
An Integrated Framework for Component-based
Analysis of Architectural System Models

Raluca Marinescu, Cristina Seceleanu, and Paul Pettersson

Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University

Väster̊as, Sweden
{raluca.marinescu, cristina.seceleanu, paul.pettersson}@mdh.se

Abstract. Verifying architectural models of embedded systems is desir-
able, since architecture can impact the performance and resource usage
of the final system implementation. To fulfill this need, one could think
of combining formal verification and testing to achieve proofs of system
correctness with respect to functional and extra-functional requirements.
Our first step to accomplish this goal has concretized in the develop-
ment of a framework that integrates architectural models described in
East-adl language with component-based model-checking techniques.
The framework is supported by a tool called ViTAL, which captures the
behavior of East-adl functions as timed automata models, which can
be formally verified in the Uppaal Port model-checker that exploits
the components-based semantics at the architectural level. Later, the
same formal models will help generate test-suites to provide support for
model-based testing.

Keywords: East-adl, V&V techniques.

1 Introduction

Nowadays, many automotive functions are real-time, so a thorough Verification
and Validation (V&V) is necessary to ensure real-time requirements at the ar-
chitectural level. Current V&V tools are working isolated and their interaction is
difficult [9], if not impossible. A smart combination of this different techniques,
together with their successful application in industrial practice, could be the
next step in the V&V evolution.

Lately, a lot of effort has been devoted to generate test-suites from system
models (e.g., UML [4], Timed Automata (TA) [7]), and also to verify such models
(e.g., Uppaal [1], PROGRESS [10]). However, these are sparse results with
regard to the combination of V&V techniques.

The automotive industry provides its system specification in architectural
description languages with no precise formal semantic, making it harder to use
model-checking tools to analyze such embedded system (ES). In practice, some
companies (e.g., VOLVO Technology AB and Continental Automotive) are using
East-adl [2], an architecture description language dedicated to automotive ES,



2 Lecture Notes in Computer Science

which does not provide the possibility to construct, verify, and transform its
models using formal techniques. Formal verification of both functional and timed
behavior is necessary to ensure the real-time requirements at the architectural
level, making East-adl models a good basis for a combined V&V framework.

In our research, we intend to bring closer architectural description languages
and verification techniques, through a new framework that consists of an in-
tegrated methodology that has been implemented in a tool called ViTAL 1(A
Verification Tool for EAST-ADL Models using Uppaal Port) [3], which pro-
vides Component-Based (CB) verification of East-adl models via Uppaal
Port. The tool lets one describe functional East-adl behavior in TA seman-
tics. To show the applicability of our tool and method, we illustrate its use on an
industrial prototype, that is, Volvo Technology’s Brake-by-Wire system. Later,
ViTAL will be extended with test-suite generation capabilities to provide sup-
port for model-based testing, by generating test suites corresponding to various
functional and extra-functional goals.

The paper is organized as follows. Section 2 briefly overviews East-adl ar-
chitectural language, Uppaal Port model-checker, and model-based testing.
Section 3 presents the work already done and some preliminary results. In Sec-
tion 4 we give a short description of the Brake-by-Wire industrial case study.
Next, Section 5 describes our steps to finalize the proposed framework, before
concluding the paper in Section 6.

2 Preliminaries

EAST-ADL. The architecture description language East-adl is structured
into five abstraction levels, which represent different stages of the engineering
process, and provides traceability between them [2]. In addition, the structural
organization of East-adl has modeling constructs for behavior, requirements,
timing, variability, and safety aspects. It captures structural components that
refer to external or internal behavior as Simulink models.

UPPAAL PORT. Based on Uppaal model-checker an extension for CB sys-
tems called Uppaal Port was released [5]. It uses local time semantics and
a Partial Order Reduction Technique (PORT) to improve the efficiency of the
verifier. Uppaal Port is suited for the analysis of East-adl models because
it assumes a “read-execute-write” component model semantics in its input lan-
guage.

Model-based Testing (MBT). It derives test suites based on the specified
functional requirements from a behavioral model of the system, covering one or
more particular criteria [8]. A test harness executes the test suite against the
implementation under test and the result is compared to the expected result,
prescribed by the specification, by a test oracle. The test oracle delivers a verdict
for each test case in the test suite.

1 ViTAL is available at http://www.vitaltool.org



Lecture Notes in Computer Science 3

3 Contribution of the Thesis

The behavior of an East-adl function prototype (FP) is described using exter-
nal notations such as UML and Simulink, which do not have direct support for
formally verifying East-adl models. We propose a framework that integrates
architectural description languages and verification techniques for CB ES, which
have been implemented in the ViTAL tool. As depicted in Fig 1, the system de-
signer creates the EAST-ADL models in a dedicated tool (e.g. Papyrus) and
adds behavior to the East-adl components, as TA models, such that Uppaal
Port model-checker can be used to simulate the system model and verify various
requirements (e.g., functional and timing requirements). We specify the inter-
nal behavior of each elementary FP as TA, and construct a complete system
behavior model by the parallel composition of local behaviors. In addition, we
map FP ports onto Uppaal Port read/write variables. A composition of func-
tion behaviors is considered a network TA that enables us to analyze and verify
behaviors of the entire system using Uppaal Port model checker. To be able
to perform this, we implement an automatic model transformation to Uppaal
Port, which enables Uppaal Port to handle East-adl models enriched with
TA behavior as input.

System
Designer

Timed Automata Models EAST-ADL System Models

creates creates

FunctionPrototype

Port Port

FunctionPrototype

Port Port

UPPAAL PORT

integration

Simulation Verification
Test Suite
Generation

Fig. 1. The workflow of the integrated simulation and verification tool of East-adl
models

The above steps are implemented in our ViTAL tool, which provides an
integrated environment for architectural description languages and verification
techniques, based on different Eclipse plug-ins, as depicted in Fig. 2. The User



4 Lecture Notes in Computer Science

Interface integrates an editor for East-adl models in the Eclipse framework,
as well as a TA editor to model the timing and functional behavior of East-
adl FPs. Uppaal Port introduces support for simulation and verification,
using a client-server architecture. The Uppaal Port model-checker consists
of two modules: the Eclipse plug-in used as the graphical simulator, and the
server executing the verification. Using the integrated simulator it is possible to
validate the behavior and timing of an East-adl system model, prior to design
and implementation.

Eclipse IDE

EAST-ADL Editor
(architecture modeling)

Timed Automata Editor
(timing/behavior modeling)

Mapping
Editor

UPPAAL PORT Editor

UPPAAL PORT
server

command response

User Interface

Fig. 2. Overview of the ViTAL tool architecture

In order to integrate the formal model of Uppaal Port TA with East-adl,
we need to first perform a semantic anchoring of the latter to a component model
that obeys the read-execute-write semantics, hence preserving the informal se-
mantics of East-adl without altering its structure. The Mapping Editor shown
in Fig. 2 can be seen as a function π : EAST − ADL → UPPAALPORT ,
which maps each FP to an intermediate component, input ports to intermediate
component data-flow input ports, output ports to the intermediate component
data-flow output ports, connectors to the intermediate component connections,
and the timing constraints to timing annotations.

ViTAL provides support only for the analysis of functional and timing re-
quirements of EAST-ADL functions, but the limited software and hardware re-
sources of complex automotive embedded systems require the analysis and ver-
ification of extra-functional requirements. Due to the lack of resource modeling
notations in East-adl, allocations of components cannot be analyzed and re-
fined at earlier phases of design. To address this problem, we propose a modeling
extension to the current East-adl language with associated abstract resource
information [6]. In order to annotate and reason about resource usage of EAST-
ADL models, we need a semantic extension of the model and its behavior. At



Lecture Notes in Computer Science 5

the structural level, the resources are part of our extension of the EAST-ADL
language in order to obtain resource awareness. At the behavioral level, Priced
Timed Automata (PTA) can be used as a framework for the formal analysis
of the corresponding models and the resource consumption represented as real-
valued cost variables, and their evolution.

4 Applying ViTAL on the Brake-by-Wire System

The Brake-by-Wire (BBW) system consists of five Electronic Control Units
(ECUs) connected by a network bus: a central ECU connected to the brake
pedal and another four ECUs connected to each wheel. The central ECU has
three components: a brake pedal sensor, a component that calculates the global
brake torque from the brake pedal position, and a component that distributes
the global torque to the four wheels. Each wheel ECU also has three components:
a sensor that measures the wheel speed, a component for the brake actuator, and
an ABS controller. The ABS controller is based on a simple logic: if the slip rate
of the wheel is larger than 0.2, then the brake actuator is released and no brake
is applied. Otherwise, the requested brake torque decided by the central ECU is
used.

A set of properties concerning the safety and liveness of the BBW system
have been verified with ViTAL. Here, we present a few representative properties
that we have verified in our previous work [3]:

– The property of deadlock freedom;
– Timing properties, like the end-to-end deadlines;
– Functional properties, which relate to the slip rate value.

5 Future Work

To provide a real combination of V&V techniques, tailored for East-adl ar-
chitectural language, which is our main research goal, we plan to extend our
framework with offline test suite generation capabilities for both functional and
extra-functional testing goals. The tool support will be based on ViTAL and
will use model-based testing to derive test-suites from East-adl functions en-
riched with TA behavior models, by exploiting the trace information resulted as
witnesses (or counter-examples) from Uppaal Port verification of appropriate
properties.

To be able to carry out resource-wise analysis of East-adl models, we in-
tend to integrate our extension with a formal model, that supports resource
analysis techniques for performing quantitative consumption analysis. We could
show how analysis goals (e.g., feasibility analysis, optimal resource analysis) can
be formalized and reasoned about by combining East-adl with an abstract
resource-aware behavioral model [6].

Last but not least, we intend to transform the abstract test-suites in ex-
ecutable test-suites and use them on the actual system implementation to be
able to asses the effectiveness of our framework.



6 Lecture Notes in Computer Science

6 Conclusion

Our research goal of V&V of East-adl models requires a consistent environment
that brings together model-driven development, formal analysis, and test-suite
generation. The employed formalism is the TA framework that captures the
execution flow inside each FP and the complex interactions between components.
In this paper, we have described a methodology towards the integration of East-
adl and Uppaal Port and its implementation in a tool called ViTAL. As future
work, we will extend ViTAL with test-suite generation capabilities to enable the
verification of East-adl models. Through our framework, we hope to bring
together the V&V techniques, tailored for architectural models of ES.

Acknowledgment: The research leading to these results has received funding

from the ARTEMIS Joint Undertaking under grant agreement number 269335 and

from VINNOVA, the Swedish Governmental Agency for Innovation Systems, within

the MBAT project.

References

1. Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
Uppaal a tool suite for automatic verification of real-time systems. In Hybrid
Systems III, Lecture Notes in Computer Science. Springer, 1996.

2. MAENAD Consortium. East-adl domain model specification.
http://www.maenad.eu/, 2011.

3. E.P. Enoiu, R. Marinescu, C. Seceleanu, and P. Pettersson. Vital: A verification
tool for east-adl models using uppaal port. In 17th International Conference on
Engineering of Complex Computer Systems (ICECCS), 2012.

4. S. Gnesi, D. Latella, and M. Massink. Formal test-case generation for uml stat-
echarts. In Ninth IEEE International Conference on Engineering Complex Com-
puter Systems, 2004.

5. John H̊akansson, Jan Carlson, Aurelien Monot, and Paul Pettersson and.
Component-based design and analysis of embedded systems with uppaal port. In
6th International Symposium on Automated Technology for Verification and Anal-
ysis, 2008.

6. Raluca Marinescu and Eduard Paul Enoiu. Extending east-adl for modeling and
analysis of system for resource-usage. In Proceedings of the 4th IEEE International
Workshop on Component-Based Design of Resource-Constrained Systems. IEEE
Computer Society Press, 2012.

7. Brian Nielsen and Arne Skou. Automated test generation from timed automata.
In Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science. Springer, 2001.

8. A. Pretschner. Model-based testing. In 7th International Conference on Software
Engineering (ICSE), 2005.

9. M. Utting and B. Legeard. Practical model-based testing: a tools approach. Morgan
Kaufmann, 2007.

10. A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Pettersson. Formal
semantics of the procom real-time component model. In 35th Euromicro Confer-
ence on Software Engineering and Advanced Applications, 2009.


