
An Analyzable Model of Automated Service
Negotiation

Aida Čaušević, Cristina Seceleanu, Paul Pettersson
Mälardalen Real-Time Research Centre (MRTC),

Mälardalen University, Västerås, Sweden
Email:[aida.causevic,cristina.seceleanu,paul.pettersson]@mdh.se

Abstract—Negotiation is a key aspect of Service-Oriented
Systems, which is rarely supported by formal models and tools
for analysis. Often, service negotiation proceeds with timing, cost
and resource constraints, under which the users and providers
exchange information on their respective goals, until reaching
a consensus. Consequently, a mathematically driven technique
to analyze various ways to achieve such goals is beneficial. In
this paper, we propose an analyzable negotiation model between
service clients and providers, in our recently introduced lan-
guage REMES and its corresponding textual service composition
language HDCL. The model can be viewed as a negotiation
interface for different negotiation strategies and protocols, which
iterates until an agreement is reached. We show how to analyze
the negotiation model against timing, cost and utility constraints,
by transforming it into the Timed Automata formal framework.
We illustrate our approach through an insurance scenario as-
suming a form of the Contract Net Protocol for web services.

I. INTRODUCTION

Recently, service orientation has become a standard
paradigm that accommodates building distributed applications
from autonomous entities called services, independent of any
specific implementation platform. As opposed to the tradi-
tional approach of software system construction, in Service-
Oriented Systems (SOS)1 the same service may be offered at
various prices, Quality-of-Service (QoS), and other conditions,
depending on the customer needs. In such a setting, the inter-
action between involved parties might involve the negotiation
of what is possible at request time, aiming at meeting needs
dynamically.

Within SOS, services can have one of the following roles:
client, provider, or mediator. The role of a client service
is to require a service that performs a specific task within
given resource limits. The mediator initiates and steers the
communication, that is, the negotiation process between the
client and the provider, helping them to reach an agreement.
The service provider creates an offer, based on the client’s
request and on available services. The negotiation process is
an iterative process that, if successful, ends up in a Service
Level Agreement (SLA), that is, a contract between the client
and the provider. The contract sets boundaries on both the
functional and extra-functional properties of a service, which
are to be guaranteed, defines the cost of a service delivery, and

1In this paper we write SOS meaning only service-oriented software, more
precisely services and their compositions.

possible penalties in case the contract is broken. For instance,
a SLA between a car insurance company and its clients might
include the cost of a service provision, the guaranteed time
for repairing some car damage, and availability of the offered
repair shop at the specific time.

With the growing number of services that are offered by
different service providers, the need to formally define and
analyze the service negotiation process has increased. The
offered services may have the same functionality, but might
differ in extra-functional qualities, such as response time,
price, time-to-serve, or reputation. Given that service provision
is being negotiated upon the client’s demand, establishing
guarantees of provided QoS, under the changing conditions
of service composition and possible negotiation constraints,
becomes a challenging task.

Taking into account the above, a mathematically driven
technique to analyze various ways to achieve the client’s
and provider’s goals is beneficial. For instance, one can
compute the minimum price for reaching an agreement within
a given time constraint, while maximizing the utility function
for all involved parties. Such analysis might expose trade-
off configurations that can provide valuable inputs to both
service designers as well as service users. Assuming particular
offer and counter-offer strategies of the involved services,
as well as a negotiation protocol, the formalization of the
negotiation between clients and providers basically results in
a “negotiation interface” that iterates until an agreement is
reached.

In this paper, we propose an analyzable negotiation model
between service clients and providers, based on an iterative
form of the Contract Net Protocol (CNP) for web services,
which we describe in Section III. The service model is
time- and price-aware, being described in REMES [1], a
behavioral language intended for modeling and analysis of
interacting embedded components and services, briefly re-
called in Section II-A. The negotiation model is obtained by
composing REMES services, within a corresponding textual
service composition language called Hierarchical Dynamic
Composition Language ( HDCL), via operators that have been
defined formally in our previous work [2]. The salient point of
the approach proposed in this paper is the fact that the obtained
negotiation model can be analyzed against safety, timing, and
utility constraints, for all possible behaviors. This can be
achieved after transforming the negotiation model into the



Timed Automata (TA) formal framework (Section II-B), which
has a precise underlying semantics. One possible analysis goal
could be to compute a path in which an agreement is reached
within some prescribed time, with maximized utility.

In the related literature, there already exist some SOS
approaches that enable service negotiation [3], [4], and
also propose ways to support its formal analysis. However,
these approaches show limited support in building the formal
system model, out of formalized services. In comparison,
our REMES service models can be deductively reasoned about,
or can be (automatically) translated to TA [5], and analyzed
with UPPAAL tools, for functional and extra-functional behav-
iors (timing and resource-wise behaviors) [6].

Our approach for service negotiation, described in Sec-
tion III, is illustrated by a car insurance scenario, in Section IV.
The analysis of the described service negotiation model for the
insurance scenario is presented in IV-C. Last but not least, we
compare our approach with some relevant work in Section V,
before concluding the paper in Section VI.

II. PRELIMINARIES

A. REMES HDCL modeling language

To address functional but also extra-functional behavior
such as timing and resource usage of SOS, in this pa-
per, we use the dense-time hierarchical modeling language
called REMES [1]. The language has been initially intended
as a meaningful basis for modeling and analysis of embedded
systems in a component-based fashion. To make it suitable
for modeling SOS too, we have recently extended REMES
with constructs fit for a SOS description [2]. To enable formal
analysis, REMES models can be semantically transformed into
Timed Automata (TA) [5], [7].

REMES language is well-suited for abstract modeling, it
is hierarchical, has an input/ouput distinction, a well-defined
formal semantics, and tool support for both component-based 2

and service-oriented 3 system modeling and analysis [6], [8].
The REMES service contains a list of attributes (i.e., service

type (a web, network, or embedded service), capacity (the
maximum ability to serve a given number of messages per time
unit), time-to-serve (the worst-case time needed to respond and
serve a given request), status (the current service status, i.e.,
passive, idle, active), service precondition, and postcondition
exposed at the interface of the REMES service. A service
precondition is a predicate that constrains the start of the
service’s execution, and must be true at the time a REMES
service is invoked. A postcondition is the output guarantee
and must hold at the end of a REMES service execution for a
service to be correct.

In order to manipulate services REMES supports service
creation, deletion, composition, and replacement via REMES
interface operations. One can also think about creating, delet-
ing, reordering a list of services (s_list) that can be useful
when services are being composed.

2The REMES tool-chain is available at http://www.fer.hr/dices/remes-id.
3More information available at http://www.idt.mdh.se/personal/eep/reseide/.

REMES is accompanied by a hierarchical dynamic
composition language ( HDCL) that facilitates modeling of
nested sequential, parallel or synchronized services and their
compositions.

DCL ::= (s_list,PROTOCOL,REQ)

HDCL ::= (((DCL+,PROTOCOL,REQ)+,PROTOCOL,REQ)+...)

In the equations given above DCL (Dynamic Composition
Languages) stands for the basic service composition,
while HDCL describes the hierarchical composition. The
positive closure operator is used to express that one or
more DCLs are needed to form an HDCL. The PROTOCOL
defines the type of binding between services and here we will
consider only binary operators as follows:

PROTOCOL ::= servicem binary_operator servicen

The requirement REQ is a predicate (Γ → Bool, where
Γ is the set of states) that can include both functional and
extra-functional properties/constraints of the composition.
It identifies the required attribute constraints, capability,
characteristics, or quality of a system, such that it exhibits
the value and utility requested by the user. HDCL allows
creating new services by composing existing services via
binary operators, as well as adding and/or deleting services
from lists. The above binary operator is defined as follows:

Binary_operator ::= ; | ‖ | ‖SYNC-and | ‖SYNC-or

In the above ; denotes the sequential composition of
services, whereas ‖, ‖SYNC-and , and ‖SYNC-or denote their parallel
composition. To model synchronized behavior in REMES we
use a special kind of mode, called AND/OR mode. By the
semantics of the mode, in an AND or an OR mode, the
services finish their execution simultaneously, from an external
observer’s point of view. However, if the mode is employed as
an AND mode, the subservices are entered at the same time,
and their incoming edges do not contain any guard (a boolean
enabling condition), while an OR mode assumes that one or all
subservices are entered based on the guards annotated on the
incoming edges. Services that belong to this type of REMES
mode and that have to synchronize their behavior in the end of
their execution communicate via ‖SYNC-or , or ‖SYNC-or operators,
respectively.

To verify the service correctness, we use the forward
analysis technique based on the computation of the strongest
postcondition of a REMES service w.r.t. a given precondi-
tion [9]. To prove the correctness of a REMES service in
isolation, we check that the calculated strongest postcondition
is no more than the given requirement. Assume that {p}S{q}
is a Hoare triple denoting the partial correctness of service S
with respect to precondition p and postcondition q. According
to Dijkstra and Sholten [9], the strongest postcondition trans-
former, denoted by (sp.S.p), is the set of final states for which
there exists a computation controlled by S, which belongs to
class “initially p”. Assuming that p holds, the execution of



a service S results in sp.S.p true, if S terminates. Proving
the Hoare triple, that is, proving the correctness of service S,
reduces to showing that (sp.S.p ⇒ q) holds. For analysis
purposes, REMES models can be transformed to TA via a
well-defined set of rules [6], [7], [10]. For a more thorough
description of the REMES language, we refer the reader to our
previous work [1], [2].

B. Timed Automata

A Timed Automaton (TAn) [5], [11] is a finite-state machine
enriched with a set of clocks. All clocks are synchronized and
they are assumed to be real-valued functions of time elapsed
between events.

Formally, let us assume a finite set of real valued variables
C ranging over x, y, etc., standing for clocks, and a finite
alphabet Σ ranging over a, b, etc., standing for actions. A clock
constraint is a conjunctive formula of atomic constraints of the
form x ∼ n or x − y ∼ n for x, y ∈ C,∼∈ {<,≤,=,≥, >}
and n ∈ N . Clock constraints are used as guards (g) for timed
automata. χ(C) is used to denote the set of clock constraints,
ranged over by guards g.

Definition 1: A Timed Automaton A is a tuple (L, l0, E, I)
where: L is a finite set of locations, l0 is the initial location,
E ⊆ L × χ(C) × Σ × L is the set of edges, I : L → χ(C)
assigns invariants to locations. In the case of (l, g, a, r, l′) ∈ E,
we write l

g,a,r→ l′, where g is a guard, a boolean condition that
must hold in order for the edge to be taken, a is an action,
and r is a simple clock reset.

Fig. 1 depicts an example of a Timed Automaton (TAn). The
TAn models a client in the car insurance scenario, described in
details in Section IV, which can report three types of the car
damage to the insurance company. The TAn description con-
sists of four locations: Start, DamRepSent0, DamRepSent1,
and DamRepSent2 (with Start as the initial location), and
edges, which are directed lines connecting locations. The
timing behavior is controlled by the clock variable t. For each
location, it is possible to assign an invariant that must hold
in order to stay in that location (e.g., invariant in location
DamRepSent0 is (t ≤ 20)), which also enforces a location
change in case it ceases to hold. Further, each edge may be
decorated with guards, that is, boolean expressions that must
hold in order for the respective edge to be taken (e.g., edge
from location DamRepSent1 to Start contains the guard RS01
== true).

The semantics of TA is defined in terms of a labeled
transition system. A state of TA depends on its current location
and on the current values of its clocks. So, a state of a TA is
a pair (l, u), where l is a location, and u : C → R+ is a clock
valuation. The initial state (l0, u0) is the starting state where
all clocks are zero. There are two kinds of transitions: delay
transitions and discrete transitions.

Delay transitions are the result of time passage and do not
cause a change of location. More formally, we have

(l, u)
d→ (l, u⊕ d)

if u ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d. The assignment u ⊕ d is
the result obtained by incrementing all clocks of the automata
with the delay d.

Discrete transitions are the result of following an enabled
edge in a TAn. Consequently, the destination location is
changed from the source location to the new target location,
and clocks may be reset. More formally, a discrete transition

(l, u)
a→ (l′, u′)

corresponds to taking an edge l
g,a,r→ l′ for which the guard

g is satisfied by u. The clock valuation u′ of the target state
is obtained by modifying u according to updates r such that
u′ |= I(l′).

Reachability analysis is one of the most useful analyses to
perform on a given timed automaton. The reachability problem
can be defined as follows: Given two states of the system, is
there an execution starting at one of them that reaches the
other? The reachability analysis can be used to check that an
error state is never reached, or just to check the sanity of the
model.

Definition 2: We write (l, u)→ (l′, u′) if (l, u)
σ→ (l′, u′)

for some σ ∈ Σ ∪ R+. For an automaton with initial
state (l0, u0), (l, u) is reachable iff (l0, u0) →∗ (l, u). More
generally, given a constraint φ ∈ χ(C) we say that the state
(l, φ) is reachable if (l, u) is reachable for some u satisfying
φ.

A network of TA, A1‖...‖An, over χ and Σ, is defined as the
parallel composition A1‖...‖An over χ and Σ. Semantically,
a network again describes a timed transition system obtained
from the components, by requiring synchrony on delay tran-
sitions, and requiring discrete transitions to synchronize on
complementary actions (i.e., a? (receive synchronization) is
complementary to a! (send synchronization)).

Properties of TA can be specified in the Timed Computation
Tree Logic (TCTL), which is an extension of Computation
Tree Logic (CTL) with clocks. CTL is a specification language
for finite states systems. Using CTL one can reason about
sequence of events. Let AP be a set of atomic propositions,
a ∈ AP . In this paper, a CTL formula φ is defined as follows:

φ ::= ⊥ | > | a | ¬φ | φ1 ∧ φ2 | φ1 → φ2 | EFφ | AFφ | AGφ
(1)

Each CTL well-defined formula is a pair of symbols. The
first operator is either A (“for All paths”), or E (“there Exists
a path”). The latter operator is one of the following: F (“in a
Future state”), or G (“Globally in the future”). For example
EFφ means that there exists a path such that φ is eventually
satisfied and it is called a reachability property. More details
on CTL and TCTL can be found in earlier work of Alur et
al. [12], [13]. In order to specify properties of Priced Timed
Automata (PTA), the Weighted CTL (WCTL) logic has been
introduced [14]. WCTL extends TCTL with resets and testing
of cost variables.



NoDeal?

NoDeal?NoDeal?

Deal?

Deal?Deal?

DamRep2!

DamRep1!DamRep0!

RS01 == true

RS()

RS()RS()

damType :=typeOfDamageList[2]

damType :=typeOfDamageList[1]damType :=typeOfDamageList[0]

t<=20

DamRepSent2

DamRepSent1

DamRepSent0

Start

Fig. 1. The TAn model of a REMES service

III. OUR SERVICE NEGOTIATION MODEL

Pruitt describes a negotiation process as a process by which
a joint decision is made by two or more parties [15]. As
a prerequisite to the negotiation, the parties first verbalize
contradictory demands and then move towards agreement,
via a process of concession, making, or search for a new
alternative. Within the negotiation process in SOS, one might
think of a number of both quantitative (e.g., price of the
service, the penalty for contract violation, etc.) and qualitative
issues (e.g., a final goal). Each successful negotiation process
includes a set of such issues to be resolved w.r.t. demands and
offers provided by involved parties. It might be the case that
the involved parties have to make trade-offs between issues
under negotiation in order to reach an agreement. In most
cases, time to reach an agreement is a crucial factor, meaning
that the process of negotiation is time bounded from above.
One might think about several levels of timing constraints:(i)
the time it takes to reach an agreement; (ii) the time by which
a negotiated service has to be executed (in cases when multiple
services have to be composed and coordinated); (iii) the timing
constraints on a negotiated service given by the service client
(a deadline that a service has to fulfill). In case that both a
service client and a service provider have agreed on an offer,
they bound to a SLA, i.e., a contract among the involved
parties that includes a set of relations to be evaluated over a set
of attributes, where each attribute has an assigned value to be
satisfied. Attributes in SLA usually have the same priority, but
it might be the case that some attribute gets a higher priority,
meaning that some value is added to the relation.

Next we will introduce our negotiation model that could
be seen as automatically iterating over client-provider choices
until a consensus is reached.

A. Modeling Service Negotiation in REMES HDCL

To provide a systematic and analyzable way to model a ne-
gotiation process, in this paper we propose the REMES HDCL
negotiation model, described in the following. The model
is based on the set of REMES interface operations and the

hierarchical language HDCL, which supports REMES ser-
vice composition, which we have recently proposed [2]. The
model’s benefit is that once the negotiation process is finished
and a service has been provided, one can easily check if the
service really delivers the original qualities. Also the model
can be seen as a “negotiation service” that iterates over client-
provider choices, automatically, until a consensus is reached.
The verification is rigorous, and it requires the computation
of the service’s strongest postcondition (sp), which we can
provide automatically [16], and then checking if the strongest
postcondition implies the client requirements:

sp.Service.s_pre ⇒ s_post

In the above implication, (s_pre) is a service precondition
required by the service client, and (s_post) is the postcondition
of a service offered by the service provider that should be
guaranteed after the service is executed. If the implication is
verified, one can ensure that the provided service fits with
the client requirement, before the service has been executed.
Additionally, the fact that the REMES model can be translated
to TA and analyzed with the UPPAAL 4 model checker brings
more insight into the negotiation process and its possible
outcomes.

Although our negotiation model is general, here we assume
an iterative form of the Contract Net Protocol (CNP) between
web services, described in REMES HDCL. In the CNP the roles
of the manager that can be seen as a negotiation mediator, and
the contractor (a service provider) are assumed. The manager
gets a request from a client and aims at finding an appropriate
contractor to fulfill the request via call for proposals (CFP).
Further on, CFP is evaluated by contractors and a response is
being sent back. The manager evaluates the received proposals
and based on the evaluation decides which proposals to accept
and which to reject. In the iterative CNP, the communication
between manager and possible contractors repeats several
times until the consensus is reached. In each round the

4More information available at http://www.uppaal.org.



contractors aim to improve on their previous proposals, in
order to make them more suitable to the manager.

Let us assume that we want to model a service negotiation
process using HDCL. The steps to follow are enumerated
bellow.

(i) First, all service types have to be declared and instanti-
ated using REMES interface operations.

declare Service ::=<
service type : {web service},
capacity : N,
time_to_serve : N,
status : {passive, idle, active},
precondition : predicate,
postcondition : predicate >

∀i ∈ N create Manageri : Service
∀i ∈ N create Clienti : Service
∀i ∈ N create Contractori : Service

As shown above, the type Service is declared first, describ-
ing the attributes of the service. Next, we create three actual
instances (Manager, Client, and Contractor) of the declared
data type.

(ii) Second, one needs to add the services to appropriate
lists to model the composition of services. For this, a type List
is declared, initialized with two lists, list_request and list_offer,
which are then populated by the actual services.

declare List ::=< [service_name0 : Service, . . . ,
service_namen : Service] >

create list_request : List
create list_offer : List
add Client list_request
add Manager list_request
add Contractor list_offer
add Manager list_offer

In HDCL the service negotiation can be modeled as a service
composition via the parallel with synchronization protocol
modeled by the operator ‖SYNC-and . Services communicating
via ‖SYNC-and operator belong to the special type of REMES
mode, called AND mode. Respecting the semantics of an AND
mode, the services connected by this operator start and finish
their execution simultaneously.

(iii) Last but not least, our model of service negotiation is
defined by the following:

DCL_req ::= (list_request, ‖SYNC-and, reqclient)
DCL_offer ::= (list_offer , ‖SYNC-and, reqprovider)
DO

p_offer := negotiation(paramp)
c_request := negotiation(paramc)
neg_cost_client := a ∗ t

OD ((t ≤ tmax) ∧ (c_request < p_offer))
if (c_request ≥ p_offer) then
contract := true
neg_cost_client := b ∗ t

else
contract := false
neg_cost_client := neg_cost_client + penalty
neg_cost_provider := penalty

fi

The requirements reqclient (a requirement defined from
the client’s side) and reqprovider (a provider defined require-
ment) are predicates that might include both functional and
extra-functional properties of service compositions as part
of the negotiation process. The content of the requirement

might include different negotiable parameters (denoted by
paramp for the provider, and paramc for the client), such
as price, time, or location at which a provided service should
be available. The provider’s offer is calculated via function
negotiation(paramp) and stored in variable p_offer similar
to the approach presented by Kumpel et al. [17]. In case that
the provided offer has not met the client’s expectation, so that
the client is willing to continue the negotiation (given that
the timing constraints permit this), his/her request (c_request)
can be changed/updated using the same function (as the one
used in the provider’s case) but with a different parameter
negotiation(paramc).

To describe the function let us assume n negotiable param-
eters p1, . . ., pn, and for each parameter a set of acceptable
values predefined as vpi= {v1, . . ., vk}. The set of acceptable
values can contain real, integer, or natural number values
depending of the parameter type. In case of a real-valued
range, the value set consists of two values only, the minimum
and the maximum, respectively. In order to provide an offer,
we calculate the utility function U(O) as follows:

U(O) =
n∑

i=1

U(vpi ) =
n∑

i=1

(w(pi) ∗ pref(vpi )) (2)

where w(pi) is the weight of vpi compared to other involved
parameters, pref (vpi ) represents the degree of importance of
value vpi as compared to all values of parameter pi, and the
set of acceptable values per parameter O = {vp1 , . . ., vpn}.
To provide the most suitable value of parameter pi such that
the utility function is maximized for all participants in the
negotiation, one has to define an objective function Z [17].
Assuming two parties in the negotiation, the objective function
Z has the following form:

Z(vpi ) = U1(vpi ) + U2(vpi )− | U1(vpi )− U2(vpi ) | (3)

= 2 ∗min(U1(vpi ), U2(vpi ))

The optimal value to be offered for parameter pi is the one
for which the objective function Z is maximum. In case that
more than one value is found, one can choose the one for
which the sum U1(vpi ) + U2(vpi ) is the highest. The value
calculated in this way is offered to the client.

Since we are interested in time-constrained negotiation
models, we have introduced in this model tmax that defines
the maximum allowed time for the negotiation, present in the
constraint t ≤ tmax, where t is an implicit time variable. Once
tmax is reached, the negotiation process finishes.

The negotiation process might finish with a signed contract
(contract := true) if the Boolean condition (c_request ≥
p_offer ) is satisfied, or without any agreement (contract :=
false) if the given condition does not hold (c_request <
p_offer ). In our model, we assume that each participant
in the negotiation pays a price, captured by two variables,
neg_cost_client , and neg_cost_provider , respectively. The
negotiation cost payed by the client is a linear function of
time, with constant rates, i.e., a, b, respectively. In case that
the negotiation ends without any agreement both the client and



the provider pay a penalty price that is a constant modeled by
penalty .

In our REMES HDCL negotiation model, one might consider
different types of costs, as part of the negotiation model.
For example, one might think about the cost of service
provision, which is negotiated between the service client and
the service provider. Another interest might be in the cost of
the negotiation process for a client (neg_cost_client), which
increases linearly with the elapsed time, provided that the
negotiation process has more than one iteration. In case that
the negotiation process finishes without any agreement within
the required time (i.e., time for negotiation elapsed) the cost
of negotiation is increased by a given penalty (i.e., constant
penalty in the model) paid by both involved parties.

The negotiation process aims at bringing benefits to all
participants. The client benefits in terms of being offered a
service that fits the provided requirements, while the service
provider benefits in terms of money to be paid for a service,
and reputation based on the negotiation flow (i.e., it might
be the case that several service providers can offer the same
service, then the reputation of a service provider plays a sig-
nificant role when deciding which service provider to choose
to deliver the service).

In the following section, we show what types of analysis
are supported by our REMES HDCL model.

B. Analysis of the Proposed Negotiation Model

For analysis purposes, we give TA semantics to the REMES
HDCL model [1], [2]. The actual transformation is explained
informally in the example of Section IV-C. In the proposed
negotiation model one could think about different types of
analyses. Since the model is time-constrained, it is possible to
perform timing analysis, e.g., to compute what is the response
time of the service provider. The described negotiation model
is equipped with the cost model that enables analyzing the
maximum and minimum cost of the negotiation process. If we
consider the TAn or Priced Timed Automaton (PTAn) model
as the semantic translation of a REMES model, then some
analysis goals might be expressed by the following WCTL [14]
properties that TAn or PTAn model can be checked against:

AFt≤tmax final_deal (4)
AG (negotiation⇒ AFcost≤nfinal_deal) (5)
EFcost≤n final_deal (6)
AG (negotiation⇒ EFcost≤nfinal_deal) (7)
EF (t ≤ tmax ∧ contract ∧ u ≥ val) (8)

Properties (4), (5), (7) are liveness properties, while prop-
erties (6) and (8) are reachability properties. We say that the
first two properties specify strong feasibility of the model:
property (4) requires that for all execution paths, the target
location final_deal is eventually reached within time t less
or equal to the maximum allowed time tmax; property (5)
states that, for all paths, it is always the case that, once in
location negotiation , the cost of eventually reaching location
final_deal will be no more than n, regardless of how location

final_deal is reached. Property (6) models weak feasibility,
meaning that the target location final_deal may be reached
within a total cost of n. Property (7) states that for all paths,
it is always the case that once location negotiation is reached,
there exists a way by which location final_deal will be
eventually reached within cost n. The last property (8) states
that there exists a path in which a contract can be signed
(contract holds) within the given timing constraints, that is,
t ≤ tmax, and maximized utility function (u ≥ val).

In the following section, we introduce an insurance scenario
example to illustrate our approach.

IV. EXAMPLE: AN INSURANCE SCENARIO

In the car insurance branch the biggest concern is handling
claims filed by the insured customers. In most cases the
process still relies on traditional methods that involve input
and effort of several specialized persons, usually working in
different departments of an insurance company. The claims
handling process becomes both time consuming and expensive.
Therefore, insurance companies show interest in finding more
automated, less expensive, and quicker ways to serve their
customers.

In this paper, we describe an imaginary car insurance
company called Damage Secure Center similar to the one
presented by Paurobally et al. [18]. The company is specialized
in managing tasks related to car damage claims on behalf
of insurance companies. The goal is to enhance the quality,
efficiency, and to reduce the cost of claims handling between
client, the car damage repair shops, and insurance companies.
The involved parties have different preferences regarding the
car repair claims. A customer wants to get her/his car repaired
as soon as possible. An insurance company that has a duty to
pay for a repair (claim settlement) would like to do it under
the best circumstances, that is the lowest price, as close as
possible to the clients current location, as soon as possible, etc.
In this example we assume several repair shops, representing
themselves and negotiating on the price of the requested repair.
The benefit of such a scenario is twofold: (i) the process
becomes more efficient since it is not manual anymore; (ii)
the prices offered by repair shops most likely will drop since
it is possible to negotiate the final price.

The example assumes a client being insured by an insurance
company. In case of the car damage the client sends a damage
report to an insurance company that contacts Damage Secure
Center company (the mediator) that negotiates the prices
of the car damage repair with repair shops on behalf of
the insurance company. The Damage Secure Center selects
several available repair shops, based on their competence and
performs an iterative CNP negotiation in order to choose the
most suitable one. When the most suitable repair shop is
chosen, the insurance company signs the contract and pays
for the provided service.

In this example we are interested to model the negotiation
process with respect to the following properties:
• Price - represents several different types of costs such

as labor cost, repair cost, and a profit margin calculated



on the repair shop side. On the other hand for Damage
Secure Center, the price is the maximum price that an
insurance company is willing to pay for a car damage
repair.

• Location - describes the distance of the repair shops from
an insured client that has reported a car damage.

• Speed of repair - is described in terms of the time of the
repair in which the repair shop is fixing the damage.

For parties involved in the negotiation process we have
defined negotiation preferences that are used to determine
which values to offer, accept, or respond with. For example,
a repair shop starts the negotiation by offering a price within
the predefined minimum and maximum values for each car
damage repair type. In case that the negotiation process does
not go as expected, i.e., takes too much time without reaching
any agreement, a repair shop can offer a marginal price
that is lower than previously defined minimum cost, but still
acceptable by that repair shop (as compared to abandoning the
negotiation).

In the following section we present negotiation strategies of
interest for the described insurance scenario.

A. Negotiation strategies

The goal of the negotiation strategy is to determine the best
course of actions that will lead to an agreement. The essence
of negotiation strategies is creating offers/counter-offers in
the acceptable range of values predefined by the involved
negotiation parties, sometimes defining some acceptable trade-
offs to steer the negotiation towards convergence. In this
paper we describe two negotiation strategies, price-driven
negotiation strategy and time dependent negotiation strategy
with marginal cost, suitable in the context of the presented
insurance scenario example.

1) Price-driven strategy: Each involved party during the
negotiation process has some desired values for the prices to
be required or offered. In our example the mediator Damage
Secure Center would like to get as low as possible price, to
serve the interests of the insurance company. On the other
hand, the price that a repair shop is willing to offer lays in
the interval [mincost, maxcost] calculated based on the price
of the spare part for the specific type of the car damage
(partCost[damType]) and labor cost (minLaborCost[damType]
and maxLaborCost[damType]), as follows:

mincost = partCost[damType] +minLaborCost[damType]

maxcost = partCost[damType] +maxLaborCost[damType]

The goal of a repair shop is to get the highest possible price
for the repair, as close as possible to its maximum price, yet
in the worst case not below its minimum price.

In case that the price offered by a repair shop from the
interval [mincost, maxcost] is greater than the price that Damage
Secure Center is willing to agree upon, the negotiation goes
to the next iteration. In the next iteration the interval of
possible prices offered by the repair shop is narrowed with
the maximum price value offered in the previous iteration. In

this way, the range of possible prices gets as close as possible
to the desired values, but still satisfies the price restrictions of
all involved parties. In case that the negotiation continues in
a large number of iterations, the model could be bounded by
a maximum number of allowed iterations.

2) Time-driven strategy with marginal cost: A time-driven
negotiation strategy has similar principles of offering and
counter-offering as the price-driven strategy. The prices pro-
posed by the repair shop are again from the interval [mincost,
maxcost] with the interval being narrowed in each iteration
of the negotiation process. In this strategy, each repair shop
defines a marginal cost that is the maximal allowed deviation
from the minimum price in the given interval.

This strategy assumes that there exists a time bound (tmax)
on the negotiation process. The idea is that by this time some
agreement should be made, or the involved parties should
be very close to agree upon something with the final agreed
price in the range [mincost, maxcost]. In case that this time is
exceeded with no agreement settled, and the current offered
price (offered_price) is greater than the price required by the
Damage Secure Center (req_price) with an amount less or
equal to the marginal cost (marginal_cost), then the contract
can be signed and the agreed price is favoring the Damage
Secure Center.

In the following section, we present the HDCL-based
negotiation model for the above described insurance scenario.

B. Modeling Negotiation for the Insurance Scenario

Let us consider a model that consists of one client (C), an
insurance company (IC), a Damage Secure Center (DSC), and
three repair shops (RS01, RS02, and RS03). In HDCL each
involved party has to be introduced through the declarative part
as described in Section III-A. Through the same declarative
part the global variables used in this example are first declared.
In this example we make use of three lists for the negoti-
ation model (list_car_damage_report, list_forward_report, and
list_neg).

In this model we have defined three types of the car damage
that a client can report (damType). Repair shop RS01 can
offer its services in case that the car damage is of type 0
or 1, repair shop RS02 can serve car damage types 1 and 2,
and the last repair shop RS03 can repair all three possible
types of the car damage. These repair shops are located at
two different locations. Repair shops RS01 and RS02 are at
location0, while repair shop RS03 is at location1, assumed
far enough from each other. In the code below, services are
first declared, followed by their creation and adding to the
respective lists in order to model service composition.

int damType, location, ISprice, price_RS[3], priceclient

bool car_status, contract
declare Client ::=<
web service,
3,
20,
passive,
(car_status == false ∧ damType == 1
∧ location == 0 ∧ priceclient ≤ 7),
(car_status == true ∧ location == 0) >



declare IC ::=<
web service,
5,
20,
passive,
(damType == 0 ∨ damType == 1 ∨ damType == 2),
(ISprice ≤ 12) >

declare DSC ::=<
web service,
3,
20,
passive,
(damType == 0 ∨ damType == 1 ∨ damType == 2),
(ISprice ≤ 12) >

declare RS01 ::=<
web service,
7,
20,
passive,
(5 ≤ price_RS[1] ≤ 14 ∧ location == 0
∧ (damType == 0 ∨ damType == 1)),
(location == 0 ∧ (damType == 0 ∨ damType == 1)) >

declare RS02 ::=<
web service,
6,
20,
passive,
(5 ≤ price_RS[2] ≤ 14 ∧ location == 0
∧ (damType == 1 ∨ damType == 2)),
(location == 0 ∧ (damType == 1 ∨ damType == 2)) >

declare RS03 ::=<
web service,
5,
20,
passive,
(4 ≤ price_RS[3] ≤ 10 ∧ location == 1
∧ (damType == 0 ∨ damType == 1 ∨ damType == 2)),
((damType == 0 ∨ damType == 1 ∨ damType == 2)∧
∧ location == 1) >

create Client, IC,DSC,RS01, RS02, RS03
create list_car_damage_report, list_forward_report, list_neg
add Client list_car_damage_report
add IC list_car_damage_report
add IC list_forward_report
add DSC list_forward_report
add DSC list_neg
add RS01 list_neg
add RS02 list_neg
add RS03 list_neg

When a car damage occurs, the client (C) sends a request for
car repair to the insurance company (IC) that contains the car
location and the damage type. Let us assume that the client
has to report the car damage type 1 and that the car is at
location0. The client also states the maximum price he/she is
willing to pay for the car repair (priceclient ≤ 7).

DCL_req ::= (list_car_damage_report, ‖SYNC-and, damType == 1∧
∧ location == location0 ∧ priceclient ≤ 7)

This request is forwarded to the Damage Secure Center
(DSC) together with information on the maximum price that
the insurance company is willing to pay for the car damage
repair (ISprice).

DCL_req ::= (list_forward_report, ‖SYNC-and,
ISprice ≤ 12 ∧ damType == 1 ∧ location == location0)

In terms of the negotiation model the Damage Secure Center
(DSC) acts as a coordinator between the insurance company
as the client and repair shops as contractors. After receiving
a request, (DSC) asks all repair shops to offer their prices.
Even if some repair shop is not at the same location as the
client, it will be asked to create an offer for a repair since the

offered price might be lower than the prices offered by other
two repair shops including the traveling cost to that location.
It might be the case that it is acceptable to pay more to tow
the car to this location, but still make a significant saving in
the repair cost. For this example, the negotiation model is then
as follows:

bool contract := false;
int n := 1,m := 1
int price_min_RS[1] := 5, price_max_RS[1] := 14
int price_min_RS[2] := 5, price_max_RS[2] := 14
int price_min_RS[3] := 4, price_max_RS[3] := 10
DO
DCL_req ::= (list_neg, ‖SYNC-and, damType == 1∧

∧ location == location0 ∧ priceclient ≤ 7)
DCL_offer ::= (list_neg, ‖SYNC-and,

price[m] ∈ [price_min_RS[m], price_max_RS[m]])
DO
price_RS[m] := negotiation(price)
price_max_RS[m] := price_RS[m]
m := m+ 1

OD (m ≤ 3)
m := 1

DO
if (priceclient ≥ price_RS[m]) then
contract := true
m := m+ 1
fi

OD (m ≤ 3)
n := n+ 1
OD (n ≤ 5 ∧ ¬contract)
DO

if (priceclient < price_RS[m]) then
contract := false
fi

OD (m ≤ 3)

After receiving a call for offers from the (DSC), each
repair shop calculates the minimum and the maximum
price for a given damage type (i.e., price_min_RS[m] and
price_max_RS[m], where m is an integer variable that represent
number of available repair shops). This sets the initial bound
for a offer to be created. In each iteration of the negotiation
process each repair shop provides an offer value on price that
is negotiated (i.e., price_RS[m]) via function negotiation(price),
which is always a value between minimum and maximum
price for a given damage type. The maximum value of the
price price_max_RS[m] is being updated in each negotiation
iteration by the previously offered price meaning that the price
interval is progressively narrowed.

The negotiation process iterates as long as the given con-
dition holds (n ≤ 5 ∧ contract == false). Depending on the
strategy used, the negotiation process might have different
outcomes. One outcome might be that both sides agree on
some price in few iterations and that the contract (contract :=
true) is quickly signed, or that the process iterates as long as
it is allowed by the negotiation model and finishes without
contract (contract := false) signed. Another scenario might be
that the negotiation process has timing constraints. In that case
the negotiation might iterate as long as the timing constraint
allows, and then in the case that no agreement is reached, a
repair shop can agree on a price lower than its set minimum
price with maximum the amount of the marginal cost.



offerLoc[0]:=0,
offerLoc[1]:=0,
offerLoc[2]:=0,
negCounter++

Reputation(), UtilityDS(), PriceSet()

offer:=0

CalculateMin()

DamRepAcquired

CalculateMin()

Start

GetOffer

negCounter:=0

t<=20

n1==0 || n2==0 || n3==0

offer>typeOfDamagePrice[damType]&&
negCounter<5 && t<20

((n1==1 && n3==1 && active[1]==false) || 
(n1==1 && n2==1 && n3==1) ||
(n2==1 && n3==1 && active[0]==false))&&
negCounter==0

NoDeal!negCounter > 5 || t>20

(offer<=typeOfDamagePrice[damType]) ||
((offer>typeOfDamagePrice[damType]) &&
(offer−typeOfDamagePrice[damType]<= 2) && negCounter >=5)

negCounter>=1 &&(offerLoc[0]>0 || offerLoc[1]>0 || offerLoc[2]>0)

ReadyToNegotiate

ReadyToNeg!

Negotiate!

Deal!

ForwardDamRep?

PriceProposal!

RepOffer!

ReadyToNeg!

(a)

active[0]:=false

max1:=offer, n1:=0

active[0]:=false,
offerLoc[0]:=0, n1:=0

Start

RS01:=true, active[0]:=false, UtilityRS1()

RS01:=false, active[0]:=false

RepOffer?

k1:=0

offerLoc[0] := k1,
n1:=1

MinMax1(), n1:=0,
k1:=0, active[0]:=true

k1:=i1

offer>typeOfDamagePrice[damType]

k1==0&&
offer !=0

k1==offer

i1:int[1,15]

RS01==false && contract==true

(offer<=typeOfDamagePrice[damType]) ||
(offer>typeOfDamagePrice[damType])

PriceProposal?

Negotiate?

Deal?

ReadyToNeg?

(k1>=min1 && k1<=max1)

damType==0 || damType==1

NoDeal?

(k1==0) || (k1<min1) || (k1>max1) || ((k1>offer)&& negCounter >0)|| 
(k1>typeOfDamagePrice[damType]&& negCounter >0)

(b)

Fig. 2. The timed automata model of DSC and RS01

C. Analyzing the TA Model of the Insurance Scenario

We have analyzed the service-based car insurance negotia-
tion example, as a network of six TA models, in the UPPAAL
model checker 5. The TA model of Client is shown in Fig. 1
and described in Section II-B. The TA of Damage Secure
Center (DSC) and the repair shop (RS01) are depicted in
Fig. 2 (a) and Fig. 2 (b), respectively.

Both automata consist of one initial location Start. The
DSC automaton gets invoked by the insurance company (IC)
automaton via synchronization channel ForwardDamRep for

5See the web page www.uppaal.org for more information about the UPPAAL
tool.

the mediation of finding a suitable repair shop for the given
car damage type. This synchronization corresponds to the
DCL_req in HDCL in which an insurance company defines
its own constraints on the requested car damage repair.

To serve this request, DSC automaton uses synchronization
channel RepOffer to propagate this request to repair shops
RS01, RS02, and RS03. All repair shops calculate their mini-
mum and maximum price for a given damage type (damType)
using MinMax() function. To offer the price of the repair, repair
shops use synchronization channel PriceProposal. The offers
are stored into the array offerLoc[3] that is used by the DSC
automaton function CalculateMin() to determine the minimum



offered price. In case that this price is smaller or equal to the
price that the insurance company is willing to pay, the contract
is signed (contract == true) and the agreement is propagated via
synchronization channel Deal. Otherwise, the DSC automaton
and the repair shop with the lowest offered price continue
negotiating via synchronization channels ReadyToNeg and
Negotiate. In this example we have encoded maximum of
5 negotiation iterations (negCounter ≤ 5). Bounded integer
variables n1, n2, and n3 are used to keep a track of the
proposals by repair shops RS01, RS02, RS03, respectively.
The integer array active[3] indicates which repair shops are
active in the negotiation process. In case that no agreement
is reached, DSC closes the negotiation via synchronization
channel NoDeal. The TA description above is a transformation
of HDCL “negotiation service” described in Section IV-B.

In order to analyze the negotiation we encode the DSC
utility function (uds, see below Eq. 9) as a weighted sum of
negotiation preferences (i.e., price, location, time-to-repair).
The function is calculated for all repair shops and DSC given
that they have different priorities for different preferences.
From the point of view of the repair shop the goal would be to
maximize the utility, since it is heavily influenced by the final
price. On the other hand, the DSC would like to minimize the
utility function.

uds = price_offer ∗ wds1 + location[i] ∗ wds2 + RSntimeToRepair[j] ∗ wds3 (9)

In the utility function described in Eq. 9 weights wds1,
wds2, and wds3 express the preferences of the DSC. The
highest value is assigned to weight wds1 meaning that the
price has the highest importance for DSC, while the lowest
value is given to weight wds2 showing that the location of the
client does not play a big role when choosing the repair shop.

Next, we define the repair shop utility function as follows:

ursm = price_offer ∗ wrs1 + location[i] ∗ wrs2 + RSntimeToRepair[j] ∗ wrs3

(10)

where m ∈ [1,3] represents the number of repair shops
involved in the negotiation process. On the other hand, for
a repair shop the most important preference is the price with
the highest given weight wrs1. In comparison with DSC the
actual location of the client is more important than the time-
to-repair the car damage, since to tow the damaged car to
the repair shops location might be time consuming and might
bring the additional and unexpected cost. The lowest weight
is assigned to the time required to perform the repair.

In order to minimize the utility function for DSC, we have
analyzed the cases when repair shops offer minimum possible
prices to perform the car damage repair. The results are showed
in Table I.

To be able to compare the results from Table I we have
analyzed the utility function for each repair shop, and for each
damage type with the same prices as used to minimize DSC
utility function. One can notice that in the case of car damage
types damType1 and damType2, from the perspective of both
DSC and repair shops there is no big difference in prices of the

damType0 damType1 damType2
RS01 20 30 -
RS02 - 28 30
RS03 16 30 32

TABLE I
VALUES OF THE MINIMIZED UTILITY FUNCTION OF THE DSC

car repair at different locations, while in case of the damage
type damType0 it is in the best interest of DSC to repair the
car in the repair shop RS03 even if that would mean to tow
the car from location1 to location0 to get the cheaper repair.
On the other hand, as presented in Table II in case of the same
damage type damType0, the utility function is maximum if the
car damage repair is performed at the same location, that is,
location0.

damType0 damType1 damType2
RS01 16 24 -
RS02 - 23 24
RS03 12 22 26

TABLE II
VALUES OF THE UTILITY FUNCTION OF THE RESPECTIVE REPAIR SHOPS

FOR THE SAME PRICE VALUES AS IN TABLE I

It is also interesting to analyze the maximized utility func-
tion values for the respective repair shop. When maximizing
the function, we take into consideration the negotiation prices
that are maximum from the perspective of repair shops, yet
acceptable by DSC hence leading to an agreement.

damType0 damType1 damType2
RS01 19 45 -
RS02 - 44 42
RS03 18 40 55

TABLE III
VALUES OF THE MAXIMIZED UTILITY FUNCTION OF THE RESPECTIVE

REPAIR SHOPS

If we compare results in Table III with those in Table II we
can notice that it is not a significant change in values for the
car damage type damType0. The reason for this is probably the
fact that the maximum acceptable price by DSC that leads to an
agreement is closer to the repair shops’ minimum price than to
the maximum one. On the other hand, other two repair shops
would benefit a lot in terms of profit in case that agreements
are based on these values.

Values of the utility function of DSC in Table IV for the car
damage types damType1 and damType2 increase significantly
compared to the minimized values of the same function
presented in Table I, since the maximum acceptable prices
by DSC are much higher from the minimum allowed prices
by the repair shops.

We also check the modeled example against safety proper-
ties given in Eq. 11 and Eq. 12:



damType0 damType1 damType2
RS01 23 51 -
RS02 - 49 48
RS03 22 48 59

TABLE IV
VALUES OF THE UTILITY FUNCTION OF DSC FOR THE SAME PRICE

VALUES AS IN TABLE III

AG not deadlock (11)

where the first property (Eq. 11) checks whether the modeled
negotiation process is deadlock free in all existing traces, while
the property defined in Eq. 12 ensures that after 5 negotiation
iterations a new negotiation round is never started.

AG not (DS.ReadyToNegotiate ∧ negCounter > 5

∧ DS.GetOffer) (12)

If we assume a model with an encoded time-driven strategy,
and a marginal cost, then we can verify whether the contract
can be signed within given timing constraints, that is, t ≤ 20
time units. Here we check the property for the car damage
type damType1, but in general the property can be checked
for any car damage type. The property to be verified has the
following form:

AG not (t ≥ 20 ∧ negCounter > 5 ∧ contract == true

∧ damType == 1) (13)

The property given in Eq. 13 is satisfied, and the final
offered price is equal to 4 price units, that is, the price
an insurance company is willing to pay. In this case, the
negotiation finishes in favor of the insurance company. Also, it
is interesting to do some reachability analysis. We could check
whether there exists a trace in which, assuming a car damage
type damType2, a contract can be signed within a prescribed
time, that is, t ≤ 20 time units, while maximizing the utility
function urs2.

EF (t ≤ 20 ∧ contract == true ∧ damType == 2 ∧ urs2 ≥ 40) (14)

We have verified, in UPPAAL, properties 11- 14, and the
model satisfies them all.

V. DISCUSSION AND RELATED WORK

Lapadula et al. provide a description of modeling publi-
cation, discovery, negotiation, deployment, and execution of
service-oriented applications in COWS [3]. COWS is a WS-
BPEL-inspired process calculus, which can be seen as a lower
level modeling language suitable for specifying, combining,
analyzing services, while modeling their dynamic behavior.
For the analysis purposes, the language can be translated to
CMC model checker. In comparison to this approach, our
approach offers an intuitive and expressive service model,
with given semantics in UPPAAL’s TA, which allows for both
functional as well as extra-functional negotiation properties.

Sierra et al. describe a formal model for negotiation between
autonomous agents in service-oriented environments [4]. The
service-oriented model is a modified version of the general
negotiation model proposed by Faratin et al. [19]. The paper
presents several negotiation schemes, including generation of
the initial offer, evaluation of the incoming proposals, and
generation of counter proposals. However, no analysis support
has been mentioned. Comuzzi et al. present an automated
approach to web service QoS negotiation [20]. The negoti-
ation is performed via Negotiation Broker to which both a
consumer and a service provider notify their preferences on
QoS attributes and negotiation strategies by specifying the
value of a relatively small set of parameters. In some later
work Comuzzi et al. propose a semantic-based framework
to support negotiation process in SOA [21]. The benefit of
this approach is that framework allows to service client and
a service provider to express their capabilities in terms of
the negotiation protocols they are able to support and the
actions they are able to perform, and based on that proposes
a negotiation protocol to be used. Again, both papers offers a
rich theoretical foundation for automated negotiation process,
but compared to our approach lack the formal analysis of
the negotiated QoS. Resinas et al. provide a description of
automated agreement negotiation system based on a bargaining
protocol called NegoFAST-Bargaining [22]. The architecture
includes a rich environment to first identify key element in
the negotiation process, then to model it together with its
corresponding processes, and finally to create scenarios to be
validated. However, the approach does not provides means for
formal analysis as one described in our paper. Paurobally et al.
describe a a way to deploy multi-agent negotiation techniques
to facilitate dynamic negotiation for Grid resources in order
to provide an adaptive and autonomous Grid [18]. Moreover,
they describe the deployment of CNP and its corresponding
strategies for negotiation between web services. The approach
offers a rich environment to model the negotiation process
using CNP, but in terms of the analysis it is limited to
monitoring the modeled system while it lacks support for
formal analysis.

VI. CONCLUSIONS

In this paper, we have presented an approach that accom-
modates modeling and analysis of service negotiation between
two or more parties based on an iterative form of the CNP
for web services. Although we have implemented only the
CNP negotiation protocol and two strategies, price-, and time-
driven, the negotiation model is general and not limited to
these. Our model is an analyzable high-level description of
the negotiation between service clients and providers, which
so often characterizes SOS. The model has an implicit notion
of time, and supports annotations in terms of price, quality, or
other parameters, all modeled by the REMES textual service
composition language HDCL. The crux of the model is that it
has a formal timed automata semantics, which lets one verify
various model properties, for all possible executions, which



is not achievable in principle by any simulation or testing
technique.

We have applied a narrower version of it in the car insurance
example, for which we have shown how to analyze the
negotiation model against safety properties, but also against
specified timing and utility constraints. We accomplish these,
by transforming the model into a network of Timed Automata,
which we analyze by using the UPPAAL model checker. Real-
world negotiation processes are indeed more complex than our
high-level proposed model. Consequently, as future work, we
plan to validate the proposed approach on a more complex
case study, and possibly improve our models to ensure better
scaling and to cover richer behavior. In addition, we would like
to explore the ways in which we could connect our language
to WS-BPEL language, such that the large analysis spectrum
covered by our approach reaches and becomes accessible to a
broader community.

VII. ACKNOWLEDGMENTS

This work was funded by the VR Contesse project and
Mälardalen University. The authors would like to thank the
Formal Modeling and Analysis of Embedded Systems group
at Mälardalen University for fruitful discussions and valuable
comments.

REFERENCES

[1] C. Seceleanu, A. Vulgarakis, and P. Pettersson, “Remes: A resource
model for embedded systems,” in In Proc. of the 14th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
2009). IEEE Computer Society, June 2009.

[2] A. Causevic, C. Seceleanu, and P. Pettersson, “Modeling and reasoning
about service behaviors and their compositions,” in Proceedings of
4th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation (ISOLA 2010), Formal Methods in
Model-Driven Development for Service-Oriented and Cloud Computing
track. Springer LNCS, October 2010.

[3] A. Lapadula, R. Pugliese, and F. Tiezzi, “Service discovery and nego-
tiation with cows,” Electron. Notes Theor. Comput. Sci., vol. 200, pp.
133–154, May 2008.

[4] C. Sierra, P. Faratin, and N. R. Jennings, “A service-oriented
negotiation model between autonomous agents,” in Proceedings
of the 8th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World: Multi-Agent Rationality. London,
UK: Springer-Verlag, 1997, pp. 17–35. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646909.710674

[5] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994. [Online].
Available: citeseer.nj.nec.com/alur94theory.html

[6] D. Ivanov, M. Orlic, C. Seceleanu, and A. Vulgarakis, “Remes tool-
chain - a set of integrated tools for behavioral modeling and analysis of
embedded systems,” in Proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2010), September
2010.

[7] D. Ivanov, “Integrating formal analysis methods in progress ide,” Mas-
ter of Science Thesis, Malardalen Research and Technology Centre,
Vasteras, Sweden, June 2011.

[8] E. P. Enoiu, R. Marinescu, A. Causevic, and C. Seceleanu, “A design tool
for service-oriented systems,” in 9th International Workshop on Formal
Engineering approaches to Software Components and Architectures
(FESCA 2012). ENTCS, March 2012.

[9] E. W. Dijkstra and C. S. Scholten, Predicate calculus and program
semantics. New York, NY, USA: Springer-Verlag New York, Inc.,
1990.

[10] M. Orlić, “Resource usage prediction in component-based software
systems,” PhD thesis, Faculty of electrical engineering and computing,
University of Zagreb, November 2010.

[11] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools.” Springer-Verlag, 2004, pp. 87–124.

[12] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Logic in Computer Science, 1990. LICS ’90, Proceedings.,
Fifth Annual IEEE Symposium on e, jun 1990, pp. 414 –425.

[13] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-checking in dense
real-time,” Inf. Comput., vol. 104, no. 1, pp. 2–34, 1993.

[14] T. Brihaye, V. Bruyère, and J.-F. Raskin, “Model-checking for weighted
timed automata,” in Proc. of FORMATS-FTRTFTâĂŹ04, ser. Lecture
Notes in Computer Science, no. 3253. Springer–Verlag, 2004, pp.
277–292.

[15] D. G. Pruitt, Negotiation Behavior. Academic Press Inc., 1981.
[16] A. Causevic, C. Seceleanu, and P. Pettersson, “Checking correctness

of services modeled as priced timed automata,” in Proceedings of
5th International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation. LNCS Proceedings (Springer
Verlag), October 2012.

[17] A. Kümpel, I. Braun, J. Spillner, and A. Schill, “(Semi-) automatic nego-
tiation of service level agreements,” in IADIS International Conference
WWW/INTERNET 2010, Timisoara, Romania, 2010, pp. 282–286.

[18] S. Paurobally, V. A. M. Tamma, and M. Wooldridge, “A framework for
web service negotiation,” TAAS, vol. 2, no. 4, 2007.

[19] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision functions
for autonomous agents,” INTERNATIONAL JOURNAL OF ROBOTICS
AND AUTONOMOUS SYSTEMS, vol. 24, pp. 3–4, 1998.

[20] M. Comuzzi and B. Pernici, “An architecture for flexible web service
qos negotiation,” in Proceedings of the Ninth IEEE International EDOC
Enterprise Computing Conference, ser. EDOC ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 70–82. [Online]. Available:
http://dx.doi.org/10.1109/EDOC.2005.4

[21] M. Comuzzi, K. Kritikos, and P. Plebani, “A semantic based framework
for supporting negotiation in service oriented architectures,” in CEC,
2009, pp. 137–145.

[22] M. Resinas, P. Fernández, and R. Corchuelo, “A bargaining-
specific architecture for supporting automated service agreement
negotiation systems,” Science of Computer Programming, vol. 77,
no. 1, pp. 4 – 28, 2012, <ce:title>System and Software
Solution Oriented Architectures</ce:title>. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642310001851


