time Monitoring in Linux. InWork-In-Progress session of
14th IEEE International Conference on Emerging Technologies and Fac-
tory Automation, pages 1601–1604, Sep 2009.

[15] C.L. Liu and James Layland. Scheduling Algorithms for Multi-
Programming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, Jan 1973.

[16] Shinpei Kato, Raj Rajkumar, and Yasuyuki Ishikawa. AIRS: Support-
ing Interactive Real-Time Applications on Multicore Platforms. In22nd
IEEE Euromicro Conference on Real-Time Systems, pages 47–56, July
2010.

[17] Tim Bird. Measuring Function Duration with Ftrace. In1st Annual Japan
Linux Symposium, Oct 2009.

[18] H. Thane and H. Hansson. Using Deterministic Replay forDebugging of
Distributed Real Time Systems. In12th IEEE Euromicro Conference on
Real-Time Systems, pages 265–272, June 2000.

[19] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson. Replay De-
bugging of Real-Time Systems Using Time Machines. In17th Inter-
national Symposium on Parallel and Distributed Processing, page 288,
April 2003.

[20] D. Faggioli, M. Trimarchi, and F. Checconi. An implementation of the
Earliest Deadline First algorithm in Linux. In24th Annual ACM Sympo-
sium on Applied Computing, pages 1984–1989, March 2009.

[21] Mikael Åsberg, Johan Kraft, Thomas Nolte, and Shinpei Kato. A Load-
able Task Execution Recorder for Linux. In1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Sys-
tems, pages 31–36, July 2010.

[22] B.M. Cantrill, M.W. Shapiro, and A.H. Leventhal. Dynamic Instrumen-
tation of Production Systems. In13th USENIX Annual Technical Confer-
ence, pages 15–28, June 2004.

[23] V. Prasad, W. Colhen, F. Eigler, M. Hunt, J. Keniston, and B. Chen. Lo-
cating System Problems Using Dynamic Instrumentation. In7th Ottawa
Linux Symposium, pages 49–64, July 2005.

[24] K. Yaghmour and M.R. Dagenais. Measuring and Characterizing System
Behavior Using Kernel-Level Event Logging. In9th USENIX Annual
Technical Conference, pages 13–26, June 2000.

[25] M. Desnoyers and M.R. Dagenais. The LTTng Tracer: A Low Impact
Performance and Behavior Monitor of GNU/Linux. In8th Ottawa Linux
Symposium, pages 209–224, July 2006.

[26] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza and S. Papachar-
alambous. RTAI: Real Time Application Interface.Linux Journal, 29(10),
April 2000.

Chapter 9

Paper D:
Modelling, Verification and
Synthesis of Two-Tier
Hierarchical Fixed-Priority
Preemptive Scheduling

Mikael Åsberg, Paul Pettersson and Thomas Nolte
In ECRTS’11 Conference, pages 172–181, July, 2011

107

Abstract

Hierarchical scheduling has major benefits when it comes to integrating hard
real-time applications. One of those benefits is that it gives a clear runtime
separation of applications in the time domain. This in turn gives a protec-
tion against timing error propagation in between applications. However, these
benefits rely on the assumption that the scheduler itself schedules applications
correctly according to the scheduling parameters and the chosen scheduling
policy. A faulty scheduler can affect all applications in a negative way. Hence,
being able to guarantee that the scheduler is correct is of great importance.
Therefore, in this paper, we study how properties of hierarchical scheduling
can be verified. We model a hierarchically scheduled system using task au-
tomata, and we conduct verification with model checking using the Times tool.
Further, we generate C-code from the model and we execute thehierarchical
scheduler in the VxWorks kernel. The CPU and memory overheadof the mod-
elled scheduler is compared against an equivalent manuallycoded two-level
hierarchical scheduler. We show that the worst-case memoryconsumption is
similar and that there is a considerable difference in CPU overhead.

9.1 Introduction 109

9.1 Introduction

Hierarchical scheduling [1, 2, 3] has been introduced as a means to simplify
parallel development of embedded systems. It facilitates the integration of such
systems by providing mechanisms for temporal isolation between software
parts, called subsystems. The schedulable entity manifested by a subsystem
is referred to as aServer. A system (a product, a large piece of software etc.)
can be composed of a number of subsystems, where each of thesetypically im-
plement a particular function or feature of the whole system. For example, a car
has a number of features/subsystems, and two examples of these are the engine
control system and the anti-lock braking system. These features/subsystems
should ideally be developed in parallel and integrated smoothly [4]. Integra-
tion related problems include having to cope with differentscheduling policies
among subsystems, sharing the CPU resource among subsystems according to
their need (and keeping that share during runtime), and ensuring that timing
faults do not propagate from one subsystem to another. An example of such a
fault is a piece of software that requires more time to execute than originally
intended (exceeding its analysed worst-case execution time), and thereby caus-
ing unforseen interference with the rest of the system. Yet another integration
problem is the introduction of new software functions, not apparent at early
design.

Hierarchical scheduling allows for timing analysis of an entire system, as
well as for subsystems in isolation, before they are integrated. It supports mul-
tiple scheduling policies and it has a runtime mechanism that multiplexes the
CPU resource among subsystems, hence, making sure that no unpredictable in-
terference between subsystems will occur in the time domain. Also, the size of
the CPU share can easily be re-configured, allowing for ”lastminute” changes
when introducing new software late in the development process.

One important property of hierarchical scheduling, when itcomes to hard
real-time applications, is the safe execution environmentfor a subsystem. The
scheduling entity of a subsystem, i.e., a server, should ensure (together with the
scheduler) that the subsystem will get the exact CPU share that it was promised.
Even though a subsystem is executed together with other (potentially faulty)
subsystems, it should still get the CPU share that it is entitled to. In practice,
hierarchical scheduling can prevent faulty subsystems from propagating timing
faults to other subsystems. However, hierarchical scheduling cannot deal with
timing faults propagating from itself, i.e., a faulty scheduler causing incorrect
scheduling events, and thereby violating the contracted CPU shares that belong
to the subsystems. This is of course not acceptable in applications with hard

110 Paper D

real-time constraints.
We have experience in the implementation of two-level hierarchical schedul-

ing frameworks in operating systems such as VxWorks [5] and Linux [6]. Our
implemented frameworks operate in two levels using periodic/polling servers
(PS) [7] and, inside these, fixed priority preemptive scheduling (FPPS) of peri-
odic tasks. Even though the setup of these frameworks are quite simple (two-
level, PS and FPPS), it gives rise to a large implementation complexity, since
we are dealing with multiple schedulers (multiple scheduling-related timing
events). From our experience, debugging/tracing of this kind of scheduling [6]
is very time consuming. Also, debugging/tracing does not guarantee 100% cor-
rectness, since it can be difficult to determine wheather theschedule is correct
or not. Due to this, in this paper we look at modelling, formalverification and
code-synthesis of hierarchical scheduling with FPPS.

The motivation for modelling hierarchical FPPS is inherentin its wide sup-
port for schedulability analysis [8, 9, 10], as well as the evolving research in
synchronisation protocols [11, 12], which need hierarchical scheduling imple-
mentations/models for its development and evaluation.

Recently, automata based approaches have been proposed to describe/analyse
a broad set of real-time scheduling policies. One of the advantages of these
approaches is the ability to generate generic task release patterns. In task au-
tomata models [13], task release patterns are modelled using timed automata
[14]. It has been shown that the schedulability analysis problem is resolvable
for both FPPS and dynamic scheduling policies such as earliest deadline first
(EDF). Other benefits of such approaches are that simulation, formal verifi-
cation of timing/functional safety properties, as well as code-synthesis [15]
is possible. The Times tool [16] supports modelling with thetask automata
model, and it can perform simulation, verification, code-synthesis etc. How-
ever, hierarchically scheduled systems cannot be verified using existing solu-
tions.

In this paper our overall goal is to model, verify and synthesise a two-level
hierarchical scheduling framework. The main contributions of this paper are:

1. We have modelled two-level hierarchical scheduling, with FPPS and PS
at the global level with support for an arbitrary number of servers with
FPPS and periodic tasks at the local level. We have used the modelling
language task automata and implemented the model using the Times
tool. To the best of our knowledge, this is the first task-automata model
of two-tier FPPS with PS.

2. We have extended the model with support for verification (using what

9.2 Preliminaries 111

we call observers), allowing us to verify that the model matches the
scheduler behavior (properties) that we have specified. Note that we
are NOT verifying schedulability analysis, but the scheduler itself (two-
level FPPS with periodic tasks/servers). The contributionto the state-
of-the-art is the verification of the schedulers (scheduling policies) in a
hierarchically scheduled system.

3. We have used the built-in code generator in Times to synthesise our
model. However, the manual work needed includes adapting the code
for our large model (which has 370 edges and 155 locations), since the
Times code-generator currently supports a limited size. This work also
includes removing platform (Linux simulator) dependent code, and in-
serting VxWorks related code. This gives us the possibilityto get real
overhead estimates of the modelled scheduler when executing it. The re-
sults presented are the actual execution traces of the scheduler executed
in the VxWorks kernel, as well as a comparison of CPU- and memory-
overhead against an equivalent manually-coded hierarchical scheduler.
To the best of our knowledge, there is no prior work on synthesis (from
model) for this type of scheduling.

The outline of this paper is as follows: in Section 9.2 we outline prelimi-
naries on hierarchical scheduling, task automata and Times. In Section 9.3 we
present the model of two-level hierarchical scheduling, inSection 9.4 we show
how we have verified the behavior of the modelled scheduler, and finally in
Section 9.5, we show the result of the synthesis. Section 9.6presents related
work, and finally, Section 9.7 concludes.

9.2 Preliminaries

9.2.1 Hierarchical scheduling

Hierarchical scheduling has been introduced to support CPUmultiplexing in
combination with different scheduling policies. It can generally be represented
as a tree of nodes with arbitrary size, where each node represents a subsys-
tem with its own local scheduler for scheduling internal workloads (tasks).
Looking at the tree-structure representation, the CPU resource is allocated
from a parent node to its children nodes. One of the main advantages of hi-
erarchical scheduling is that it provides means for decomposing a complex
system into well-defined parts (subsystems). In essence, hierarchical schedul-
ing gives rise to time-predictablecompositionof coarse-grained subsystems.

112 Paper D

This means that subsystems can be developed and tested independently, and
at a later stage assembled without introducing unwanted temporal behavior.
Hierarchical scheduling also facilitatesreusabilityof subsystems, since their
computational requirements are characterised by well definedinterfaces.

Figure 9.1 illustrates two-level hierarchical scheduling. The left side illus-
trates the structure: the top node is defined as theGlobal schedulerand it is
responsible for distributing theCPU capacity to the servers (the schedulable
entity of a subsystem). Servers are allocated a defined time (budget) every pre-
definedperiod [17] and they are executed based on theirpriority. They are
scheduled according to the scheduling policy of the global scheduler (for ex-
ample FPPS or EDF) and the parameters just mentioned, hence,they can be
viewed as ”virtual tasks”. Each server can comprise aLocal schedulerwhich
schedules the workload inside it, i.e. its tasks, when its server is selected for ex-
ecution by the global scheduler. Note that the local scheduling policy may dif-
fer from the global policy. The interfaces (T,C,Pr) for tasks and servers shows
the allocated CPU capacity. It includes the release period,execution time (or
budget in the case for a server) and priority (lower value corresponds to higher
priority). The right side of the figure corresponds to the runtime behavior of
the structure.

Global
scheduler

Local scheduler

S1Task1

Server1

Local scheduler Local scheduler

S3Task1

Server2 Server3

S2Task1 S2Task2

T:4, C:1, Pr:0 T:5, C:2, Pr:1 T:9, C:2, Pr:2

T:4,C:1,Pr:0 T:5,C:1,Pr:0T:10,C:1,Pr:1T:5,C:1,Pr:0 0 5 10

se
rv
er
1

se
rv
er
2

se
rv
er
3

S1task1 S2task2S2task1 S3task1
Legend

Figure 9.1: Example hierarchical FPPS.

9.2.2 Task automata and TIMES

Timed automata[14] is a widely used modelling language for formal modelling
and analysis of real-time systems. A timed automaton is essentially a finite
state automaton extended with real-valued clocks that can be tested and reset.
The formalism has shown to be suitable for a wide range of real-time systems.

9.2 Preliminaries 113

The timed automata model has been extended with an explicit notion of
tasks, with parameters such as periods, priorities, execution times etc. The
model, referred to astask automata(of timed automata with tasks), associates
asynchronous tasks with the locations (states) of a timed automaton, and as-
sumes that the tasks are executed using static/dynamic priorities with a pre-
emptive or non-preemptive scheduling policy. This model issupported by the
Times tool. One of the main benefits of using this tool (in the context of this
paper) is that it supports task automata, which is suitable for modelling sched-
ulers. Secondly, it can verify properties of a modelled system. Last but not
least, the tool has a code-generator which gives the possibility for synthesis.

In case that tasks are released periodically (with or without offsets), or
aperiodically, the input to the Times tool is merely a task table in which the
following parameters are defined for a task: name, executiontime, (relative)
deadline, priority (in case of static priority scheduling), offset and period (if
applicable), interface, semaphore usage, and its C-code. Alternatively, a task
can be of typecontrolled, meaning that the release pattern of a task is defined
by a given task automata. All tasks in our modelled hierarchical scheduler are
of type controlled. defghiejklhimn op lqdefghiejkr defghiejksdefghiejktuvwxyzhimn pp lqf{gjjn|}himn pp llhimn~pq f{gjjn|�g~pg�l This is a

comment

Figure 9.2: Example task automata.

Figure 9.2 shows an example of a task automata that releases a(controlled)
task for execution, at minimum, every 10 time units. The arrows (with a dot)
to stateLocation 1 andLocation 3 defines that they are the start locations.
The invarianttime <= 10defines that control can only be at this state up until
time 10, then a transition has to be made. The conditiontime==10 defines
that a transition may take place if this holds. The channelchannel! defines
that when this transition is made, the corresponding channel channel? must
be activated, i.e., there has to be a transition between state Location 3 and
Location 4. The latter location has a task release statement (task1), and this
means that upon arrival at this state, tasktask1is released for execution. State
Location 4 is flagged asurgent(U), which defines that no time will pass when
computinga:=a+1 or before the transition to stateLocation 3. A transition

114 Paper D

from stateLocation 2 to Location 1 may take place whentime==11, if so,
the clocktime will be reset to zero.

9.3 Model

This section will describe the hierarchical scheduler, modelled in Times. The
modelling language of task automata is used for modelling the framework.
This language allows task releasing, and transitions/actions can be controlled
with clock constraints (as shown in Figure 9.2). However in general, in order to
implement hierarchical scheduling, one either need to be able to release tasks
and suspend them,or, release tasks and change task priorities dynamically dur-
ing runtime (in order to perform a server context switch). Unfortunately, task
suspension and dynamic priority (of controlled tasks) is not supported by the
Times tool. In order to solve this issue, we model an executing task as a se-
ries of task releases, where each task release will execute the task 1 time unit.
Hence, the minimum task execution time is 1 time unit, and theexecution time
is discrete, i.e., it has to be divisible by 1 (without generating a remainder).
What this means in practice, is that when there is a task executing within a
server and its budget depletes, then we simply stop releasing the task (and take
a note of the amount of time executed so far). This is illustrated in Figure 9.3
where a task is supposed to execute 5 time units, within 2 budget instances
of its server. This results in 3 task releases at the first server instance and 2
releases in the second instance. This fragmentation does not affect the task
model, schedulability analysis or verification, it just makes the task automata
model more complicated to implement. A more practical approach is to only
model task releases and no actual task execution (hence there will be no task
suspension in the model). The downside of such a non-fragmented approach is
restricted verification capabilities as well as no possibilities of graphical rep-
resentation during simulation (Figure 9.8). We will show verification using
the fragmented task model, and we will show code-synthesis for both the frag-
mented and the non-fragmented model (Section 9.5).

Figure 9.3: Discrete task execution.

The model structure is illustrated in Figure 9.4. The globalscheduler ac-

9.3 Model 115

tivates the servers with channels, through theEventHandlerautomata. The
global scheduler is unchanged when adding/deleting servers, only theEven-
tHandler is affected. Servers are activated periodically and they run according
to their budget and priority, i.e., PS with FPPS. In our model, Server 3 has a lo-
cal scheduler, scheduling periodic tasks with FPPS. Server1 has no scheduler,
i.e., it just releases a task upon activation and lets it run until budget depletion.

Each scheduler (global or local) has a ready- and a release-queue. The
ready-queue contains the servers/tasks, ordered by priority. The release-queue
stores the release times (in absolute time) of the servers/tasks, ordered with the
earliest time first. The queues are implemented as arrays andinsertion is based
on a binary search algorithm.

As mentioned previously, a server is activated/deactivated through chan-
nels (where the global scheduler is the initiator). This means that a server must
always be prepared to be activated/deactivated, i.e., all of its states which are
not marked asurgentmust have an activation/deactivation channel. If this is
fulfilled, then the server will be in total control by the global scheduler, hence,
scheduling errors will not propagate from local to global level. Also, if the
global scheduler is verified, then the local scheduler can assume that it is get-
ting its correct timeslots (according to its interface), making verification at the
local level easier (the power of compositional verification). The local sched-
uler releases its tasks according to the model illustrated in Figure 9.3, which
will prevent the tasks from executing outside of its serversbudget (the Times
simulation in Figure 9.8 illustrates this).

GlobalScheduler

EventHandler

Server1

Observer1

Observer2

Server3

Legend:
Synchronisation with
channels (!,?) are
represented with an arrow
from the initiating (sending)
state to the receiver.

sender receiver

Figure 9.4: Structure of the model.

Observer1andObserver2(Figure 9.4) will get notifications of scheduling
events through channels. We define scheduling events as being task/server re-
leases, server budget depletion and task suspension (due tothe task finishing its
current execution). The observers themselves do not initiate these synchroni-
sations and they do not affect the clocks, hence, they do not affect the behavior
of the model. The observers are mainly used for the purpose ofverifying the
schedulers [18], this will be elaborated in more detail in Section 9.4.

116 Paper D

9.3.1 Global scheduler

Figure 9.5 illustrates a simplified version of the global scheduler. The excluded
parts include initialisation, queue management etc. Basically, whenever there
are no scheduling events, the automata waits in the main state, i.e., the one
without theurgentsymbol (U). This is the only state where time is allowed to
pass. From the main state, there are in total three transitions possible: server
budget deplete, server release and allowing for a task-event (i.e., task release
etc.) that belongs to the current active server. As can be seen, the depletion
transition has highest priority, followed by the release and task-event transi-
tions. The latter is necessary since the global scheduler needs precedence over
local scheduling events when they occur at the same time. As with the priority
of the other two, it is simply more convenient to handle a budget-deplete event
before a release event (when they occur at the same time).
As can be seen by the model, we model that scheduling events donot con-
sume any time (hence theurgentsymbols). The reason for this is to reduce
the complexity of the model. This means that during simulation, the scheduler
produces no overhead. However, running experiments would of course yield
some scheduler overhead, these details will be shown in Section 9.5.

Observer1 is notified about server budget-deplete (DepleteObs1!) and
server release events (ReleaseObs1!), this is shown in Figure 9.5.

S_Main

US_BudgetDepletion

U S_Release

US_ContextSwitch

Clock < S_ReleaseEvent, Preemption==FALSE

Update queues
Update queues

Clock < S_BudgetEvent
, Clock < S_ReleaseEvent
AllowServerToRun?

Clock < S_ReleaseEvent
, Preemption==TRUE

ReleaseObs1!

EventHandlerStart!
DepleteObs1!

Clock == S_BudgetEvent
, S_BudgetEvent <= S_ReleaseEvent
, S_BudgetEvent <= NextTaskEvent

Clock == S_ReleaseEvent
, S_ReleaseEvent < S_BudgetEvent
, S_ReleaseEvent <= NextTaskEvent

Figure 9.5: Model of the global scheduler (simplified).

9.3.2 Event handler

Figure 9.6 shows the model of the event handler. The motivation for its exis-
tence is that it abstracts the number of servers from the global scheduler, i.e.,
adding/removing servers only affects the number of states in the event han-
dler and not in the global scheduler. Sincechannelscannot be declared as ar-
rays, every server requires 2 states (activation and deactivation) in this model.
As can be seen in this model, the global scheduler observer (Observer1) is
notified if there is a server scheduling event, and which servers that are acti-
vated/deactivated.

9.3 Model 117

HandlerInit

U HandlerStart
S1activate!S3activate!

U S1ActivateEventU S3ActivateEvent
S1ActivateObs1!S3ActivateObs1!

U NotifyObserver1

U S3DeactivateEventU S1DeactivateEvent

EventObs1!

S3deactivate!S1deactivate!

EventHandlerStart?

S1DeActiveObs1!

S3DeActiveObs1!

Figure 9.6: Model of the event handler (simplified).

9.3.3 Local scheduler

The local scheduler model (Figure 9.7) is similar to the global scheduler. Dis-
cretising the time is important for keeping track of events,hence the added
time pass state that increments time (clocks are not allowedbe read in timed
automata). The time-pass state is crucial since the local scheduler has more
scheduling events to keep track of, compared to the global scheduler.
Whenever the server is deactivated, it stays in the sleep state. In active mode,
the server can release, stop and increment a tasks execution. The latter goes
back to the statement that a tasks execution is discrete withsections of 1 time
unit of execution.
Observer2is notified of events by getting triggered by the local scheduler
through a number of channels.
Each upcoming task scheduling-event must be passed to the global scheduler
so that it does not schedule a server event (such as deactivating the server) with-
out letting the local scheduler handle task scheduling events that are earlier in
time. The upcoming task scheduling event is calculated in theCalcNextEvent
state and stored in theNextTaskEventvariable, which is visible in the global
scheduler.

US3_Main

S3_Timepass
S3clock<=1

S3_Sleep

S3_Deactivate?
S3clock==1
t ime:=t ime+1
S3clock:=0

UNotifyObserver1
S3_Deactivate?

US3_Release

U S3_TaskExec

U S3_TaskExecEnd U S3_ContextSwitch

U CalcNextEvent

AllowServerToRun!

TaskSwitch==FALSE

TaskSwitch==TRUE

TaskExecEndObs2!
AllowServerToRun!

U S3_T1
task1

U S3_T2
task2

Preemption==TRUE

Update queues

UNotifyObserver2

ActivateObs2!

DeactivateObs2!

Preemption==FALSE

NextTaskEvent:=...

S3_Activate?

ReleaseObs2!
AllowServerToRun!

EventObs2!

Figure 9.7: Model of the local scheduler (simplified).

118 Paper D

All models (including schedulers, observers etc.) can be viewed in our
technical report [19].

9.4 Verification

We have specified 5 respectively 4 properties for each scheduler level (global/local)
that should be satisfied by our modelled schedulers. We use two so called
observer automata that will implement the behavior (properties) that we have
specified. The next step is to use the built in verifier in Times, and simply
construct logic statements (TCTL) that checks if certain states are reached in
the observers. The observers will reach these states if theydetect a scheduling
fault that contradicts our proposed properties.Observer1 is used to verify the
global scheduler, andObserver2 is used for the verification of the local sched-
uler. The reason for using observers, instead of only using logic statements in
Times, is that the verifier cannot determine the amount of time elapsed from
one location to another, which we need in order to conduct ourverification.
Naturally, all automata have been checked for the absence ofdeadlock before
proceeding with the verification.

9.4.1 Task/server systems used in the verification

It is well known that model checking requires a finite model, and thus, it might
cause problems when verifying schedulers [20, 21] since thetasks give rise
to unknown factors such as number of tasks, task parameters etc. In essence,
different task sets will give rise to different automata transitions (behavior), so
the scheduler will behave different depending on task sets.Due to this, we ex-
plore the fact that the modelled scheduler has a small set of scheduling events
(task/server release, task/server suspension, context switch etc.), even when in-
cluding the combinations of these events (as we will see). Weidentify all of
these events, which represents the entire behavior of the scheduler. Then we
run the scheduler together with selected task/server sets that will generate all
of these (combinations of) scheduling events, during the verification. Alterna-
tively (just to be safe), since the process from modelling/verification down to
synthesis is short, once the model is finished (the verification of models in this
size takes just a few minutes on a standard PC), a system can beverified with
scheduler and load (task/server) together before deployment.

We ran three different task/server systems (system 1, 2 and 3) during the
verification of our scheduler properties. The three systemsare presented in

9.4 Verification 119

Name T Budget D Prio Tasks
Server1 19 2 19 Low {server1}
Server3 5 3 5 High {s3task1,s3task2}

Table 9.1: Server set (used in system 1 and 2).

Name T Budget D Prio Tasks
Server1 19 2 19 Low {server1}
Server3 10 6 10 High {s3task1,s3task2}

Table 9.2: Server set (used in system 3).

Table 9.3, 9.4 and 9.5. The corresponding execution traces can be found in
Figure 9.9, 9.10 and 9.11. The server parameters used for systems 1 and 2
(Figure 9.9 and 9.10) are listed Table 9.1, and the server parameters for system
3 (Figure 9.11) is shown in Table 9.2. Figure 9.8 shows a simulation trace (in
Times) of system 1, i.e., Figure 9.9.

Name T C D Prio

server1 - - - -
s3task1 10 3 10 Low
s3task2 11 1 11 High

Table 9.3: Task set of system 1.

Table 9.6 list all possible scheduling events at the global level. A release
or suspension of a task/server can lead to a context switch (c.s.). If not (in
case of suspension), then there will be a switch to an idle task/server, which is
not part of our model, hence we define a context switch only when the model
switches between tasks/servers that are defined in the model. A simultaneous
suspension/release will always lead to a context switch. Wedo not differentiate
if the task/server that is released is to be switched in, or, if there is another
higher priority task/server ready to be switched in. We differentiate in that
local scheduling events can occur when its server is active,the time when its
server activates and the time when its server deactivates. Local scheduling
events happen only during the time when its server is active (according to the
model). Related to the undefined events in Table 9.7, a task suspension cannot
happen during a server release since it cannot finish its execution at the same
time as its server activates. The local scheduler does not differentiate the cause

120 Paper D

Name T C D Prio

server1 - - - -
s3task1 16 4 16 Low
s3task2 11 2 11 High

Table 9.4: Task set of system 2.

Name T C D Prio

server1 - - - -
s3task1 10 3 10 High
s3task2 11 1 11 Low

Table 9.5: Task set of system 3.

of its servers activation/deactivation, e.g., there is no differentiation if the server
activation is due to a release, or suspension of a higher priority server. Hence,
we do not need to consider all possible cases/combinations of local and global
scheduling events. All scheduling events in Table 9.6 and 9.7 are referred to the
execution traces presented in systems 1, 2 and 3. These scheduling events will
occur during the verification of the global (section 9.4.2) and local scheduler
(section 9.4.3).

Figure 9.8: TIMES simulator (simulating system 1).

9.4.2 Global level verification

In the verification of the global scheduler, we use the serverparameters shown
in Table 9.1, which will generate all server scheduling events (shown in Ta-
ble 9.6). The following properties are defined (and later verified):

Property1 : A serverSi (with index i) should never get more thanCi

budget at any discrete interval (non sliding) of lengthPi, where the first interval
starts at time 0.

Property2 : A serverSi (with indexi) should never get less thanCi budget
at any discrete interval (non sliding) of lengthPi, where the first interval starts

9.4 Verification 121

Server event Example
Release (c.s.) Fig. 9.9, time=20

Release (no c.s.) Fig. 9.9, time=57
Suspend (c.s.) Fig. 9.9, time=03

Suspend (no c.s.) Fig. 9.9, time=08
Suspend/Release (c.s.) Fig. 9.9, time=38

Table 9.6: Server scheduling events.

Task event Server event
Active Activate Deactivate

Release (c.s.) Fig. 9.9, t=11 Fig. 9.10, t=55 Fig. 9.10, t=33
Release (no c.s.) Fig. 9.11, t=22 Fig. 9.10, t=00 Fig. 9.11, t=66
Suspend (c.s.) Fig. 9.11, t=13 - Fig. 9.9, t=23

Suspend (no c.s.) Fig. 9.9, t=06 - Fig. 9.10, t=08
Suspend/Release (c.s.) Fig. 9.11, t=33 - Fig. 9.9, t=33

Table 9.7: Task scheduling events.

at time 0, if there is unused time within this interval.
Property3 : A serverSi (with indexi) should always be released (inserted

in the server ready-queue) according to its specified periodPi.
Property4 : A server should always be removed from the server ready-

queue upon server budget depletion.
Property5 : The highest priority server in the server ready-queue should

always be the current running server in the system.
We have modelled a task automata calledObserver1 (Figure 9.13 and

9.14) that will check that each of the 5 properties are fulfilled.
Figure 9.12 shows at which server scheduling events the observer executes,

the following list explains each event:

• EventA represents a release event.

• EventB represents the start/stop of a budget (not necessarily the begin-
ning and end of a budget).

• EventC represents the end of a budget.

• Event D represents the the beginning of a budget in case it was idle
previously.

122 Paper D

0 10

��������������
20 30 40 50 60

��������������
server1

Figure 9.9: System 1.

0 10

��������������
20 30 40 50 60

��������������
server1

Figure 9.10: System 2.

Property1 andProperty2 are checked by the observer by measuring the
server budget, eventB (Figure 9.12) illustrates these events.Property2 is
not valid if there is no unused budget within the period, since that indicates
a schedulability problem. At eventD, a server is activated, and the observer
timestamps this point if no previous server was running. This timestamp value
is checked at eventA together with the measured budget. If the timestamp is
within the period, then there was unused time. At each eventA, Property1 and
Property2 are checked. In Figure 9.14, either a transition to stateLessBudget
or MoreBudget is made if the budget has been underused or exceeded. Event
D corresponds toCheckSlack(Figure 9.14). The logical expressions (1) and
(2) in Figure 9.15 checks that there is no path leading to the error states, i.e., for
all paths (∀), on every state along the path (�), a state is never (¬) visited. The
transition to these error states contradicts the requirements ofProperty1 and
Property2. For more details on the modelling of the error states, we direct the
reader to our technical report [19].

Property3 is checked at eventA (Figure 9.12). StateIncorrectRelease2
(Figure 9.14) is active if the global scheduler tries to release a server at an

9.4 Verification 123

20

��� ��¡��� ��¢
30 40 50 60 70

£¤¥¦§̈©£¤¥¦§̈ª
server1

10

Figure 9.11: System 3.

D
B
A

S1

S2
0 P« 2*P«ADB

C
B B B

C
BA

Figure 9.12:Observer1 events.

incorrect time. A transition to stateIncorrectRelease1(Figure 9.14) is done
if there should be an incorrect value in the server release queue, which does
not match the calculated release time of the observer. We have used the logical
expressions (3) and (4) in Figure 9.15 to checkProperty3 in Times.

Property4 is checked at eventC, Figure 9.12. Whenever there is a server
deplete event, the observer checks that the server is no longer in the server
ready-queue (IncorrectDeplete, Figure 9.13). The logical expression (5) (Fig-
ure 9.15) verifies this property.

Property5 is checked at eventA by checking the server ready-queue con-
tent and order, the logical expression used is (6) (Figure 9.15). We check that
a server is in the ready queue after its release (CheckQueueContent) and that
the queue is ordered correctly (CheckQueueOrder), both states are found in
Figure 9.14.Server Event is entered whenever there is a server context switch
(Figure 9.13). It is not possible to enter this automata partif no budget deple-
tion or server release has occurred (CheckExecution, Figure 9.13), this refers
to expression (7) (Figure 9.15). Yet two more expressions are important to
check, (8) and (9) (Figure 9.15), in order to verifyProperty5. Whenever
there is a server release that affects the server ready-queue in such a way that it
ends up as the head node (ServerCS2, Figure 9.14), then it implies that a server
context switch should occur (Server Event, Figure 9.13). This is checked in

124 Paper D

StartU CheckExecution
EventObs1?

IncorrectRunning

EventFlag == RESET

U Server_Event

U ServerDeplete

DepleteObs1?
IncorrectDeplete

S_ReadyQ[i] == ActiveServer

U ServerCS1

EventFlag:=FINISHED
,CSflag1++

S_ReadyQ[i] != ActiveServer
,i == S_ReadyLen
DeplTstamp:=budgetCalc. spend budget etc.

S_ReadyQ[i] != ActiveServer
,i < S_ReadyLen
i + +

EventFlag := RESET

EventFlag == RELEASED
,AbsClock==RelTstamp
CSflag2−−

EventFlag == FINISHED
,AbsClock==DeplTstamp
CSflag1−−

Figure 9.13:Observer1: Server context-switch and depletion.

Start

IncorrectRelease2AbsClock < S_ReleaseQ[0]
ReleaseObs1?

U ServerRelease

AbsClock==S_ReleaseQ[0]
,RelTstamp:=S_ReleaseQ[0]
ReleaseObs1?, ID:=...

IncorrectRelease1

MoreBudget

LessBudget

SpendBudget[ID] < S_Budget[ID]
,SlackTstamp > LastPeriod[ID]

SpendBudget[ID] > S_Budget[ID] IncorrectQueue

UCheckQueueContent

RelTstamp != AbsPeriod[ID]

U ServerCS2

i < S_ReadyLen
i + +

found == 1,i == S_ReadyLen
,S_ReadyQ[0]==ID,CSflag2++ S_ReadyQ[i] == ID

found :=1

ID:=S_ReleaseQIndex[0]
ReleaseMore?

UCheckSlackNoMoreRelease? U CheckQueueOrder
EventFlag:= RELEASED i == S_ReadyLen

S_ReadyQ[0]!=ID,found==1
,i == S_ReadyLen,ReleaseMore?
ID:=S_ReleaseQIndex[0]

AbsClock > S_ReleaseQ[0]
ReleaseObs1?

S_ReadyQ[i] > S_ReadyQ[i+1]
S_ReadyQ[0] != ID,found == 1
,i == S_ReadyLen,NoMoreRelease?S_ReadyLen == 0

SlackTstamp:=RelTstamp

i == S_ReadyLen, found == 0

S_ReadyQ[i]<=S_ReadyQ[i+1]
,i < S_ReadyLen
i + +

SpendBudget[ID]==S_Budget[ID]

Figure 9.14:Observer1: Server release.

expression (8) (Figure 9.15), for all paths and states (∀ �), whenever state
ServerCS2is reached, it implies (=⇒) that at some state in all the upcom-
ing paths (∀ ♦), stateServer Event is reached and (∧), at the same time the
conditionCSflag2 = 0 holds. The condition is that it should happen directly,
i.e., no time should pass. This is a condition in the model where the transitions
betweenCheckExecution and Server Event checks the elapsed time (Fig-
ure 9.13). Also, there should not be any nesting, i.e., two server releases (where
both imply server context switch) followed by one context switch (hence the
checkCSflag2 = 0 in the expression). The same check is made for budget
depletion, expression (9) (Figure 9.15).

9.4.3 Local level verification

During the verification of the local level we use all three task systems presented
in section 9.4.1, and we use another observer calledObserver2 (due to space
restrictions we direct the reader to the technical report [19] for this figure) to
verify the following 4 properties.

Property6 : A taskti (with indexi) should always be released (inserted in

9.4 Verification 125

Figure 9.15: TCTL expressions.

the task ready-queue) according to its specified periodPi, OR if later, directly
when its server is activated.

Property7 : A task should always be removed from the task ready-queue
upon finishing its execution.

Property8 : The highest priority task in the task ready-queue (in each
server) should always be the current running task in the server, when it is active.

Property9 : All tasks should run within their respective server.

The only properties that are different in the local level compared to the
global level areProperty6 andProperty9, we will explain these two briefly.

Property6 is checked with the same expressions as in the global level, but
the local level observer will also allow task releases that coincide with its server
releases.

RegardingProperty9, Observer2 assumes that all context switches that
happen during its observation are within the server under observation. Hence,
it is only required to check that no task context switch (where the next running
task belongs to the observed server) will occur during server deactivation. The
property is checked by timestamping all task context switches. A transition is
made to an error state if a task context switch occur at the same time as a server
deactivation.

126 Paper D

9.5 Code synthesis

We have synthesised the model into two different kernel-level implementa-
tions; the original model which has fragmented task executions and that is
fully verified (Section 9.4), and the more simple model (without fragmenta-
tion) where only the global level is fully verified, and the local level is partially
verified (onlyProperty6 is fulfilled). In the simple model we don’t use any in-
ternal task ready-queue (tasks are just released accordingto the release-queue),
hence, the local level cannot be fully verified. We synthesised these two models
for the sake of comparing the CPU overhead, further, we also included our pre-
viously manually coded hierarchical scheduler HSF [5] (as areference point)
in the comparison. The fragmented model is of course not practical, in terms
of synthesis (real applications cannot have this kind of fragmentation), but still
we show that it is possible to synthesise a fully verified hierarchical scheduler.
Removing the fragmentation (and keeping the full verification) is just a mat-
ter of adding dynamic priority support (or the ability to suspend tasks) in the
Times tool.

We measured the CPU overhead of all 3 schedulers as well as thememory
consumption. The platform used for the experiments is VxWorks 6.6, running
on an Intel Pentium4 (1,66 GHz, uni-core) desktop machine. The CPU over-
head was measured with thesysTimestamp facility and the dynamic memory
consumption was analysed with theWind River Workbench Memory Ana-
lyzer. The tasks used in the experiments were executing empty for-loops and
the execution times were estimated using the VxWorksTimex facility. During
the experiments, the tick resolution was set to 1000 Hz. We let 1 time unit in
the system represent 1 scheduler tick.

Scheduler CPU (%)
Times (fragmented) 1.78

Times (non-fragmented) 1.36
HSF 0.08

Table 9.8: CPU overhead.

Table 9.8 shows the measured CPU overhead of the schedulers.The mea-
surements were done in the first 2090 scheduler ticks, i.e., the least common
multiple (LCM) of all task and server periods of system 1. TheCPU over-
head (%) represents the LCM of all task and server periods divided by the
measured execution time of each scheduler. As can be observed, the non-
fragmented version has less overhead than the fragmented, which is due to less

9.6 Related work 127

Scheduler Dynamic memory Static memory
Max Average

Times (fragmented) 1646 1646 10874
Times (non-fragmented) 1646 1646 10874

HSF 11456 1692 24

Table 9.9: Memory overhead (bytes).

automaton transitions and task releases. Both generated schedulers has sub-
stantial more overhead than the manually coded scheduler, i.e., 17 respectively
22 times more CPU overhead. We experimented on the generatedcode with an
optimisation which reduced the amount of scheduler invocations by 50% (1045
instead of 2090 scheduler invocations), however, the totalCPU overhead was
reduced by only 5%. We have identified more ways to optimise the code, but
we defer this to future work.

Table 9.9 shows the amount of dynamic/static memory used by the sched-
ulers. During the actual scheduling (after initialisation), the memory allocation
of HSF drops down to 1692 bytes. The total memory used (duringthe schedul-
ing) by HSF is 1716 bytes, and for the generated schedulers itcounts up to
12520 bytes in total. The conclusion is that there is a similar worst-case mem-
ory usage (11480 vs. 12520 bytes), but less CPU overhead by HSF (0.08% vs.
1.36%).

Figure 9.16, 9.17 and 9.18 shows the actual runtime execution recording of
the tasks and servers. As can be seen, our generated schedulers (Figure 9.17
and 9.18) gives the same trace as the manually coded scheduler (Figure 9.16).
What can also be noted is how the fragmented model gives a slightly different
execution trace than the non-fragmented since there are more task releases due
to the fact that the task execution is divided into several one-time-unit sections
of execution.

Our execution recorder uses the VxWorkstaskHookLib and we use the
visualisation tool Grasp [22] to display the recordings.

9.6 Related work

Hierarchical scheduling theory There is a growing attention in that little
prior work has been done on verification of hierarchical scheduling imple-
mentations [23], as compared to the great amount of work on schedulability
analysis [8, 9, 10, 24, 25, 26, 27, 28] (where there is an assumption that the

128 Paper D

0 10 20 30 40 50

server1

S3task1

S3task2

IdleTask

0

1

2

Server1

0

2

3

Server3

0

250

500

Idle

Figure 9.16: Execution trace of HSF, running system1.

scheduling policy is correctly implemented), which has originated from open
systems [2] in the late 1990’s.

Hierarchical scheduling implementation Among the implementation work,
Kim et al. [29] propose the SPIRIT uKernel that is based on a two-level FPPS
hierarchical scheduling framework, simplifying integration of real-time appli-
cations. A mix of theory and practice is presented in [3] where the authors
reason about general scheduling trees with arbitrary scheduling policies and
scheduling depths. They also present an implementation in Windows 2000.
More recently, [5] and [30] implemented a two-level FPPS HSFin the com-
mercial real-time operating systems VxWorks andµC/OS-II.

Scheduler modelling There are two main categories of scheduler modelling,
either the scheduler already exists as an implementation and it is modelled (and
verified) after code analysis or other techniques [31, 32, 33, 34, 35, 36], or (as
in our paper) the scheduler is modelled and later verified (and perhaps also
synthesised) [37, 38, 39, 40, 41].

In the area of modelling hierarchical scheduling, the authors in [42] show
how modelling and schedulability analysis of two-level hierarchical schedul-
ing, with timed automata, can be accomplished in the simulation tool Cheddar.
Ha et al. [43] describes the verification, using theorem-proving, toverify the

9.6 Related work 129

0 10 20 30 40 50

server1

S3task1

S3task2

IdleTask

0

1

2

Server1

0

2

3

Server3

0

250

500

Idle

Figure 9.17: Execution trace of TIMES scheduler (non-fragmented), running
system1.

IMA scheduler DEOS, used for safety critical domains such asaerospace and
space. The scheduler assigns a period and budget to each thread, the schedul-
ing policy used is RMA. The work of Mulleret al. [44, 45] is most similar
to our work. They use a domain specific language (DSL) to modelsched-
ulers (including hierarchical schedulers). The difference is that they verify that
the scheduler is correct with respect to the kernel interface, and not the actual
scheduling policy. Their framework support synthesis for early Linux kernel
versions. Zerzelidiset al. [46] model a system with multiple schedulers, in-
cluding resource sharing with SRP. The modelling tool UPPAAL is used, and
the model is compatible with RTSJ. Each partition (local scheduler) has a pri-
ority level, but no release time or budget. The verification shows the absence
of livelock/deadlock and the correctness of SRP.

Few papers touch upon the area of code-synthesis in the context of sched-
uler modelling. Hsiunget al. [47] presents a framework (VERTAF) for devel-
oping real-time embedded software. The application, as well as the scheduler
is specified as UML diagrams. The framework does a transformation to ex-
tended timed automata (ETA) and model checking is used to verify properties
such as livelock and deadlock. The framework supports code-synthesis for the
OS’s MontaVista Linux,µC/OS, Embedded Linux, and eCOS. Liet al.[48] in-
troduce a meta-scheduler framework, compliant with POSIX-supported OS’s.

130 Paper D

0 10 20 30 40 50

server1

S3task1

S3task2

IdleTask

0

1

2

Server1

0

2

3

Server2

0

250

500

IdleServer

Figure 9.18: Execution trace of TIMES scheduler (fragmented), running sys-
tem1.

Basically, the framework is a middleware layer which uses OSprimitives, and
it exports an interface to schedulers, which in turn are implemented by the
users. The correctness of the framework is verified using UPPAAL. They im-
plement several flat-schedulers in various platforms (VxWorks for example),
and they measure the overhead of the schedulers.

To sum up, modelling of hierarchical scheduling has been done, but not
specifically for two-tier FPPS with PS. To the best of our knowledge, there
is no prior work on verification of hierarchical scheduling policies, nor code-
synthesis (from model) for this type of scheduling.

9.7 Conclusion

In this paper we deal with modelling, verification and synthesis of hierarchi-
cally scheduled real-time systems. We have looked at two-level hierarchical
scheduling, with fixed priority preemptive scheduling of periodic tasks/servers.
The scheduler has been modelled using the task-automata language and the
model was implemented in the Times tool. However, the Times tool does not
support dynamic change of priorities, nor task suspension,which are two fun-
damental properties required when implementing hierarchical scheduling. In

9.7 Conclusion 131

the paper we show how to get around this problem through an innovative ap-
proach for how the system is modelled.

In addition we modelledobservers which monitored the behavior of the
schedulers. We implemented rules for the observers, based on the criteria that
we have specified as properties. These properties are appropriate behaviors that
comply with hierarchical fixed priority preemptive scheduling of periodic tasks
and servers. The observers are then modelled to enter error states if they detect
a contradiction to any of our properties. We check that the observers do not
enter these error states through the use of model checking. We use task/server
systems that stress the schedulers to generate all combinations of scheduling
events, so that we can verify the entire behavior of the hierarchical scheduler.

The code synthesis results showed a considerable difference in CPU be-
tween the generated schedulers and an equivalent manually coded scheduler.
However, the worst-case memory consumption showed to be similar to each
other.

To sum up, this paper presents a proof of concept, showing that we can
model, verify, and generate source-code that executes a hierarchical scheduler
on an industrial platform.

As future work, we plan to optimise the synthesis of the modelby imple-
menting a new (optimised) code generator. This will make thesynthesis fully
automated, which will open up the possibility to generate systems in a larger
scale.

Bibliography

[1] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU Scheduler for Mul-
timedia Operating Systems. In2nd USENIX Symposium on OS Design
and Implementation, pages 107–121, Oct 1996.

[2] Z. Deng and J. W.-S. Liu. Scheduling Real-Time Applications in an Open
Environment. In18th IEEE International Real-Time Systems Symposium,
pages 308–319, Dec 1997.

[3] John Regehr and John A. Stankovic. HLS: A Framework for Compos-
ing Soft Real-Time Schedulers. In22nd IEEE International Real-Time
Systems Symposium, pages 3–14, Dec 2001.

[4] Mikael Åsberg, Moris Behnam, Farhang Nemati, and Thomas Nolte. To-
wards Hierarchical Scheduling in AUTOSAR. In14th IEEE International
Conference on Emerging Technologies and Factory Automation, pages
1181–1188, Sep 2009.

[5] Moris Behnam, Thomas Nolte, Insik Shin, MikaelÅsberg, and Reinder J.
Bril. Towards Hierarchical Scheduling in VxWorks. In4th International
Workshop on Operating Systems Platforms for Embedded Real-Time Ap-
plications, pages 67–76, July 2008.

[6] Mikael Åsberg, Thomas Nolte, and Shinpei Kato. A Loadable Task Ex-
ecution Recorder for Hierarchical Scheduling in Linux. In17th IEEE
International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 380–387, Aug 2011.

[7] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some Practical
Problems in Prioritized Preemptive Scheduling. In7th IEEE Interna-
tional Real-Time Systems Symposium, pages 181–191, Nov 1986.

133

134 Bibliography

[8] Rob Davis and Allan Burns. Hierarchical Fixed Priority Pre-emptive
Scheduling. In26th IEEE International Real-Time Systems Symposium,
pages 389–398, Dec 2005.

[9] T.-W. Kuo and C.H. Li. A Fixed-Priority-Driven Open Environment for
Real-Time Applications. In20th IEEE International Real-Time Systems
Symposium, pages 256–267, Dec 1999.

[10] Insik Shin and Insup Lee. Periodic Resource Model for Compositional
Real-Time Guarantees. In24th IEEE International Real-Time Systems
Symposium, pages 2–13, Dec 2003.

[11] Moris Behnam, Insik Shin, Thomas Nolte, and Mikael Nolin. SIRAP:
A Synchronization Protocol for Hierarchical Resource Sharing in Real-
Time Open Systems. In7th ACM International Conference On Embedded
Software, pages 279–288, Oct 2007.

[12] R. I. Davis and A. Burns. Resource Sharing in Hierarchical Fixed Prior-
ity Pre-emptive Systems. In27th IEEE International Real-Time Systems
Symposium, pages 257–270, Dec 2006.

[13] Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task Au-
tomata: Schedulability, Decidability and Undecidability. Journal of In-
formation and Computation, 205(8):1149–1172, Aug 2007.

[14] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Journal
of Theoretical Computer Science, 126(2):183–235, April 1994.

[15] Tobias Amnell, Elena Fersman, Paul Pettersson, Wang Yi, and Hongyan
Sun. Code Synthesis for Timed Automata.Nordic Journal of Computing,
9(4):269–300, Dec 2002.

[16] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. TIMES: A Tool for Modelling and Implementation of Embed-
ded Systems. In8th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 460–464, April 2002.

[17] C.L. Liu and James Layland. Scheduling Algorithms for Multi-
Programming in a Hard-Real-Time Environment.Journal of the ACM,
20(1):46–61, Jan 1973.

Bibliography 135

[18] L. Andriantsiferana, Jean-Pierre Courtiat, Roberto C. de Oliveira, and
L. Picci. An Experiment in using RT-LOTOS for the Formal Specifica-
tion and Verification of a Distributed Scheduling Algorithmin a Nuclear
Power Plant Monitoring System. In17th International Conference on
Formal Description Techniques for Distributed Systems andCommunica-
tion Protocols and Protocol Specification, Testing and Verification, pages
433–448, Nov 1997.

[19] Mikael Åsberg. Model of Two-Tier Hierarchical Fixed-Priority Preemp-
tive Scheduling. Technical Report 2379, Mälardalen University, 2011.

[20] Leonard Lensink, Sjaak Smetsers, and Marko Van Eekelen. Machine
Checked Formal Proof of a Scheduling Protocol for SmartcardPersonal-
ization. In12th International Conference on Formal Methods for Indus-
trial Critical Systems, pages 115–132, July 2007.

[21] Gudmund Grov, Greg Michaelson, and Andrew Ireland. Formal Verifi-
cation of Concurrent Scheduling Strategies using TLA. In13th Interna-
tional Conference on Parallel and Distributed Systems, pages 1–6, Dec
2007.

[22] Mike Holenderski, Martijn Heuvel, Reinder Bril, and Johan Lukkien.
Grasp: Tracing, Visualizing and Measuring the Behavior of Real-Time
Systems. In1st International Workshop on Analysis Tools and Method-
ologies for Embedded and Real-time Systems, pages 37–42, July 2010.

[23] Robert Glaubius, Terry Tidwell, William D. Smart, and Christopher Gill.
Scheduling Design and Verification for Open Soft Real-Time Systems. In
29th IEEE International Real-Time Systems Symposium, pages 505–514,
Nov 2008.

[24] X. Feng and A. Mok. A Model of Hierarchical Real-Time Virtual Re-
sources. In23rd IEEE International Real-Time Systems Symposium,
pages 26–35, Dec 2002.

[25] G. Lipari and S. Baruah. Efficient Scheduling of Real-Time Multi-Task
Applications in Dynamic Systems. In6th IEEE Real Time Technology
and Applications Symposium, pages 166–175, May 2000.

[26] G. Lipari and E. Bini. Resource Partitioning Among Real-Time Applica-
tions. In15th IEEE Euromicro Conference on Real-Time Systems, pages
151–158, July 2003.

136 Bibliography

[27] John Regehr, Alastair Reid, Kirk Webb, Michael Parker,and Jay Lep-
reau. Evolving Real-time Systems Using Hierarchical Scheduling and
Concurrency Analysis. In24th IEEE International Real-Time Systems
Symposium, pages 25–36, Dec 2003.

[28] S. Matic and T. A. Henzinger. Trading End-to-End Latency for Compos-
ability. In 26th IEEE International Real-Time Systems Symposium, pages
99–110, Dec 2005.

[29] D. Kim, Y. Lee, and M. Younis. SPIRIT-uKernel for Strongly Partitioned
Real-Time Systems. In7th International Workshop on Real-Time Com-
puting and Applications Symposium, pages 73–80, Dec 2000.

[30] Martijn Heuvel, Mike Holenderski, Wim Cools, Reinder Bril, and Johan
Lukkien. Virtual Timers in Hierarchical Real-time Systems. In Work-
in-Progress session of the 30th IEEE International Real-Time Systems
Symposium, pages 37–40, Dec 2009.

[31] John Penix, Willem Visser, Eric Engstrom, Aaron Larson, and Nicholas
Weininger. Verification of Time Partitioning in the DEOS Scheduler Ker-
nel. In 22nd International Conference on Software Engineering, pages
488–497, June 2000.

[32] Darren Cofer, Eric Engstrom, and Nicholas Weininger. Using Model
Checking for Verification of Partitioning Properties in Integrated Mod-
ular Avionics. In19th IEEE Digital Avionics Systems Conference, pages
1D2/1–1D210, Oct 2000.

[33] Torsten K. Iversen, Kare J. Kristoffersen, Kim G. Larsen, Morten
Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul Pettersson, and
Chris B. Thomasen. Model-Checking Real-Time Control Programs - Ver-
ifying LEGO MINDSTORMS Systems Using UPPAAL. In12th IEEE
Euromicro Conference on Real-Time Systems, pages 147–155, June 2000.

[34] Matthias Daum, Jan Drrenbcher, and Burkhart Wolff. Proving Fairness
and Implementation Correctness of a Microkernel Scheduler. Journal of
Automated Reasoning, 42(2-4):349–388, April 2009.

[35] Naren Narasimhan, Elena Teica, Rajesh Radhakrishnan,Sriram Govin-
darajan, and Ranga Vemuri. Theorem Proving Guided Development of
Formal Assertions in a Resource-Constrained Scheduler forHigh-Level
Synthesis.Journal of Formal Methods in System Design, 19(3):237–273,
Nov 2001.

Bibliography 137

[36] Moritz Kleine, Björn Bartels, Thomas Gothel, and Sabine Glesner. Veri-
fying the Implementation of an Operating System Scheduler.In 3rd IEEE
International Symposium on Theoretical Aspects of Software Engineer-
ing, pages 285–286, July 2009.

[37] Didier Lime and Olivier H. Roux. Formal Verification of Real-Time
Systems with Preemptive Scheduling.Journal of Real-Time Systems,
41(2):118–151, Feb 2009.

[38] Pao-Ann Hsiung and Shang-Wei Lin. Model Checking TimedSystems
with Priorities. In11th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 539–544, Aug
2005.

[39] Chen Shu and Wu-Guo Qing. Modeling and Formal Analysis of Real-
Time System via CCS. In1st International Symposium on Computer
Science and Computational Technology, pages 321–324, Dec 2008.

[40] L. Durante, R. Sisto, and A. Valenzano. Formal Specification and Ver-
ification of the Real-Time Scheduler In FIP. In1st IEEE International
Workshop on Factory Communication Systems, pages 99–106, Oct 1995.

[41] Odile Nasr, Jean-Paul Bodeveix, Mamoun Filali, and Miloud Rached Irit.
Verification of a Scheduler in B Through a Timed Automata Specifica-
tion. In 21st ACM Symposium on Applied Computing, pages 1800–1801,
April 2006.

[42] Frank Singhoff and Alain Plantec. AADL Modeling and Analysis of
Hierarchical Schedulers. InACM International Conference on SIGAda,
pages 41–50, Nov 2007.

[43] Vu Ha, Murali Rangarajan, Darren Cofer, Harald Rues, and Bruno
Dutertre. Feature-Based Decomposition of Inductive Proofs Applied to
Real-Time Avionics Software: An Experience Report. In26th Interna-
tional Conference on Software Engineering, pages 304–313, May 2004.

[44] Luciano Porto Barreto and Gilles Muller. Bossa: A Language-Based
Approach to the Design of Real-Time Schedulers. In10th International
Conference on Real-Time Systems, pages 19–31, March 2002.

[45] Julia L. Lawall, Gilles Muller, and Hervé Duchesne. Invited Application
Paper: Language Design For Implementing Process Scheduling Hierar-
chies. In14th ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 80–91, Aug 2004.

[46] Alexandros Zerzelidis and Andy Wellings. Model-basedVerification of
a Framework for Flexible Scheduling in the Real-Time Specification for
Java. In4th International Workshop on Java Technologies for Real-Time
and Embedded Systems, pages 20–29, Oct 2006.

[47] Pao-Ann Hsiung, Shang-Wei Lin, and Chao-Sheng Lin. Real-Time Em-
bedded Software Design for Mobile and Ubiquitous Systems.Journal of
Signal Processing Systems, 59(1):13–32, April 2010.

[48] Peng Li, Binoy Ravindran, Syed Suhaib, and Shahrooz Feizabadi. A For-
mally Verified Application-Level Framework for Real-Time Scheduling
on POSIX Real-Time Operating Systems.IEEE Transactions on Software
Engineering, 30(9):613–629, Sep 2004.

